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ON THE CENTER OF FUSION CATEGORIES

ALAIN BRUGUIÈRES AND ALEXIS VIRELIZIER

Müger proved in 2003 that the center of a spherical fusion category C of
nonzero dimension over an algebraically closed field is a modular fusion
category whose dimension is the square of that of C. We generalize this the-
orem to a pivotal fusion category C over an arbitrary commutative ring k,
without any condition on the dimension of the category. (In this gener-
alized setting, modularity is understood as 2-modularity in the sense of
Lyubashenko.) Our proof is based on an explicit description of the Hopf
algebra structure of the coend of the center of C. Moreover we show that
the dimension of C is invertible in k if and only if any object of the center
of C is a retract of a “free” half-braiding. As a consequence, if k is a field,
then the center of C is semisimple (as an abelian category) if and only if
the dimension of C is nonzero. If in addition k is algebraically closed, then
this condition implies that the center is a fusion category, so that we recover
Müger’s result.
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Introduction

Given a monoidal category C, Joyal and Street [1991], Drinfeld (unpublished),
and Majid [1991] defined a braided category Z(C), called the center of C, whose
objects are half-braidings of C. Müger [2003] showed that the center Z(C) of a
spherical fusion category C of nonzero dimension over an algebraically closed
field k is a modular fusion category, and that the dimension of Z(C) is the square of
that of C. Müger’s proof of this remarkable result relies on algebraic constructions
due to Ocneanu (such as the “tube” algebra) and involves the construction of a

MSC2010: 18D10, 16T05, 18C20.
Keywords: categorical center, fusion categories, Hopf monads, modularity.
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2 ALAIN BRUGUIÈRES AND ALEXIS VIRELIZIER

weak monoidal Morita equivalence between Z(C) and C⊗Cop. The modularity
of the center is of special interest in three-dimensional quantum topology, since
spherical fusion categories and modular categories are respectively the algebraic
input for the construction of the Turaev–Viro/Barrett–Westbury invariant and of the
Reshetikhin–Turaev invariant. Indeed it has been shown recently in [Turaev and
Virelizier 2010] (see also [Balsam 2010]) that, under the hypotheses of Müger’s
theorem, the Barrett–Westbury generalization of the Turaev–Viro invariant for C is
equal to the Reshetikhin–Turaev invariant for Z(C).

In this paper, we generalize Müger’s theorem to pivotal fusion categories over
an arbitrary commutative ring. More precisely, given a pivotal fusion category C

over a commutative ring k, we prove the following:

(i) the center Z(C) of C is always modular (but not necessarily semisimple) and
has dimension dim(C)2;

(ii) the scalar dim(C) is invertible in k if and only if every half braiding is a retract
of a so-called free half braiding;

(iii) if k is a field, then Z(C) is abelian semisimple if and only if dim(C) 6= 0;

(iv) if k is an algebraically closed field, then Z(C) is fusion if and only if dim(C) 6=0.

Our proof is different from that of Müger. It relies on the principle that if a braided
category B has a coend, then all the relevant information about B is encoded in its
coend, which is a universal Hopf algebra sitting in B and endowed with a canonical
Hopf algebra pairing. For instance, modularity means that the canonical pairing is
nondegenerate, and the dimension of B is that of its coend. In particular we do not
need to introduce an auxiliary category.

The center Z(C) of a pivotal fusion category C always has a coend. We provide
a complete and explicit description of the Hopf algebra structure of this coend,
which enables us to exhibit an integral for the coend and an “inverse” to the pairing.
Our proofs are based on a “handleslide” property for pivotal fusion categories.

A general description of the coend of the center of a rigid category C, together
with its structural morphisms, was given in [Bruguières and Virelizier 2012]. It is an
application of the theory of Hopf monads, and in particular, of the notion of double
of a Hopf monad, which generalizes the Drinfeld double of a Hopf algebra. It is
based on the fact that Z(C) is the category of modules over a certain quasitriangular
Hopf monad Z on C (generalizing the braided equivalence Z(modH )'modD(H)

between the center of the category of modules over a finite-dimensional Hopf
algebra H and the category of modules over the Drinfeld double D(H) of H ).
It turns out that, when C is a fusion category, we can make this description very
explicit and in particular, we can depict the structural morphisms of the coend by
means of a graphical formalism for fusion categories.
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Part of the results of this paper were announced (without proofs) in [Bruguières
and Virelizier 2008], where they were used to define and compute a 3-manifolds
invariant of Reshetikhin–Turaev type associated with the center of C, even when
the dimension of C is not invertible.

Organization of the text. In Section 1, we recall definitions, notations and basic
results concerning pivotal and fusion categories over a commutative ring. A graph-
ical formalism for representing morphisms in fusion categories is provided. In
Section 2, we state the main results of this paper, that is, the description of the
coend of the center of a pivotal fusion category and its structural morphisms, the
modularity of the center of such a category, its dimension, and a semisimplicity
criterion. Section 3 is devoted to coends, Hopf algebras in braided categories, and
modular categories. Section 4 contains the proofs of the main results.

1. Pivotal and fusion categories

Monoidal categories are assumed to be strict. This does not lead to any loss of
generality, since, in view of Mac Lane’s coherence theorem for monoidal categories
(see [Mac Lane 1998]), all definitions and statements remain valid for nonstrict
monoidal categories after insertion of the suitable canonical isomorphisms.

1A. Rigid categories. Let C = (C,⊗,1) be a monoidal category. A left dual of
an object X of C is an object ∨X of C together with morphisms evX :

∨X ⊗ X→ 1
and coevX : 1→ X ⊗ ∨X such that

(idX ⊗ evX )(coevX ⊗ idX )= idX and (evX ⊗ id∨X )(id∨X ⊗ coevX )= id∨X .

Similarly a right dual of X is an object X∨ with morphisms ẽvX : X⊗ X∨→ 1 and
c̃oevX : 1→ X∨⊗ X such that

(ẽvX ⊗ idX )(idX ⊗ c̃oevX )= idX and (idX∨ ⊗ ẽvX )(c̃oevX ⊗ idX∨)= idX∨ .

The left and right duals of an object, if they exist, are unique up to an isomorphism
(preserving the (co)evaluation morphisms).

A monoidal category C is rigid (or autonomous) if every object of C admits a
left and a right dual. The choice of left and right duals for each object of a rigid C

defines a left dual functor ∨? : Cop
→ C and a right dual functor ?∨ : Cop

→ C,
where Cop is the opposite category to C with opposite monoidal structure. The
left and right dual functors are strong monoidal. Note that the actual choice of left
and right duals is innocuous in the sense that different choices of left (respectively,
right) duals define canonically monoidally isomorphic left (respectively, right) dual
functors.

There are canonical natural monoidal isomorphisms ∨(X∨)' X ' (∨X)∨, but
in general the left and right dual functors are not monoidally isomorphic.
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1B. Pivotal categories. A rigid category C is pivotal (or sovereign) if it is endowed
with a monoidal isomorphism between the left and the right dual functors. We may
assume that this isomorphism is the identity without loss of generality. In other
words, for each object X of C, we have a dual object X∗ and four morphisms

evX : X∗⊗ X→ 1, coevX : 1→ X ⊗ X∗,

ẽvX : X ⊗ X∗→ 1, c̃oevX : 1→ X∗⊗ X,

such that (X∗, evX , coevX ) is a left dual for X , (X∗, ẽvX , c̃oevX ) is a right dual
for X , and the induced left and right dual functors coincide as monoidal functors.
In particular, the dual f ∗ : Y ∗→ X∗ of any morphism f : X→ Y in C is

f ∗ = (evY ⊗ idX∗)(idY ∗ ⊗ f ⊗ idX∗)(idY ∗ ⊗ coevX )

= (idX∗ ⊗ ẽvY )(idX∗ ⊗ f ⊗ idY ∗)(c̃oevX ⊗ idY ∗).

In what follows, for a pivotal category C, we will suppress the duality constraints
1∗ ∼= 1 and X∗⊗ Y ∗ ∼= (Y ⊗ X)∗. For example, we will write ( f ⊗ g)∗ = g∗⊗ f ∗

for morphisms f , g in C.

1C. Traces and dimensions. For an endomorphism f of an object X of a pivotal
category C, one defines the left and right traces trl( f ), trr ( f ) ∈ EndC(1) by

trl( f )= evX (idX∗ ⊗ f )c̃oevX and trr ( f )= ẽvX ( f ⊗ idX∗)coevX .

They satisfy trl(gh)= trl(hg) and trr (gh)= trr (hg) for any morphisms g : X→ Y
and h : Y → X in C. Also we have trl( f ) = trr ( f ∗) = trl( f ∗∗) for any endomor-
phism f in C. If

(1) α⊗ idX = idX ⊗α for all α ∈ EndC(1) and X in C,

then trl , trr are ⊗-multiplicative; that is, trl( f ⊗ g)= trl( f ) trl(g) and trr ( f ⊗ g)=
trr ( f ) trr (g) for all endomorphisms f , g in C.

The left and the right dimensions of an object X of C are defined by diml(X)=
trl(idX ) and dimr (X) = trr (idX ). Isomorphic objects have the same dimensions,
diml(X)= dimr (X∗)= diml(X∗∗), and diml(1)= dimr (1)= id1. If C satisfies (1),
then left and right dimensions are⊗-multiplicative: diml(X⊗Y )=diml(X) diml(Y )
and dimr (X ⊗ Y )= dimr (X) dimr (Y ) for any X , Y in C.

1D. Penrose graphical calculus. We represent morphisms in a category C by
plane diagrams to be read from the bottom to the top. In a pivotal category C, the
diagrams are made of oriented arcs colored by objects of C and of boxes colored
by morphisms of C. The arcs connect the boxes and have no mutual intersections
or self-intersections. The identity idX of an object X of C, a morphism f : X→ Y ,
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and the composition of two morphisms f : X→ Y and g : Y → Z are represented
respectively as

idX =

X

, f =
Y

f

X

, g f =

Z
g

Y
f

X

.

The monoidal product of two morphisms f : X→ Y and g :U→ V is represented
by juxtaposition:

f ⊗ g =
Y

f

X

V
g

U

.

If an arc colored by X is oriented upwards, then the corresponding object in the
source/target of morphisms is X∗. For example, idX∗ and a morphism f : X∗⊗Y→
U ⊗ V ∗⊗W may be depicted as

idX∗ =
X
=

X∗
and f =

U V W
f

X Y

.

The duality morphisms are depicted as follows:

evX = X , coevX = X , ẽvX = X , c̃oevX = X .

The dual of a morphism f : X→ Y and the traces of a morphism g : X→ X can
be depicted as follows:

f ∗ =
X

f

Y

=

X
f

Y

and trl(g)= X g , trr (g)= g X .

In a pivotal category, the morphisms represented by the diagrams are invariant under
isotopies of the diagrams in the plane keeping fixed the bottom and top endpoints.

1E. Spherical categories. A spherical category is a pivotal category whose left
and right traces are equal; i.e., trl(g) = trr (g) for every endomorphism g of an
object. Then trl(g) and trr (g) are denoted tr(g) and called the trace of g. Similarly,
the left and right dimensions of an object X are denoted dim(X) and called the
dimension of X .

Note that sphericity can be interpreted in graphical terms: it means that the
morphisms represented by closed diagrams are invariant under isotopies of diagrams
in the 2-sphere S2

= R2
∪ {∞}, i.e., are preserved under isotopies pushing arcs of

the diagrams across∞.
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1F. Additive categories. Let k be a commutative ring. A k-additive category is a
category where Hom-sets are k-modules, the composition of morphisms is k-bilinear,
and any finite family of objects has a direct sum. In particular, such a category has
a zero object.

An object X of a k-additive category C is scalar if the map k→ EndC(X),
α 7→ α idX is bijective.

A k-additive monoidal category is a monoidal category which is k-additive in
such a way that the monoidal product is k-bilinear. Note that a k-additive monoidal
category whose unit object 1 is scalar satisfies (1) and so its traces trl , trr are k-linear
and ⊗-multiplicative.

1G. Fusion categories. A fusion category over a commutative ring k is a k-addi-
tive rigid category C such that

(a) each object of C is a finite direct sum of scalar objects;

(b) for any nonisomorphic scalar objects i , j of C, we have HomC(i, j)= 0;

(c) the set of isomorphism classes of scalar objects of C is finite;

(d) the unit object 1 is scalar.

Let C be a fusion category. The Hom spaces in C are free k-modules of finite
rank. We identify EndC(1) with k via the canonical isomorphism. Given a scalar
object i of C, the i -isotypical component X (i) of an object X is the largest direct
factor of X isomorphic to a direct sum of copies of i . The actual number of copies
of i is

νi (X)= rankk HomC(i, X)= rankk HomC(X, i).

An i -decomposition of X is an explicit direct sum decomposition of X (i) into copies
of i , that is, a family (pα : X→ i, qα : i→ X)α∈A of pairs of morphisms in C such
that

(a) pα qβ = δα,β idi for all α, β ∈ A,

(b) the set A has νi (X) elements,

where δα,β is the Kronecker symbol.
A representative set of scalar objects of C is a set I of scalar objects such that

1 ∈ I and every scalar object of C is isomorphic to exactly one element of I .
Note that if k is a field, a fusion category over k is abelian and semisimple.

Recall that an abelian category is semisimple if its objects are direct sums of simple1

objects.
A pivotal fusion category is spherical (see Section 1E) if and only if the left and

right dimension of any of its scalar objects coincide.

1An object of an abelian category is simple if it is nonzero and has no other subobject than the
zero object and itself.
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1H. Graphical calculus in pivotal fusion categories. Let C be a pivotal fusion
category. Let X be an object of C and i be a scalar object of C. Then the tensor∑

α∈A

pα ⊗k qα ∈ HomC(X, i)⊗k HomC(i, X),

where (pα, qα)α∈A is an i-decomposition of X , does not depend on the choice of
the i-decomposition (pα, qα)α∈A of X . Consequently, a sum of the type

∑
α∈A

i

pα

X

X

qα

i

,

where (pα, qα)α∈A is an i-decomposition of an object X and the gray area does not
involve α, represents a morphism in C which is independent of the choice of the
i-decomposition. We depict it as

(2)

i

X

X

i

,

where the two curvilinear boxes should be shaded with the same color. If several
such pairs of boxes appear in a picture, they must have different colors. We will
also depict

X

i

i

X

as

X

i

i

X

.

As usual, the edges labeled with i = 1 may be erased and then (2) becomes

X

X

.
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Note also that tensor products of objects may be depicted as bunches of strands.
For example,

i

X∗⊗Y⊗Z∗
=

i

X Y Z

and
X∗⊗Y⊗Z∗

i

=

X Y Z

i

where the equality sign means that the pictures represent the same morphism of C.

1I. Braided and ribbon categories. A braiding in a monoidal category B is a
natural isomorphism τ = {τX,Y : X ⊗ Y → Y ⊗ X}X,Y∈B such that

τX,Y⊗Z = (idY ⊗ τX,Z )(τX,Y ⊗ idZ ) and τX⊗Y,Z = (τX,Z ⊗ idY )(idX ⊗ τY,Z )

for all X , Y , Z objects of C. These conditions imply that τX,1 = τ1,X = idX .
A monoidal category endowed with a braiding is said to be braided. The braiding

and its inverse are depicted as

τX,Y = X Y
and τ−1

Y,X = X Y
.

Note that any braided category satisfies the condition (1) of Section 1C.
For any object X of a braided pivotal category B, the morphism

θX = X
= (idX ⊗ ẽvX )(τX,X ⊗ idX∗)(idX ⊗ coevX ) : X→ X

is called the twist. The twist is natural in X and invertible, with inverse

θ−1
X = X

= (evX ⊗ idX )(idX∗ ⊗ τ
−1
X,X )(c̃oevX ⊗ idX ) : X→ X.

It satisfies θX⊗Y = (θX ⊗ θY )τY,XτX,Y for all objects X , Y of B and θ1 = id1.
A ribbon category is a braided pivotal category B whose twist θ is self-dual; i.e.,

(θX )
∗
= θX∗ for any object X of B. This is equivalent to the equality

X
=

X
.

A ribbon category is spherical.

1J. The center of a monoidal category. Let C be a monoidal category. A half
braiding of C is a pair (A, σ ), where A is an object of C and

σ = {σX : A⊗ X→ X ⊗ A}X∈C

is a natural isomorphism such that

(3) σX⊗Y = (idX ⊗ σY )(σX ⊗ idY )
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for all X , Y objects of C. This implies that σ1 = idA.
The center of C is the braided category Z(C) defined as follows. The objects

of Z(C) are half braidings of C. A morphism (A, σ ) → (A′, σ ′) in Z(C) is a
morphism f : A→ A′ in C such that (idX ⊗ f )σX = σ

′

X ( f ⊗ idX ) for any object X
of C. The unit object of Z(C) is 1Z(C) = (1, {idX }X∈C) and the monoidal product is

(A, σ )⊗ (B, ρ)=
(

A⊗ B, (σ ⊗ idB)(idA⊗ ρ)
)
.

The braiding τ in Z(C) is defined by

τ(A,σ ),(B,ρ) = σB : (A, σ )⊗ (B, ρ)→ (B, ρ)⊗ (A, σ ).

There is a forgetful functor U :Z(C)→C assigning to every half braiding (A, σ )
the underlying object A and acting in the obvious way on the morphisms. This is a
strict monoidal functor.

If C satisfies (1), then EndZ(C)(1Z(C))= EndC(1).
If C is rigid, then so is Z(C). If C is pivotal, then so is Z(C) with (A, σ )∗ =

(A∗, σ \), where

σ
\
X =

X A

σX∗

A X

: A∗⊗ X→ X ⊗ A∗,

and ev(A,σ ) = evA, coev(A,σ ) = coevA, ẽv(A,σ ) = ẽvA, c̃oev(A,σ ) = c̃oevA. In that
case the forgetful functor U preserves (left and right) traces of morphisms and
dimensions of objects.

If C is a k-additive monoidal category, then so is Z(C) and the forgetful functor
is k-linear. If C is an abelian rigid category, then so is Z(C), and the forgetful
functor is exact.

If C is a fusion category over the ring k, then Z(C) is braided k-additive rigid
category whose monoidal unit is scalar. If in addition k is field, then C is abelian,
and so is Z(C).

2. Main results

In this section, we state our main results concerning the center of a pivotal fusion
category. They are proved in Section 4. Let C be a pivotal fusion category over
a commutative ring k and I be a representative set of scalar objects of C. Recall
from Section 1J that the center Z(C) of C is a braided k-additive pivotal category
whose monoidal unit is scalar.

The coend of a rigid braided category is, if it exists, a Hopf algebra in the category
which coacts universally on the objects (see Section 3C for details). The center
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Z(C) of C has a coend (C, σ ), where

C =
⊕
i, j∈I

i∗⊗ j∗⊗ i ⊗ j

and the half braiding σ = {σY }Y∈C is given by

(4) σY =
∑

i, j,k,`,n∈I

Y k l k l

n n n n n

i j i j Y

: C ⊗ Y → Y ⊗C.

The universal coaction δ = {δM,γ }(M,γ )∈Z(C) of the coend (C, σ ) is

(5) δ(M,γ ) =
∑
i, j∈I

M i j i j

γi

M

M

: (M, γ )→ (M, γ )⊗ (C, σ ).

The structural morphisms and the canonical pairing of the Hopf algebra (C, σ )
can be depicted as follows:

(a) The coproduct 1 : C→ C ⊗C :

1=
∑

i, j,k,`,n∈I

l n l n k j k j

k k

i j i j

(b) The product m : C ⊗C→ C :

m =
∑

i, j,k,`,n,a∈I

k n k n

l
a

a a
a

a k

i j i j k l k l

(c) The counit ε : C→ 1: ε =
∑
j∈I

j

(d) The unit u : 1→ C : u =
∑
i∈I

i
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(e) The antipode S : C→ C :

S =
∑

i, j,k,`,n∈I

k l k l

j j j

i i

j i j i j

(f) The canonical pairing ω : C ⊗C→ 1:

ω =
∑

i, j,k,`∈I

k

k i
i

i j i j k l k l

In the pictures, the dotted lines represent id1 and serve to indicate which direct
factor of C is concerned. Moreover,

(6) 3=
∑
j∈I

dimr ( j)
j
: (1, id)→ (C, σ )

is an integral of the Hopf algebra (C, σ ), which is invariant under the antipode.
By a modular category we mean a braided pivotal category admitting a coend,

and whose canonical pairing is nondegenerate (see Section 3E for details). The
dimension of such a category is the dimension of its coend (see Section 3D).

Theorem 2.1. The center Z(C) of C is modular and has dimension dim(C)2.

The forgetful functor U : Z(C)→ C has a left adjoint F : C→ Z(C). For an
object X of C,

F(X)=
(
Z(X), ςX = {ςX,Y }Y∈C

)
where Z(X)=

⊕
i∈I

i∗⊗ X ⊗ i and

ςX,Y =
∑
i, j∈I

Y j

i

X

j

i Y

: Z(X)⊗ Y → Y ⊗ Z(X).

For a morphism f in C,

F( f )=
∑
i∈I

idi∗ ⊗ f ⊗ idi .

By a free half braiding we mean a half braiding of the form F(X) for some object X
of C.

Theorem 2.2. The dimension of C is invertible in k if and only if every half braiding
is a retract of a free half braiding.
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From Section 1J, if k is a field, then Z(C) is abelian.

Corollary 2.3. Assume k is a field.

(a) The center Z(C) is semisimple (as an abelian category) if and only if dim(C) 6=0.

(b) Assume k is algebraically closed. Then Z(C) is a fusion category if and only if
dim(C) 6= 0.

Since the center of a spherical fusion category is ribbon (see, for example, [Turaev
and Virelizier 2010, Lemma 10.1]), we recover Müger’s theorem:

Corollary 2.4 [Müger 2003, Theorem 1.2]. If C is a spherical fusion category over
an algebraically closed field and dim(C) 6= 0, then Z(C) is a modular ribbon fusion
category (i.e., Z(C) is modular in the sense of [Turaev 1994]).

Note that by [Etingof et al. 2005], the hypothesis dim(C) 6= 0 of the previous
corollary is automatically fulfilled on a field of characteristic zero.

Example 2.5. Let G be a finite group and k be a commutative ring. The cate-
gory CG,k of G-graded free k-modules of finite rank is a spherical fusion category.
The dimension of CG,k is dim(CG,k) = |G|1k, where |G| is the order of G. By
Theorem 2.1, the center Z(CG,k) of CG,k is modular of dimension |G|21k. When
|G| is not invertible in k, by Theorem 2.2, there exist half braidings of CG,k which
are not retracts of any free half braiding. If particular, if k is a field of characteristic p
which divides |G|, then Z(CG,k) is not semisimple.

3. Modular categories

In this section, we clarify some notions used in the previous section. More precisely,
in Section 3A, we recall the definition of a Hopf algebra in a braided category and
provide a criterion for the nondegeneracy of a Hopf algebra pairing. In Section 3B,
we recall the definition of a coend. In Section 3C, we describe the Hopf algebra
structure of the coend of a braided rigid category. Sections 3D and 3E are devoted
to the definition of respectively the dimension and the modularity of a braided
category admitting a coend.

3A. Hopf algebras, pairings, and integrals. Let B be a braided category, with
braiding τ . Recall that a bialgebra in B is an object A of B endowed with four
morphisms m : A⊗ A→ A (the product), u : 1→ A (the unit), 1 : A→ A⊗ A
(the coproduct), and ε : A→ 1 (the counit) such that

m(m⊗ idA)= m(idA⊗m), m(idA⊗ u)= idA = m(u⊗ idA),

(1⊗ idA)1= (idA⊗1)1, (idA⊗ ε)1= idA = (ε⊗ idA)1,

1m = (m⊗m)(idA⊗ τA,A⊗ idA)(1⊗1),

1u = u⊗ u, εm = ε⊗ ε, εu = id1.
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An antipode for a bialgebra A in B is a morphism S : A→ A in B such that

m(S⊗ idA)1= uε = m(idA⊗ S)1.

If it exists, an antipode is unique. A Hopf algebra in B is a bialgebra in B which
admits an invertible antipode.

Let A be a Hopf algebra in B. A Hopf pairing for A is a morphism ω : A⊗A→1
such that

ω(m⊗ idA)= ω(idA⊗ω⊗ idA)(idA⊗2 ⊗1), ω(u⊗ idA)= ε,

ω(idA⊗m)= ω(idA⊗ω⊗ idA)(1⊗ idA⊗2), ω(idA⊗ u)= ε.

These axioms imply that ω(S⊗ idA)= ω(idA⊗ S).
A Hopf pairing ω for A is nondegenerate if there exists a morphism� :1→ A⊗A

in B such that

(ω⊗ idA)(idA⊗�)= idA = (idA⊗ω)(�⊗ idA).

If such is the case, the morphism � is unique and called the inverse of ω.
A left (respectively, right) integral for A is a morphism 3 : 1→ A such that

m(idA⊗3)=3ε (respectively, m(3⊗ idA)=3ε).

A left (respectively, right) cointegral for A is a morphism λ : A→ 1 such that

(idA⊗ λ)1= u λ (respectively, (λ⊗ idA)1= u λ).

A (co)integral is two-sided if it is both a left and a right (co)integral.
If 3 is a left (respectively, right) integral for A, then S3 is a right (respectively,

left) integral for A. If λ is a left (respectively, right) cointegral for A, then λS is a
right (respectively, left) cointegral for A.

Let ω be a Hopf pairing for A and 3 : 1→ A be a morphism in B. Assume ω is
nondegenerate. Then 3 is a left integral for A if and only if λ= ω(idA⊗3) is a
right cointegral for A, and 3 is a right integral for A if and only if λ= ω(3⊗ idA)

is a left cointegral for A.

Lemma 3.1. Let ω be a Hopf pairing for a Hopf algebra A in a braided category B.
Assume there exist morphisms 3, 3′ : 1→ A in B such that

(a) ω(3⊗ idA) and ω(idA⊗3
′) are left cointegrals for A;

(b) ω(3⊗3′) is invertible in EndB(1).

Then ω is nondegenerate, with inverse

�= ω(3⊗3′)−1 (S⊗ idA⊗ω)(idA⊗13⊗ idA)13
′,

and 3 and 3′ are right integrals for A.
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Proof. Set e= (S⊗ idA⊗ω)(idA⊗13⊗ idA)13
′
: 1→ A⊗ A. Let us depict the

product m, coproduct 1, antipode S of A, and the morphisms ω, 3, 3′ as follows:

m = , 1= , S = , ω = , 3= , 3′ = .

Then (idA⊗ω)(e⊗ idA)= ω(3⊗3
′) idA since

= = = = = .

We use the product/coproduct axioms of a Hopf pairing in the first and fourth
equalities, the unit axiom and the fact that ω(3⊗ idA) is a left cointegral in the
second equality, the compatibility of m and 1 and the axiom of the antipode in
the third equality, and finally the fact that ω(idA⊗3

′) is a left cointegral and the
unit/counit axiom of a Hopf pairing in the last equality. Similarly one shows that
(ω⊗ idA)(idA⊗ e)= ω(3⊗3′) idA. Thus �= ω(3⊗3′)−1 e is an inverse of ω.

Finally, sinceω is nondegenerate andω(3⊗A) andω(A⊗3′) are left cointegrals,
we conclude that 3 and 3′ are right integrals. �

3B. Coends. Let C and D be categories. A dinatural transformation from a functor
F : Dop

×D→ C to an object A of C is a family of morphisms in C

d = {dY : F(Y, Y )→ A}Y∈D

such that for every morphism f : X→ Y in D, we have

dX F( f, idX )= dY F(idY , f ) : F(Y, X)→ A.

The composition of such a d with a morphism φ : A→ B in C is the dinatural
transformation φ ◦ d = {φ ◦ dX : F(Y, Y )→ B}Y∈D from F to B. A coend of F
is a pair (C, ρ) consisting in an object C of C and a dinatural transformation ρ
from F to C satisfying the following universality condition: every dinatural trans-
formation d from F to an object of C is the composition of ρ with a morphism in C

uniquely determined by d . If F has a coend (C, ρ), then it is unique (up to unique
isomorphism). One writes C =

∫ Y∈D F(Y, Y ). For more on coends, see [Mac Lane
1998].

Remark 3.2. Let F :Dop
×D→C be a k-linear functor, where C is a k-additive cat-

egory and D is a fusion category (over k). Then F has a coend. More precisely, pick
a (finite) representative set I of simple objects of D and set C =

⊕
i∈I F(i, i). Let

ρ={ρY : F(Y, Y )→C}Y∈D be defined by ρY =
∑

α F(qαY , pαY ), where (pαY , qαY )α is
any I -partition of Y . Then (C, ρ) is a coend of F and each dinatural transformation
d from F to any object A of C is the composition of ρ with

⊕
i∈I di : C→ A.
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3C. The coend of a braided rigid category. Let B be braided rigid category. The
coend

C =
∫ Y∈B

∨Y ⊗ Y,

if it exists, is called the coend of B.
Assume B has a coend C and denote by iY :

∨Y ⊗ Y → C the corresponding
universal dinatural transformation. The universal coaction of C on the objects of B

is the natural transformation δ defined by

(7) δY = (idY ⊗ iY )(coevY ⊗ idY ) : Y → Y ⊗C, depicted as δY =

Y C

Y

.

According to [Majid 1995], C is a Hopf algebra in B. Its coproduct 1, product m,
counit ε, unit u, and antipode S with inverse S−1 are characterized by the following
equalities, where X , Y ∈B:

Y C C

1

Y

=

Y C C

Y

,

Y

ε

Y

=

Y

Y

,

X Y C

m

X Y

=

X ⊗ Y C

X ⊗ Y

,

u = δ1,

Y C

S

Y

=

Y C
evY

coevY

Y

,

Y C

Y

S−1
=

Y C

ẽvY

c̃oevY
Y

.

Furthermore, the morphism ω : C ⊗C→ 1 defined by

X Y

ω

X Y

=

X Y

X Y

is a Hopf pairing for C , called the canonical pairing. Moreover this pairing satisfies
the following self-duality condition: ωτC,C(S⊗ S)= ω.

3D. The dimension of a braided pivotal category. Let B be a braided pivotal
category admitting a coend C .

Lemma 3.3. The left and right dimensions of C coincide.
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Proof. Let υ = {υX }X∈B be the natural transformation defined by

υX = X : X→ X.

Then υ is natural monoidal isomorphism; that is, υX⊗Y = υX ⊗ υY and υ1 =

id1, which implies that υX
∗
= υ−1

X∗ . The full subcategory B0 of B made of the
objects X of B satisfying τX = idX is a ribbon category. Let us prove that the
coend C of B belongs to B0. Denote by i = {iX : X∗⊗ X→ C}X∈B the universal
dinatural transformation associated with C . For any object X of C, by naturality
and monoidality of υ and dinaturality of i , the following holds:

υC iX = iXυ(X∗⊗X) = iX (υX∗ ⊗ υX )= iX (υ
∗

XυX∗ ⊗ idX )= iX .

So υC = idC ; that is, C belongs to B0. Hence the left and right dimensions of C
coincide, since B0 is a ribbon category. �

We define the dimension of B as dim(B)= diml(C)= dimr (C).
This definition agrees with the standard definition of the dimension of a pivotal

fusion category. Indeed, any pivotal fusion category C (over the ring k) admits a
coend C =

⊕
i∈I i∗⊗ i , where I is a (finite) representative set of scalar objects of

C, and so

diml(C)= dimr (C)=
∑
i∈I

diml(i∗) diml(i)=
∑
i∈I

dimr (i) diml(i).

3E. Modular categories. By a modular category, we mean a braided rigid category
which admits a coend whose canonical pairing is nondegenerate. Note that when B

is ribbon, this definition coincides with that of a 2-modular category given in
[Lyubashenko 1995].

Remark 3.4. Let B be a braided pivotal fusion category over k. Let I be a
representative set of the scalar objects of B. Recall that C =

⊕
i∈I i∗ ⊗ i is the

coend of B. For i , j ∈ I , set

Si, j = (evi ⊗ ẽv j )(idi∗ ⊗ τ j,iτi, j ⊗ id j∗)(c̃oevi ⊗ coev j ) ∈ k.

The matrix S = [Si, j ]i, j∈I , called the S-matrix of B, is invertible if and only if the
canonical pairing of C is nondegenerate. In particular a modular category in the
sense of [Turaev 1994] is a ribbon fusion category which is modular in the above
sense.

4. Proofs

The statements of Section 2 derive directly from the theory of Hopf monads,
introduced in [Bruguières and Virelizier 2007] and developed in [Bruguières and
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Virelizier 2012; Bruguières et al. 2011]. Hopf monads generalize Hopf algebras
in the setting of general monoidal categories. In Section 4A, we recall some basic
definitions concerning Hopf monads. In Section 4B, we give a Hopf monadic
description of the center Z(C) of a fusion category C, from which is derived the
explicit description of the coend of Z(C). In Section 4C, we prove a “handleslide”
property for pivotal fusion categories. In Section 4D, we use the explicit description
of the coend of Z(C) to prove Theorem 2.1 and prove that the morphism 3 of (6)
is an integral invariant under the antipode. Sections 4E and 4F are devoted to the
proofs of Theorem 2.2 and Corollary 2.3, respectively.

4A. Hopf monads and their modules. Let C be a category. A monad on C is a
monoid in the category of endofunctors of C, that is, a triple (T, µ, η) consisting
of a functor T : C→ C and two natural transformations

µ= {µX : T 2(X)→ T (X)}X∈C and η = {ηX : X→ T (X)}X∈C,

called the product and the unit of T , such that, for any object X of C,

µX T (µX )= µXµT (X) and µXηT (X) = idT (X) = µX T (ηX ).

Given a monad T = (T, µ, η) on C, a T -module in C is a pair (M, r) where M
is an object of C and r : T (M)→ M is a morphism in C such that rT (r)= rµM

and rηM = idM . A morphism from a T -module (M, r) to a T -module (N , s) is a
morphism f : M→ N in C such that f r = sT ( f ). This defines the category CT

of T -modules in C with composition induced by that in C. We define a forgetful
functor UT :C

T
→C by UT (M, r)= M and UT ( f )= f . The forgetful functor UT

has a left adjoint FT :C→CT , called the free module functor, defined by FT (X)=
(T (X), µX ) and FT ( f )= T ( f ). Note that if C is k-additive and T is k-linear (that
is, T induces k-linear maps on Hom spaces), then the category CT is k-additive
and the functors UT and FT are k-linear.

Let C be a monoidal category. A bimonad on C is a monoid in the category
of comonoidal endofunctors of C. In other words, a bimonad on C is a monad
(T, µ, η) on C such that the functor T : C→ C and the natural transformations µ
and η are comonoidal; that is, T comes equipped with a natural transformation
T2 = {T2(X, Y ) : T (X⊗Y )→ T (X)⊗T (Y )}X,Y∈C and a morphism T0 : T (1)→ 1
such that(

idT (X)⊗ T2(Y, Z)
)
T2(X, Y ⊗ Z)=

(
T2(X, Y )⊗ idT (Z)

)
T2(X ⊗ Y, Z);

(idT (X)⊗ T0)T2(X,1)= idT (X) = (T0⊗ idT (X))T2(1, X);

T2(X, Y )µX⊗Y = (µX ⊗µY )T2(T (X), T (Y ))T (T2(X, Y ));

T2(X, Y )ηX⊗Y = ηX ⊗ ηY .
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For any bimonad T on C, the category of T -modules CT has a monoidal structure
with unit object (1, T0) and with tensor product

(M, r)⊗ (N , s)=
(
M ⊗ N , (r ⊗ s) T2(M, N )

)
.

Note that the forgetful functor UT : C
T
→ C is strict monoidal.

Given a bimonad (T, µ, η) on C and objects X, Y ∈C, one defines the left fusion
operator

H l
X,Y = (T (X)⊗µY )T2(X, T (Y )) : T (X ⊗ T (Y ))→ T (X)⊗ T (Y )

and the right fusion operator

H r
X,Y = (µX ⊗ T (Y ))T2(T (X), Y ) : T (T (X)⊗ Y )→ T (X)⊗ T (Y ).

A Hopf monad on C is a bimonad on C whose left and right fusion operators are
isomorphisms for all objects X , Y of C. When C is a rigid category, a bimonad T
on C is a Hopf monad if and only if the category CT is rigid. The structure of a
rigid category in CT can then be encoded in terms of natural transformations

sl
= {sl

X : T (
∨T (X))→∨X}X∈C and sr

= {sr
X : T (T (X)

∨)→ X∨}X∈C,

called the left and right antipodes. They are computed from the fusion operators:

sl
X =

(
T0T (evT (X))(H l

∨T (X),X )
−1
⊗
∨ηX

)(
idT (∨T (X))⊗ coevT (X)

)
;

sr
X =

(
η∨X ⊗ T0T (ẽvT (X))(H r

X,T (X)∨)
−1)(c̃oevT (X)⊗ idT (T (X)∨)

)
.

The left and right duals of any T -module (M, r) are then defined by

∨(M, r)=
(
∨M, sl

M T (∨r)
)

and
(
M, r)∨ = (M∨, sr

M T (r∨)
)
.

A quasitriangular Hopf monad on C is a Hopf monad T on C equipped with an
R-matrix, that is, a natural transformation

R = {RX,Y : X ⊗ Y → T (Y )⊗ T (X)}X,Y∈C

satisfying appropriate axioms which ensure that the natural transformation τ =
{τ(M,r),(N ,s)}(M,r),(N ,s)∈CT defined by

τ(M,r),(N ,s) = (s⊗ r)RM,N : (M, r)⊗ (N , s)→ (N , s)⊗ (M, r)

form a braiding in the category CT of T -modules.
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4B. The coend of the center of a fusion category. Let C be a pivotal fusion cat-
egory (over the ring k), with a representative set of scalar objects I . For each
object X of C, by Remark 3.2, the k-linear functor Cop

× C → C, defined by
(U, V ) 7→U∗⊗ X ⊗ V , has a coend

Z(X)=
⊕
i∈I

i∗⊗ X ⊗ i,

with dinatural transformation ρX = {ρX,Y }Y∈C given by

ρX,Y =
∑
i∈I

i

Y

i

X Y

: Y ∗⊗ X ⊗ Y → Z(X).

The correspondence X 7→ Z(X) extends to a functor Z : C→ C. By Theorem 6.4
and Section 9.2 of [Bruguières and Virelizier 2012], Z is a quasitriangular Hopf
monad on C, with structural morphisms as follows (the dotted lines represent id1):

Z2(X, Y )=
∑
i∈I

i
i X Y i

: Z(X ⊗ Y )→ Z(X)⊗ Z(Y ),

Z0 =
∑
i∈I

i : Z(1)→ 1,

µX =
∑

i, j,k∈I

k

j i

k

X

i j

: Z2(X)→ Z(X),

ηX =
X
: X→ X = 1∗⊗ X ⊗1 ↪→ Z(X),

sl
X = sr

X =
∑
i, j∈I

j i

X

i∗ j
: Z(Z(X)∗)→ X∗,

RX,Y =
∑
i∈I

Y i i

X Y

: X ⊗ Y → Z(Y )⊗ Z(X).

In particular, the category CZ of Z -modules is a braided pivotal category. By
[Bruguières and Virelizier 2012, Theorem 6.5], the functor

(8) 8 :


CZ

→ Z(C)

(M, r) 7→ (M, σ )
f 7→ f

where σY =
∑
i∈I

Y M

r

i i

M Y
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is an isomorphism of braided pivotal categories. Note that this isomorphism is a
“fusion” version of the braided isomorphism Z(modH ) ' modD(H) between the
center of the category of modules over a finite-dimensional Hopf algebra H and the
category of modules over the Drinfeld double D(H) of H . Now by [Bruguières
and Virelizier 2012, Section 6.3], the coend of CZ is (C, α), where

C =
⊕
i, j∈I

i∗⊗ j∗⊗ i ⊗ j and α =
∑

i, j,k,l,n∈I

k l k l

n n n

n i j i j n

,

with universal dinatural transformation ι= {ι(M,r)}(M,r)∈CZ given by

ι(M,r) =
∑
i, j∈I

i j i j

M

r∗

M M

: (M, r)∗⊗ (M, r)→ (C, α).

Thus (C, σ )=8(C, α) is the coend of Z(C), with universal dinatural transformation
{8(ι8−1(M,γ ))}(M,γ )∈Z(C). Using the description of 8 and the definition of the
universal coaction given in (7), we obtain that the half braiding σ is given by (4) and
that the universal coaction of (C, σ ) is given by (5). Finally, recall from Section 3C
that (C, α) is a Hopf algebra in CZ endowed with a canonical Hopf algebra pairing.
By [Bruguières and Virelizier 2012, Section 9.3], the structural morphisms of (C, α)
are those given on pages 10 and 11, items (a)–(f). These structural morphisms are
also those of (C, σ ), since 8 is the identity on morphisms.

4C. Slope and handleslide in pivotal fusion categories. Let C be a pivotal fusion
category. Recall that the left and right dimensions of a scalar object of C are
invertible. The slope of a scalar object i is the invertible scalar sl(i) defined by

sl(i)=
diml(i)
dimr (i)

.

The slope of an object X of C is the morphism SLX : X→ X defined as

SLX =
∑
α∈A

sl(iα) qα pα,

where (pα : X→ iα, qα : iα→ X)α∈A is a decomposition of X as a sum of scalar
objects, that is, a family of pairs of morphisms such that iα is scalar for every α ∈ A,
pα qβ = δα,β idiα for all α, β ∈ A, and idX =

∑
α∈A qα pα . The morphism SLX does

not depend on the choice of the decomposition of X into scalar objects. Note that
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SLX is invertible with inverse

SL−1
X =

∑
α∈A

sl(iα)−1 qα pα.

The family SL= {SLX : X→ X}X∈C is a monoidal natural automorphism of the
identity functor 1C of C, called the slope operator of C. In particular

SLY f = f SLX and SLX⊗Y = SLX ⊗SLY

for all objects X , Y of C and all morphism f : X→ Y . The slope operator relates
the left and right traces: for any endomorphism f of an object of C,

(9) trl( f )= trr ( f SLX ).

Note that C is spherical if and only its slope operator is the identity.

Lemma 4.1. Let I be a representative set of scalar objects of C.

(a) For any object X of C,
∑
j∈I

X

j

X

= X .

(b) For i , j ∈ I and X , Y objects of C,

j

X i Y

X i Y

j
=

dimr (i)
dimr ( j)

j

SL−1
X i Y

X i Y

j
.

(c) For i ∈ I and X , Y objects of C,

i

X Y

X Y

i

=

∑
j∈I

i

j

X Y

X Y

j

i

=

∑
j∈I

i

j

X Y

X Y

j

i

provided there are no j-colored strands in the gray area.
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(d) For all i , j ∈ I ,

i j

i j
=

δi, j

diml(i)

i

i
,

i j

i j
=

δi, j

dimr (i)

i

i
.

Proof. Part (a) follows directly from the definitions. We prove (b). Let (pα, qα)α∈A

be an i-decomposition of X∗⊗ j ⊗ Y ∗. For α, β ∈ A, set

Pα =
dimr ( j)
dimr (i)

j

SLX qα

X i Y

, Qα =

X i Y

pα

j

, fα,β =

X

qα

i Y j

pβ

X

.

We need to prove that (Pα, Qα)α∈A is a j -decomposition of X⊗i⊗Y . Let α, β ∈ A.
Since (SLX )

∗
= SL−1

X∗ and using (9), we obtain

PαQβ =
trr (PαQβ)

dimr ( j)
id j =

trl( fα,βSL−1
X∗ )

dimr (i)
id j =

trr ( fα,β)
dimr (i)

id j

=
trr (qα pβ)
dimr (i)

id j =
trr (pβqα)
dimr (i)

id j =
trr (δα,β idi )

dimr (i)
id j = δα,β id j .

We conclude using that card(A)= νi (X∗⊗ j ⊗ Y ∗)= ν j (X ⊗ i ⊗ Y ).
Part (c) reflects the canonical isomorphisms

HomC(X ⊗ Y, i)∼=
⊕
j∈I

HomC(X, j)⊗k HomC( j ⊗ Y, i)

∼=

⊕
j∈I

HomC(X ⊗ j, i)⊗k HomC(Y, j),

and part (d) is a direct consequence of the duality axioms. �

4D. Proof of Theorem 2.1 and of the integrality of 3. Recall that Z(C) is a
braided pivotal category which has a coend (C, σ ) with C =

⊕
i, j∈I i∗⊗ j∗⊗ i⊗ j .

Therefore its dimension is well-defined and
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dim Z(C)= diml(C, σ )= diml(C)= diml

(∑
i, j∈I

i∗⊗ j∗⊗ i ⊗ j
)

=

∑
i, j∈I

diml(i∗) diml( j∗) diml(i) diml( j)

=

(∑
i∈I

dimr (i) diml(i)
)(∑

j∈I

dimr ( j) diml( j)
)
= dim(C)2.

Let us prove that the canonical pairing of the coend (C, σ ) is nondegenerate.
Define the morphism λ :C→ 1 as follows and recall the definition of the morphism
3 : 1→ C of (6):

λ=
∑
i∈I

dimr (i)
i

and 3=
∑
j∈I

dimr ( j)
j
.

Firstly, 3 is a morphism in Z(C) from 1Z(C) = (1, id) to (C, σ ). Indeed, using the
description of the half braiding σ given in (4), we obtain that for any object Y of C,

σY (3⊗ idY )=
∑

j,k,`,n∈I

dimr ( j)

Y k l k l

n n n n n

j Y

=

∑
j,k,`,n∈I

dimr (`)

sl(n)

Y k n l n k n l

nn

j Y

by Lemma 4.1(b)

=

∑
k,`,n∈I

dimr (`)

sl(n)

Y k l k l

n n

n Y

by Lemma 4.1(a)

=

∑
`,n∈I

dimr (`)

sl(n)

Y l l

n n

n Y

=

∑
`,n∈I

dimr (`)

Y

ln

Y

by Lemma 4.1(d)

= idY ⊗3 by Lemma 4.1(a).
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Secondly, λ and 3 satisfy ω(idC ⊗ 3) = λ = ω(3 ⊗ idC). Indeed, using the
description of the canonical pairing ω given in item (f) on page 11, we obtain

ω(idC ⊗3)=
∑

i, j,`∈I

dimr (`) li
i

i j i j

=

∑
i,`∈I

dimr (`) li
i

i i

=

∑
i,`∈I

dimr (`)

diml(i)

i

l i by Lemma 4.1(d)

=

∑
i,`∈I

dimr (`)

diml(i)
δ`,i∗

i

i =
∑
i∈I

dimr (i)
i

= λ,

and similarly

ω(3⊗ idC)=
∑

j,k,`∈I

dimr ( j)

k

k

j
k l k l

=

∑
j,k∈I

dimr ( j) δ j,k∗

k
k k

=

∑
k∈I

k

k by Lemma 4.1(d)

=

∑
k∈I

dimr (k)
i

= λ.

This implies in particular that λ is a morphism in Z(C) from (C, σ ) to 1Z(C), since ω
and 3 are morphisms in Z(C).
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Thirdly, λ is a left cointegral for the Hopf algebra (C, σ ) in Z(C). Indeed, using
the description of the coproduct 1 and the unit u — items (a) and (d) on page 10 —
we obtain

(idC ⊗ λ)1=
∑

i,k,`,n∈I

dimr (k)

l n l n k

k k

i i

=

∑
i,k,`∈I

dimr (k)

l l
k

k k

i i

=

∑
i,k,`∈I

dimr (k)
l l

k

i i

by Lemma 4.1(d)

=

∑
i,k,`∈I

dimr (i)
l lk

i i

by Lemma 4.1(b)

=

∑
i,`∈I

dimr (i) l
i

by Lemma 4.1(a)

= u λ.

Since ω(3⊗3)= λ3= dimr (1)= 1 ∈ k is invertible, we conclude by Lemma 3.1
that ω is nondegenerate. Hence Z(C) is modular.

Finally, let us prove that 3 is a two-sided integral of (C, σ ) which is invariant
under the antipode. The last part of Lemma 3.1 gives that 3 is a right integral of
(C, σ ). Using the description of the antipode S of (C, σ ) in item (e) on page 11,
we obtain

S3=
∑

j,k,`∈I

dimr ( j)

k l k l

j j j
j

j

=

∑
j,k,`∈I

dimr ( j)

k l k l

j

j j

j

j

by Lemma 4.1(c)
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=

∑
`∈I

dimr (`
∗)

l l

l l

l

=

∑
`∈I

dimr (`)
j

by Lemma 4.1(d)

= 3.

Hence 3 is S-invariant. This implies in particular that 3, being a right integral, is
also a left integral. Hence 3 is an S-invariant (two-sided) integral.

4E. Proof of Theorem 2.2. Consider the Hopf monad Z of Section 4B. Recall
from [Bruguières and Virelizier 2007] that the monad Z is said to be semisimple if
any Z -module is a Z -linear retract of a free Z -module, that is, of (Z(X), µX ) for
some object X of C. Since the isomorphism 8 : CZ

→ Z(C) defined in (8) sends
the free Z -module (Z(X), µX ) to the free half braiding 8(Z(X), µX ) = F(X),
we need to prove that dim(C) is invertible if and only if Z is semisimple. Now
Theorem 6.5 of [Bruguières and Virelizier 2007] provides an analogue of Maschke’s
semisimplicity criterion for Hopf monads: the Hopf monad Z is semisimple if and
only if there exists a morphism α : 1→ Z(1) in C such that

(10) µ1α = αZ0 and Z0α = 1.

Let α : 1→ Z(1)=
⊕

i∈I i∗⊗ i be a morphism in C. Since C is a fusion category,
α decomposes uniquely as α =

∑
i∈I αi c̃oevi where αi ∈ k. From the structural

morphisms of the Hopf monad Z (page 19), we obtain

αZ0 =
∑
j,k∈I

αk
k

j

and

µ1 Z(α)=
∑

i, j,k∈I

αi
dimr (k)
dimr (i)

k k

j i j

.

Thus, by duality, αZ0 = µ1 Z(α) if and only if

∑
j,k∈I

αk k j =
∑

i, j,k∈I

αi

k j

k j i

in EndC

(⊕
k, j∈I

k⊗ j∗
)
.
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Now, for j , k ∈ I , by using Lemma 4.1(b),

∑
i∈I

αi

k j

k j i

=

∑
i∈I

αi
dimr (k)
dimr (i)

k j

i

k j

.

Therefore αZ0 = µ1 Z(α) if and only if

(11) αk idk⊗ j∗ =
∑
i∈I

αi

k j

i

k j

∈ EndC(k⊗ j∗) for all k, j ∈ I .

In particular, if αZ0 = µ1 Z(α), then for any i ∈ I , setting k = 1 and j = i∗ we
obtain αi = α1 dimr (i). Conversely, if αi = α1 dimr (i) for all i ∈ I , then (11) holds
by Lemma 4.1(a), and so αZ0 = µ1 Z(α). In conclusion, αZ0 = µ1 Z(α) if and
only if α = α1κ , where

κ =
∑
i∈I

dimr (i) c̃oevi : 1→ Z(1).

In that case,

Z0α = α1 Z0κ =
∑
i∈I

dimr (i)Z0c̃oevi = α1

∑
i∈I

dimr (i) diml(i)= α1 dim(C).

Hence there exists α satisfying (10) if and only if dim(C) is invertible in k. This
concludes the proof of Theorem 2.2. �

4F. Proof of Corollary 2.3. Let A be an abelian category. If A is semisimple (see
Section 2), then every object of A is projective2. The converse is true if in addition
we assume that all objects of A have finite length3.

Assume k is a field and let C be a pivotal fusion category over k. Then C is
abelian semisimple and its objects have finite length. The center Z(C) of C is then
an abelian category and the forgetful functor U : Z(C)→ C is k-linear, faithful,
and exact. This implies that all objects of Z(C) have finite length and the Hom
spaces in Z(C) are finite-dimensional. As a result, Z(C) is semisimple if and only
if all of its objects are projective.

2An object P of A is projective if the functor HomA(P,− ) :A→ Ab is exact, where Ab is the
category of abelian groups.

3An object A of A has finite length if there exists a finite sequence of subobjects A = X0 ) X1 )
· · ·) Xn = 0 such that each quotient Xi/Xi+1 is simple.
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We identify Z(C) with the category CZ of Z -modules via the isomorphism (8).
Recall from the proof of Theorem 2.2 (see the beginning of Section 4E) that the
monad Z is semisimple if and only if dim(C) is invertible in k. The following
lemma relates the notions of semisimplicity for monads and for categories.

Lemma 4.2. Let C be an abelian category and T be a right exact monad on C, so
that CT is abelian and the forgetful functor UT : C

T
→ C is exact.

(a) If all the T -modules are projective, then T is semisimple.
(b) If T is semisimple and all the objects of C are projective, then all the T -modules

are projective.
(c) If the objects of C have finite length, then the same holds in CT . If in addition

C has finitely many isomorphy classes of simple objects, then so does CT .

Proof. Let us prove assertion (a). Denote by FT : C→ CT the free module functor
(see Section 4A). Let (M, r) be a T -module. The action r defines an epimorphism
FT (M)→ (M, r) in CT . In particular, if (M, r) is projective, it is a retract of
FT (M). Therefore if all the T -modules are projective, the monad T is semisimple.

Let us prove assertion (b). Note that if X is a projective object of C, then FT (X)
is a projective T -module. Indeed,

HomCT (FT (X), ? )' HomC(X,UT )

by adjunction, and HomC(X,UT ) is an exact functor when X is projective. In
particular, if all objects are projective in C then all free T -modules are projective. If
in addition T is semisimple, then any T -module, being a retract of a free T -module,
is projective.

Finally, let us prove assertion (c). The first part results from the fact that UT is
faithful exact. Now if S is a simple object of CT and 6 is a simple subobject of
UT (S), then by adjunction the inclusion 6 ⊂UT (S) defines a nonzero morphism
FT (6)→ S, which is an epimorphism because S is simple. This proves the second
part of assertion (c), because under the assumptions made there are finitely many
possibilities for 6, and each FT (6) has finitely many simple quotients. �

Assertion (a) of Corollary 2.3 results immediately from the first two assertions
of Lemma 4.2.

Let us prove assertion (b). A fusion category over a field is semisimple. Now
assume k is algebraically closed. By assertion (a), we need to show that if Z(C) is
semisimple, then it is a fusion category. Assume Z(C) is semisimple. Since C is
fusion, by the third assertion of Lemma 4.2, the category Z(C) has finitely many
classes of simple objects and its objects have finite length. So each object of Z(C)

is a finite direct sum of simple objects. Since the unit object of Z(C) is scalar and
any simple object S of Z(C) is scalar (because End(S) is a finite extension of k),
we obtain that Z(C) is a fusion category. This proves Corollary 2.3. �



ON THE CENTER OF FUSION CATEGORIES 29

References

[Balsam 2010] B. Balsam, “Turaev–Viro invariants as an extended TQFT II”, preprint, 2010.
arXiv 1010.1222

[Bruguières and Virelizier 2007] A. Bruguières and A. Virelizier, “Hopf monads”, Adv. Math. 215:2
(2007), 679–733. MR 2009b:18006 Zbl 1168.18002

[Bruguières and Virelizier 2008] A. Bruguières and A. Virelizier, “Categorical centers and Resheti-
khin–Turaev invariants”, Acta Math. Vietnam. 33:3 (2008), 255–277. MR 2010h:57017 Zbl 1226.
57018

[Bruguières and Virelizier 2012] A. Bruguières and A. Virelizier, “Quantum double of Hopf mon-
ads and categorical centers”, Trans. Amer. Math. Soc. 364:3 (2012), 1225–1279. MR 2869176
Zbl 06024127

[Bruguières et al. 2011] A. Bruguières, S. Lack, and A. Virelizier, “Hopf monads on monoidal
categories”, Adv. Math. 227:2 (2011), 745–800. MR 2012h:18003 Zbl 1233.18002

[Etingof et al. 2005] P. Etingof, D. Nikshych, and V. Ostrik, “On fusion categories”, Ann. of Math.
(2) 162:2 (2005), 581–642. MR 2006m:16051 Zbl 1125.16025

[Joyal and Street 1991] A. Joyal and R. Street, “Tortile Yang–Baxter operators in tensor categories”,
J. Pure Appl. Algebra 71:1 (1991), 43–51. MR 92e:18006 Zbl 0726.18004

[Lyubashenko 1995] V. V. Lyubashenko, “Invariants of 3-manifolds and projective representations
of mapping class groups via quantum groups at roots of unity”, Comm. Math. Phys. 172:3 (1995),
467–516. MR 97c:57018 Zbl 0844.57016

[Mac Lane 1998] S. Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts
in Mathematics 5, Springer, New York, 1998. MR 2001j:18001 Zbl 0906.18001

[Majid 1991] S. Majid, “Representations, duals and quantum doubles of monoidal categories”, Rend.
Circ. Mat. Palermo (2) Suppl. 26 (1991), 197–206. MR 93c:18008 Zbl 0762.18005

[Majid 1995] S. Majid, Foundations of quantum group theory, Cambridge University Press, Cam-
bridge, 1995. MR 97g:17016 Zbl 0857.17009

[Müger 2003] M. Müger, “From subfactors to categories and topology, II: The quantum double of
tensor categories and subfactors”, J. Pure Appl. Algebra 180:1-2 (2003), 159–219. MR 2004f:18014
Zbl 1033.18003

[Turaev 1994] V. G. Turaev, Quantum invariants of knots and 3-manifolds, De Gruyter Studies in
Mathematics 18, de Gruyter, Berlin, 1994. MR 95k:57014 Zbl 0812.57003

[Turaev and Virelizier 2010] V. G. Turaev and A. Virelizier, “On two approaches to 3-dimensional
TQFTs”, preprint, 2010. arXiv 1006.3501

http://msp.org/idx/arx/1010.1222
http://dx.doi.org/10.1016/j.aim.2007.04.011
http://msp.org/idx/mr/2009b:18006
http://msp.org/idx/zbl/1168.18002
http://www.math.ac.vn/publications/acta/pdf/0803255.pdf
http://www.math.ac.vn/publications/acta/pdf/0803255.pdf
http://msp.org/idx/mr/2010h:57017
http://www.emis.de/cgi-bin/MATH-item?1226.57018
http://www.emis.de/cgi-bin/MATH-item?1226.57018
http://dx.doi.org/10.1090/S0002-9947-2011-05342-0
http://dx.doi.org/10.1090/S0002-9947-2011-05342-0
http://msp.org/idx/mr/2869176
http://msp.org/idx/zbl/06024127
http://dx.doi.org/10.1016/j.aim.2011.02.008
http://dx.doi.org/10.1016/j.aim.2011.02.008
http://msp.org/idx/mr/2012h:18003
http://msp.org/idx/zbl/1233.18002
http://dx.doi.org/10.4007/annals.2005.162.581
http://msp.org/idx/mr/2006m:16051
http://msp.org/idx/zbl/1125.16025
http://dx.doi.org/10.1016/0022-4049(91)90039-5
http://msp.org/idx/mr/92e:18006
http://msp.org/idx/zbl/0726.18004
http://dx.doi.org/10.1007/BF02101805
http://dx.doi.org/10.1007/BF02101805
http://msp.org/idx/mr/97c:57018
http://msp.org/idx/zbl/0844.57016
http://msp.org/idx/mr/2001j:18001
http://msp.org/idx/zbl/0906.18001
http://dml.cz/dmlcz/701494
http://msp.org/idx/mr/93c:18008
http://msp.org/idx/zbl/0762.18005
http://dx.doi.org/10.1017/CBO9780511613104
http://msp.org/idx/mr/97g:17016
http://msp.org/idx/zbl/0857.17009
http://dx.doi.org/10.1016/S0022-4049(02)00248-7
http://dx.doi.org/10.1016/S0022-4049(02)00248-7
http://msp.org/idx/mr/2004f:18014
http://msp.org/idx/zbl/1033.18003
http://msp.org/idx/mr/95k:57014
http://msp.org/idx/zbl/0812.57003
http://msp.org/idx/arx/1006.3501


30 ALAIN BRUGUIÈRES AND ALEXIS VIRELIZIER

Received March 21, 2012. Revised August 28, 2012.

ALAIN BRUGUIÈRES

DÉPARTEMENT DE MATHÉMATIQUES

UNIVERSITÉ MONTPELLIER II
CASE COURRIER 051
PLACE EUGÈNE BATAILLON

34095 MONTPELLIER CEDEX 5
FRANCE

bruguier@math.univ-montp2.fr

ALEXIS VIRELIZIER

DÉPARTEMENT DE MATHÉMATIQUES

UNIVERSITÉ LILLE 1
59655 VILLENEUVE D’ASCQ

FRANCE

alexis.virelizier@math.univ-lille1.fr

mailto:bruguier@math.univ-montp2.fr
mailto:alexis.virelizier@math.univ-lille1.fr


PACIFIC JOURNAL OF MATHEMATICS
Vol. 264, No. 1, 2013

dx.doi.org/10.2140/pjm.2013.264.31

CONNECTED QUANDLES ASSOCIATED
WITH POINTED ABELIAN GROUPS

W. EDWIN CLARK, MOHAMED ELHAMDADI, XIANG-DONG HOU,
MASAHICO SAITO AND TIMOTHY YEATMAN

A quandle is a self-distributive algebraic structure that appears in quasi-
group and knot theories. For each abelian group A and c ∈ A, we define a
quandle G(A, c) on Z3× A. These quandles are generalizations of a class of
nonmedial Latin quandles defined by V. M. Galkin, so we call them Galkin
quandles. Each G(A, c) is connected but not Latin unless A has odd or-
der. G(A, c) is nonmedial unless 3A = 0. We classify their isomorphism
classes in terms of pointed abelian groups and study their various proper-
ties. A family of symmetric connected quandles is constructed from Galkin
quandles, and some aspects of knot colorings by Galkin quandles are also
discussed.

1. Introduction

Sets with certain self-distributive operations called quandles have been studied
since the 1940s in various areas. They have been studied, for example, as an
algebraic system for symmetries [Takasaki 1943], as quasigroups [Galkin 1988],
and in relation to modules [Nelson 2003]. The fundamental quandle was defined
in a manner similar to the fundamental group [Joyce 1982; Matveev 1982], which
made quandles an important tool in knot theory. Algebraic homology theories for
quandles were defined [Carter et al. 2003b; Fenn et al. 1995] and developed and
investigated ([Litherland and Nelson 2003; Mochizuki 2011; Niebrzydowski and
Przytycki 2009; 2011; Nosaka 2011], for example), and extensions of quandles by
cocycles have been studied [Andruskiewitsch and Graña 2003; Carter et al. 2003a;
Eisermann 2007b] and applied to various properties of knots and knotted surfaces
(see [Carter et al. 2004] and references therein).

Before algebraic theories of extensions were developed, Galkin [1988] defined a
family of quandles that are extensions of the 3-element connected quandle R3, and
we call them Galkin quandles. Even though the definition of Galkin quandles is a

M. S. was supported in part by NSF grant DMS 0900671.
MSC2010: 57M25.
Keywords: quandles, pointed abelian groups, knot colorings.
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special case of a cocycle extension described in [Andruskiewitsch and Graña 2003],
they have curious properties such as the explicit and simple defining formula, close
connections to dihedral quandles, and the fact that they appear in the list of small
connected quandles.

In this paper, we generalize Galkin’s definition and define a family of quandles
that are extensions of R3, characterize their isomorphism classes, and study their
properties. The definition is given in Section 3 after a brief review of necessary
materials in Section 2. Isomorphism classes are characterized by pointed abelian
groups in Section 4. Various algebraic properties of Galkin quandles are investigated
in Section 5, and their knot colorings are studied in Section 6.

2. Preliminaries

In this section we briefly review some definitions and examples of quandles. More
details can be found, for example, in [Andruskiewitsch and Graña 2003; Carter
et al. 2004; Fenn et al. 1995].

A quandle X is a set with a binary operation (a, b) 7→ a ∗ b satisfying the
following conditions.

(Idempotency) For any a ∈ X , a ∗ a = a.(1)

(Invertibility) For any b, c ∈ X ,(2)
there is a unique a ∈ X such that a ∗ b = c.

(Right self-distributivity) For any a, b, c ∈ X ,(3)
we have (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c).

A quandle homomorphism between two quandles X, Y is a map f : X→ Y such
that f (x∗X y)= f (x)∗Y f (y), where ∗X and ∗Y denote the quandle operations of X
and Y , respectively. A quandle isomorphism is a bijective quandle homomorphism,
and two quandles are isomorphic if there is a quandle isomorphism between them.

Typical examples of quandles include the following.

• Any nonempty set X with the operation x ∗ y= x for any x, y ∈ X is a quandle
called the trivial quandle.

• A group X = G with the operation of n-fold conjugation, a ∗b= b−nabn , is a
quandle.

• Let n be a positive integer. For a, b ∈ Zn (integers modulo n), define

a ∗ b ≡ 2b− a (mod n).

Then ∗ defines a quandle structure called the dihedral quandle Rn . This set
can be identified with the set of reflections of a regular n-gon with conjugation
as the quandle operation.



CONNECTED QUANDLES ASSOCIATED WITH POINTED ABELIAN GROUPS 33

• Any Z[T, T−1
]-module M is a quandle with a∗b= T a+(1−T )b for a, b∈M .

This is called an Alexander quandle. An Alexander quandle is also regarded
as a pair (M, T ), where M is an abelian group and T ∈ Aut(M).

Let X be a quandle. The right translation Ra : X→ X by a ∈ X is defined by
Ra(x)= x∗a for x ∈ X . Similarly, the left translation La is defined by La(x)=a∗x .
Then Ra is a permutation of X by Axiom (2). The subgroup of Sym(X) generated
by the permutations Ra , a ∈ X , is called the inner automorphism group of X and
is denoted by Inn(X). We list some definitions of commonly known properties of
quandles below.

• A quandle is connected if Inn(X) acts transitively on X .

• A Latin quandle is a quandle such that for each a ∈ X , the left translation La

is a bijection. That is, the multiplication table of the quandle is a Latin square.

• A quandle is faithful if the mapping a 7→Ra is an injection from X to Inn(X).

• A quandle X is involutory, or a kei, if the right translations are involutions:
R2

a = id for all a ∈ X .

• The operation ∗̄ on X defined by a ∗̄ b =R−1
b (a) is a quandle operation, and

(X, ∗̄) is called the dual quandle of (X, ∗). If (X, ∗̄) is isomorphic to (X, ∗),
then (X, ∗) is called self-dual.

• A quandle X is medial if (a∗b)∗(c∗d)= (a∗c)∗(b∗d) for all a, b, c, d ∈ X .
It is also called abelian. It is known and easily seen that every Alexander
quandle is medial.

A coloring of an oriented knot diagram by a quandle X is a map C :A→ X from
the set of arcs A of the diagram to X such that the image of the map satisfies the
relation depicted in Figure 1 at each crossing. More details can be found in [Carter
et al. 2004; Eisermann 2007a], for example. A coloring that assigns the same
element of X for all the arcs is called trivial, and otherwise nontrivial. The number
of colorings of a knot diagram by a finite quandle is known to be independent of the
choice of a diagram, and hence is a knot invariant. A coloring by a dihedral quandle
Rn for a positive integer n > 1 is called an n-coloring. If a knot is nontrivially
colored by a dihedral quandle Rn for a positive integer n > 1, then it is called
n-colorable. In Figure 2, a nontrivial 3-coloring of the trefoil knot (31 in a common
notation in a knot table [Cha and Livingston 2011]) is indicated. This is presented

x

y

x ∗ y

Figure 1. A coloring rule at a crossing.
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0

0 1

2

1

Figure 2. Trefoil as the closure of σ 3
1 .

in a closed braid form. Each crossing corresponds to a standard generator σ1 of the
2-strand braid group, and σ 3

1 represents three crossings together as in the figure.
The dotted line indicates the closure; see [Rolfsen 1976] for more details of braids.

The fundamental quandle is defined in a manner similar to the fundamental group
[Joyce 1982; Matveev 1982]. A presentation of a quandle is defined in a manner
similar to groups as well, and a presentation of the fundamental quandle is obtained
from a knot diagram (see, for example, [Fenn and Rourke 1992]), by assigning
generators to arcs of a knot diagram, and relations corresponding to crossings.
The set of colorings of a knot diagram K by a quandle X is then in one-to-one
correspondence with the set of quandle homomorphisms from the fundamental
quandle of K to X .

3. Definition and notation for Galkin quandles

Let A be an abelian group, also regarded naturally as a Z-module. Let µ : Z3→ Z,
τ : Z3→ A be functions. These functions µ and τ need not be homomorphisms.
Define a binary operation on Z3× A by

(x, a) ∗ (y, b)=
(
2y− x,−a+µ(x − y)b+ τ(x − y)

)
, x, y ∈ Z3, a, b ∈ A.

Proposition 3.1. For any abelian group A, the operation ∗ defines a quandle
structure on Z3× A if µ(0)= 2, µ(1)= µ(2)=−1, and τ(0)= 0.

Galkin [1988, p. 950] gave this definition for A=Zp. The proposition generalizes
his result to any abelian group A. For the proof, we examine the axioms.

Lemma 3.2. (A) The operation is idempotent — that is, it satisfies Axiom (1) — if
and only if (µ(0)− 2)a = 0 for any a ∈ A, and τ(0)= 0.

(B) The operation as a right action is invertible — that is, it satisfies Axiom (2).

Proof. Direct calculations. �
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Lemma 3.3. The operation ∗ on Z3×A is right self-distributive — that is, it satisfies
Axiom (3) — if and only if µ, τ satisfy the following conditions for any X, Y ∈ Z3

and b, c ∈ A:

µ(−X)b = µ(X)b,(4) (
µ(X + Y )+µ(X − Y )

)
c = (µ(X)µ(Y ))c,(5)

τ(X + Y )+ τ(Y − X)= τ(X)+ τ(−X)+µ(X)τ (Y ).(6)

Proof. Right self-distributivity, that is,

((x, a) ∗ (y, b)) ∗ (z, c)= ((x, a) ∗ (z, c)) ∗ ((y, b) ∗ (z, c))

for x, y, z ∈ Z3 and a, b, c ∈ A, is satisfied if and only if

µ(x − y)b = µ(y− x)b,

µ(2y− x − z)c =
(
−µ(x − z)+µ(y− x)µ(y− z)

)
c,

−τ(x − y)+ τ(2y− x − z)=−τ(x − z)+µ(y− x)τ (y− z)+ τ(y− x).

This is seen by equating the coefficients of b and c and the constant term. For the
equivalence of the first equation with (4), set X = x − y. For the equivalence of
the second with (5), set X = y− x and Y = z− y. For the equivalence of the last
with (6), set X = y− x and Y = y− z. �

Proof of Proposition 3.1. Assume the conditions stated. By Lemma 3.2, Axioms (1)
and (2) are satisfied under the specifications µ(0) = 2, µ(1) = µ(2) = −1, and
τ(0)= 0.

If X = 0 or Y = 0, then (5) (together with (4)) becomes a tautology. If X−Y = 0
or X + Y = 0, then (5) reduces to µ(2X)+ 2 = µ(X)2, which is satisfied by the
above specifications. For R3, if X + Y 6= 0 and X − Y 6= 0, then either X = 0 or
Y = 0. Hence (5) is satisfied. For (6), it is checked similarly, for the two cases
[X = 0 or Y = 0] and [X − Y = 0 or X + Y = 0]. �

Definition 3.4. Let A be an abelian group. The quandle defined by ∗ on Z3× A by
Proposition 3.1,

(x, a) ∗ (y, b)=
(
2y− x,−a+µ(x − y)b+ τ(x − y)

)
, x, y ∈ Z3, a, b ∈ A,

with µ(0)= 2, µ(1)= µ(2)=−1, and τ(0)= 0, is called the Galkin quandle and
denoted by G(A, τ ).

Since τ is specified by the values τ(1)= c1 and τ(2)= c2 where c1, c2 ∈ A, we
also denote it by G(A, c1, c2).

Example 3.5. The Galkin quandle G(Z2, 0, 1) is Z3×Z2 as a set with the quandle
operation defined as above with µ(0)= 2, µ(1)=µ(2)=−1, τ(0)= τ(1)= 0, and
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τ(2)= 1. Thus, (0, 1)∗(1, 0)= (2,−1+µ(2)0+τ(2))= (2, 0) and (2, 0)∗(1, 1)=
(0, 0+µ(1)1+ τ(1))= (0, 1), for example.

Lemma 3.6. For any abelian group A and c1, c2 ∈ A, the quandles G(A, c1, c2)

and G(A, 0, c2− c1) are isomorphic.

Proof. Let c= c2−c1. Define η :G(A, c1, c2)→G(A, 0, c), as a map on Z3×A, by
η(x, a)= (x, a+β(x))where β(0)=β(1)=0 and β(2)=−c1. This η is a bijection,
and we show that it is a quandle homomorphism. We compute η((x, a) ∗ (y, b))
and η(x, a) ∗ η(y, b) for x, y ∈ Z3 and a, b ∈ A.

If x= y, then µ(x−y)=2 and τ(x−y)=0 for both G(A, c1, c2) and G(A, 0, c),
so that

η((x, a) ∗ (x, b))= η(x, 2b− a)= (x, 2b− a+β(x)),

η(x, a) ∗ η(x, b)= (x, a+β(x)) ∗ (x, b+β(x))=
(
x, 2(b+β(x))− (a+β(x))

)
= (x, 2b− a+β(x)),

as desired.
If x− y = 1 ∈ Z3, then µ(x− y)=−1 for both G(A, c1, c2) and G(A, 0, c) and

τ(x − y)= c1 for G(A, c1, c2) but τ(x − y)= 0 for G(A, 0, c), so that

η((x, a)∗ (y, b))= η(2y− x,−a−b+ c1)= (2y− x,−a−b+ c1+β(2y− x)),

η(x, a)∗η(y, b)= (x, a+β(x))∗ (y, b+β(y))

=
(
2y− x, −(a+β(x))− (b+β(y))

)
.

The two expressions are equal if and only if β(x)+β(y)+β(2y− x)=−c1, which
is true since x 6= y implies that exactly one of x, y, 2y− x is 2 ∈ Z3.

If x− y = 2 ∈ Z3, then µ(x− y)=−1 for both G(A, c1, c2) and G(A, 0, c) and
τ(x − y)= c2 for G(A, c1, c2) but τ(x − y)= c2− c1 = c for G(A, 0, c), so that

η((x, a)∗ (y, b))= η(2y− x,−a−b+ c2)= (2y− x,−a−b+ c2+β(2y− x)),

η(x, a)∗η(y, b)= (x, a+β(x))∗ (y, b+β(y))

=
(
2y− x,−(a+β(x))− (b+β(y))+ c2− c1

)
=
(
2y− x,−a−b−β(x)−β(y)+ (c2− c1)

)
,

and again these are equal for the same reason as above. �

Notation. Since, by Lemma 3.6, any Galkin quandle is isomorphic to G(A, 0, c)
for an abelian group A and c ∈ A, we denote G(A, 0, c) by G(A, c) for short.

Any finite abelian group is a product Zn1×· · ·×Znk , where the positive integers
n j satisfy n j |n j+1 for j = 1, . . . , k−1. In this case, any element c ∈ A is written in
a vector form [c1, . . . , ck], where c j ∈ Zn j . Then the corresponding Galkin quandle
is denoted by G(A, [c1, . . . , ck]).
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Remark 3.7. We note that the definition of Galkin quandles induces a functor. Let
Ab0 denote the category of pointed abelian groups; its objects are pairs (A, c),
where A is an abelian group and c ∈ A, and its morphisms f : (A, c)→ (B, d)
are group homomorphisms f : A→ B such that f (c)= d. Let Q be the category
of quandles consisting of quandles as objects and quandle homomorphisms as
morphisms.

Then the correspondence (A, c)
F
7→ G(A, c) defines a functor F : Ab0→Q. It

is easy to verify that if a morphism f : (A, c)→ (B, d) is given, then the mapping
F( f )(x, a)= (x, f (a)) with (x, a) ∈ G(A, c)= Z3× A is a homomorphism from
G(A, c) to G(B, d) and satisfies F(g f )= F(g)F( f ) and F(id(A,c))= idG(A,c).

Remark 3.8. A reader will wonder to what extent Definition 3.4 of a Galkin quandle
can be generalized. We tried several generalizations. For example, if one attempts
to replace 3 by an arbitrary prime p in Definition 3.4, then Lemma 3.3 still holds.
In this case for p > 3, we prove in Lemma 5.14 that µ(x)= 2 for all x ∈ Zp, and
computer experiments indicate that one almost always obtains a quandle if and
only if τ = 0, in which case the quandle obtained is simply a product of dihedral
quandles. We have also attempted to replace −x + 2y by the Alexander quandle
operation t x + (1− t)y in both the left and right coordinates, but have neither been
successful in finding interesting new quandles, nor been able to prove that no such
generalizations exist. We note that if a generalization for p > 3 exists, then any
such quandles will be less dense than Galkin quandles, since multiples of 3 are
more numerous than multiples of p when p > 3.

4. Isomorphism classes

In this section we classify isomorphism classes of Galkin quandles.

Lemma 4.1. Let A be an abelian group, and let h : A→ A′ be a group isomorphism.
Then Galkin quandles G(A, τ ) and G(A′, hτ) are isomorphic as quandles.

Proof. Define f : G(A, τ ) → G(A′, hτ), as a map from Z3 × A to Z3 × A′,
by f (x, a) = (x, h(a)). This f is a bijection, and we show that it is a quandle
homomorphism by computing f ((x, a)∗(y, b)) and f (x, a)∗ f (y, b) for x, y ∈Z3

and a, b ∈ A:

f ((x, a) ∗ (y, b))= f (2y− x,−a+µ(x − y)b+ τ(x − y))

=
(
2y− x, h(−a+µ(x − y)b+ τ(x − y))

)
,

f (x, a) ∗ f (y, b)= (x, h(a)) ∗ (y, h(b))

=
(
2y− x,−h(a)+µ(x − y)h(b)+ hτ(x − y)

)
.

The equality f ((x, a) ∗ (y, b))= f (x, a) ∗ f (y, b) follows from the facts that h is
a group homomorphism and µ(x − y) is an integer. �
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Lemma 4.2. Let c, d, n be positive integers. If gcd(c, n) = d, then G(Zn, c) is
isomorphic to G(Zn, d).

Proof. If A = Zn , then Aut(A) = Z∗n = units of Zn , and the divisors of n are
representatives of the orbits of Z∗n acting on Zn . �

Thus we may choose the divisors of n for the values of c for representing
isomorphism classes of G(Zn, c).

Corollary 4.3. If A is a vector space (elementary p-group), then there are exactly
two isomorphism classes of Galkin quandles G(A, τ ).

Proof. If A is a vector space containing nonzero vectors c1 and c2, then there is a
nonsingular linear transformation h of A such that h(c1)= c2. That G(A, 0) is not
isomorphic to G(A, c) if c 6= 0 follows from Lemma 4.5. �

For distinguishing isomorphism classes, cycle structures of the right action are
useful, and we use the following lemmas.

Lemma 4.4. For any abelian group A, the Galkin quandle G(A, τ ) is connected.

Proof. Recall that the operation is defined by the formula

(x, a) ∗ (y, b)=
(
2y− x,−a+µ(x − y)b+ τ(x − y)

)
,

with µ(0)= 2, µ(1)= µ(2)=−1, and τ(0)= 0. If x 6= y, then (x, a) ∗ (y, b)=
(2y− x,−a− b+ ci )= (z, c), where i = 1 or 2 and x, y ∈ Z3 and a, b ∈ A. Note
that {x, y, 2y− x} = Z3 if x 6= y. In particular, for any (x, a) and (z, c) with x 6= z,
there is (y, b) such that (x, a) ∗ (y, b)= (z, c).

For any (x, a1) and (x, a2) where x ∈Z3 and a1, a2 ∈ A, take (z, c)∈Z3×A such
that z 6= x . Then there are (y, b1), (y, b2) such that x 6= y 6= z and (x, a1)∗(y, b1)=

(z, c) and (z, c) ∗ (y, b2)= (x, a2). Hence G(A, τ ) is connected. �

Lemma 4.5. The cycle structure of a right translation in G(A, τ ), where τ(0) =
τ(1)= 0 and τ(2)= c, consists of 1-cycles, 2-cycles, and 2k-cycles, where k is the
order of c in the group A.

Since isomorphic quandles have the same cycle structure of right translations,
G(A, c) and G(A, c′) for c, c′ ∈ A are not isomorphic unless the orders of c and c′

coincide.

Proof. Let τ(0) = 0, τ(1) = 0, and τ(2) = c. Then by Lemma 4.4, the cycle
structure of each column is the same as the cycle structure of the right translation
by (0, 0), that is, of the permutation f (x, a)= (x, a) ∗ (0, 0)= (−x,−a+ τ(x)).

We show that this permutation has cycles of length only 1, 2 and twice the order
of c in A. Since f (0, a)= (0,−a) for a ∈ A, a 6= 0, we have f 2(0, a)= (0, a), so
that (0, a) generates a 2-cycle, or a 1-cycle if 2a = 0. Now from f (1, a)= (2,−a)
and f (2, a)= (1,−a+ c) for a ∈ A, by induction it is easy to see that for k > 0,
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f 2k(1, a)= (1, a+kc) and f 2k(2, a)= (2, a−kc). In the case of (1, a), a 6= 0, the
cycle closes when a+ kc= a in A. The smallest k for which this holds is the order
of c, in which case the cycle is of length 2k. A cycle beginning at (2, a) similarly
has this same length. �

Proposition 4.6. Let n be a positive integer. Let A=Zn and ci , c′i ∈Zn for i = 1, 2.
Two Galkin quandles G(A, c1, c2) and G(A, c′1, c′2) are isomorphic if and only if
gcd(c1− c2, n)= gcd(c′1− c′2, n).

Proof. If gcd(c1−c2, n)= gcd(c′1−c′2, n), then they are isomorphic by Lemmas 3.6
and 4.2. The cycle structures are different if gcd(c1− c2, n) 6= gcd(c′1− c′2, n) by
Lemma 4.5, and hence they are not isomorphic. �

Remark 4.7. The cycle structure is not sufficient for noncyclic groups A. For
example, let A= Z2×Z4. Then G(A, [1, 0]) and G(A, [0, 2]) have the same cycle
structure for right translations, with cycle lengths {2, 2, 4, 4, 4, 4} in a multiset
notation, yet they are known not to be isomorphic. (In the notation of Example 4.12
below, G(A, [1, 0])= C[24, 29] and G(A, [0, 2])= C[24, 31].) We note that there
is no automorphism of A carrying [1, 0] to [0, 2].

More generally, the isomorphism classes of Galkin quandles are characterized as
follows.

Theorem 4.8. Suppose A, A′ are finite abelian groups. Two Galkin quandles
G(A, τ ) and G(A′, τ ′) are isomorphic if and only if there exists a group isomor-
phism h : A→ A′ such that hτ = τ ′.

One implication in the proof of Theorem 4.8 is Lemma 4.1. For the other, first
we prove the following two lemmas. We will use a well known description of the
automorphisms of a finite abelian group, which can be found in [Hillar and Rhea
2007; Ranum 1907].

Lemma 4.9. Let A be a finite abelian p-group and let f : p A → p A be an
automorphism. Then f can be extended to an automorphism of A.

Proof. Let A = Z
n1
p1 × · · ·×Z

nk
pk . Then

(7) f


px2
...

pxk


= P

px2
...

pxk

 ,
x2
...

xk

 ∈ Z
n2
p2 × · · ·×Z

nk
pk ,

where

(8) P =


P22 P23 · · · P2k

pP32 P33 · · · P3k
...

...
...

pk−2 Pk2 pk−3 Pk3 · · · Pkk

 ,
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Pi j ∈Mni×n j (Z), det Pi i 6≡ 0 (mod p). Entries of the vectors are elements of finite
groups as specified, and entries of the block matrices are integers. Define g : A→ A
by

g




x1

x2
...

xk


=

[
I

P

]
x1

x2
...

xk

 ,


x1

x2
...

xk

 ∈ Z
n1
p1 ×Z

n2
p2 × · · ·×Z

nk
pk .

Then g ∈ Aut(A) and g|p A = f . �

Lemma 4.10. Let A be a finite abelian p-group and let a, b ∈ A \ p A. If there
exists an automorphism f : p A→ p A such that f (pa)= pb, then there exists an
automorphism g : A→ A such that g(a)= b.

Proof. Let A = Z
n1
p1 × · · ·×Z

nk
pk and let f be defined by (7) and (8). Write

a =

a1
...

an

 , b =

b1
...

bn

 , ai , bi ∈ Z
ni
pi .

Since f (pa)= pb, we have

p

P

a2
...

an

−
b2
...

bn


= 0,

that is,

(9) P

a2
...

an

−
b2
...

bn

=
 pc2

...

pk−1ck

 , ci ∈ Z
ni
pi , 2≤ i ≤ k.

Case 1. Assume that

a2
...

an

 ∈ p A. Then by (9),

b2
...

bn

 ∈ p A. So a1 6= 0 and b1 6= 0.

Then we have  pc2
...

pk−1ck

=
 pQ2

...

pk−1 Qk

 a1

for some Qi ∈Mni×n1(Z) with 2≤ i ≤ k. Also, there exists P11 ∈Mn1×n1(Z) such
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that det P11 6≡ 0 (mod p) and P11a1 = b1. Let g ∈ Aut(A) be defined by

g




x1

x2
...

xk


=


P11 0
−pQ2
...

−pk−1 Qk

P




x1

x2
...

xk

 , xi ∈ Z
ni
pi .

Then g(a)= b.

Case 2. Assume that

a2
...

an

 /∈ p A. Then there exists 2≤ s ≤ k such that as /∈ pZ
ns
ps .

Then we have  c2
...

pk−2ck

=
 Q2

...

pk−2 Qk

 as

for some Qi ∈Mni×ns (Z) with 2≤ i ≤ k. Put

Q =

0 · · · 0 Q2 0 · · · 0
...

...
...

...
...

0 · · · 0 pk−2 Qk 0 · · · 0

 ,
where the (i, j) block is of size ni × n j and Q2 is in the (1, s) block. Then

Q

a2
...

ak

=
 c2

...

pk−2ck

 .
Also, there exist U ∈Mn1×(n2+···+nk)(Z) such that

U

a2
...

ak

= b1− a1.

Now define g ∈ Aut(A) by

g




x1

x2
...

xk


=

[
I U
0 P − pQ

]
x1

x2
...

xk

 , xi ∈ Z
ni
pi .

Then g(a)= b. �
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Proof of Theorem 4.8. We assume that |3A′| ≤ |3A|. Since G(A′, c′) is connected,
there exists an isomorphism φ : G(A, c)→ G(A′, c′) such that φ(0, 0) = (0, 0).
Write

φ(x, a)= (α(x, a), β(x, a)), (x, a) ∈ Z3× A.

Define t : Z3→ Z by

t (x)=
{

1 if x = 2,
0 if x 6= 2,

so that for (x, a), (y, b) ∈ Z3× A, the operation on G(A, c) is written by

(x, a) ∗ (y, b)=
(
−x − y,−a+µ(x − y)b+ t (x − y)c

)
.

Then φ((x, a) ∗ (y, b))= φ(x, a) ∗φ(y, b) is equivalent to

(10) α
(
−x − y,−a+µ(x − y)b+ t (x − y)c

)
=−α(x, a)−α(y, b),

(11) β
(
−x − y,−a+µ(x − y)b+ t (x − y)c

)
=−β(x, a)+µ

(
α(x, a)−α(y, b)

)
β(y, b)+ t

(
α(x, a)−α(y, b)

)
c′.

Claim 1. The map α(0, · ) : A→ Z3 is a homomorphism.

Proof. Setting x = y = 0 in (10), we have

(12) α(0,−a+ 2b)=−α(0, a)−α(0, b).

Setting b = 0 in (12), we have

(13) α(0,−a)=−α(0, a).

By the symmetry of the right-hand side of (12), we also have

(14) α(0,−a+ 2b)= α(0,−b+ 2a), a, b ∈ A.

Now we have

α(0, a+ b)= α(0, a− b+ 2b)

= α(0,−b+ 2(b− a)) (by (14))

= α(0, b− 2a)

=−α(0,−b)−α(0,−a) (by (12))

= α(0, a)+α(0, b) (by (13)). �

Claim 2. There exists u ∈ Z3 such that

(15) α(x, a)= α(0, a)+ ux, (x, a) ∈ Z3× A.
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Proof. Setting x = 1 and y = 0 in (10), we have

(16) α(−1,−a− b)=−α(1, a)−α(0, b).

Setting b = 0 in (16) gives

(17) α(−1,−a)=−α(1, a).

Letting a = 0 in (16) and using (17), we get

(18) α(1, b)= α(0, b)+α(1, 0), b ∈ A.

Equations (16) and (13) also imply that

(19) α(−1,−b)= α(0,−b)−α(1, 0), b ∈ A.

Let u = α(1, 0). Then

α(x, a)= α(0, a)+ ux, (x, a) ∈ Z3× A. �

Claim 3. α(0, c)= 0.

Proof. Substituting (15) in (10), we get

(20) α
(
0,−a+µ(x − y)b+ t (x − y)c

)
=−α(0, a)−α(0, b).

Setting x − y = 2, we have α(0, c)= 0. �

The rest of the proof of Theorem 4.8 is divided into two cases according to
whether u is zero or nonzero in (15).

Case A. Assume u = 0 in (15).
We have α(x, a) = α(0, a) for all (x, a) ∈ Z3× A. We write α(a) for α(0, a).

Then (11) becomes

(21) β
(
−x − y,−a+µ(x − y)b+ t (x − y)c

)
=−β(x, a)+µ

(
α(a− b)

)
β(y, b)+ t

(
α(a− b)

)
c′.

Step A-1. We claim that c = 0.
Equation (21) with x = 1, y = 0, a = b = 0 yields

β(−1, 0)=−β(1, 0),

and with x =−1, y = 0, a = b = 0, it yields

β(1, c)=−β(−1, 0).

Thus β(1, c) = β(1, 0). Since α(1, c) = 0 = α(1, 0), we have φ(1, c) = φ(1, 0).
Thus c = 0.

Step A-2. We claim that c′ = 0.
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The homomorphism α : A→Z3 must be onto. (Otherwise φ is not onto.) Choose
d ∈ A such that α(d)=−1. Equation (21) with x = y = 0, a = d , b = 0 gives

β(0,−d)=−β(0, d)+ c′,

and with x = y = 0, a =−d , b = 0, it gives

β(0, d)=−β(0,−d).

Therefore c′ = 0.

Step A-3. Now (21) becomes

(22) β
(
−x − y,−a+µ(x − y)b

)
=−β(x, a)+µ

(
α(a− b)

)
β(y, b).

Setting y = 0 and b = 0 in (22), we have

(23) β(−x,−a)=−β(x, a).

Step A-4. We claim that β(0, · ) : 3A→ A′ is a one-to-one homomorphism.
Note that 3A ⊂ kerα. Let a, b ∈ 3A, and x =−1, y = 1 in (22). We have

(24) β(0,−a− b)=−β(−1, a)+ 2β(1, b).

Setting b = 0 and a = 0, respectively, in (24) and using (23), we have

β(0,−a)=−β(−1, a)+ 2β(1, 0)= β(1,−a)+ 2β(1, 0),(25)

β(0,−b)=−β(−1, 0)+ 2β(1, b)= β(1, 0)+ 2β(1, b).(26)

Setting a = b = 0 in (24), we have

(27) 3β(1, 0)= 0.

Combining (24)–(27), we have

β(0,−a− b)= β(0,−a)+β(0,−b).

If a ∈ 3A such that β(0, a)= 0, then φ(0, a)= (0, 0), so a = 0. Thus

β(0, · ) : 3A→ A′

is one-to-one.

Step A-5. We claim that β(0, 3b) ∈ 3A′ for all b ∈ A.
Let x = y = 0 and a =−b in (22). We have

β(0, 3b) =−β(0,−b)+µ(α(−2b))β(0, b)

= β(0, b)+µ(α(b))β(0, b)

≡ 0 (mod 3A′) (since µ(α(b))≡−1 (mod 3)).
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Step A-6. Now β(0, · ) : 3A→ 3A′ is a one-to-one homomorphism. It is therefore
an isomorphism, since |3A′| ≤ |3A|. Since |A| = |A′|, we have A ∼= A′. We are
done in Case A.

Case B. Assume u 6= 0 in (15).
By the proofs of Lemma 4.5 above and Proposition 5.11 below, the map (x ′, a′) 7→

(−x ′, a′ − t (−x ′)c′) is an isomorphism from G(A′, c′) to G(A′,−c′). Thus we
may assume u = 1 in (15). We have α(x, a)= α(0, a)+ x for all (x, a) ∈ Z3× A.

Step B-1. We claim that β(0, · ) : kerα(0, · )→ A′ is a one-to-one homomorphism.
In (11) let a, b ∈ kerα(0, · ) and x =−1, y = 1. We have

(28) β(0,−a− b)=−β(−1, a)−β(1, b).

Equation (28) with a =−b yields

(29) β(−1,−b)=−β(1, b).

So

(30) β(0,−a− b)= β(1,−a)−β(1, b).

Letting b = 0 and a = 0 in (30), respectively, we have

β(0,−a)= β(1,−a)−β(1, 0),

β(0,−b)= β(1, 0)−β(1, b).

Thus
β(0,−a)+β(0,−b)= β(1,−a)−β(1, b)

= β(0,−a− b) (by (30)).

If a ∈ kerα(0, · ) such that β(0, a) = 0, then φ(0, a) = (0, 0), so a = 0. Hence
β(0, · ) : kerα(0, · )→ A′ is one-to-one.

Step B-2. We claim that β(0, 3a) ∈ 3A′ for all a ∈ A.
Setting x = y = 0 in (11), we have

(31) β(0,−a+ 2b)=−β(0, a)+µ
(
α(0, a− b)

)
β(0, b)+ t

(
α(0, a− b)

)
c′

≡−β(0, a)−β(0, b)+ t
(
α(0, a− b)

)
c′ (mod 3A′).

By (31),

β(0, 3a)= β
(
0,−a+ 2(2a)

)
≡−β(0, a)−β(0, 2a)+ t

(
α(0,−a)

)
c′ (mod 3A′)

and

β(0, 2a)= β(0, 0+ 2a)≡−β(0, a)+ t (α(0,−a))c′ (mod 3A′).

Thus β(0, 3a)≡ 0 (mod 3A′).
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Step B-3. By the argument in Step A-6, β(0, · ) : 3A→ 3A′ is an isomorphism and
A ∼= A′.

Step B-4. We claim that β(0, c)= c′.
Equation (11) with x = 1, y =−1, a = b = 0 yields

β(0, c) =−β(1, 0)−β(−1, 0)+ c′

= c′ (by (29)).

Step B-5. Now we complete the proof in Case B. Write A = A1⊕ A2 and A′ =
A′1 ⊕ A′2, where neither |A1| nor |A′1| is a multiple of 3, and |A2| and |A′2| are
powers of 3. Write c= c1+c2, where c1 ∈ A1, c2 ∈ A2. Then c1 ∈ A1⊂ kerα(0, · ),
so c2 = c− c1 ∈ kerα(0, · ). Since β(0, · ) : kerα(0, · )→ A′ is a homomorphism,
we have

c′ = β(0, c1)+β(0, c2)= c′1+ c′2,

where c′1 = β(0, c1) ∈ A′1 and c′2 = β(0, c2) ∈ A′2. By Step B-3, β(0, · ) : A1→ A′1
is an isomorphism. So it suffices to show that there is an isomorphism f : A2→ A′2
such that f (c2)= c′2.

First assume c2 ∈ 3A2. Then c′2 ∈ 3A′2. By Lemma 4.9, the isomorphism
β(0, · ) : 3A→ 3A′ can be extended to an isomorphism f : A2→ A′2 and we are
done.

Now assume that c2 ∈ A2 \ 3A2. We claim that c2 ∈ A′2 \ 3A′2. Assume to the
contrary that c′2 ∈ 3A′2. By Step B-3, there exists d ∈ A2 such that β(0, 3d)= c′2 =
β(0, c2). By Step B-1, c2 = 3d , which is a contradiction.

Note that β(0, · ) : 3A2→ 3A′2 is an isomorphism and

β(0, 3c2)= 3β(0, c2) (by Step B-1)

= 3c′2.

By Lemma 4.10, there exists an isomorphism f : A2→ A′2 such that f (c2)= c′2. �

Remark 4.11. The numbers of isomorphism classes of order 3n, from n = 1 to
n = 100, are as follows: 1, 2, 2, 5, 2, 4, 2, 10, 5, 4, 2, 10, 2, 4, 4, 20, 2, 10, 2, 10, 4,
4, 2, 20, 5, 4, 10, 10, 2, 8, 2, 36, 4, 4, 4, 25, 2, 4, 4, 20, 2, 8, 2, 10, 10, 4, 2, 40, 5,
10, 4, 10, 2, 20, 4, 20, 4, 4, 2, 20, 2, 4, 10, 65, 4, 8, 2,10, 4, 8, 2, 50, 2, 4, 10, 10, 4,
8, 2, 40, 20, 4, 2, 20, 4, 4, 4, 20, 2, 20, 4, 10, 4, 4, 4, 72, 2, 10, 10, 25.

In [Clark and Hou 2013] it is shown that the number N (n) of isomorphism
classes of Galkin quandles of order n is multiplicative, that is, if gcd(n,m) = 1,
then N (nm) = N (n)N (m), so it suffices to find N (qn) for all prime powers qn .
Clark and Hou established that

N (qn)=
∑

0≤m≤n

p(m)p(n−m),
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where p(m) is the number of partitions of the integer m. In particular, N (qn) is
independent of the prime q. The sequence n 7→ N (qn) appears in the On-Line
Encyclopedia of Integer Sequences [Sloane 2011] as sequence A000712.

Example 4.12. In [Vendramin 2011], connected quandles are listed up to order 35.
For a positive integer n > 1, let q(n) be the number of isomorphism classes of
connected quandles of order n. For a positive integer n > 1, if q(n) 6= 0, then we
denote by C[n, i] the i-th quandle of order n in their list (1<n≤35, i=1, . . . , q(n)).
We note that q(n)= 0 for n = 2, 14, 22, 26, and 34 (for 1< n ≤ 35). The quandle
C[n, i] is denoted by Qn,i in [Vendramin 2012] (and they are left-distributive in that
work, so the matrix of C[n, i] is the transpose of the matrix of Qn,i ). Isomorphism
classes of Galkin quandles are identified with those in their list in Table 1.

The 4-digit numbers to the right of each row in Table 1 indicate the numbers of
knots that are colored nontrivially by these Galkin quandles, out of total 2977 knots
in the table [Cha and Livingston 2011] with 12 crossings or less. See Section 6 for
more on this.

5. Properties of Galkin quandles

In this section, we investigate various properties of Galkin quandles.

Lemma 5.1. The Galkin quandle G(A, τ ) is Latin if and only if |A| is odd.

Proof. To show that it is Latin if n is odd, first note that R3 is Latin. Suppose that
(x, a) ∗ (y, b)= (x, a) ∗ (y′, b′). Then we have the equations

−x + 2y =−x + 2y′,(32)

−a+µ(x − y)b+ τ(x − y)=−a+µ(x − y′)b′+ τ(x − y′).(33)

From (32) it follows that y= y′, and it follows from (33) thatµ(x−y)b=µ(x−y)b′.
Now since |A| is odd, the left module action of 2 on A is invertible, and hence b= b′.
If |A| is even, there is a nonzero element b of order 2, and hence (0, 0) ∗ (0, b)=
(0, 0) ∗ (0, 0), so the quandle is not Latin. �

Lemma 5.2. Any Galkin quandle is faithful.

Proof. We show that if (x, a) ∗ (y, b) = (x, a) ∗ (y′, b′) holds for all (x, a), then
(y, b)= (y′, b′). We have y = y′ immediately. From the second factor

−a+µ(x − y)b+ τ(x − y)=−a+µ(x − y)b′+ τ(x − y),

we have µ(x − y)b = µ(x − y)b′ for any x . Pick x such that x 6= y; then we have
µ(x − y)=−1, and hence b = b′. �

Lemma 5.3. If A′ is a subgroup of A and c′ is in A′, then G(A′, c′) is a subquandle
of G(A, c′).

Proof. Immediate. �
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Lemma 5.4. Any Galkin quandle G(A, τ ) consists of three disjoint subquandles
{x}× A for x ∈ Z3, and each is a product of dihedral quandles.

Proof. Immediate. �

We note the following somewhat curious quandles from Lemma 5.4: For a
positive integer k, G(Zk

2, [0, . . . , 0]) is a connected quandle that is a disjoint union
of three trivial subquandles of order 2k .

Lemma 5.5. The Galkin quandle G(A, τ ) has R3 as a subquandle if and only if
τ = 0 or 3 divides |A|.

Proof. If A is any group and τ = 0, then (x, 0) ∗ (y, 0) = (2y − x, 0) for any
x, y ∈ Z3, so that Z3 × {0} is a subquandle isomorphic to R3. If 3 divides |A|,
then A has a subgroup B isomorphic to Z3. In the subquandle {0} × B, we have
(0, a)∗(0, b)= (0,−a+2b) for a, b∈ B, so that {0}×B is a subquandle isomorphic
to R3.

Rig Galkin N.C. Rig Galkin N.C.notation notation notation notation

C[ 6, 1] G(Z2, [0]) 1084 C[24,28] G(Z8, [4]) 1084
C[ 6, 2] G(Z2, [1]) 1084 C[24,29] G(Z2×Z4,[1,0],[1,2]) 1084
C[ 9, 2] G(Z3, [0]) 1084 C[24,30] G(Z2×Z4,[0, 0]) 1084
C[ 9, 6] G(Z3, [1]) 1084 C[24,31] G(Z2×Z4,[0, 2]) 1084
C[12, 5] G(Z4, [2]) 1084 C[24,32] G(Z8, [1]) 1051
C[12, 6] G(Z4, [0]) 1084 C[24,33] G(Z2×Z4,[0,1],[1,1]) 1051
C[12, 7] G(Z4, [1]) 1051 C[24,38] G(Z2×Z2×Z2,[0,0,1]) 1084
C[12, 8] G(Z2×Z2, [0,0]) 1084 C[24,39] G(Z2×Z2×Z2,[0,0,0]) 1084
C[12, 9] G(Z2×Z2, [1,0]) 1084 C[27, 2] G(Z3×Z3, [0, 0]) 1084
C[15, 5] G(Z5,[1]) 1440 C[27,12] G(Z9, [3]) 1084
C[15, 6] G(Z5,[0]) 1512 C[27,13] G(Z9, [0]) 1084
C[18, 1] G(Z2×Z3, [0,0]) 1084 C[27,23] G(Z3×Z3, [1,0]) 1084
C[18, 4] G(Z2×Z3, [1,0]) 1084 C[27,55] G(Z9, [1]) 1084
C[18, 5] G(Z2×Z3, [1,1]) 1084 C[30,12] G(Z2×Z5, [0,1]) 1440
C[18, 8] G(Z2×Z3, [0,1]) 1084 C[30,13] G(Z2×Z5, [0,0]) 1512
C[21, 7] G(Z7, [1]) 1339 C[30,14] G(Z2×Z5, [1,1]) 1440
C[21, 8] G(Z7, [0]) 1386 C[30,15] G(Z2×Z5, [1,0]) 1512
C[24,26] G(Z8, [2]) 1071 C[33,10] G(Z11, [0]) 1260
C[24,27] G(Z8, [0]) 1084 C[33,11] G(Z11, [1]) 1220

Table 1. Galkin quandles in the Rig table [Vendramin 2011]. The
columns headed N.C. show the number of knots with at most 12
crossings that can be nontrivially colored by the quandle.
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Conversely, let S={(x, a), (y, b), (z, d)} be a subquandle of G(A, c) isomorphic
to R3. Note that the quandle operation of R3 is commutative, and the product of
any two distinct elements is equal to the third. We examine two cases.

Case 1. x = y = z. In this case we have

(x, a) ∗ (x, b)= (x,−a+ 2b)= (x, d),

(x, b) ∗ (x, a)= (x,−b+ 2a)= (x, d).

Hence we have −a+ 2b =−b+ 2a, so that 3(a− b)= 0. If there are no elements
of order 3 in A, then we have a− b = 0, and so b = a. This is a contradiction to
the fact that S contains 3 elements, so there is an element of order 3 in A; hence 3
divides |A|.

Case 2. x, y and z are all distinct (if two are distinct then all three are). In this case
consider S = {(0, a), (1, b), (2, d)}. Now we have

(2, d) ∗ (0, a)= (1,−d − a+ c)= (1, b),

(0, a) ∗ (2, d)= (1,−a− d)= (1, b).

Hence we have −d − a+ c =−a− d, so that c = 0, and we have τ = 0. �

Lemma 5.6. The Galkin quandle G(A, τ ) is left-distributive if and only if 3A = 0,
that is, every element of A has order 3.

Proof. Let τ(1)= c1, τ (2)= c2. Let a = (0, 0), b= (0, α) and c= (1, 0) for α ∈ A.
Then we get a ∗ (b ∗ c)= (1, α− c2+ c1) and (a ∗b)∗ (a ∗ c)= (1,−2α− c2+ c1).
If these are equal, then 3α = 0 for any α ∈ A.

Conversely, suppose that every element of A has order 3. Then we have µ(x)a=
2a for any x ∈ Z3, a ∈ A. Then one computes

(34) (x, a)∗[(y, b)∗ (z, c)] =
(
x ∗ (y ∗ z),−a+b+c−τ(y− z)+τ(x− y ∗ z)

)
,

(35) [(x, a) ∗ (y, b)] ∗ [(x, a) ∗ (z, c)]

=
(
(x ∗ y) ∗ (x ∗ z),−a+ b+ c− τ(x − y)− τ(x − z)+ τ(x ∗ y− x ∗ z)

)
.

If all x, y, z are distinct, then x − y = 1 or x − y = 2, and x ∗ y = z, x ∗ z = y,
y ∗ z = x . If x − y = 1, then z = x + 1 and y− z = 1, x − z = 2, and one computes
that (34) = (−x + y+ z,−a+b+ c− c1)= (35). If x − y = 2, then one computes
(34)= (−x+ y+z,−a+b+c−c2)= (35). The other cases for x, y, z are checked
similarly. �

Proposition 5.7. The Galkin quandle G(A, τ ) is Alexander if and only if 3A = 0.

Proof. If G(A, τ ) is Alexander then it is left-distributive, and hence Lemma 5.6 im-
plies 3A= 0. Conversely, suppose 3A= 0. Then A=Zk

3 for some positive integer k,
and is an elementary 3-group. By Corollary 4.3, there are two isomorphism classes,
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G(Zk
3, [0, . . . , 0]) and G(Zk

3, [0, . . . , 0, 1]). The quandle G(Z3, 1) = C[9, 6] is
isomorphic to Z3[t]/(t + 1)2 by a direct comparison. Hence the two classes are
isomorphic to the Alexander quandles Rk

3 and Rk−2
3 ×Z3[t]/(t + 1)2, respectively.

�

Proposition 5.8. The Galkin quandle G(A, c) is medial if and only if 3A = 0.

Proof. We have seen that if 3A= 0, then G(A, c) is Alexander and hence is medial.
Suppose 3b 6= 0 for some b ∈ A. Then consider the products

X =
(
(0, 0) ∗ (1, b)

)
∗
(
(1, 0) ∗ (0, 0)

)
=
(
−1, b− τ(−1)

)
,

Y =
(
(0, 0) ∗ (1, 0)

)
∗
(
(1, b) ∗ (0, 0)

)
=
(
−1,−τ(−1)− 2b

)
.

Since 3b 6= 0, we have X 6= Y and so G(A, c) is not medial. �

Remark 5.9. The fact that the same condition appeared in Lemma 5.6 and Propo-
sitions 5.7 and 5.8 is explained as follows. Alexander quandles are left-distributive
and medial. It is easy to check that, for a finite Alexander quandle (M, T ) with
T ∈ Aut(M),

(M, T ) is connected ⇐⇒ (1−T ) is an automorphism of M ⇐⇒ (M, T ) is Latin.

It was also proved by Toyoda [1941] that a Latin quandle is Alexander if and only if
it is medial. As noted by Galkin, G(Z5, 0) and G(Z5, 1) are the smallest nonmedial
Latin quandles and hence the smallest non-Alexander Latin quandles.

We note that medial quandles are left-distributive (by idempotency). We show in
Theorem 5.10 that any left-distributive connected quandle is Latin. This implies,
by Toyoda’s theorem, that every medial connected quandle is Alexander and Latin.
The smallest Latin quandles that are not left-distributive are the Galkin quandles of
order 15.

It is known that the smallest left-distributive Latin quandle that is not Alexander
is of order 81. This is due to V. D. Belousov. See, for example, [Pflugfelder 1990;
Galkin 1988, Section 5].

Theorem 5.10. Every finite left-distributive connected quandle is Latin.

Proof. Let (X, ∗) be a finite, connected, and left-distributive quandle. For each
a ∈ X , let Xa = {a ∗ x : x ∈ X}.

Step 1. We claim that |Xa| = |Xb| for all a, b ∈ X . For any a, y ∈ X , we have

|Xa| = |Xa ∗ y| =
∣∣{(a ∗ x) ∗ y : x ∈ X}

∣∣= ∣∣{(a ∗ y) ∗ (x ∗ y) : x ∈ X}
∣∣= |Xa∗y|.

Since X is connected, we have |Xa| = |Xb| for all a, b ∈ X .

Step 2. Fix a ∈ X . If |Xa| = |X |, by Step 1, Xb = X for all b ∈ X and we are
done. So assume |Xa|< |X |. Clearly, (Xa, ∗) is a left-distributive quandle. Since
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(X, ∗) is connected and x 7→ a∗x is an onto homomorphism from (X, ∗) to (Xa, ∗),
(Xa, ∗) is also connected. Using induction, we may assume that (Xa, ∗) is Latin.

Step 3. For each y ∈ Y , we claim that Xa∗y = Xa . In fact,

Xa∗y ⊃ (a ∗ y) ∗ Xa

= Xa (since Xa is Latin).

Since |Xa∗y| = |Xa|, we must have Xa∗y = Xa .

Step 4. Since (X, ∗) is connected, by Step 3, Xb = Xa for all b ∈ X . Thus
X =

⋃
b∈X Xb = Xa , which is a contradiction. �

Proposition 5.11. Any Galkin quandle is self-dual, that is, isomorphic to its dual.

Proof. The dual quandle structure of G(A, τ )= G(A, c1, c2) is written by

(x, a) ∗̄ (y, b)=
(
x ∗̄ y,−a+µ(y− x)b+ τ(y− x)

)
for (x, a), (y, b) ∈ G(A, τ ). Note that µ(x − y) = µ(y − x) and τ(y − x) = c−i

if τ(x − y)= ci for any x, y ∈ X and i ∈ Z3. Hence its dual is G(A, c2, c1). The
isomorphism is f : Z3× A→ Z3× A, defined by f (x, a)= (−x, a). �

Corollary 5.12. A Galkin quandle G(A, c1, c2) is involutory (kei) if and only if
c1 = c2 ∈ A.

Proof. A quandle is a kei if and only if it is the same as its dual, that is, the identity
map is an isomorphism between the dual quandle and itself. Hence this follows
from Proposition 5.11. �

A good involution [Kamada 2007; Kamada and Oshiro 2010] ρ on a quandle
(X, ∗) is an involution ρ : X→ X (a map with ρ2

= id) such that x ∗ρ(y)= x ∗̄ y
and ρ(x ∗ y) = ρ(x) ∗ y for any x, y ∈ X . A quandle with a good involution is
called a symmetric quandle. A kei is a symmetric quandle with ρ = id (in this case
ρ is said to be trivial). Symmetric quandles have been used for unoriented knots
and nonorientable surface-knots.

Symmetric quandles with nontrivial good involution have been hard to find. Other
than computer calculations, very few constructions have been known. In [Kamada
2007; Kamada and Oshiro 2010], nontrivial good involutions were defined on
dihedral quandles of even order, which are not connected. Infinitely many symmetric
connected quandles were constructed in [Carter et al. 2010] as extensions of odd
order dihedral quandles: For each odd 2n+1 (n ∈Z, n> 0), a symmetric connected
quandle of order (2n + 1)22n+1 was given that is not a kei. Here we use Galkin
quandles to construct more symmetric quandles.

Proposition 5.13. For any positive integer n, there exists a symmetric connected
quandle of order 6n that is not involutory.
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Proof. We show that if an abelian group A has an element c ∈ A of order 2,
then G(A, c) is a symmetric quandle. Note that G(A, c) is not involutory by
Corollary 5.12.

Define the map ρ : Z3× A→ Z3× A by ρ(x, a)= (x, a+ c), where c ∈ A is a
fixed element of order 2 and x ∈ Z3, a ∈ A. The map ρ is an involution. It satisfies
the required conditions, as we show below. For x, y ∈ Z3, we have

(x, a) ∗ ρ(y, b)= (x, a) ∗ (y, b+ c)

=
(
2y− x,−a+µ(x − y)(b+ c)+ τ(x − y)

)
,

(x, a)∗̄(y, b)=
(
2y− x,−a+µ(y− x)b+ τ(y− x)

)
,

where the last equality follows from the proof of Proposition 5.11. If x = y, then
µ(x − y)= 2= µ(y− x) and τ(x − y)= 0= τ(y− x), and the above two terms
are equal. If x 6= y, then µ(x − y)=−1= µ(y− x), and exactly one of τ(x − y)
and τ(y− x) is c and the other is 0, so that the equality holds.

Next we compute

ρ
(
(x, a) ∗ (y, b)

)
= ρ

(
2y− x,−a+µ(x − y)b+ τ(x − y)

)
=
(
2y− x,−a+µ(x − y)b+ τ(x − y)+ c

)
,

ρ(x, a) ∗ (y, b)= (x, a+ c) ∗ (y, b)

=
(
2y− x,−a− c+µ(x − y)b+ τ(x − y)

)
,

and these are equal. �

For the equations in Lemma 3.3, we have the following for Zp.

Lemma 5.14. Let p > 3 be a prime and let µ : Zp → Z be a function satisfying
µ(0)= 2 and

(36) µ(x + y)+µ(x − y)= µ(x)µ(y)

for any x, y ∈ Zp. Then µ(x)= 2 for all x ∈ Zp.

Proof. Let
S =

∑
x∈Zp

µ(x).

Summing (36) as y runs over Zp, we have 2S = Sµ(x). So if S 6= 0, we have
µ(x)= 2 for all x ∈ Zp. Hence we only need to prove that S 6= 0.

Assume to the contrary that S=0. Since µ(kx)µ(x)=µ((k+1)x)+µ((k−1)x),
it is easy to see by induction that

(37) µ(x)k = 1
2

∑
0≤i≤k

(k
i

)
µ((k− 2i)x).
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(Here we also use the fact that µ(−x) = µ(x), which follows from the fact that
µ(x − y)= µ(x)µ(y)−µ(x + y) is symmetric in x and y.) In particular,

µ(x)2p
=

1
2

∑
0≤i≤2p

(2p
i

)
µ(2(p− i)x).

Since
∑

x∈Zp
µ(x)= 0, we have

∑
x∈Zp

µ(x)2p
=

[
2+

(2p
p

)]
p.

Since µ(x)= µ
( x

2

)2
− 2, we have µ(x)=−2,−1, 2, 7, . . . .

Case 1. Assume that there exists 0 6= x ∈ Zp such that µ(x)≥ 7. Then[
2+

(2p
p

)]
p =

∑
x∈Zp

µ(x)2p
≥ 72p,

which is not possible.

Case 2. Assume that µ(x) ∈ {−2,−1, 2} for all x ∈ Zp. Let ai = |µ
−1(i)|. Since∑

x∈Zp
µ(x)= 0 and

∑
x∈Zp

µ(x)3 = 0, where the second equation follows from
(37), we have {

−2a−2− a−1+ 2a2 = 0,
−8a−2− a−1+ 8a2 = 0.

So a−1 = 0, that is, µ(x)=±2 for all x ∈ Zp. Then∑
x∈Zp

µ(x)≡ 2p ≡ 2 (mod 4),

which is a contradiction. �

6. Knot colorings by Galkin quandles

In this section we investigate knot colorings by Galkin quandles. Recall from
Lemma 5.4 that any Galkin quandle G(A, τ ) consists of three disjoint subquandles
{x}× A for x ∈ Z3, and each is a product of dihedral quandles. Also any Galkin
quandle has R3 as a quotient. Thus we look at relations between colorings by
dihedral quandles and those by Galkin quandles. For a positive integer n, a knot is
called n-colorable if its diagram is colored nontrivially by the dihedral quandle Rn .

First we present the numbers of n-colorable knots (for odd n) with 12 crossings
or less out of 2977 knots in the knot table from [Cha and Livingston 2011], for
comparison with Table 1. These are for dihedral quandles and their products that
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may be of interest and relevant for comparisons.

R3 : 1084, R5 : 670, R7 : 479, R11 : 285, R15 : 1512, R17 : 192,

R19 : 159, R21 : 1386, R23 : 128, R29 : 97, R31 : 87, R33 : 1260.

Remark 6.1. We note that many Rig Galkin quandles in Table 1 have the same
number (1084) of nontrivially colorable knots as the number of 3-colorable knots.
We make a few observations on these Galkin quandles.

By Lemma 5.5, a Galkin quandle has R3 as a subquandle if τ = 0 or 3 divides |A|,
and among Rig Galkin quandles with the number 1084, 17 of them satisfy this
condition. Hence any 3-colorable knot is nontrivially colored by these Galkin
quandles. The converse is not necessarily true: G(Z5, 0) has τ = 0 but has the
number 1512. See Corollary 6.5 for more on these quandles.

The remaining 7 Rig Galkin quandles with the number 1084 have C[6, 2] as a
subquandle:

C[12, 5], C[12, 9], C[24, 28], C[24, 29], C[24, 31], C[24, 38].

It was conjectured [Carter et al. 2010] that if a knot is 3-colorable, then it is
nontrivially colored by C[6, 2] (R̃3 in their notation). It is also seen that any
nontrivial coloring by C[6, 2] descends to a nontrivial 3-coloring via the surjection
C[6, 2] → R3, so if the conjecture is true, then any knot is nontrivially colored by
these quandles if and only if it is 3-colorable. See also Remarks 6.6 and 6.7.

The determinant of a knot is a well known knot invariant related to n-colorability;
see [Fox 1962; Rolfsen 1976] for example, for the definition.

Proposition 6.2. Let K be a knot with a prime determinant p > 3. Then K is
nontrivially colored by a finite Galkin quandle G(A, τ ) if and only if p divides |A|.

Proof. By Fox’s theorem [1962], for any prime p, a knot is p-colorable if and only
if its determinant is divisible by p. Let K be a knot with the determinant that is a
prime p > 3. Then K is p-colorable and not 3-colorable.

Let G(A, τ ) be any Galkin quandle and let C :A→G(A, τ ) be a coloring, where
A is the set of arcs of a knot diagram of K . By the surjection r : G(A, τ )→ R3,
the coloring C induces a coloring r ◦C :A→ R3. Since K is not 3-colorable, it is
a trivial coloring, and therefore C(A)⊂ r−1(x) for some x ∈ R3. The subquandle
r−1(x) for any x ∈ R3 is an Alexander quandle {x}× A with the operation

(x, a) ∗ (x, b)= (x, 2b− a),

so that it is a product of dihedral quandles {x} × A = Rq1 × · · · × Rqk for some
positive integer k and prime powers q j , j = 1, . . . , k (Lemma 5.4). It is known
that the number of colorings by a product quandle X1× · · ·× Xk is the product of
numbers of colorings by X i for i = 1, . . . , k. It is also seen that a knot is nontrivially
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colored by Rpk for a prime p if and only if it is p-colorable. Hence K is nontrivially
colored by {x}× A if and only if one of q1, . . . , qk is a power of p. �

A 2-bridge knot is a knot that can be put into a position with two maxima and
two minima with respect to some height function in space (see [Rolfsen 1976], for
example, for its definition and properties).

Corollary 6.3. For any positive integer n not divisible by 3 and any finite Galkin
quandle G(A, τ ), all 2-bridge knots with the determinant n have the same number
of colorings by G(A, τ ).

Proof. Let K be a two-bridge knot with the determinant n= pm1
1 . . . pm`

` (in the prime
decomposition form), where pi 6= 3 for i = 1, . . . , `, and let A = Rq1 × · · ·× Rqk

be the decomposition for prime powers, as a quandle. By Fox’s theorem [1962], for
a prime p, K is p-colorable if and only if p divides the determinant of K . Hence K
is pi -colorable for i = 1, . . . , ` and not 3-colorable. By the proof of Proposition 6.2,
the number of colorings by a Galkin quandle G(A, τ ) of K is determined by the
number of colorings by the dihedral quandles Rq j that are factors of A.

The double branched cover M2(K ) of the 3-sphere S3 along a 2-bridge knot
K is a lens space ([Rolfsen 1976], for example), and its first homology group
H1(M2(K ),Z) is cyclic. If the determinant of K is n, then it is isomorphic to Zn

([Lickorish 1997], for example). It is known [Przytycki 1998] that the number of
colorings by Rq j is equal to the order of the group

(
Z⊕ H1(M2(K ),Z)

)
⊗ Zq j ,

which is determined by n and q j alone. �

Example 6.4. Among knots with up to 8 crossings, the following sets of knots have
the same numbers of colorings by all finite Galkin quandles from Corollary 6.3:
{41, 51} (determinant 5), {52, 71} (7), {62, 72} (11), {63, 73, 81} (13), {75, 82, 83} (17),
{76, 84} (19), {86, 87} (23), {88, 89} (25), {812, 813} (29). See [Cha and Livingston
2011] for notations of knots in the table. This exhausts such sets of knots up to 8
crossings.

Computer calculations show that the set of knots up to 8 crossings with determi-
nant 9 is {61, 820}, and these have different numbers of colorings by some Galkin
quandles. The determinant was looked up at KnotInfo [Cha and Livingston 2011].

There are two knots (74 and 821, up to 8 crossings) with determinant 15. They can
be distinguished by the numbers of colorings by some Galkin quandles, according
to computer calculations.

Corollary 6.5. Let p be an odd prime. Then a knot K is nontrivially colored by the
Galkin quandle G(Zp, 0) if and only if it is 3p-colorable.

Proof. Suppose it is 3p-colorable; then it is nontrivially colored by R3p, which
is isomorphic to R3× Rp, so that it is either 3-colorable or p-colorable. If K is
3-colorable, then K is nontrivially colored by G(Z p; 0), since G(Z p; 0) has R3 as
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a subquandle by Lemma 5.5. If K is p-colorable, then K is nontrivially colored by
G(Z p; 0), since G(Z p; 0) has {0}× Rp as a subquandle by Lemma 5.4.

Suppose that a knot K is nontrivially colored by G(Zp, 0), where p is an odd
prime. If K is 3-colorable, then it is 3p-colorable, and we are done. By the proof of
Proposition 6.2, if K is not 3-colorable, then K is nontrivially colored by {x}× Rp,
where x ∈ Z3. Hence K is p-colorable, and so 3p-colorable. �

Remark 6.6. According to computer calculations, the following sets of Galkin
quandles (in the numbering of Table 1) have the same numbers of colorings for
all 2977 knots with 12 crossings or less. Thus we conjecture that it is the case for
all knots. If a Galkin quandle does not appear in the list, then it means that it has
different numbers of colorings for some knots, compared to other Galkin quandles.
The numbers of colorings are distinct for distinct sets listed below as well.{

C[6, 1],C[6, 2]
}
,
{
C[12, 5],C[12, 6]

}
,
{
C[12, 8],C[12, 9]

}
,{

C[18, 1],C[18, 4]
}
,
{
C[18, 5],C[18, 8]

}
,
{
C[24, 27],C[24, 28]

}
,{

C[24, 29],C[24, 30],C[24, 31]
}
,
{
C[24, 38],C[24, 39]

}
,{

C[30, 12],C[30, 14]
}
,
{
C[30, 13],C[30, 15]

}
.

We wish to acknowledge the use of the programs GAP [2008], Maple15 (Magma
package) [Maplesoft 2011], and Prover9 and Mace4 [McCune 2009] in our compu-
tations. Computational results are posted at [Clark and Yeatman 2011].

Remark 6.7. In contrast to the preceding remark, if we relax the requirement of
coloring the same number of times, and instead consider two quandles equivalent if
each colors the same knots nontrivially (among these 2977 knots), then we get the
following 4 equivalence classes:{
C[3,1],C[6,1],C[6,2],C[9,2],C[9,6],C[12,5],C[12,6],C[12,8],C[12,9],

C[18,1],C[18,4],C[18,5],C[18,8],C[24,27],C[24,28],C[24,29],C[24,30],

C[24,31],C[24,38],C[24,39],C[27,2],C[27,12],C[27,13],C[27,23],C[27,55]
}
,{

C[12,7],C[24,32],C[24,33]
}
,{

C[15,5],C[30,12],C[30,14]
}
,{

C[15,6],C[30,13],C[30,15]
}
.

Thus we conjecture that it is the case for all knots. Of these, the first family with
many elements consists of quandles with C[3, 1], C[6, 1] or C[6, 2] as a subquandle.
Hence, in fact, the conjecture about this family follows from the conjecture about
{C[6, 1],C[6, 2]} in the preceding remark.

Remark 6.8. Also in contrast to Remark 6.6, there exists a virtual knot K (see,
for example, [Kauffman 1999]) such that the numbers of colorings by C[6, 1] and
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C[6, 2] are distinct. A virtual knot K with the following property was given in
[Carter et al. 2010, Remark 4.6]: K is 3-colorable, but does not have a nontrivial
coloring by C[6, 2]. Since C[6, 1] has R3 as a subquandle, this virtual knot K has
a nontrivial coloring by C[6, 1]. Hence the numbers of colorings by C[6, 1] and
C[6, 2] are distinct for K . Thus we might conjecture that for any pair of nonisomor-
phic Galkin quandles, there is a virtual knot with different numbers of colorings.

Remark 6.9. For any finite Galkin quandle G(A, τ ), there is a knot K with a
surjection πQ(K )→ G(A, τ ) from the fundamental quandle πQ(K ). In fact, a
connected sum of trefoils can be taken as K as follows (see, for example, [Rolfsen
1976] for connected sum).

First we take a set of generators of G(A, τ ) as follows. Let A= Zn1×· · ·×Znk ,
where k, n1, . . . , nk are positive integers such that ni divides ni+1 for i = 1, . . . , k.
Let S = {(x, ei ) | x ∈ Z3, i = 0, . . . , k}, where e0 = 0 ∈ A and ei ∈ A (i = 1, . . . , k)
is an elementary vector [0, . . . , 0, 1, 0, . . . , 0] ∈ Zn1 × · · ·×Znk with a single 1 at
the i-th position. Note that Rn is generated by 0, 1 as 0 ∗ 1 = 2, 1 ∗ 2 = 3, and
inductively, i ∗ (i + 1)= i + 2 for i = 0, . . . , n− 2. Since {x}× A is isomorphic to
a product of dihedral quandles for each x ∈ Z3, S generates G(A, τ ).

For a 2-string braid σ 3
1 whose closure is trefoil (see Figure 2), we note that if

x 6= y ∈ Z3, then for any a, b ∈ A, the pair of colors (x, a), (y, b) ∈ G(A, τ ) at top
arcs extends to the bottom, that is, the bottom arcs receive the same pair. This can
be computed directly.

For the copies of the trefoil, we assign pairs [(0, e0), (x, ei )] as colors where
x = 1, 2 and i = 0, . . . k, and take connected sums on the portion of the arcs with
the common color (0, e0). Further we take pairs [(0, e j ), (1, e0)] for j = 1, . . . , k,
for example, and take connected sums on the arcs with the common color (1, e0),
to obtain a connected sum of trefoils with all elements of S used as colors, as
indicated in Figure 3. Such a coloring gives rise to a quandle homomorphism
πQ(K )→G(A, τ ) whose image contains generators S; hence it defines a surjective
homomorphism.
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(0,e0) (1,e0) (1,e1) (x,e j ) (2,ek)

(0,e1) (1,e0) (0,e2) (1,e0) (0,e j ) (1,e0) (0,e j ) (1,e0)

Figure 3. A coloring of a connected sum of trefoils.
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ENTROPY AND LOWEST EIGENVALUE
ON EVOLVING MANIFOLDS

HONGXIN GUO, ROBERT PHILIPOWSKI AND ANTON THALMAIER

We determine the first two derivatives of the classical Boltzmann–Shannon
entropy of the conjugate heat equation on general evolving manifolds. Based
on the second derivative of the Boltzmann–Shannon entropy, we construct
Perelman’s F and W entropy in abstract geometric flows. Monotonicity of
the entropies holds when a technical condition is satisfied.

This condition is satisfied on static Riemannian manifolds with nonneg-
ative Ricci curvature, for Hamilton’s Ricci flow, List’s extended Ricci flow,
Müller’s Ricci flow coupled with harmonic map flow and Lorentzian mean
curvature flow when the ambient space has nonnegative sectional curvature.

Under the extra assumption that the lowest eigenvalue is differentiable
along time, we derive an explicit formula for the evolution of the lowest
eigenvalue of the Laplace–Beltrami operator with potential in the abstract
setting.

1. Introduction

Geometric flows have been studied extensively. The idea is to evolve metrics in
certain ways usually by heat-type equations to obtain better metrics on manifolds
and thus to gain topological information of the manifolds. It is desirable to derive
evolution equations in a general setting such that the formulas may be applied to
various flows. For instance, very nice general approaches to get monotone quantities
on evolving manifolds have been developed in [Ecker et al. 2008; Müller 2010].

We briefly introduce notation for an abstract geometric flow. Let M be an n-
dimensional compact manifold. Assume that α(t, y) is a time-dependent symmetric
two-tensor on M , and that g(t) is a family of one parameter Riemannian metrics
evolving along the flow equation

(1-1)
∂g
∂t
=−2α, t ∈ (0, T ),
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where T is some fixed positive constant. Let A := gi jαi j be the trace of α with
respect to g(t).

Classical quantities on static manifolds have nice applications on evolving mani-
folds by certain natural modifications. The Boltzmann–Shannon entropy is such
a quantity for the heat equation. Formally, the conjugate of the heat operator
∂/∂t − 1 on space-time is −∂/∂t − 1 + A. As Perelman [2002] showed, on
evolving manifolds it is natural to work with the entropy for the conjugate heat
equation. We will derive the first two derivatives of Boltzmann–Shannon entropy
for the conjugate heat equation, and based on that we define Perelman’s F and W

entropy in the framework of abstract geometric flows.
Other classical quantities on static Riemannian manifolds are the eigenvalues of

the Laplace–Beltrami operator1. When the metric evolves, it is natural to include a
potential function. Perelman [2002] shows that the lowest eigenvalue of −1+ R/4
is monotone nondecreasing along the Ricci flow. Furthermore by deriving explicit
formula of the derivative, Cao [2007; 2008] shows that the monotonicity holds for
the lowest eigenvalue of −1+ cR for any c ≥ 1

4 ; see also [Li 2007].
Reto Müller [2010] derived formulas for the reduced volume in abstract geometric

flows. His formulation is very general and thus can be applied to different flows.
He shows that the reduced volume is monotone when a technical assumption holds,
which is satisfied for static manifolds with positive Ricci curvature, Hamilton’s
Ricci flow, List’s extended Ricci flow, Müller’s Ricci flow coupled with harmonic
map flow and Lorentzian mean curvature flow when the ambient manifold has
nonnegative sectional curvature. This allows him to establish new monotonicity
formulas for these flows.

One of our purposes in this paper is to show that the same phenomena as for
reduced volume holds for entropy and eigenvalues.

Notation and main results. Throughout the paper, M will be a compact manifold
without boundary. Along the flow equation (1-1) the Riemannian volume dy of M
evolves by

∂

∂t
dy =−A dy

and A satisfies
∂A
∂t
= 2|α|2+ gi j ∂αi j

∂t
,

where |α|2 = gi j gklαikα jl . To simplify the notation, we let βi j := ∂αi j/∂t and
B := gi jβi j , so that

(1-2)
∂A
∂t
= 2|α|2+ B.

In particular, A = R and B =1R under the Ricci flow.
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For any time-dependent vector field V on M we define

(1-3) 2g,α(V ) := (Rc−α)(V, V )+〈∇A− 2 Div(α), V 〉+ 1
2(B−1A),

where Rc is the Ricci tensor and Div the divergence operator: Div(α)k = gi j
∇iα jk .

In the rest of this paper we omit the subscripts of 2g,α(V ) and denote it by 2(V ).
The quantity2(V ) appears as an error term in our main results. In the expression

of 2(V ), the Rc term is caused by the Bochner’s formula. This explains technically
why our results are particularly useful for the Ricci flow and its various modifications.
Müller [2010] introduced the quantity D. In our notation his definition reads as

D(V )= ∂t A−1A− 2|αi j |
2
+ 4∇iαi j V j − 2∇ j AV j + 2Ri j Vi V j − 2αi j Vi V j .

Note that D and2 are essentially the same; indeed D(V )=22(−V ). Müller [2010]
further explained that D is the difference between two differential Harnack-type
quantities for the tensor α.

Let u(t, y) be a nonnegative solution to the conjugate heat equation

(1-4)
∂u(t, y)
∂t

=−1u(t, y)+ A(t, y) u(t, y), t ∈ (0, T ), y ∈ M,

where 1 is the Laplace–Beltrami operator calculated with respect to the evolving
metric g(t). Note that

∫
M u(t, y) dy remains constant along the flow, and without

loss of generality we assume this constant to be 1.
The classical Boltzmann–Shannon entropy functional is defined by

(1-5) E(t)=
∫

M
u(t, y) log u(t, y) dy.

If 2(V )≥ 0 for all V , we will show that E is convex. Based on this observation
we construct Perelman’s F and W entropy in abstract geometric flows. We then
derive the explicit evolution equations of the entropies along the conjugate heat
equation, and show that they are monotone if 2 ≥ 0. We thus present a unified
formula of various W entropies established by various authors for different flows
(including the static case); see [Feldman et al. 2005; Li 2007; List 2008; Müller
2012; Ni 2004b; 2004a; Perelman 2002].

We show indeed that the generalized entropy Fk (k ≥ 1), see Definition 4.1
below, is monotone under the additional assumption B−1A≥ 0, which is satisfied
by all previously mentioned flows. The study of the Fk entropy leads to a simpler
argument to rule out nontrivial steady breathers.

The eigenvalues and eigenfunctions of the Laplace–Beltrami operator with po-
tential cA where c is a constant, satisfy

(1-6) λ(t) f (t, y)=−1 f (t, y)+ cA(t, y) f (t, y).
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Let λ(t) be the lowest eigenvalue. We shall determine the derivative of λ(t). A
remarkable fact is that the derivative λ′(t) does not depend on the time derivative
of the corresponding eigenfunction; this allows to establish a formula for λ′(t)
not requiring knowledge of the eigenfunction evolution. We will prove eigenvalue
monotonicity and apply it to rule out nontrivial steady and expanding breathers in
various flows.

2. The first two derivatives of the Boltzmann–Shannon entropy

Theorem 2.1. Suppose that (M, g(t)) is a solution to the abstract geometric flow
(1-1), and that u(t, y) is a positive solution to the conjugate heat equation (1-4),
normalized by

∫
M u(t, y) dy = 1. The first two derivatives of E(t) are given by

E′(t)=
∫

M
(|∇ log u|2+ A)u dy,(2-7)

E′′(t)=
∫

M
2
(
|α−∇∇ log u|2+2(∇ log u)

)
u dy.(2-8)

In particular, if 2 is nonnegative then E(t) is convex in time.

Proof. Since M is closed we can integrate by parts freely. Direct calculations show
that

E′(t)=
∫

M
(ut log u+ ut − Au log u) dy

=

∫
M

(
(−1u+ Au) log u−1u+ Au− Au log u

)
dy

=

∫
M
(−1u log u+ Au) dy =

∫
M
(|∇ log u|2+ A)u dy,

and

E′′(t)=
∫

M

(
∂(|∇ log u|2+ A)

∂t
u+ (|∇ log u|2+ A)

∂u
∂t
− (|∇ log u|2+ A)u A

)
dy

=

∫
M

((
2α(∇ log u,∇ log u)+ 2

〈
∇

ut
u
,∇ log u

〉
+ 2|α|2+ B

)
u

+ (|∇ log u|2+ A)(−1u+ Au)− (|∇ log u|2+ A)u A
)

dy

=

∫
M

((
2α(∇ log u,∇ log u)+ 2

〈
∇

(
−
1u
u
+ A

)
,∇ log u

〉)
u

+ (2|α|2+ B)u− (|∇ log u|2+ A)1u
)

dy

=

∫
M

(
2uα(∇ log u,∇ log u)− 2

〈
∇

(
1u
u

)
,∇u

〉
+ 2 〈∇A,∇u〉

+ 2u|α|2+ Bu−1(|∇ log u|2)u−1Au
)

dy.
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Plugging in 1 log u =1u/u− |∇ log u|2 and

1(|∇ log u|2)= 2|∇∇ log u|2+ 2 Rc(∇ log u,∇ log u)+ 2〈∇ log u,∇(1 log u)〉,

we have

E′′(t)=
∫

M

(
2u(|α|2+|∇∇ log u|2)+2u(α+Rc)(∇ log u,∇ log u)+Bu−31Au

)
dy

=

∫
M

2
(

u |α−∇∇ log u|2+ 4u〈α,∇∇ log u〉

+ 2u(α+Rc)(∇ log u,∇ log u)+ (B−1A)u+ 2〈∇A,∇u〉
)

dy.

By observing that

Div(uα(∇ log u))= α(∇ log u,∇u)+ u Div(α)(∇ log u)+ u〈α,∇∇ log u〉,

and by the divergence theorem, we get

E′′(t)=
∫

M

(
2u|α−∇∇ log u|2+ 2u(Rc−α)(∇ log u,∇ log u)

+ (B−1A)u+〈2∇A− 4 Div(α),∇u〉
)

dy,

which is exactly (2-8). �

3. Examples where 2 and B−1A are nonnegative

We next list some examples where 2 and B−1A are nonnegative. Calculations on
the Ricci flow and extended Ricci flow are carried out in detail. For other examples
we list values of 2 and B −1A, and for details we refer to [Müller 2010]. This
section is organized in the same way as the corresponding section there. Recall that

2(V )= (Rc−α)(V, V )+〈∇A− 2 Div(α), V 〉+ 1
2(B−1A).

Riemannian manifolds. In the case of a static metric we have α = 0 and hence

(3-9) 2(V )= Rc(V, V ), B−1A = 0.

Thus 2 is nonnegative if M has nonnegative Ricci curvature.

Hamilton’s Ricci flow. In the case of Ricci flow where α = Rc, we have A = R.
The evolution equation ∂R/∂t = 2|Rc|2+1R gives

B =
∂A
∂t
− 2|α|2 =1R.

Notice that ∇R = 2 Div(Rc) by the second Bianchi identity; we thus get

(3-10) 2(V )= 0, B−1A = 0.
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List’s extended Ricci flow. Bernhard List [2008] introduced an extended Ricci flow
system, namely

(3-11)
∂g
∂t
=−2 Rc+ 2an∇v⊗∇v,

where v is a solution to the heat equation ∂v/∂t =1v and an a positive constant
depending only on the dimension n of the manifold. It turns out that one can exhibit
List’s flow as a Ricci–DeTurck flow in one higher dimension. This connection
has been observed by Jun-Fang Li according to [Akbar and Woolgar 2009]. The
extended Ricci flow is interesting by itself since its stationary points are solutions
to the vacuum Einstein equations, and it is desirable to work on this flow directly.

In our notation for the extended Ricci flow, α = Rc − an dv ⊗ dv and A =
R− an|∇v|

2, which gives

∇A =∇R− 2an∇∇v(∇v, · ).

Since Div(dv⊗ dv)k = gi j
∇i (∇ jv∇kv)= (1v)∇kv+ gi j

∇ jv∇i∇kv, we have

Divα = Div Rc− an Div(dv⊗ dv)= 1
2∇R− an(1v∇v+∇∇v(∇v, · )).

Thus we find

(3-12) ∇A− 2 Div(α)= 2an1v∇v.

The evolution equation of α is given by (cf. [List 2008])

βi j =
∂αi j

∂t
=1αi j − Ri pαpj − R j pαpi + 2Ri pq jαpq + 2an1v∇i∇ jv.

(Note that in our notation Ri j = g pq Ri pq j , while many authors, including List, write
Ri j =−g pq Ri pq j .) Hence we have B =1A+ 2an(1v)

2 and

(3-13) B−1A = 2an(1v)
2.

Plugging in our formula for 2 we arrive at

2(V )= an〈∇v, V 〉2+ 2an1v〈∇v, V 〉+ an(1v)
2
= an(〈∇v, V 〉+1v)2.

Müller’s Ricci flow coupled with harmonic map flow. The Ricci flow coupled
with an harmonic map flow was introduced in [Müller 2012] as a generalization of
the extended Ricci flow. Suppose that (N , γ ) is a further closed static Riemannian
manifold, a(t) a nonnegative function depending only on time, and ϕ(t) : M→ N
a family of 1-parameter smooth maps. Then (g(t), ϕ(t)) is called a solution to
Müller’s Ricci flow coupled with harmonic map flow with coupling function a(t),
if it satisfies

(3-14)
{
∂g/∂t =−2Rc+ 2a(t)∇ϕ⊗∇ϕ,
∂ϕ/∂t = τgϕ,
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where τg denotes the tension field of the map ϕ with respect to the evolving
metric g(t) and ∇ϕ⊗∇ϕ ≡ ϕ∗γ the pullback of the metric γ on N via the map ϕ.

Recall that D(V )= 22(−V ); we have, as in [Müller 2010],

(3-15) B−1A = 2a |τgϕ|
2
− a′|∇ϕ|2, 2(V )= a |τgϕ+∇Vϕ|

2
−

1
2a′|∇ϕ|2.

Thus both B−1A and 2 are nonnegative as long as a(t) is nonincreasing in time.

Lorentzian mean curvature flow when the ambient space has nonnegative sec-
tional curvature. Let Ln+1 be a Lorentzian manifold, and M(t) be a family of
space-like hypersurfaces of L . Denote by ν the future-oriented time-like unit normal
vector of M , by hi j the second fundamental form, and by H its mean curvature.
Let F(t, y) be the position function of M in L . The Lorentzian mean curvature
flow is then defined by

(3-16)
∂F
∂t
= Hν.

The induced metric g(t) of M(t) satisfies ∂t g = 2Hhi j . We have

(3-17)
B−1A = 2H 2

|h|2+ 2|∇H |2+ 2H 2 Rc(ν, ν),

2(V )= |∇H + h(V, · )|2+Rc(Hν+ V, Hν+ V )+Rm(V, ν, ν, V ),

where Rc and Rm denote the Ricci and Riemann curvature tensors of Ln+1. Both
B−1A and 2 are obviously nonnegative when the sectional curvature of Ln+1 is
nonnegative.

4. Perelman’s Fk functional in abstract geometric flows

We proved the following. If (M, g(t)) is a solution to the abstract flow equation (1-1)
and u a positive solution to the conjugate heat equation (1-4) then

(4-18)
d
dt

∫
M
(|∇ log u|2+ A)u dy =

∫
M

2
(
|α−∇∇ log u|2+2(∇ log u)

)
u dy.

We note that
d
dt

∫
M

Au dy =
∫

M

(
∂A
∂t

u+ A
∂u
∂t
− A2u

)
dy(4-19)

=

∫
M

(
(2|α|2+ B)u+ A(−1u+ Au)− A2u

)
dy

=

∫
M

2
(
|α|2+ 1

2(B−1A)
)
u dy.

Let φ := −log u; then

(4-20)
∂φ

∂t
=−1φ+ |∇φ|2− A,
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with constraint
∫

M e−φ dy=1. We rewrite (4-18) in the more familiar form following
Perelman’s notation:

(4-21)
d
dt

∫
M
(|∇φ|2+ A)e−φ dy =

∫
M

2
(
|α+∇∇φ|2+2(−∇φ)

)
e−φ dy.

Definition 4.1. For any φ ∈ C∞(M) with
∫

M e−φ dy = 1 and any constant k we
define Perelman’s Fk-functional for abstract geometric flows by

(4-22) Fk(g, φ)=
∫

M
(|∇φ|2+ k A)e−φ dy.

When k = 1 we simply denote F1 by F.

For Perelman’s Fk-functional in an abstract geometric flow we have:

Theorem 4.2. If g is a solution of the abstract geometric flow equation (1-1) and φ
a solution to (4-20) then we have

(4-23) d
dt

Fk =

∫
M

2
(
|α+∇∇φ|2+(k−1)|α|2+2(−∇φ)+ k−1

2
(B−1A)

)
· e−φ dy.

Thus for k > 1, Fk is monotone nondecreasing as long as B −1A and 2 are
nonnegative. Moreover the monotonicity is strict unless

α = 0, φ = constant, B−1A = 0.

For k = 1 we have

(4-24)
d
dt

F=

∫
M

2
(
|α+∇∇φ|2+2(−∇φ)

)
e−φ dy.

In particular, F is monotone nondecreasing when 2≥ 0, and monotonicity is strict
unless

α+∇∇φ = 0, 2(−∇φ)= 0.

Proof. Since

Fk(g, φ)=
∫

M
(|∇φ|2+ A)e−φ dy+ (k− 1)

∫
M

Ae−φ dy,

and by (4-21) and (4-19) we immediately get formula (4-23).
Furthermore for k > 1, the functional Fk is monotone nondecreasing as long as

B−1A and 2 are nonnegative. When d/dtFk = 0, each term on the right side of
(4-23) has to be identically zero. In particular we have

α+∇∇φ = 0, α = 0,

which further implies 1φ = 0 on the closed manifold M , and thus φ has to be a
constant. Now 2(−∇φ)=2(0)= (B−1A)/2 and B−1A = 0.
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When k = 1 the statement in the theorem is obvious. �

The advantage of Fk over F is that when k > 1, extra terms in F′k can tell
more about the manifold M . Li [2007] has studied Fk in the Ricci flow. We state
an analogous application of Fk to rule out nontrivial steady breathers in abstract
geometric flows.

Recall that a breather of a geometric flow is a periodic solution changing only
by diffeomorphism and rescaling. A solution (M, g(t)) is called a breather if there
are a diffeomorphism η : M→ M , a positive constant c and times t1 < t2 such that

(4-25) g(t2)= c η∗g(t1), α(t2)= η∗α(t1).

When c < 1, c = 1 or c > 1, the breather is called shrinking, steady or expanding,
respectively.

We now apply monotonicity of Fk to rule out nontrivial steady breathers of
abstract geometric flows.

Corollary 4.3. Suppose that (M, g(t)) is a steady breather to an abstract geometric
flow (1-1). Suppose that 2≥ 0 and B−1A ≥ 0. Then B−1A= 0 and the steady
breather is α-flat, namely α = 0.

Proof. The arguments are standard and follow from Perelman’s proof [2002] of the
no steady breather theorem for the Ricci flow. We follow [Kleiner and Lott 2008]
and only sketch the proof. Define

(4-26) λ(t)= inf
{

Fk(g, φ) :
∫

M
e−φ dy = 1, φ ∈ C∞(M)

}
.

Since we are on a steady breather we have λ(t1)=λ(t2). Let φ̄(t2) be a minimizer of
λ(t2). Solve the conjugate heat equation backwards with end value e−φ̄(t2). Denote
the solution by u(t). Let φ(t)=−log u(t) then φ(t) satisfies the constraint∫

M
e−φ dy = 1,

and Fk(g(t), φ(t)) is monotone nondecreasing as its derivative is nonnegative when
e−φ(t) is a solution to the conjugate heat equation. Thus we have

(4-27) λ(t1)≤ Fk(g(t1), φ(t1))≤ Fk(g(t2), φ̄(t2))= λ(t2).

Since on a breather λ(t1)= λ(t2), we get

Fk(g(t1), φ(t1))= Fk(g(t2), φ(t2)),

and in particular F′k(g(t), φ(t))= 0 when t ∈ [t1, t2]. Now we apply Theorem 4.2
to conclude that α = 0 and B−1A = 0 on M when t ∈ [t1, t2]. �
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Remark 4.4. From (4-26) we know that λ is the lowest eigenvalue of−1+(k/4)A.
Thus, by Theorem 4.2, under the assumptions that B −1A ≥ 0 and 2 ≥ 0, the
lowest eigenvalue of −1+ (k/4)A is monotone in t when k ≥ 1. An explicit
formula for the derivative of the lowest eigenvalue will be given in Section 7 under
the assumption that λ is differentiable along time.

5. Construction of Perelman’s W entropy

We have noted that Perelman’s F-functional is the derivative of E, whose stationary
points are steady solitons. The purpose of this section is to construct functionals
corresponding to the shrinking solitons. Our construction is just completing squares
of E′′ (or F′ by Perelman’s notation). Monotonicity of W holds in the flows
mentioned in Section 3.

We rewrite the second derivative of E(t) in order to fit the shrinking soliton
equation simply by completing squares:

E′′(t)=
∫

M
2
(
|α−∇∇ log u|2+2(∇ log u)

)
u dy

=

∫
M

(
2u
∣∣∣∣α−∇∇ log u−

1
2(T− t)

g
∣∣∣∣2+ 2u

T− t
(A−1 log u)

−
2nu

4(T− t)2
+ 2u2(∇ log u)

)
dy

=

∫
M

2
(∣∣∣∣α−∇∇ log u−

1
2(T− t)

g
∣∣∣∣2+2(∇ log u)

)
u dy

+
2

T− t
E′(t)−

n
2(T− t)2

.

Hence we have∫
M

2
(∣∣∣∣α−∇∇ log u−

1
2(T− t)

g
∣∣∣∣2+2(∇ log u)

)
u dy

= E′′(t)−
2

T− t
E′(t)+

n
2(T− t)2

=
1

T− t
d
dt

(
(T− t)E′−E−

n
2

log(T− t)
)
.

Now in terms of

W := (T− t)E′−E−
n
2

log(T− t)−
n
2

log(4π)− n,

we have proved that

(5-28)
d
dt

W= (T− t)
∫

M
2
(∣∣∣α−∇∇ log u−

1
2(T− t)

g
∣∣∣2+2(∇ log u)

)
u dy.
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Following Perelman, we let

τ := T− t, φ := −log((4πτ)n/2u),

and introduce the following definition.

Definition 5.1. For a solution (M, g) to the abstract geometric flow equation (1-1)
and for φ ∈ C∞(M), let Perelman’s W-entropy be defined as

(5-29) W(g, φ, t)=
∫

M

(
τ(|∇φ|2+ A)+φ− n)(4πτ

)−n/2e−φ dy.

We can rewrite (5-28) in the following way.

Theorem 5.2. Let (M, g) be a solution to the abstract geometric flow equation (1-1).
If φ satisfies

∂φ

∂t
=−1φ+ |∇φ|2− A+

n
2τ

and
∫

M
(4πτ)−n/2e−φ dy = 1,

then

d
dt

W=

∫
M

2τ
(∣∣∣∣α+∇∇φ− 1

2τ
g
∣∣∣∣2+2(−∇φ))(4πτ)−n/2e−φ dy.

If 2≥ 0 then W is monotone nondecreasing, and the monotonicity is strict unless

α+∇∇φ−
1

2τ
g = 0, 2(−∇φ)= 0.

The monotonicity of W can be applied to rule out nontrivial shrinking breathers
in abstract flows with 2≥ 0. The arguments are almost identical to the Ricci flow
case. We omit details.

6. Expander entropy W+

Feldman, Ilmanen, and Ni [2005] established expander entropy W+ for Ricci flow,
and there has been a very nice explanation of their motivation in [Feldman et al.
2005]. We attempt to explain formally why W+ should be the way as they defined
it. In short, the signs in W and W+ are caused by antiderivatives of 1/(t − T )
depending on the situation whether t > T or t < T .

We now carry out the details. Note that t > T on expanders and that

E′′(t)=
∫

M
2
(
|α−∇∇ log u|2+2(∇ log u)

)
u dy

=

∫
M

(
2u
∣∣∣∣α−∇∇ log u+

1
2(t − T )

g
∣∣∣∣2− 2u

t − T
(A−1 log u)

−
2nu

4(t − T )2
+ 2u2(∇ log u)

)
dy
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=

∫
M

2
(∣∣∣∣α−∇∇ log u+

1
2(t − T )

g
∣∣∣∣2+2(∇ log u)

)
u dy

−
2

t − T
E′(t)−

n
2(t − T )2

;

moreover∫
M

2
(∣∣∣∣α−∇∇ log u+

1
2(t − T )

g
∣∣∣∣2+2(∇ log u)

)
u dy

= E′′(t)+
2

t − T
E′(t)+

n
2(t − T )2

=
1

t − T
d
dt

(
(t − T )E′+E+

n
2

log(t − T )
)
.

The calculations suggest to define

W+ := (t − T )E′+E+
n
2

log(t − T )+
n
2

log(4π)+ n

which is the definition of expander entropy in [Feldman et al. 2005] in the case of
Ricci flow. One has

dW+

dt
= (t − T )

∫
M

2
(∣∣∣∣α−∇∇ log u+

1
2(t − T )

g
∣∣∣∣2+2(∇ log u)

)
u dy.

This again may be rewritten following [Feldman et al. 2005] in terms of

σ := t − T, φ+ := −log((4πσ)n/2u).

Definition 6.1. For a solution (M, g) to the abstract geometric flow equation (1-1)
and φ+ ∈ C∞(M) one defines Perelman’s entropy for expanders by

(6-30) W+(g, φ+, t)=
∫

M

(
σ (|∇φ+|

2
+ A)−φ++ n

)
(4πσ)−n/2e−φ+ dy.

Theorem 6.2. Let (M, g) be a solution to the abstract geometric flow equation (1-1).
Assume that φ+ satisfies

∂φ+

∂t
=−1φ++ |∇φ+|

2
− A−

n
2(t − T )

and
∫

M
(4πσ)−n/2e−φ+ dy = 1.

Then

dW+

dt
=

∫
M

2σ
(∣∣∣∣α+∇∇φ++ 1

2(t − T )
g
∣∣∣∣2+2(−∇φ+))(4πσ)−n/2e−φ+ dy.

Furthermore, if 2 ≥ 0 then W+ is monotone nondecreasing, and monotonicity is
strict unless

α+∇∇φ++
1

2(t − T )
g = 0, 2(−∇φ+)= 0.
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Remark 6.3. The constants ±
(n

2
log(4π)+ n

)
in the definition of W and W+ are

for normalization purposes.

7. Evolution equation of the lowest eigenvalue

In this section, assuming that the lowest eigenvalue λ(t) is differentiable along t ,
we derive an explicit formula for its derivative in terms of its normalized eigenfunc-
tion. Although monotonicity of Fk in Theorem 4.2 is sufficient for our geometric
applications, an explicit formula which holds at points where λ is differentiable,
may be of independent interest. Time derivatives of the eigenfunction do not appear
in the formula.

In the literature, for instance [Kleiner and Lott 2008, Section 7], it has been stated
that smooth dependence on time of the lowest eigenvalue and the corresponding
eigenfunction follows from perturbation theory as presented in [Reed and Simon
1978, Chapter XII]. However it is not immediately clear how perturbation theory
is applied to our context, where the operator depends only smoothly, but not
analytically on t .

Lemma 7.1. Assume that M is a closed manifold and let ψ ∈ C∞(M). Let λ be
the lowest eigenvalue of −1+ψ and f a positive eigenfunction corresponding
to λ, so that λ f =−1 f +ψ f . Then

(7-31)
∫

M
ψ1 f 2 dy =

∫
M

2
(
|∇∇ log f |2+Rc(∇ log f,∇ log f )

)
f 2 dy.

Proof. We have ψ f = λ f +1 f and

ψ1 f 2
= 2ψ f1 f + 2ψ |∇ f |2

= 2(λ f +1 f )1 f + 2(λ f +1 f )
|∇ f |2

f

= λ(2 f1 f + 2|∇ f |2)+ 2(1 f )2+ 2
1 f |∇ f |2

f

= λ1 f 2
+ 2(1 f )2+ 2

1 f |∇ f |2

f
.

We observe that

(7-32)
∫

M
ψ1 f 2 dy =

∫
M

(
2(1 f )2+ 2

1 f |∇ f |2

f

)
dy

=

∫
M

(
−2 〈∇ f,∇(1 f )〉− 2

〈
∇ f,∇

(
|∇ f |2

f

)〉)
dy.
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Now we calculate the two terms on the right side of (7-32). For the first term we
have by Bochner’s formula

(7-33) −2〈∇ f,∇(1 f )〉 = 2|∇∇ f |2+ 2 Rc(∇ f,∇ f )−1(|∇ f |2).

The second term can be written as〈
∇ f,∇

(
|∇ f |2

f

)〉
= 〈∇ f,∇( f |∇ log f |2)〉(7-34)

= 〈∇ f,∇ f |∇ log f |2+ 2 f∇∇ log f (∇ log f, · )〉

= f 2
|∇ log f |4+ 2 f 2

∇∇ log f (∇ log f,∇ log f )

= |∇∇ f |2− f 2
|∇∇ log f |2,

where in the last equality we used that

∇∇ log f =
∇∇ f

f
−
∇ f ⊗∇ f

f 2 =
∇∇ f

f
−∇ log f ⊗∇ log f,

and moreover

|∇∇ f |2 = f 2
|∇∇ log f +∇ log f ⊗∇ log f |2

= f 2
|∇∇ log f |2+ 2 f 2

∇∇ log f (∇ log f,∇ log f )+ f 2
|∇ log f |4.

Plugging (7-33) and (7-34) into (7-32), we get∫
M
ψ1 f 2 dy =

∫
M

(
2 f 2
|∇∇ log f |2+ 2 Rc(∇ f,∇ f )

)
dy. �

Let λ(t) be the lowest eigenvalue of −1+ cA, where c is a constant; indeed

(7-35) λ(t)= inf
{∫

M
|∇φ|2+ cAφ2 dy :

∫
M
φ2 dy = 1, φ ∈ C∞(M)

}
.

Let f (t, · ) be the corresponding positive eigenfunction normalized by∫
M

f 2(t, y) dy = 1.

Theorem 7.2. At all times t0 when the function t 7→ λ(t) is differentiable we have

(7-36) λ′(t0)

=
1
2

∫
M

(
|α−2∇∇ log f |2+(4c−1)|α|2+2(2∇ log f )+

4c− 1
2

(B−1A)
)

f 2 dy.

In particular, for c = 1
4 we have

(7-37) λ′ =
1
2

∫
M

(
|α− 2∇∇ log f |2+2(2∇ log f )

)
f 2 dy.
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Proof. Fix t0 ∈ (0, T ) where the function t 7→ λ(t) is differentiable, and let
ϕ : (0, T )×M→ R>0 be a smooth function such that

(1)
∫

M ϕ(t, y)2 dy = 1 for all t ∈ (0, T ), and

(2) ϕ(t0, · )= f (t0, · ).

For instance ϕ(t) may be chosen as f (t0)
√

dy(g(t0))/dy(g(t)), where dy(g(t)) is
the volume form with respect to the metric g(t). Let

(7-38) µ(t) :=
∫

M

(
|∇ϕ(t, y)|2+ cA(t, y)ϕ(t, y)2

)
dy.

Then µ(t) is a smooth function by definition. The trick to work with µ(t) rather
than λ(t) allows to bypass time derivatives of the eigenfunction f (t, · ). Note that
µ(t)≥ λ(t) for all t ∈ (0, T ), and µ(t0)= λ(t0), so that

λ′(t0)= µ′(t0).

Differentiation of (7-38) gives

µ′ =

∫
M

(
2α(∇ϕ,∇ϕ)+ 2〈∇ϕ′,∇ϕ〉+ cA′ϕ2

+ 2cAϕϕ′− (|∇ϕ|2+ cAϕ2)A
)

dy

=

∫
M

(
2α(∇ϕ,∇ϕ)− 2ϕ′1ϕ+ cA′ϕ2

+ 2cAϕϕ′+ϕ〈∇A,∇ϕ〉+ Aϕ1ϕ

− cA2ϕ2) dy

=

∫
M

(
2α(∇ϕ,∇ϕ)+ cA′ϕ2

+ϕ〈∇A,∇ϕ〉
)

dy+ λ
∫

M
(2ϕ′ϕ− Aϕ2) dy

=

∫
M

(
2α(∇ϕ,∇ϕ)+ cA′ϕ2

+ϕ〈∇A,∇ϕ〉
)

dy

=

∫
M

(
2α(∇ϕ,∇ϕ)+ c(2|α|2+ B)ϕ2

−
1
2 A1ϕ2) dy

=

∫
M

(
2α(∇ϕ,∇ϕ)+ 2c|α|2ϕ2

+ c(B−1A)ϕ2
+ cA1ϕ2

−
1
2 A1ϕ2) dy,

where in the fourth equality we used that
∫

M(2ϕϕ
′
− Aϕ2) dy = 0 (which is due to

the normalization of ϕ).
Noting that

Div(ϕα(∇ϕ, · ))= α(∇ϕ,∇ϕ)+ϕ Div(α)(∇ϕ)+ϕ〈α,∇∇ϕ〉

= 2α(∇ϕ,∇ϕ)+ϕ Div(α)(∇ϕ)+ϕ2
〈α,∇∇ logϕ〉,

and by the divergence theorem, we have
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(7-39)
∫

M
2α(∇ϕ,∇ϕ) dy

=

∫
M

4α(∇ϕ,∇ϕ)− 2α(∇ϕ,∇ϕ) dy

=

∫
M
−2ϕ Div(α)(∇ϕ)− 2ϕ2

〈α,∇∇ logϕ〉− 2α(∇ϕ,∇ϕ) dy.

In (7-31) let ψ = cA, we get

(7-40)
∫

M
cA1ϕ2 dy =

∫
M

2ϕ2
|∇∇ logϕ|2+ 2 Rc(∇ϕ,∇ϕ) dy.

Plugging (7-39) and (7-40) into the equation for µ′ we obtain

µ′ =

∫
M

(
−2ϕ Div(α)(∇ϕ)− 2ϕ2

〈α,∇∇ logϕ〉− 2α(∇ϕ,∇ϕ)+ 2c|α|2ϕ2

+ c(B−1A)ϕ2
+ 2ϕ2

|∇∇ logϕ|2+ 2 Rc(∇ϕ,∇ϕ)− 1
2 A1ϕ2) dy

=

∫
M

((
2|∇∇ logϕ|2− 2〈α,∇∇ logϕ〉+ 1

2 |α|
2
+
(
2c− 1

2

)
|α|2

)
ϕ2

+ (2(Rc−α)(∇ logϕ,∇ logϕ)+〈∇A− 2 Div(α),∇ logϕ〉)ϕ2

+ c(B−1A)ϕ2
)

dy

=

∫
M

(
1
2 |α−2∇∇ logϕ|2+

(
2c− 1

2

)
|α|2+ 1

22(2∇ logϕ)+
(
c− 1

4

)
(B−1A)

)
·ϕ2 dy,

so that

λ′(t0)= µ′(t0)

=
1
2

∫
M

(
|α−2∇∇ log f |2+(4c−1)|α|2+2(2∇ log f )+ 4c−1

2
(B−1A)

)
· f 2 dy,

as claimed. �

Let us compare Theorem 4.2 with Theorem 7.2, and (4-23) with (7-36). Let
φ =−2 log f ; then (7-36) can be rewritten as

λ′ =
1
2

∫
M

(
|α+∇∇φ|2+ (4c− 1)|α|2+2(−∇φ)+ 4c−1

2
(B−1A)

)
e−φ dy.

Letting k=4c, we see that the two evolution equations are formally proportional. We
note that in (4-23) the exponential e−φ is a normalized solution to the conjugate heat
equation, while e−φ/2 in the preceding integrand is the normalized eigenfunction
of λ(t).
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8. Eigenvalue monotonicity in various flows

In this section we list explicit formulas of the eigenvalue evolution in different
flows. The constant c is assumed to be no less than 1

4 .

Hamilton’s Ricci flow. In the case of Ricci flow, monotonicity of the lowest eigen-
value of −1+cR for c≥ 1

4 and its applications has been established by Cao [2007;
2008], as mentioned in the introduction. See also [Li 2007]. Plugging

α = Rc, 2= 0, B−1A = 0

into (7-36) we get Cao’s formula [2008] for the Ricci flow:

(8-41) λ′(t)=
∫

M

1
2

(
|Rc− 2∇∇ log f |2+ (4c− 1)|Rc|2

)
f 2 dy.

This can be applied to show that every steady breather in the Ricci flow is Ricci flat.

List’s extended Ricci flow. We work out the details in the extended Ricci flow.

Corollary 8.1. Assume that (M, g(t)) is a solution to the extended Ricci flow
equation, and that λ(t) is the lowest eigenvalue of

(8-42) −1+ c(R− an|∇v|
2),

then we have

λ′(t)=
∫

M

(
1
2 |Rc−an∇v⊗∇v−2∇∇ log f |2+

(
2c− 1

2

)
|Rc−an∇v⊗∇v|

2

+
an

2

(
(1v− 2〈∇v,∇ log f 〉)2+ (4c− 1)(1v)2

))
f 2 dy.

In particular, a steady breather of the extended Ricci flow is trivial in the sense that

Rc= 0, v ≡ constant .

Proof. The formula for λ′(t) is a direct plug-in. When (M, g(t)) is a steady breather,
there are times t1 < t2 such that λ(t1)= λ(t2) for any c > 1

4 . In particular we have
1v = 0 on the closed manifold M , thus v is constant, and moreover M is Ricci flat
by Rc− an∇v⊗∇v = 0. �

Müller’s Ricci flow coupled with harmonic map flow. We already used Fk to rule
out nontrivial steady breathers. Using eigenvalue monotonicity, one does not need
to solve the conjugate heat equation. The lowest eigenvalue of

−1+ c(R− a(t)|∇ϕ|2)

is nondecreasing along the flow. The conclusions remain the same as in Corollary 4.3.
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Lorentzian mean curvature flow when the ambient space has nonnegative sec-
tional curvature. When M evolves along the Lorentzian mean curvature flow
(3-16), the lowest eigenvalue of

−1− cH 2

is nondecreasing provided sectional curvature of the ambient space is nonnegative.

9. Normalized eigenvalue and no expanding breathers theorem

The eigenvalue of −1+cA is not scale invariant. Suppose that α is invariant under
scaling which is true in all of our examples. If we rescale a Riemannian metric g to
εg by a positive constant ε, then

−1εg + cAεg = ε−1(−1g + cAg),

and for the lowest eigenvalue we get λεg = ε−1λg. Thus the (nonnormalized) lowest
eigenvalue only works in the steady case. Following [Perelman 2002] we define
the scale invariant eigenvalue by

(9-43) λ̄g := λgV 2/n
g ,

where V denotes the volume of M .
In the following for simplicity of calculations we let c = 1

4 .

Proposition 9.1. Suppose that (M, g(t)) is a solution to the abstract geometric
flow (1-1) with α being scale invariant. Assume that 2 is nonnegative. Let λ(t) be
the lowest eigenvalue of −1+ A/4. Then whenever λ̄(t)≤ 0 one has λ̄′(t)≥ 0.

Proof. Recall that by (7-35) and choosing φ(t, y)= V−1/2 we have

λ(t)≤
1

4V

∫
M

A dy.

When λ̄(t)≤ 0 we obtain

λ̄′(t)= λ′(t)V 2/n
+

2λ
n

V n/2−1
∫

M
(−A) dy

≥ V n/2
(
λ′(t)−

8λ2(t)
n

)
≥

V n/2

2

(∫
M

(
|α− 2∇∇ log f |2+2(2∇ log f )

)
f 2 dy−

16λ2(t)
n

)
,

where f is the normalized positive eigenfunction corresponding to λ.
We observe that

|α− 2∇∇ log f |2 =
∣∣∣α− 2∇∇ log f − 1

n
(A− 21 log f )g

∣∣∣2+ 1
n
(A− 21 log f )2.
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Recall that f is the normalized eigenfunction and by Hölder’s inequality we obtain

(9-44)
∫

M
(A− 21 log f )2 f 2 dy =

∫
M
(A− 21 log f )2 f 2 dy

∫
M

f 2 dy

≥

(∫
M
(A− 21 log f ) f · f dy

)2

=

(∫
M

A f 2
+ 4|∇ f |2 dy

)2

= 16 λ2(t).

Finally we have λ̄′(t)≥ 0. �

If λ(t)≤ 0 we have in fact derived the inequality

(9-45)

λ̄′(t)≥
V 2/n

2

(∫
M

(∣∣∣α−2∇∇ log f − 1
n
(A−21 log f )g

∣∣∣2+2(2∇ log f )
)

f 2 dy
)

+
V 2/n

2n

(∫
M
(A− 21 log f )2 f 2 dy−

(∫
M
(A− 21 log f ) f · f dy

)2

dy
)
.

Now we may use (9-45) to rule out nontrivial expanding breathers.

Theorem 9.2. Suppose that (M, g(t)) is a solution to the abstract geometric flow
equation (1-1) with α being scale invariant. Assume that 2 is nonnegative. If
(M, g(t)) is an expanding breather for t1 < t2, then it has to be a gradient soliton
on (t1, t2) in the sense that

α− 2∇∇ log f −
4λ
n

g = 0

where f is the positive normalized eigenfunction corresponding to λ(t). Moreover
one has

2(2∇ log f )= 0.

Proof. Since λ̄ is invariant under diffeomorphism and rescaling, we have λ̄(t1)=
λ̄(t2). Since V (t1) < V (t2) there must be a time t0 ∈ (t1, t2) such that V ′(t0) ≥ 0.
Hence

λ(t0)≤
1

4V (t0)

∫
M

A(t0) dy

=−
1

4V (t0)
V ′(t0)

≤ 0.
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Proposition 9.1 then implies λ̄(t1)≤ λ̄(t0)≤ 0. Thus, on the whole interval [t1, t2],
the function λ̄(t) is nonpositive increasing and equals at the end points. This means
that the right side of (9-45) vanishes. In particular, the second line of (9-45) being
zero means that equality holds in Hölder’s inequality (9-44). Thus A− 21 log f
must be a spatial constant which is 4λ(t) because f is a normalized eigenfunction
corresponding to λ(t). The vanishing of the first line of (9-45) means that

α− 2∇∇ log f −
4λ
n

g = 0, 2(2∇ log f )= 0. �
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POLES OF CERTAIN RESIDUAL EISENSTEIN SERIES
OF CLASSICAL GROUPS

DIHUA JIANG, BAIYING LIU AND LEI ZHANG

In memory of Steve Rallis

We study the location of possible poles of a family of residual Eisenstein
series on classical groups. Special types of residues of those Eisenstein series
were used as key ingredients in the automorphic descent constructions of
Ginzburg, Rallis and Soudry and in the refined constructions of Ginzburg,
Jiang and Soudry. We study the conditions for the existence of other possible
poles of those Eisenstein series and determine the possible Arthur parameters
for the residual representations if they exist. Further properties of those
residual representations and their applications to automorphic constructions
will be considered in our future work.

1. Introduction

Automorphic descent constructions of Ginzburg, Rallis and Soudry [Ginzburg et al.
2011] produce the inverse of the Langlands functorial transfers from classical groups
to the general linear groups. More recently, the extensions of those constructions to
produce endoscopy transfers for classical groups were considered in [Ginzburg 2008;
Ginzburg et al. 2012; Jiang 2011; 2012]. The key ingredient in these constructions
is to use certain Fourier coefficients of special types of residues of certain residual
Eisenstein series as kernel functions in the corresponding integral transforms. In
order to explore the possibility of more general constructions, in this paper we start
to consider other possible poles and residues of these and more general residual
Eisenstein series for classical groups.

1A. Classical groups. Let F be a number field and let E be a quadratic extension
of F whose Galois group is denoted by 0E/F = {1, ι}. Denote by A = AF the ring
of adeles of F .

The classical groups considered in this paper, denoted by Gn , are the F-quasisplit
unitary groups U2n and U2n+1 of hermitian type, the F-split special orthogonal

The work of Dihua Jiang is supported in part by NSF DMS-1001672.
MSC2010: primary 11F70, 22E50; secondary 22E55, 11F72.
Keywords: residual representations, Arthur parameters, Eisenstein series.
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group SO2n+1 and the symplectic group Sp2n , and the F-quasisplit even special
orthogonal group SO2n . Define the number field F ′ as F if Gn is not a unitary
group and as E if it is. Denote by RF ′/F (GLn) the Weil restriction of the GLn from
F ′ to F .

We try to follow closely the notation introduced in [Mœglin and Waldspurger
1995]. Since the groups considered in this paper are quasisplit, we fix a standard
Borel subgroup P0 = M0 N0 of Gn that is realized in the upper-triangular matrices
in a chosen realization of the classical group in matrices [Ginzburg et al. 2011].
Let T0 be the maximal split torus of the center of M0 that defines the root system
R(T0,Gn) with the given positive roots R+(T0,Gn) and the set 10 of simple roots.
Let P = MN be a standard parabolic subgroup of Gn (containing P0) and let TM

be the maximal split torus in the center of M . The set of restricted roots is denoted
by R(TM ,Gn). We define R+(TM ,Gn) and 1M accordingly.

Furthermore, we define X M = X Gn
M to be the group of all continuous homomor-

phisms from M(A) into C× that are trivial on M(A)1. Then following page 6 of
[Mœglin and Waldspurger 1995] for the explicit realization of X M , define the real
part of X M , which is denoted by Re X M .

1B. Discrete spectrum of GLab. Let τ be an irreducible unitary cuspidal automor-
phic representation of GLa(A). Take the standard parabolic subgroup Qab = LabUab

of GLab, whose Levi subgroup Lab is isomorphic to GL×b
a . Then π = τ⊗b is an

irreducible unitary cuspidal automorphic representation of Lab(A). As in Section
II.1.5 of [Mœglin and Waldspurger 1995], denote by P the XGLab

Lab
-orbit of the

cuspidal datum (Lab , π). For an automorphic function

φπ ∈ A
(
Lab(F)Uab(A)\GLab(A)

)
π
,

denote by φπ⊗λ = λφπ the element λ ◦m Qφπ for λ ∈ XGLab
Lab

. Here the mapping
m Q from GLab(A) to Lab(A)1\Lab(A) is as defined on page 7 of [Mœglin and
Waldspurger 1995] by means of the Langlands decomposition with respect to
Qab(A) and the standard maximal compact subgroup of GLab(A). An Eisenstein
series attached to φπ⊗λ is defined by

E(φπ⊗λ, π ⊗ λ)(g) :=
∑

γ∈Qab (F)\GLab(F)

λφπ (γ g).

It converges absolutely for λ in the cone{
λ ∈ Re XGLab

Lab

∣∣ 〈λ, α̃〉> 〈ρQab
, α̃〉 for all α ∈ R+(TLab ,GLab)

}
,

and converges uniformly for g in a compact set and λ in a neighborhood of 0 in
XGLab

Lab
. The general theory of Langlands [1976; Mœglin and Waldspurger 1995]

asserts that it has meromorphic continuation to the whole parameter space XGLab
Lab
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and satisfies the standard functional equations in terms of the relevant intertwining
operators.

Take 3b =
(
(b − 1)/2, (b − 3)/2, . . . , (1− b)/2

)
∈ Re XGLab

Lab
and define the

iterated residue

1(τ, b)(φπ )(g) := Res
Pab

3b
E(φπ⊗λ, π ⊗ λ)(g).

It follows from [Mœglin and Waldspurger 1989] that 1(τ, b)(φπ )(g) is a square-
integrable automorphic function of GLab(A), or more precisely, that it defines the
GLab(A)-equivariant homomorphism

1(τ, b) : A
(
Lab(F)Uab(A)\GLab(A)

)
π
→ L2

disc
(
GLab(F)\GLab(A)

)
ωb
τ
.

The image is an irreducible subspace of L2
disc(GLab(F)\GLab(A))ωb

τ
, which is

denoted also by E(τ,b), and is usually called the Speh residual representation.
Mœglin and Waldspurger proved that all noncuspidal automorphic representations
occurring in the discrete spectrum of GLab(A) are of this type.

Theorem 1.1 [Mœglin and Waldspurger 1989]. As b ranges over the divisors of n,
with n = ab and b > 1, and τ ranges over the irreducible unitary cuspidal auto-
morphic representations of GLa , with ωb

τ = χ , the residual representations E(τ,b)
generated by the corresponding residues 1(τ, b)(φπ ) span the residual spectrum
L2

res(GLn(F)\GLn(A))χ , where χ is a unitary central character of GLn(A).

1C. Main results. We consider a family of residual Eisenstein series on Gn(A).
For a partition n= r+m, take the standard maximal parabolic subgroup Pr =Mr Nr

of Gn , whose Levi subgroup Mr is isomorphic to RF ′/F (GLr ) × Gm . For any
g ∈ RF ′/F (GLr ), define ĝ = wr gtwr or wr ι(g)twr in the case of unitary groups,
where wr is the antidiagonal symmetric matrix defined inductively by(

0 1
wr−1 0

)
and ι ∈ 0E/F = {1, ι}. Then each element g ∈ Mr is of type diag{t, h, t̂−1

}, with
t ∈ RF ′/F (GLr ) and h ∈ Gm . Since Pr is maximal, the space of characters X Gn

Mr
is

one-dimensional. Using the normalization in [Shahidi 2010], it is identified with C

by s 7→ λs .
For simplicity, we state here only our results for the case of m > 0, and refer to

Section 5 for the case of m = 0.
Let σ be an irreducible generic cuspidal automorphic representation of Gm(A).

Write r = ab. Let φ ∈ A(Nab(A)Mab(F)\Gn(A))1(τ,b)⊗σ . Following [Langlands
1976; Mœglin and Waldspurger 1995], an Eisenstein series is defined by

En
ab(φ1(τ,b)⊗σ , s)= E(φ1⊗σ , s)=

∑
γ∈Pab(F)\Gn(F)

λsφ(γ g).
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It converges absolutely for the real part of s large and has meromorphic continuation
to the whole complex plane C.

The objective of this paper is to determine the location of possible poles (at
Re(s) ≥ 0) of this family of residual Eisenstein series, or more precisely the
normalized Eisenstein series, and basic properties of the corresponding residual
representations. We take the expected normalizing factor βb,τ,σ (s) of the Langlands–
Shahidi type, which is given by a product of relevant automorphic L-functions:

(1-1)

βb,τ,σ (s) := L
(

s+
b+ 1

2
, τ × σ

) db/2e∏
i=1

L(eb,i (s)+ 1, τ, ρ)
bb/2c∏
i=1

L(eb,i (s), τ, ρ−),

where eb,i (s) := 2s+ b+ 1− 2i , and ρ and ρ− are defined as

ρ :=


Asai if Gn = U2n,

Asai⊗ δ if Gn = U2n+1,

Sym2 if Gn = SO2n+1,

32 if Gn = Sp2n or SO2n,

(1-2)

ρ− :=


Asai⊗ δ if Gn = U2n,

Asai if Gn = U2n+1,

32 if Gn = SO2n+1,

Sym2 if Gn = Sp2n or SO2n.

(1-3)

For unitary groups, “Asai” is the Asai representation of the L-group of RE/F (GLa)

and δ is the character associated to the quadratic extension E/F via class field
theory. For symplectic or orthogonal groups, Sym2 and 32 denote the symmetric
and exterior second powers of the standard representation of GLa(C), respectively.
In addition, we have the following identities [Ginzburg et al. 2011, Remark (3),
page 21]:

L(s, τ × τ ∗)= L(s, τ, ρ)L(s, τ, ρ−),

where τ ∗ = τ if F ′ = F and τ ∗ = τ ι if F ′ = E , where the involution ι is the
nontrivial element in the Galois group 0E/F .

We use the function βb,τ,σ (s) to normalize the Eisenstein series by

(1-4) En,∗
ab (φ1(τ,b)⊗σ , s) := βb,τ,σ (s)En

ab(φ1(τ,b)⊗σ , s).

In order to determine the location of the poles of E∗(φ1(τ,b)⊗σ , s), we need to
consider four cases:

(1) L(s, τ, ρ) has a pole at s = 1, and L
( 1

2 , τ × σ
)
6= 0;



POLES OF CERTAIN RESIDUAL EISENSTEIN SERIES OF CLASSICAL GROUPS 87

(2) L(s, τ, ρ) has a pole at s = 1, and L
( 1

2 , τ × σ
)
= 0;

(3) L(s, τ, ρ−) has a pole at s = 1, and L(s, τ × σ) has a pole at s = 1;

(4) L(s, τ, ρ−) has a pole at s = 1, and L(s, τ × σ) is holomorphic at s = 1.

We define the sets of possible poles according to the four cases:

X+b,τ,σ :=



{
0̂, . . . , b−2

2
,

b
2

}
in Case (1);{

0̂, . . . , b−4
2
,

b−2
2

}
in Case (2);{

0̂, . . . , b−1
2
,

b+1
2

}
in Case (3);{

0̂, . . . , b−3
2
,

b−1
2

}
in Case (4).

When b= 1 or 2, the set X+b,τ,σ is empty for Case (2), and when b= 1, the set X+b,τ,σ
is empty for Case (4). Note that we omit 0 in the set X+b,τ,σ , since the normalized
Eisenstein series E∗(φ1(τ,b)⊗σ , s) is holomorphic at s = 0 (Corollary 4.3).

Theorem 1.2. Assume that Gn is either the symplectic group or the F-quasisplit
special orthogonal group, and assume that m > 0. Let σ be an irreducible generic
cuspidal automorphic representation of Gm(A), and let τ be an irreducible unitary
self-dual cuspidal automorphic representation of GLr (A). The normalized Eisen-
stein series En,∗

ab (φ1(τ,b)⊗σ , s) is holomorphic for Re(s)≥0 except at s= s0∈ X+b,τ,σ ,
where it has possibly at most simple poles.

This is a consequence of Proposition 4.1, Corollary 4.3, and Theorems 4.5
and 5.2.

The proof uses an induction formula (Proposition 3.2) for the constant term of
E∗(φ1(τ,b)⊗σ , s) along the standard maximal parabolic subgroup Pa . This formula,
which extends a similar one studied in [Jiang 1998], is proved in Section 3, with
the unnormalized version proved in Section 2 (Proposition 2.3); it uses the Arthur
classification [Arthur 2013] for the discrete spectrum of the classical groups. This
yields more explicit information about the residual representations. A special case
of Sp2n was treated in [Brenner 2009]. We note that there are some mistakes in the
arguments used there, and we have corrected them along the way in our discussion.

We remark that the calculations in both Sections 2 and 3 work also for F-
quasisplit unitary groups, and the results there cover the case when Gn is either
U2n or U2n+1.

In the proof of Theorem 1.2, the case of m > 0 is treated in Section 4 and
the case of m = 0 is briefly discussed in Section 5. This makes the discussion
clearer and the formulas involved easier to present. By using the induction formula
(Proposition 3.2), one reduces the proof to showing that the normalized Eisenstein
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series E∗(φ1(τ,b)⊗σ , s) is holomorphic at 0 ≤ Re(s) < 1
2 , which is proved in

Corollary 4.3 and Proposition 4.4. The proof of this result uses the result of Arthur
[2013, Corollary 7.3.5] on behavior at s=0 of the normalized intertwining operators,
and on classification of the discrete spectrum. We thank James Arthur for his careful
explanation of this issue. Since the results in [Arthur 2013] for the case of unitary
groups are now proved in [Mok 2012], the proof of Theorem 1.2 also works for
F-quasisplit unitary groups.

Another issue is to consider the possible poles of the normalized Eisenstein series
En,∗

ab (φ1(τ,b)⊗σ , s) at Re(s) < 0 by the standard functional equation. This needs
sufficient properties of the involved standard intertwining operator and the local
Plancherel measures in this setting. We will leave this for our future consideration.

There is one more issue in extending Theorem 1.2 to cover the case when σ is
tempered, but nongeneric. We need to normalize the intertwining operators involved
in the calculation of the induction formula so that they are holomorphic and nonzero
for Re(s) > 0 at every local place. Following the work of Arthur [2013], one is able
to define these local L-functions at all local places. According to Mœglin [2010],
over p-adic local fields, for the tempered local L-packets, the normalization of these
intertwining operators by the Langlands–Shahidi local factors yields the required
properties of the normalized intertwining operators. It seems that at archimedean
local places, this may need more work, and we decide to consider this technical
issue in the future. Hence we still restrict Theorem 1.2 to the generic case in this
paper, which is enough for the current applications to our work in progress on
constructions of certain types of endoscopy transfers for classical groups [Jiang
2011; 2012].

In Section 4 we prove Theorem 1.2 for the case when m > 0, and in Section 5
we prove Theorem 1.2 for the case when m = 0. In the last section, we will
discuss the conditions for the existence of poles of the normalized Eisenstein series
E∗(φ1(τ,b)⊗σ , s) at s0 ∈ X+b,τ,σ and determine the possible Arthur parameters for
these residual representations of Gn(A), which are generated by the residues at
s0 ∈ X+b,τ,σ , respectively, and are square-integrable.

2. An induction formula

In this section, we take Gn to be one of the following classical groups: the F-
quasisplit unitary groups U2n and U2n+1, the F-split odd special orthogonal group
SO2n+1, the symplectic group Sp2n , and the F-quasisplit even special orthogonal
group SO2n .

Let σ be an irreducible cuspidal automorphic representation of Gm(A), without
assuming its genericity. From the Langlands theory of Eisenstein series, the possible
poles of an Eisenstein series are determined by its constant terms. For the residual
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Eisenstein series En
ab(φ1(τ,b)⊗σ , s), the general formula for constant terms along

parabolic subgroups are given in [Mœglin and Waldspurger 1995, Section II.1.7],
for instance. In this section, we investigate the constant term of En

ab(φ1(τ,b)⊗σ , s)
along the maximal parabolic subgroup Pa (as given in Section 1), which leads to an
induction formula. This extends the formula in [Jiang 1998] to this more general
setting. On the way of our calculations, we also correct some technical mistakes
in [Brenner 2009], which treated a special family of residual Eisenstein series of
Sp2n(A).

In the explicit calculation for the induction formula, we may set Pn
r for the

standard maximal parabolic subgroup Pr of G = Gn . We denote by Q or Qab
a,a(b−1)

a parabolic subgroup of GLab with Levi subgroup isomorphic to GLa ×GLa(b−1).

2A. Constant terms of Eisenstein series. Here we calculate the constant term of
En

ab(φ1(τ,b)⊗σ , s) along the maximal parabolic subgroup Pn
a = Pa , which is defined

by

EPa (φ1⊗σ , s)(g)=
∫

Na(F)\Na(A)

E(φ1⊗σ , s)(ng)dn.

Assume that Re(s) is large. After unfolding the Eisenstein series, we obtain

(2-1) EPa (φ1⊗σ , s)(g)

=

∑
w−1∈Pab\G/Pa

∑
γ∈Mw

a (F)\Ma(F)

∫
[Nw

a ]

∫
Na,w(A)

λsφ(w
−1γ n′n′′g)dn′dn′′,

where we define Mw
a := wPabw

−1
∩Ma and Nw

a := wPabw
−1
∩ Na and [Nw

a ] :=

Nw
a (F)\N

w
a (A). Note that the unipotent radical Na can be decomposed as a product

Na,wNw
a , where Na,w satisfies Na,w ∩ Nw

a = {1} and Na = Na,wNw
a = Nw

a Na,w.
For the first summation in (2-1), we consider the generalized Bruhat decompo-

sition Pab\G/Pa . As in [Shahidi 2010, Lemma 4.2.1], the representative w−1 of
the double coset Pabw

−1 Pa is chosen to have the minimal length. Following the
explicit calculations done in [Ginzburg et al. 2011, Chapter 4], it is not hard to
figure out that by the cuspidal support of the Eisenstein series, all terms vanish
except the two double cosets, whose representatives are given by w = Id and

w = ω = (−1)a


0 0 0 Ia 0

Ia(b−1) 0 0 0 0
0 0 I 0 0
0 0 0 0 Ia(b−1)

0 ±Ia 0 0 0

 ,
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with ω−1 being in the open cell. Here we use (−1)a and ± to make sure that ω
belongs to Gn . Define, for w = Id or ω,

EPa (φ1⊗σ , s)w =
∑

γ∈Mw
a (F)\Ma(F)

∫
[Nw

a ]

∫
Na,w(A)

λsφ(w
−1γ n′n′′g)dn′dn′′.

Then the constant term is expressed as

(2-2) EPa (φ1⊗σ , s)= EPa (φ1⊗σ , s)Id+ EPa (φ1⊗σ , s)ω.

We will calculate each of these two terms in the following two subsections.

2B. Id-term. Write

n(X, Y, Z ,W )=


Ia X Y Z W

Ia(b−1) Z
′

I Y
′

Ia(b−1) X
′

Ia

 ∈ Na,

where X ′, Y ′ and Z ′ are uniquely determined by X , Y and Z . Note that Pab ∩

Ma\Ma ∼= Pn−a
a(b−1)\Gn−a . The Id-term of the constant term is

(2-3) EPa (φ1⊗σ , s)Id(g)=
∑

γ∈Pn−a
a(b−1)(F)\Gn−a(F)

∫
[Na]

λsφ(γ ng)dn,

where [Na] := Na(F)\Na(A). The integral can be calculated as follows:∫
[Na]

λsφ(γ ng)dn =
∫
[Na]

λsφ(nγ g)dn

=

∫
[Ma×a(b−1)]

∫
[Nab∩Na]

λsφ(n′n(X)γ g)dn′dX

=

∫
[Ma×a(b−1)]

λsφ(n(X)γ g)dX.

Here [Z ] := Z(F)\Z(A) for Z = Na , Ma×a(b−1), and Nab ∩ Na , respectively. We
denote by n(X) the element n(X, 0, 0, 0) with X ∈ Ma×a(b−1).

Let us understand the last integral

(2-4)
∫
[Ma×a(b−1)]

φ(n(X)g)dX.

Recall that the Levi subgroup Mab is isomorphic to RF ′/F (GLab)×Gm . We denote
its elements by (x, h) with x ∈ RF ′/F (GLab) and h ∈ Gm . We fix g ∈ Gn(A). Then
the function

x 7→ φ((x, 1)g)
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is an automorphic function in the space of the residual representation E(τ,b) of
GLab(AF ′). Consider the standard maximal parabolic subgroup

Qa,a(b−1) = La,a(b−1)Ua,a(b−1)

of GLab associated to the partition ab = a+ a(b− 1). Then the integral (2-4) is
the constant term of φ((x, 1)g) (as an automorphic form in x) along the maximal
parabolic subgroup Qa,a(b−1), which is denoted by φQa,a(b−1) .

Let Pa,a(b−1) be a standard parabolic subgroup of Gn whose Levi subgroup
Ma,a(b−1) is isomorphic to

RF ′/F GLa ×RF ′/F GLa(b−1)×Gm

and whose unipotent radical is N := Na,a(b−1). We denote by (t, r, h) the element
diag(t, r, h, r̂−1, t̂−1) in Ma,a(b−1)(A).

Lemma 2.1. The constant term λsφQa,a(b−1) belongs to the space

A
(
Na,a(b−1)(A)Ma,a(b−1)(F)\Gn(A)

)
τ | · |

s−(b−1)/2
F ′ ⊗1(τ,b−1)| · |s+1/2

F ′ ⊗σ
.

Here | · |F ′ = |det|AF ′
; and F ′ is E if Gn is unitary, and is F otherwise.

Proof. Let K = 5vKv be the standard choice of maximal compact subgroup of
Gn(A) such that the Iwasawa decomposition

Gn(A)= Pa,a(b−1)(A)K

holds. It suffices to show that for all k ∈ K , the constant term λsφQa,a(b−1)((t, r, h)k)
belongs to the space of automorphic forms

A
(
Ma,a(b−1)(F)\Ma,a(b−1)(A)

)
τ | · |

s−(b−1)/2
F ′ ⊗1(τ,b−1)| · |s+1/2

F ′ ⊗σ
,

where t ∈ GLa(AF ′), r ∈ GLa(b−1)(AF ′) and h ∈ Gm(A).
By the definition (2-4), we have

φQa,a(b−1)((t, r, h)k)=
∫
[Ma×a(b−1)]

φ(n(X)(t, r, h)k)dX.

Since the function φk(m) := m−ρPab φ(mk), for m ∈ Mab(A), is an automorphic
form in A(Mab(F)\Mab(A))1(τ,b)⊗σ for all k ∈ K , without loss of generality, we
can assume that

φk((t, r, h))= φk,1(τ,b)((t, r))⊗φk,σ (h),

where the function φk,1(τ,b) ∈ A(GLab(F ′)\GLab(AF ′))1(τ,b) and the function
φk,σ ∈ A(Gm(F)\Gm(A))σ . Therefore, we obtain

φQa,a(b−1)((t, r, h)k)= (φk,1(τ,b))Qa,a(b−1)((t, r))⊗φk,σ (h),
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where (φk,1(τ,b))Qa,a(b−1) is the constant term of φk,1(τ,b) along the parabolic sub-
group Qa,a(b−1) of GLab.

By [Jiang and Liu 2012, Lemma 4.1], the constant term (φk,1(τ,b))Qa,a(b−1) belongs
to the space

A
(
Ua,a(b−1)(A)La,a(b−1)(F)\GLab(AF ′)

)
| · |
−(b−1)/2
F ′ τ⊗| · |

1/2
F ′ 1(τ,b−1).

It follows that the function λsφQa,a(b−1)(g) belongs to the space

A
(
Na,a(b−1)(A)Ma,a(b−1)(F)\Gn(A)

)
τ | · |

s−(b−1)/2
F ′ ⊗1(τ,b−1)| · |s+1/2

F ′ ⊗σ
. �

According to Lemma 2.1, we restrict the Id-term En
ab,Pn

a
(φ1⊗σ , s)Id to the sub-

group Ia ×Gn−a(A) of the Levi subgroup GLa(AF ′)×Gn−a(A) and obtain
(2-5)

En
ab,Pn

a
(φ1⊗σ , s)Id((Ia, h))=

∑
γ∈Pn−a

a(b−1)(F)\Gn−a(F)

λsφQab
a,a(b−1)

(
diag(Ia, γ h, Ia)

)
= En−a

a(b−1)

(
λ−1/2(i∗n−aφQ)1(τ,b−1)⊗σ , s+ 1

2

)
(h),

where | · |F ′ := | · |AF ′
and the restriction i∗n−aφQ = i∗n−aφQab

a,a(b−1)
to Gn−a(A) is an

automorphic function in the space

A
(
N n−a

a(b−1)(A)M
n−a
a(b−1)(F)\Gn−a(A)

)
1(τ,b−1)| · |1/2F ′ ⊗σ

.

2C. ω-term. It is easy to see that

Nω
a =

{
n(0, 0, Z , 0) | Z ∈ Ma×a(b−1)

}
.

We denote by ñ(Z) the element n(0, 0, Z , 0). The coset Mω
a (F)\Ma(F) is isomor-

phic to Pa(b−1)(F)\Gn−a(F). Therefore, we have

EPa (φ1⊗σ , s)ω(g)

=

∑
γ∈Pn−a

a(b−1)(F)\Gn−a(F)

∫
Na,ω(A)

∫
[Ma×a(b−1)]

λsφ(ω
−1γ ñ(Z)ng)dZ dn

=

∑
γ∈Pn−a

a(b−1)(F)\Gn−a(F)

∫
Na,ω(A)

∫
[Ma(b−1)×a]

λsφ(n(Z)ω−1nγ g)dZ dn,

where [Ma(b−1)×a] := Ma(b−1)×a(F)\Ma(b−1)×a(A), and n(Z) is the element
Ia(b−1) Z

Ia

I
Ia Z ′

Ia(b−1)

 for Z ∈ Ma(b−1)×a.
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We denote the inner integration by

(2-6) φ̃(g) :=
∫
[Ma(b−1)×a]

φ(n(Z)g)dZ .

Let Qa(b−1),a := La(b−1),aUa(b−1),a be a standard parabolic subgroup of GLab whose
unipotent radical Ua(b−1),a embedded into Gn consists of all the elements n(Z).
Moreover, the standard parabolic subgroup Pa(b−1),a = Ma(b−1),a Na(b−1),a of Gn

has the property that Ma(b−1),a = La(b−1),a ×Gm and Na(b−1),a =Ua(b−1),a Nab.

Lemma 2.2. The function λs φ̃ is an automorphic function in the space

A
(
Na(b−1),a(A)Ma(b−1),a(F)\Gn(A)

)
| · |

s−1/2
F ′ 1(τ,b−1)⊗| · |s+(b−1)/2

F ′ τ⊗σ
.

Here | · |F ′ is as defined in Lemma 2.1.

Proof. The proof is similar to the proof of Lemma 2.1. For all k ∈ K , the function
φk(m) := m−ρPab φ(mk), for m ∈ Mab(A), is an automorphic form in the space
A(Mab(F)\Mab(A))1(τ,b)⊗σ . We may assume that

φk((t, r, h))= φk,1(τ,b)((t, r))⊗φk,σ (h),

where t ∈ GLa(b−1)(AF ′), r ∈ GLa(AF ′) and h ∈ Gm(A). Then

φ̃k((t, r, h))=
[
(φk,1(τ,b))Qa(b−1),a ((t, r))⊗φk,σ (h)

]
.

By [Jiang and Liu 2012, Lemma 4.1], the constant term (φk,1(τ,b))Qa(b−1),a is an
automorphic function in the space

A
(
Ua(b−1),a(A)La(b−1),a(F)\GLab(AF ′)

)
| · |
−1/2
F ′ 1(τ,b−1)⊗| · |(b−1)/2

F ′ τ
.

This is enough to deduce the lemma. �

Next, following the notation of [Mœglin and Waldspurger 1995, II.1.6], we
consider the intertwining operator

(2-7) M(ω, · ) := M
(
ω, | · |

s−1/2
F ′ 1(τ, b− 1)⊗ | · |s+(b−1)/2

F ′ τ ⊗ σ
)
,

which is defined by(
M(ω, · )λs φ̃

)
(g) :=

∫
Na,a(b−1)∩ωNa(b−1),aω−1(F)\Na,a(b−1)(A)

λs φ̃(ω
−1ng)dn.

Now, plug this intertwining operator into the ω-term and obtain

EPa (φ1⊗σ , s)ω(g)=
∑

γ∈Pn−a
a(b−1)(F)\Gn−a(F)

(
M(ω, · )λs φ̃

)
(γ g).
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By [Mœglin and Waldspurger 1995, Proposition II.1.6], the intertwining operator
M(ω, · ) maps

A
(
Na(b−1),a(A)Ma(b−1),a(F)\Gn(A)

)
| · |

s−1/2
F ′ 1(τ,b−1)⊗| · |s+(b−1)/2

F ′ τ⊗σ

to

A
(
Na,a(b−1)(A)Ma,a(b−1)(F)\Gn(A)

)
| · |
−(s+(b−1)/2)
F ′ τ̃ ∗⊗| · |

s−1/2
F ′ 1(τ,b−1)⊗σ ,

where τ ∗= τ if F ′= F , and τ ∗= τ ι if F ′= E , with ι being the nontrivial element in
the Galois group 0E/F . Therefore, the restriction of the ω-term En

ab,Pa
(φ1⊗σ , s)ω

to the subgroup Ia×Gn−a(A) of the Levi subgroup GLa(AF ′)×Gn−a(A) is equal
to

(2-8) En−a
a(b−1)

(
λ1/2(i∗n−a ◦M(ω, · ))φ̃, s− 1

2

)
(h).

Combining the results of Sections 2B and 2C, we achieve an induction formula of
the constant term.

Proposition 2.3. The constant term En
ab,Pa

(φ1(τ,b)⊗σ , s) restricted to the subgroup
Ia×Gn−a(A) of the Levi subgroup GLa(AF ′)×Gn−a(A) is expressed as the identity

(2-9) En
ab,Pa

(φ1⊗σ , s)((Ia, h))

= En−a
a(b−1)

(
λ−1/2(i∗n−aφQab

a,a(b−1)
)1(τ,b−1)⊗σ , s+ 1

2

)
(h)

+ En−a
a(b−1)

(
λ1/2(i∗n−a ◦M(ω, · ))φ̃, s− 1

2

)
(h),

which holds for all s with Re(s) large, and then is extended to s ∈C by meromorphic
continuation. Here

M(ω, · ) := M
(
ω, | · |

s−1/2
F ′ 1(τ, b− 1)⊗ | · |s+(b−1)/2

F ′ τ ⊗ σ
)
,

| · |F ′ := | · |AF ′
, and φ̃ is defined in (2-6). Note that F ′ is E if Gn is a unitary group,

and is F otherwise.

3. A normalized induction formula

In this section, we keep the assumption on Gn as in Section 2 and calculate normaliz-
ing factors for the relevant intertwining operators involved in the functional equation
of Eisenstein series and in the induction formula (2-9). This leads to an induction
formula for normalized Eisenstein series. As we remarked in the introduction of
this paper, we have to assume that σ is an irreducible generic cuspidal automorphic
representation of Gm(A) if m > 0.
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3A. Normalized Eisenstein series (m > 0). We assume that m > 0, and recall the
definitions of ρ and ρ− in (1-2) and (1-3):

ρ :=


Asai if Gn = U2n,

Asai⊗ δ if Gn = U2n+1,

Sym2 if Gn = SO2n+1,

32 if Gn = Sp2n or SO2n,

and

ρ− :=


Asai⊗ δ if Gn = U2n,

Asai if Gn = U2n+1,

32 if Gn = SO2n+1,

Sym2 if Gn = Sp2n or SO2n.

It follows [Ginzburg et al. 2011, Remark (3)] that

L(s, τ × τ ∗)= L(s, τ, ρ)L(s, τ, ρ−),

where τ ∗ = τ if F ′ = F and τ ∗ = τ ι if F ′ = E , where the involution ι is the
nontrivial element in the Galois group 0E/F .

In order to normalize the Eisenstein series, we consider the normalization of the
intertwining operator M(ω′, | · |sF ′1⊗ σ)(φ) with

ω′ = (−1)ab

 Iab

I
±Iab

 .
By the general theory of Eisenstein series and intertwining operators [Langlands
1976; Mœglin and Waldspurger 1995, Chapter VI; Shahidi 2010, Theorem 6.1.7],
both E(φ1(τ,b)⊗σ , s) and M(ω′, | · |sF ′1 ⊗ σ) can be extended to meromorphic
functions of s ∈C, and the Eisenstein series E(φ1⊗σ , s) has the functional equation

(3-1) E(φ1(τ,b)⊗σ , s)= E
(
M(ω′, | · |sF ′1(τ, b)⊗ σ)(φ),−s

)
.

If Re(s)= 0, then E(φ1(τ,b)⊗σ , s) is holomorphic.
For any factorizable function φ =

⊗
v φv, we write

M
(
ω′, | · |sF ′1⊗ σ

)
(φ)=

∏
v

M
(
ω′, | · |sF ′v

1v ⊗ σv
)
(φv).

By [Shahidi 2010, Theorem 6.3.1], for each local place v, define

N ′
(
ω′, | · |sF ′v

1(τv, b)⊗ σv
)
(φv)

=
1

r ′
(
ω′, | · |sF ′v

1(τv, b)⊗ σv
)M

(
ω′, | · |sF ′v

1(τv, b)⊗ σv
)
(φv),
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where the local normalizing factor

r ′
(
ω′, | · |sF ′v

1(τv, b)⊗ σv
)

=
L(s,1(τv, b)× σv)

L(s+ 1,1(τv, b)× σv)ε(s,1(τv, b)× σv, ψv)

×
L(2s,1(τv, b), ρ)

L(2s+ 1,1(τv, b), ρ)ε(2s,1(τv, b), ρ, ψv)
.

Define r ′
(
ω′, | · |sF ′1(τ, b) ⊗ σ

)
=
∏
v r ′
(
ω′, | · |sF ′v

1(τv, b) ⊗ σv
)
. The global

normalized intertwining operator is

N ′
(
ω′, | · |sF ′1⊗ σ

)
=

∏
v

N ′
(
ω′, | · |sF ′v

1(τv, b)⊗ σv
)
.

For the global (complete) L-functions, we have

(3-2)

L
(
s,1(τ, b)× σ

)
=

b∏
i=1

L
(

s+
2i − b− 1

2
, τ × σ

)
,

L
(
s,1(τ, b), ρ

)
=

b∏
i=1

L(s+ b− 2i + 1, τ, ρ)

×

∏
1≤i< j≤b

L
(
s+ b− (i + j)+ 1, τ ⊗ τ ∗

)
.

Hence the quotient of complete L-functions has the property that

L
(
s,1(τ, b)× σ

)
L
(
2s,1(τ, b), ρ

)
L
(
s+ 1,1(τ, b)× σ

)
L
(
2s+ 1,1(τ, b), ρ

)
is equal to

db/2e∏
i=1

L
(

fb,i (s), τ, ρ
)bb/2c∏

i=1

L
(

fb,i (s)+ 1, τ, ρ−
)
L
(

s− b−1
2
, τ × σ

)
db/2e∏
i=1

L
(
eb,i (s)+ 1, τ, ρ

)bb/2c∏
i=1

L
(
eb,i (s), τ, ρ−

)
L
(

s+ b+1
2
, τ × σ

) ,

where eb,i (s) := 2s+ b+ 1− 2i , fb,i (s) := 2s− b− 1+ 2i . Define

αb(s) :=
db/2e∏
i=1

L
(

fb,i (s), τ, ρ
)bb/2c∏

i=1

L
(

fb,i (s)+ 1, τ, ρ−
)
L
(

s−
b− 1

2
, τ × σ

)
,

βb(s) :=
db/2e∏
i=1

L
(
eb,i (s)+ 1, τ, ρ

)bb/2c∏
i=1

L
(
eb,i (s), τ, ρ−

)
L
(

s+
b+ 1

2
, τ × σ

)
,
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and

εb(s) :=
db/2e∏
i=1

ε
(

fb,i (s), τ, ρ
)bb/2c∏

i=1

ε
(

fb,i (s)+ 1, τ, ρ−
)
ε
(

s−
b− 1

2
, τ × σ

)
.

Finally define the global normalizing factor by

(3-3) r
(
ω′, | · |sF ′1⊗ σ

)
= r

(
ω′, | · |sF ′1(τ, b)⊗ σ

)
=

αb(s)
βb(s)εb(s)

and the normalized global intertwining operator by

(3-4) N
(
ω′, | · |sF ′1⊗ σ

)
=

εb(s)N ′
(
ω′, | · |sF ′1⊗ σ

)
ε
(
s,1(τ, b)× σ

)
ε
(
2s,1(τ, b), ρ

) .
Then we have that

N
(
ω′, | · |sF ′1(τ, b)⊗ σ

)
=

1
r
(
ω′, | · |sF ′1⊗ σ

)M
(
ω′, | · |sF ′1⊗ σ

)
.

Meanwhile, we use βb(s) to normalize the Eisenstein series

(3-5) En,∗
ab (φ1(τ,b)⊗σ , s) := βb(s)En

ab(φ1(τ,b)⊗σ , s).

By the functional equation (3-1) of En
ab(φ1(τ,b)⊗σ , s), the normalized Eisenstein

series En,∗
ab (φ1(τ,b)⊗σ , s) satisfies the functional equation

(3-6) En,∗
ab (φ1(τ,b)⊗σ , s)= En,∗

ab

(
N (ω′, | · |sF ′1⊗ σ)(φ),−s

)
.

In fact,

E∗(φ1⊗σ , s)= βb(s)E
(
M(ω′, | · |sF ′1⊗ σ)(φ),−s

)
= βb(s) · r

(
ω′, | · |sF ′1⊗ σ

)
E
(
N (ω′, | · |sF ′1⊗ σ)(φ),−s

)
=
βb(s) · r

(
ω′, | · |sF ′1⊗ σ

)
βb(−s)

E∗
(
N (ω′, | · |sF ′1⊗ σ)(φ),−s

)
.

Since αb(s)= εb(s)βb(−s), we have

βb(s) · r
(
ω′, | · |sF ′1⊗ σ

)
= βb(−s).

From this we deduce the functional equation (3-6).
We remark that when b= 1, it is easy to show that for Re(s) > 0, the normalized

global intertwining operator

N
(
ω′, | · |sF ′1(τ, b)⊗ σ

)
is holomorphic for all choice of data, and nonzero for some choice of data.

In fact, if b = 1 and τ ⊗ σ is a generic representation, then the normalized local
intertwining operator N (ω′, · ) is holomorphic and nonzero by Theorem 11.1 of
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[Cogdell et al. 2004]. The proof uses the Langlands functorial transfers of σ from
Gn to the corresponding general linear groups, the Ramanujan type estimate for
cuspidal automorphic forms on general linear groups [Luo et al. 1999], and the
structure of generic unitary dual for classical groups over all local fields [Lapid
et al. 2004]. Hence the result for b = 1 holds for F-quasisplit unitary groups with
the same proof [Cogdell et al. 2011].

However, when b > 1, we are not able to prove the above properties for the
normalized global intertwining operator N (ω′, · ), so that we are not able to control
the poles at Re(s) < 0 of the normalized Eisenstein series through the functional
equation (3-6). We will leave this issue for our future consideration.

3B. Normalization of M(ω, · ) with m > 0. In order to normalize the global in-
tertwining operator

M(ω, · ) := M
(
ω, | · |

s−1/2
F ′ 1(τ, b− 1)⊗ | · |s+(b−1)/2

F ′ τ ⊗ σ
)
,

as defined in (2-7), we decompose it into a composition of two intertwining operators

M
(
ω, | · |

s−1/2
F ′ 1(τ, b− 1)⊗ | · |s+(b−1)/2

F ′ τ ⊗ σ
)
= M(ω1, · ) ◦M(ω2, · ),

where

ω1 =


Ia

Ia(b−1)

I
Ia(b−1)

Ia


and

ω2 = (−1)a


Ia(b−1)

Ia

I
±Ia

Ia(b−1)

 .
More precisely, M(ω1, · ) and M(ω2, · ) are standard intertwining operators of the
following types: M(ω2, · ) maps from the space

A
(
Na(b−1),a(A)Ma(b−1),a(F)\Gn(A)

)
| · |

s−1/2
F ′ 1(τ,b−1)⊗| · |s+(b−1)/2

F ′ τ⊗σ

to the space

A
(
Na(b−1),a(A)Ma(b−1),a(F)\Gn(A)

)
| · |

s−1/2
F ′ 1(τ,b−1)⊗| · |−s−(b−1)/2

F ′ τ̃ ∗⊗σ
,

and M(ω1, · ) maps from the space

A
(
Na(b−1),a(A)Ma(b−1),a(F)\Gn(A)

)
| · |

s−1/2
F ′ 1(τ,b−1)⊗| · |−s−(b−1)/2

F ′ τ̃ ∗⊗σ
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to the space

A
(
Na(b−1),a(A)Ma(b−1),a(F)\Gn(A)

)
| · |
−s−(b−1)/2
F ′ τ̃ ∗⊗| · |

s−1/2
F ′ 1(τ,b−1)⊗σ .

The standard Langlands–Shahidi normalizing factors for M(ω1, · ) and M(ω2, · )

are given by r(ω1, · ) and r(ω2, · ), where

r(ω1, · )=
L
(

2s+ b
2
− 1,1(τ, b− 1)× τ ∗

)
L
(

2s+ b
2
,1(τ, b− 1)× τ ∗

)
ε
(

2s+ b
2
− 1,1(τ, b− 1)× τ ∗

)
and r(ω2, ·) is

L
(

s+ b−1
2
, τ × σ

)
L
(
2s+ b− 1, τ, ρ

)
L
(

s+ b+1
2
, τ × σ

)
L
(
2s+ b, τ, ρ

)
ε
(

s+ b−1
2
, τ × σ

)
ε
(
2s+ b− 1, τ, ρ

) .
We define

M(ω1, · )= r(ω1, · )N (ω1, · ),

M(ω2, · )= r(ω2, · )N (ω2, · ),

r(ω, · )= r(ω1, · )r(ω2, · ),

and

(3-7) M(ω, · )= r(ω, · )N (ω, · ).

It follows that
N (ω, · )= N (ω1, · ) ◦ N (ω2, · ).

Proposition 3.1. Assume that b > 1. For Re(s) > 0, the normalized global inter-
twining operator

N (ω, · )= N
(
ω, | · |

s−1/2
F ′ 1(τ, b− 1)⊗ | · |s+(b−1)/2

F ′ τ ⊗ σ
)

is holomorphic for all choices of data, and nonzero for some choice of data. For
Re(s)= 0, it is holomorphic.

Proof. First we show that the normalized intertwining operators N (ωi , · ) for i =1, 2
are holomorphic and nonzero at Re(s)≥ 0.

Indeed, by Theorem 11.1 in [Cogdell et al. 2004] for orthogonal and symplectic
group cases, N (ω2, · ) is holomorphic for all choices of data and nonzero for some
choice of data, when Re(s+ (b− 1)/2)≥ 0. For even and odd unitary group cases,
the same result follows from Proposition 9.4 in [Kim and Krishnamurthy 2005] and
Proposition 5 in [Kim and Krishnamurthy 2004].
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For the normalized intertwining operators N (ω1, · ), it is essentially the inter-
twining operator for general linear groups, which is considered in [Mœglin and
Waldspurger 1989]. We write it as an eulerian product

N (ω1, · )=
∏
v

Nv(ω1, · ),

with τ =
⊗

v τv. Since τv is unitary and generic, we can assume that

τv = | · |
ν1St(τ1, a1)× | · |

ν2St(τ2, a2)× · · ·× | · |
νr St(τr , ar ),

where − 1
2 < νi <

1
2 for all i and St(τi , ai ) are Steinberg representations for some

supercuspidal representations τi and integers ai , and nonlinked. Write e(τv) =
2 inf

{1
2 − |νi |, 1≤ i ≤ r

}
(referring to I.10 in [Mœglin and Waldspurger 1989]). It

follows that
e(1(τv, b− 1))= e(τv).

By Proposition I.10 in [Mœglin and Waldspurger 1989], Nv(ω1, · ) is holomorphic
and nonzero when Re

(
s− 1

2 − (−s− (b− 1)/2)
)
>−e(τv) at all local places v. In

particular, they are holomorphic and nonzero at Re(s)≥ 0, and so is the normalized
global intertwining operator N (ω1, · ). Hence N (ω, · ) = N (ω1, · ) ◦ N (ω2, · ) is
holomorphic for all choices of data when Re(s)≥ 0.

We notice that for Re(s) > 0, N (ω1, · ) as a GLab-intertwining operator is an
isomorphism, and hence N (ω, · )= N (ω1, · )◦N (ω2, · ) is nonzero for some choice
of data. �

By substituting the normalized Eisenstein series En,∗
ab (φ1(τ,b)⊗σ , s) in (3-5) and

the normalized intertwining operator N (ω, · ) in (3-7) into the induction formula
(2-9) in Proposition 2.3, we obtain

En,∗
ab,Pa

(φ1⊗σ , s)((Ia, h))

=
βb(s)

βb−1
(
s+ 1

2

)En−a,∗
a(b−1)

(
λ−1/2

(
i∗n−aφQab

a,a(b−1)

)
1(τ,b−1)⊗σ , s+ 1

2

)
(h)

+
βb(s) · r(ω, · )

βb−1
(
s− 1

2

) En−a,∗
a(b−1)

(
λ1/2(i∗n−a ◦ N (ω, · ))φ̃, s− 1

2

)
(h).

Using a similar calculation as in (3-2), it is easy to verify that

βb(s)

βb−1
(
s+ 1

2

) = L
(
2s+ 1, τ, ρ(−)

b+1)
,

βb(s)

βb−1
(
s− 1

2

)r(ω, · )=
L
(
2s, τ, ρ(−)

b+1)
ε′b(s)

,
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where

ε′b(s) := ε
(

s+
b− 1

2
, τ ×σ

)
ε
(
2s+ b− 1, τ, ρ

)
ε
(

2s+
b
2
− 1,1(τ, b− 1)× τ ∗

)
.

Therefore, for b > 1, we obtain the following normalized induction formula.

Proposition 3.2 (induction formula). Let Gn be the classical groups as defined in
Section 2. Assume that m > 0 and σ is an irreducible generic cuspidal automorphic
representation of Gn(A). For b > 1, the following formula holds:

(3-8) En,∗
ab,Pa

(φ1⊗σ , s)((Ia, h))

= L
(
2s+ 1, τ, ρ(−)

b+1)
En−a,∗

a(b−1)

(
λ−1/2(i∗n−aφQ), s+ 1

2

)
(h)

+
L
(
2s, τ, ρ(−)

b+1)
ε′b(s)

En−a,∗
a(b−1)

(
λ1/2(i∗n−a ◦ N (ω, · ))φ̃, s− 1

2

)
(h),

where λ−1/2(i∗n−aφQ) := λ−1/2
(
i∗n−aφQab

a,a(b−1)

)
1(τ,b−1)⊗σ .

3C. Normalization for the case of m = 0. In this section, we consider the case
of m = 0. Due to the similarity between the cases of m = 0 and m > 0, we will
just briefly sketch the result here. We continue to use the notation and references
(which will not be mentioned) introduced in previous sections.

Note that when m = 0, Gn = SO2n must be F-split. In this case, we divide the
Gn into two types: Type (1), Gn = Sp2n and U2n+1, and Type (2), Gn = SO2n+1,
SO2n , and U2n .

In order to normalize the Eisenstein series, we consider the intertwining operator
M(ω′, | · |sF ′1)(φ) with

ω′ = (−1)ab

 Iab

I
±Iab

 ,
where the I in the middle is the identity matrix of order at most one, that is, it either
is 1 or disappears, depending on the structure of Gn .

For any factorizable function φ =
⊗

v φv, we write

M(ω′, | · |sF ′1)(φ)=
∏
v

M(ω′, | · |sF ′v1v)(φv),

and for each local place v, define

N ′
(
ω′, | · |sF ′v

1(τv, b)
)
(φv)=

1
r ′
(
ω′, | · |sF ′v

1(τv, b)
)M

(
ω′, | · |sF ′v

1(τv, b)
)
(φv),

where the local normalizing factor r ′
(
ω′, | · |sF ′v

1(τv, b)
)

is defined as follows.
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When Gn is of Type (1), define

r ′
(
ω′, | · |sF ′v

1(τv, b)
)
:=

L(s,1(τv, b))
L(s+ 1,1(τv, b))ε(s,1(τv, b), ψv)

×
L(2s,1(τv, b), ρ)

L(2s+ 1,1(τv, b), ρ)ε(2s,1(τv, b), ρ, ψv)
;

and when Gn is of Type (2), define

r ′
(
ω′, | · |sF ′v

1(τv, b)
)
=

L(2s,1(τv, b), ρ)
L(2s+ 1,1(τv, b), ρ)ε(2s,1(τv, b), ρ, ψv)

.

Then we define r ′
(
ω′, | · |sF ′1(τ, b)

)
=
∏
v r ′
(
ω′, | · |sF ′v

1(τv, b)
)
. The global nor-

malized intertwining operator is

N ′(ω′, | · |sF ′1)=
∏
v

N ′
(
ω′, | · |sF ′v

1(τv, b)
)
.

We calculate the L-functions as in (3-2) and obtain

L
(
s,1(τ, b)

)
L
(
s+ 1,1(τ, b)

) = L
(

s− b−1
2
, τ
)

L
(

s+ b+1
2
, τ
)

and

L(2s,1(τ, b), ρ)
L(2s+ 1,1(τ, b), ρ)

=

db/2e∏
i=1

L( fb,i (s), τ, ρ)
bb/2c∏
i=1

L( fb,i (s)+ 1, τ, ρ−)

db/2e∏
i=1

L(eb,i (s)+ 1, τ, ρ)
bb/2c∏
i=1

L(eb,i (s), τ, ρ−)

,

where eb,i (s) := 2s+ b+ 1− 2i , fb,i (s) := 2s− b− 1+ 2i .
When Gn is of Type (1), define

αb(s)=
db/2e∏
i=1

L
(

fb,i (s), τ, ρ
)bb/2c∏

i=1

L
(

fb,i (s)+ 1, τ, ρ−
)
L
(

s−
b− 1

2
, τ
)
,

βb(s)=
db/2e∏
i=1

L
(
eb,i (s)+ 1, τ, ρ

)bb/2c∏
i=1

L
(
eb,i (s), τ, ρ−

)
L
(

s+
b+ 1

2
, τ
)
,

εb(s)=
db/2e∏
i=1

ε
(

fb,i (s), τ, ρ
)bb/2c∏

i=1

ε
(

fb,i (s)+ 1, τ, ρ−
)
ε
(

s−
b− 1

2
, τ
)
,

and then define

N (ω′, | · |sF ′1)=
εb(s)N ′(ω′, | · |sF ′1)

ε(s,1(τ, b), ψ)ε(2s,1(τ, b), ρ, ψ)
.



POLES OF CERTAIN RESIDUAL EISENSTEIN SERIES OF CLASSICAL GROUPS 103

When Gn is of Type (2), define

αb(s)=
db/2e∏
i=1

L( fb,i (s), τ, ρ)
bb/2c∏
i=1

L( fb,i (s)+ 1, τ, ρ−),

βb(s)=
db/2e∏
i=1

L(eb,i (s)+ 1, τ, ρ)
bb/2c∏
i=1

L(eb,i (s), τ, ρ−),

εb(s)=
db/2e∏
i=1

ε( fb,i (s), τ, ρ)
bb/2c∏
i=1

ε( fb,i (s)+ 1, τ, ρ−),

and then define

N (ω′, | · |sF ′1)=
εb(s)N ′(ω′, | · |sF ′1)
ε(2s,1(τ, b), ρ, ψ)

.

Now we define the normalizing factor by

r(ω′, | · |sF ′1) :=
αb(s)

βb(s)εb(s)
.

Then

N
(
ω′, | · |sF ′1(τ, b)

)
=

1
r
(
ω′, | · |sF ′1(τ, b)

)M
(
ω′, | · |sF ′1(τ, b)

)
.

Remark 3.3. The terms αb(s) and βb(s) correspond to the terms ab(s) and bb(s)
in [Brenner 2009, Section 4.2]. We correct the definition of bb(s) in [Brenner 2009]
here.

We use βb(s) to normalize the Eisenstein series

(3-9) En,∗
ab (φ1(τ,b), s) := βb(s)En

ab(φ1(τ,b), s).

Then, similarly to (3-6), we have the functional equation for the normalized Eisen-
stein series:

(3-10) En,∗
ab (φ1(τ,b), s)= En,∗

ab

(
N (ω′, | · |sF ′1)(φ),−s

)
.

Next, we normalize the intertwining operator as defined in (2-7),

M(ω, · ) := M
(
ω, | · |

s−1/2
F ′ 1(τ, b− 1)⊗ | · |s+(b−1)/2

F ′ τ
)
,

by

(3-11) N (ω, · ) := N
(
ω, | · |

s−1/2
F ′ 1(τ, b− 1)⊗ | · |s+(b−1)/2

F ′ τ
)
=

M(ω, · )
r(ω, · )

,
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with r(ω, · ) defined as follows. When Gn is of Type (1), define

r(ω, · )= r
(
ω, | · |

s−1/2
F ′ 1(τ, b− 1)⊗ | · |s+(b−1)/2

F ′ τ
)

=

L
(

s+ b−1
2
, τ
)

L
(
2s+ b− 1, τ, ρ

)
L
(

2s+ b
2
− 1,1(τ, b− 1)× τ ∗

)
L
(

s+ b+1
2
, τ
)

L
(
2s+ b, τ, ρ

)
L
(

2s+ b
2
,1(τ, b− 1)× τ ∗

)
×

1

ε
(

s+ b−1
2
, τ
)
ε
(
2s+ b− 1, τ, ρ

)
ε
(

2s+ b
2
− 1,1(τ, b− 1)× τ ∗

) ;
and when Gn is of Type (2), define

r(ω, · )= r
(
ω, | · |

s−1/2
F ′ 1(τ, b− 1)⊗ | · |s+(b−1)/2

F ′ τ
)

=

L
(
2s+ b− 1, τ, ρ

)
L
(

2s+ b
2
− 1,1(τ, b− 1)× τ ∗

)
L
(
2s+ b, τ, ρ

)
L
(

2s+ b
2
,1(τ, b− 1)× τ ∗

)
×

1

ε
(
2s+ b− 1, τ, ρ

)
ε
(

2s+ b
2
− 1,1(τ, b− 1)× τ ∗

) ,
where τ ∗ = τ if F ′ = F and τ ∗ = τ ι if F ′ = E , with ι being the nontrivial element
in the Galois group 0E/F .

The following, corresponding to Proposition 3.1, is also true when m = 0.

Proposition 3.4. For Re(s) > 0 and b > 1, the normalized global intertwining
operator N (ω, | · |s−1/2

F ′ 1(τ, b− 1)⊗ | · |s+(b−1)/2
F ′ τ) is holomorphic for all choices

of data, and nonzero for some choice of data.

The proof follows from that of Proposition 3.1, and we omit the details here.
By substituting the normalized Eisenstein series En,∗

ab (φ1(τ,b), s) in (3-9) and the
normalized intertwining operator N (ω, · ) in (3-11) into the induction formula (2-9)
in Proposition 2.3, we obtain

En,∗
ab,Pa

(φ1, s)((Ia, h))

=
βb(s)

βb−1
(
s+ 1

2

)En−a,∗
a(b−1)

(
λ−1/2(i∗n−aφQab

a,a(b−1)
)1(τ,b−1), s+ 1

2

)
(h)

+
βb(s) · r(ω, · )

βb−1
(
s− 1

2

) En−a,∗
a(b−1)

(
λ1/2(i∗n−a ◦ N (ω, · ))φ̃, s− 1

2

)
(h).

Using a similar calculation as in (3-2), it is easy to verify that
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βb(s)

βb−1
(
s+ 1

2

) = L
(
2s+ 1, τ, ρ(−)

b+1)
,

βb(s)

βb−1
(
s− 1

2

)r(ω, · )=
L
(
2s, τ, ρ(−)

b+1)
ε′b(s)

,

where ε′b(s) is defined as follows. When Gn is of Type (1), define ε′b(s) to be the
product

ε
(
2s+ b− 1, τ, ρ

)
ε
(

2s+
b
2
− 1,1(τ, b− 1)× τ ∗

)
ε
(

s+
b− 1

2
, τ
)
;

and when Gn is of Type (2), define

ε′b(s)= ε
(
2s+ b− 1, τ, ρ

)
ε
(

2s+
b
2
− 1,1(τ, b− 1)× τ ∗

)
.

Therefore, for b > 1, we obtain the following normalized induction formula, which
is similar to Proposition 3.2.

Proposition 3.5. With notation as defined above, for b > 1, the following formula
holds:

(3-12) En,∗
ab,Pa

(φ1, s)((Ia, h))

= L
(
2s+ 1, τ, ρ(−)

b+1)
En−a,∗

a(b−1)

(
λ−1/2(i∗n−aφQ), s+ 1

2

)
(h)

+
L
(
2s, τ, ρ(−)

b+1)
ε′b(s)

En−a,∗
a(b−1)

(
λ1/2(i∗n−a ◦ N (ω, · ))φ̃, s− 1

2

)
(h),

where λ−1/2(i∗n−aφQ) := λ−1/2
(
i∗n−aφQab

a,a(b−1)

)
1(τ,b−1).

4. Proof of Theorem 1.2 (m > 0)

We are going to prove Theorem 1.2 for the case where m > 0 using the normalized
induction formula given in Proposition 3.2. From now on, we only consider
symplectic group and F-quasisplit special orthogonal group cases.

4A. Case of b= 1. The case of b= 1 is the starting step of our proof by induction.
Assume that s ∈ C with Re(s) > 0.

By Equation (3-5), we normalize En
a (φτ⊗σ , s) as follows:

En,∗
a (φτ⊗σ , s)= L(s+ 1, τ × σ)L(2s+ 1, τ, ρ)En

a (φτ⊗σ , s).

By [Mœglin and Waldspurger 1995, Proposition II.1.7], the constant term of the
Eisenstein series En

a (φτ⊗σ , s) along a standard parabolic subgroup P ′ is always
zero unless P ′ = Pa . In the case of P ′ = Pa , we have

En
a,Pa

(φτ⊗σ , s)= λsφτ⊗σ (g)+M(ω′, | · |sF ′τ ⊗ σ)(λsφ).
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By Lemma I.4.10 of [Mœglin and Waldspurger 1995], the Eisenstein series
En

a (φτ⊗σ , s) has a pole at some point s0 if and only if the constant term of
En

a,Pa
(φτ⊗σ , s) has a pole at s0, and hence if and only if the term

M(ω′, | · |sF ′τ ⊗ σ)(λsφ)

has a pole at s0, since the first term λsφτ⊗σ (g) is holomorphic. By our normalization,
we have

M(ω′, | · |sF ′τ ⊗ σ)(λsφ)= r(ω′, | · |sF ′τ ⊗ σ)N (ω
′, | · |sF ′τ ⊗ σ)(φ),

and for Re(s) > 0, by [Cogdell et al. 2004, Theorem 11.1], the normalized global
intertwining operator N (ω′, | · |sF ′τ ⊗ σ) is holomorphic for all choice of data and
nonzero for some choice of data. Thus, it reduces to checking the existence of the
pole at s = s0 of the global normalizing factor r(ω′, | · |sF ′τ ⊗ σ).

Recall from (3-3) that the global normalizing factor r(ω′, | · |sF ′τ ⊗ σ) in this
case is

L(s, τ × σ)L(2s, τ, ρ)
L(s+ 1, τ × σ)L(2s+ 1, τ, ρ)ε(s, τ × σ)ε(2s, τ, ρ)

.

Since both ε(s, τ × σ) and ε(2s, τ, ρ) are holomorphic and nonzero, the poles of
the global normalizing factor r(ω′, | · |sF ′τ ⊗ σ) at s = s0 > 0 with Re(s0) > 0 are
the same as the poles of the quotient

L(s, τ × σ)L(2s, τ, ρ)
L(s+ 1, τ × σ)L(2s+ 1, τ, ρ)

at s = s0 > 0 with Re(s0) > 0.
Since σ is generic and τ is self-dual, by the global Langlands functorial transfer

from Gn to a general linear group [Cogdell et al. 2004] and the analytic property of
the complete L-functions of the Rankin–Selberg convolution [Cogdell and Piatetski-
Shapiro 2004; Mœglin and Waldspurger 1989], we deduce that the complete L-
function L(s, τ × σ) is holomorphic at all s ∈ C except for a possible simple pole
at s = 0 or 1, and is nonzero when Re(s)≤ 0 or Re(s)≥ 1. Such a pole occurs if
and only if τ occurs as an isobaric summand in the image of σ under the Langlands
functorial transfer [Cogdell et al. 2004].

On the other hand, by [Grbac 2011], based on the work of Arthur [2013] on the
classification of the discrete spectrum of Gn(A), the complete L-function L(s, τ, ρ)
is holomorphic at all s ∈ C except for a possible simple pole at s = 0 or 1, and
is nonzero when Re(s)≤ 0 or Re(s)≥ 1. Such a pole occurs if and only if τ can
descend to an irreducible generic cuspidal automorphic representation of a classical
group determined by ρ [Ginzburg et al. 2011].

Hence, when Re(s) > 0, the denominator L(s + 1, τ × σ)L(2s + 1, τ, ρ) is
holomorphic and nonzero, and the numerator L(s, τ×σ)L(2s, τ, ρ) is holomorphic
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except for a possible simple pole at s = 1
2 or s = 1. This proves the theorem for the

case of b = 1. We summarize the above as the following.

Proposition 4.1 (case b = 1 of Theorem 1.2). Let Gn be the symplectic group
or the F-quasisplit special orthogonal group. Let τ be an irreducible unitary
cuspidal automorphic representation of GLa(A) and let σ be an irreducible generic
cuspidal automorphic representation of Gm(A). The normalized Eisenstein series
En,∗

a (φτ⊗σ , s) is holomorphic at Re(s)≥ 0, except at s = 1
2 and s = 1, where it has

possible simple poles. Moreover:

(1) En,∗
a (φτ⊗σ , s) has a simple pole at s = 1

2 if and only if L(s, τ, ρ) has a pole at
s = 1, and L( 1

2 , τ × σ) 6= 0.

(2) En,∗
a (φτ⊗σ , s) has a simple pole at s = 1 if and only if L(s, τ × σ) has a pole

at s = 1.

In particular, En,∗
a (φτ⊗σ , s) is holomorphic at Re(s) > 0 if τ is not self-dual.

Proposition 4.1 includes the case of m = 0, which is proved in [Grbac 2011].
We remark that by the functional equation for the normalized Eisenstein series

(3-6), one deduces the analytic properties at Re(s) < 0, since when b = 1, the
normalized intertwining operator occurring in the functional equation is holomor-
phic for Re(s) > 0 and is a nonzero operator. At Re(s) = 0, it is holomorphic
(Corollary 4.3).

4B. Case of b > 1. This general case of Theorem 1.2 is proved by using the nor-
malized induction formula (Proposition 3.2) and the case of b= 1 (Proposition 4.1).
One technical point is to prove that the normalized Eisenstein series En,∗

ab (φτ⊗σ , s)
is holomorphic at s = 0 (Corollary 4.3), which is a consequence of the following.

Proposition 4.2. Let Gn be the symplectic group or the F-quasisplit special or-
thogonal group. Assume that σ is an irreducible generic (or tempered if nongeneric)
cuspidal automorphic representation of Gm(A). If βb(s) has a pole at s = 0, then
the pole at s = 0 of βb(s) must be simple and En

ab(φ1(τ,b)⊗σ , s) must vanish at
s = 0.

Proof. Note first that by [Arthur 2013], the Langlands–Shahidi normalization works
for intertwining operators with tempered induced data at s = 0. Hence we allow
here that σ could be any irreducible tempered cuspidal automorphic representation
if it is not generic.

Assume that βb(s), as defined in (1-1) or in Section 3A with more detail, has a
pole at s = 0. It implies that when b = 1,

β1(s)= L(2s+ 1, τ, ρ)L(s+ 1, τ × σ)
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has a pole at s = 0, and when b> 1, the only factor in βb(s) to have a possible pole
at s = 0 is L(s, τ, ρ(−)

b+1
).

When b= 1, L(2s+1, τ, ρ) and L(s+1, τ×σ) both have at most a simple pole
at s = 0, but they cannot happen at the same time, since L(s+ 1, τ × σ) having a
simple pole at s = 0 implies that L(s, τ, ρ−) has a pole at s = 1. Therefore, β1(s)
has at most a simple pole at s = 0. When b > 1, L(s, τ, ρ(−)

b+1
) has at most a

simple pole at s = 0. So, for b > 1, βb(s) also has at most a simple pole at s = 0.
Hence, βb(s) has at most a simple pole at s = 0 for all b ≥ 1. Now the assumption
that βb(s) has a pole at s = 0 implies that ords=0(βb(s))= 1 for any b ≥ 1, that is,
βb(s) has a simple pole at s = 0.

By the functional equation (3-1) and the normalized functional equation (3-6),
we have

En
ab(φ1⊗σ , s)= r(ω′, | · |sF1⊗ σ)E

n
ab
(
N (ω′, | · |sF1⊗ σ)(φ),−s

)
,

with
r(ω′, | · |sF1⊗ σ)=

βb(−s)
βb(s)

.

By the above discussion on the pole at s = 0 of βb(s), it is clear that

r(ω′, | · |sF1⊗ σ)|s=0 = (−1)ords=0(βb(s)) =−1,

and hence

(4-1) En
ab(φ1⊗σ , s)|s=0 =−En

ab
(
N (ω′, |·|sF1⊗ σ)(φ),−s

)∣∣
s=0.

So it suffices to show that the normalized intertwining operator N (ω′, | · |sF1⊗ σ)
is an identity map at s = 0. We deduce this fact from the work of Arthur.

Arthur [2013, Corollary 7.3.5] proved that for the tempered or generic represen-
tation that has the Arthur parameter such that βb(s) has a simple pole at s = 0, the
normalized intertwining operator at s = 0 has the identity

λ(ω′)ι(ω′) ◦N(ω′,1⊗ σ)= Id,

where λ(ω′) is the λ-factor (see for example [Keys and Shahidi 1988, Section 2]),
ι(ω′) is a canonical map from ω′1(τ, b)⊗σ to1(τ, b)⊗σ defined by Arthur [2013],
and N(ω′,1⊗σ) is the evaluation at s = 0 of the normalized intertwining operator
from the induced representation I(1⊗ σ, s) to I(ω′1⊗ σ,−s) (the vector-valued
induced representations). The intertwining operator N (ω′, | · |sF1⊗ σ) considered
in this paper is a map from the space of automorphic forms

A
(
Nab(A)Mab(F)\G(A)

)
| · |

s
F1⊗σ

to the space
A
(
Nab(A)Mab(F)\G(A)

)
| · |
−s
F ω′1⊗σ

.
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Note that by the strong multiplicity one theorem for GLn and the definition of
the isotypic component A

(
Nab(A)Mab(F)\G(A)

)
| · |

s
F1⊗σ

, this subspace depends
only on the equivalence class of 1, but not on its realization 1 in the space of
automorphic forms. Therefore, we have the following relation between the two
versions of the normalized intertwining operators at s = 0:

N (ω′,1⊗ σ)= ι(ω′) ◦N(ω′,1⊗ σ).

Since the global λ-factor is trivial (see [Keys and Shahidi 1988, Section 2]), we
have the following identity at s = 0:

En
ab
(
N (ω′, | · |sF1⊗ σ)(φ), 0

)
= En

ab(φ1(τ,b)⊗σ , 0).

By comparing with the identity (4-1), we obtain that En
ab(φ1(τ,b)⊗σ , s) vanishes at

s = 0. This completes the proof. �

Following from the definition of the normalized Eisenstein series, we have:

Corollary 4.3. Let Gn be the symplectic group or the F-quasisplit special orthog-
onal group. Assume that σ is an irreducible generic (or tempered if nongeneric)
cuspidal automorphic representation of Gm(A). The normalized Eisenstein series
En,∗

ab (φ1(τ,b)⊗σ , s) is holomorphic at the point s = 0.

By using Corollary 4.3 and the normalized induction formula in Proposition 3.2,
we are able to prove Theorem 1.2 for the case of b > 1, that is, to determine the
location of possible poles of the normalized Eisenstein series En,∗

ab (φ1(τ,b)⊗σ , s)
for b > 1. To do so, we consider the following four cases:

(1) L(s, τ, ρ) has a pole at s = 1, and L
( 1

2 , τ × σ
)
6= 0;

(2) L(s, τ, ρ) has a pole at s = 1, and L
( 1

2 , τ × σ
)
= 0;

(3) L(s, τ, ρ−) has a pole at s = 1, and L(s, τ × σ) has a pole at s = 1;

(4) L(s, τ, ρ−) has a pole at s = 1, and L(s, τ × σ) is holomorphic at s = 1.

We define the sets of possible poles according to the four cases:

X+b,τ,σ :=



{
0̂, . . . , b−2

2
,

b
2

}
in Case (1);{

0̂, . . . , b−4
2
,

b−2
2

}
in Case (2);{

0̂, . . . , b−1
2
,

b+1
2

}
in Case (3);{

0̂, . . . , b−3
2
,

b−1
2

}
in Case (4).

When b=1, the set X+1,τ,σ is equal to the set
{1

2

}
in Case (1); is empty in Case (2);

is equal to the set {1} in Case (3); and is empty in Case (4). Hence the set X+b,τ,σ is
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the set of possible poles of the normalized Eisenstein series En,∗
ab (φ1(τ,b)⊗σ , s) for

b = 1 and Re(s) > 0, by Proposition 4.1.
It is clear that when b= 2, the set X+b,τ,σ is also empty in Case (2). Note that we

omit 0 in the set X+b,τ,σ , since the normalized Eisenstein series En,∗
ab (φ1(τ,b)⊗σ , s)

is holomorphic at s = 0 (Corollary 4.3).
Here is the case of b > 1 and m > 0 of Theorem 1.2. The proof of this theorem

for Re(s)≥ 1
2 is given by an induction argument, while the proof of this theorem

for 0< Re(s) < 1
2 needs the Arthur classification [2013] of the discrete spectrum,

which is stated here and will be proved in Section 6C.

Proposition 4.4 (case 0 < Re(s) < 1
2 of Theorem 1.2). Let Gn be the symplectic

group or the F-quasisplit special orthogonal group. Assume that the irreducible
cuspidal automorphic representation σ of Gm(A) is generic and the irreducible
unitary cuspidal automorphic representation τ of GLa(A) is self-dual. Then
En,∗

ab (φ1(τ,b)⊗σ , s) is holomorphic for 0< Re(s) < 1
2 .

With Propositions 4.1 and 4.4, Corollary 4.3, and the normalized induction
formula (3-8), we are able to prove the following.

Theorem 4.5 (case b > 1 and m > 0 of Theorem 1.2). Let Gn be the symplectic
group or the F-quasisplit special orthogonal group. Assume that the irreducible
cuspidal automorphic representation σ of Gm(A) is generic and the irreducible
unitary cuspidal automorphic representation τ of GLa(A) is self-dual. Then
En,∗

ab (φ1(τ,b)⊗σ , s) is holomorphic for Re(s)≥ 0 except at s = s0 ∈ X+b,τ,σ , where it
may have possibly at most simple poles.

Proof. By Corollary 4.3 and Proposition 4.4, En,∗
ab (φ1(τ,b)⊗σ , s) is holomorphic at

0≤ Re(s) < 1
2 , and hence we assume that Re(s)≥ 1

2 in the following discussion.
When b = 1, it is Proposition 4.1. We may assume that b > 1 and use the

normalized induction formula (3-8):

En,∗
ab,Pa

(φ1⊗σ , s)((Ia, h))

= L
(
2s+ 1, τ, ρ(−)

b+1)
En−a,∗

a(b−1)

(
λ−1/2(i∗n−aφQ), s+ 1

2

)
(h)

+
L
(
2s, τ, ρ(−)

b+1)
ε′b(s)

En−a,∗
a(b−1)

(
λ1/2(i∗n−a ◦ N (ω, · ))φ̃, s− 1

2

)
(h).

When Re(s)≥ 1
2 , the term

L
(
2s+ 1, τ, ρ(−)

b+1)
En−a,∗

a(b−1)

(
λ−1/2(i∗n−aφQ), s+ 1

2

)
(h)

is holomorphic except for possible simple poles at s0∈ X+b−1,τ,σ+
1
2 , by the induction

assumption.
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The term

L
(
2s, τ, ρ(−)

b+1)
ε′b(s)

En−a,∗
a(b−1)

(
λ1/2(i∗n−a ◦ N (ω, · ))φ̃, s− 1

2

)
(h)

is holomorphic for Re(s)≥1 except for possible simple poles at X+b−1,τ,σ −
1
2 , by the

induction assumption, while at 1
2 < Re(s) < 1, it is holomorphic by Proposition 4.4.

At s = 1
2 ,

En−a,∗
a(b−1)

(
λ1/2(i∗n−a ◦ N (ω, · ))φ̃, s− 1

2

)
(h)

is holomorphic by Corollary 4.3, while the L-function L(2s, τ, ρ(−)
b+1
) may have

a simple pole according to the classification of four cases on the parity of b, the
type of τ , and the type of Gn in the Introduction.

Hence En,∗
ab (φ1(τ,b)⊗σ , s) is holomorphic for Re(s)≥ 1

2 except for possible simple
poles at s0 ∈

(
X+b−1,τ,σ +

1
2

)
∪
(
X+b−1,τ,σ −

1
2

)
with Re(s0)≥

1
2 . It is easy to check

that
X+b,τ,σ =

(
X+b−1,τ,σ +

1
2

)
∪
[(

X+b−1,τ,σ −
1
2

)
\{0}

]
.

The theorem follows. �

This completes the proof of Theorem 1.2 for the case of m > 0. We conclude
this section with the following remarks.

(1) Theorem 1.2 holds for the F-quasisplit unitary groups if Corollary 4.3 is proven
for the F-quasisplit unitary groups, which is done since Arthur’s work has
been extended to the F-quasisplit unitary groups [Mok 2012]. The extension
of Arthur’s classification of the discrete spectrum for F-quasisplit unitary
groups will also imply that the complete Asai (and twisted Asai) L-functions
are holomorphic in 0 < s < 1 (as in [Grbac 2011] for symplectic or F-split
special orthogonal groups), which is one of the key ingredients in the proof of
Theorem 1.2 for b = 1 and m > 0.

(2) Theorem 1.2 is also expected to hold when σ is nongeneric, but tempered. The
technical issue is the normalization of the local intertwining operators at all
local places. At p-adic local fields, one can use Mœglin’s work [2008; 2010].
Since her work at archimedean local places is not general enough to cover our
cases, one needs more work, which will be considered in our future work.

(3) The current version of Theorem 1.2 is sufficient for our applications to the
constructions of endoscopy correspondences considered in [Jiang 2011; 2012].

5. Proof of Theorem 1.2 (m = 0)

In this case (m= 0), Gn is either a symplectic group or an F-split special orthogonal
group. When b= 1, Theorem 1.2 for m = 0 is given in [Grbac 2011, Theorem 3.1].
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For b > 1, the proof of case m = 0 requires analogous results to Proposition 4.2
and Corollary 4.3, which are stated below. By the definition of βb(s) in this case as
in Section 3C, the same proof works here.

Proposition 5.1. Let Gn be a symplectic group or an F-split special orthogonal
group. Assume that b>1 and m=0. If βb(s) has a pole at s=0, then En

ab(φ1(τ,b), s)
vanishes at s = 0. Moreover, the normalized Eisenstein series En,∗

ab (φ1(τ,b), s) is
holomorphic at the point s = 0.

To determine the location of possible poles of the normalized Eisenstein series
En,∗

ab (φ1(τ,b), s) for b > 1, we consider the following four cases:

(1) L(s, τ, ρ) has a pole at s = 1, and L
( 1

2 , τ
)
6= 0 if Gn is of Type (1);

(2) if Gn is of Type (1), then L(s, τ, ρ) has a pole at s = 1 and L
( 1

2 , τ
)
= 0;

(3) if Gn is of Type (1), then L(s, τ, ρ−) has a pole at s = 1 and L(s, τ ) has a
pole at s = 1 (this case occurs only if a = 1 and τ is the trivial character of
GL1(A));

(4) L(s, τ, ρ−) has a pole at s = 1, and L(s, τ ) is holomorphic at s = 1 if Gn is
of Type (1).

Note that in Type (1), Gn = Sp2n , and in Type (2), Gn = SO2n+1 or SO2n . When
a = 1 and τ is a quadratic character of GL1(A), [Kudla and Rallis 1990; 1994] treat
the case when Gn = Sp2n or SO2n .

Similarly, we define the sets of possible poles according to the four cases:

X+b,τ :=



{
0̂, . . . , b−2

2
,

b
2

}
, in Case (1);{

0̂, . . . , b−4
2
,

b−2
2

}
, in Case (2);{

0̂, . . . , b−1
2
,

b+1
2

}
, in Case (3);{

0̂, . . . , b−3
2
,

b−1
2

}
, in Case (4).

We also omit 0 because En,∗
ab (φ1(τ,b), s) is holomorphic at s = 0 (Proposition 5.1).

Now the same inductive argument proves Theorem 1.2 for the case of m = 0 and
b > 1. We omit the details here.

Theorem 5.2 (case m = 0 of Theorem 1.2). Let Gn be a symplectic group or
F-quasisplit orthogonal group. Assume that the irreducible unitary cuspidal auto-
morphic representation τ of GLa(A) is self-dual. Then the normalized Eisenstein
series En,∗

ab (φ1(τ,b), s) is holomorphic for Re(s)≥ 0 except possibly at most simple
poles at s = s0 ∈ X+b,τ .
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6. Residual representations and Arthur parameters

In this section, we assume that Gn is either symplectic or orthogonal, since we
will use results from [Arthur 2013]. Based on Theorem 1.2, we will check the
square-integrability for the residues at s0∈ X+b,τ,σ of the normalized Eisenstein series
En,∗

ab (φ1(τ,b)⊗σ , s) (including the case of m = 0) in Section 6A, and write down the
Arthur parameters for those square-integrable residual representations if they are
nonzero in Section 6B. Based on Sections 6A and 6B, we prove Proposition 4.4
using the Arthur classification [2013] of discrete spectrum. Finally, we investigate
the conditions for the nonvanishing of those residual representations.

6A. Square-integrability. We recall that Pab,m = Mab,m Nab,m is the standard par-
abolic subgroup of Gn whose Levi subgroup is isomorphic to GL×b

a ×Gm . Simply
denote by 1b :=1Mab ,m

the set of restricted simple roots that can be described as
follows.

Let {ei | 1≤ i ≤ b} be the natural set of coordinates on Re a∗Mab ,m
. If Gm is not

trivial, then
1b = {e1− e2, e2− e3, . . . , eb−1− eb, eb}.

If Gm is trivial, then 1b =10, where 10 is the set of simple roots of R(T0,Gb).
Recall the notation in Section I.3 of [Mœglin and Waldspurger 1995]. Let φ

be an automorphic function and let 50(M, φ) be the cuspidal support of φ along
P = MN . The cuspidal exponent Re(π) for π in 50(M, φ) is realized as a vector
in terms of the basis {ei | 1≤ i ≤ b}. Denote the cuspidal exponent of φ by

e(φ)=
{
Re(π)

∣∣ for all π ∈50(M, φ) and for all P = MN
}
.

Let e(s0, b, τ, σ ) be the set of cuspidal exponents of the residues of the normalized
Eisenstein series En,∗

ab (φ1(τ,b)⊗σ , s) at s = s0 belonging to the set X+b,τ,σ .
By the square-integrability criterion [Mœglin and Waldspurger 1995, Lemma

I.4.11], the residues of the Eisenstein series are square-integrable if and only if each
character of cuspidal support can be written in the form∑

α∈1M

xαα,

with coefficients xα ∈ R, xα < 0. Moreover, in our cases the criterion is equivalent
to, for all

∑b
i=1 ci ei in e(s0, b, τ, σ ),

(6-1)
j∑

i=1

ci < 0 for all 1≤ j ≤ b.

Theorem 6.1 (square-integrability). Let s0 ∈C such that Re(s0) is in (0, (b+1)/2].
Assume that the normalized Eisenstein series En,∗

ab (φ1(τ,b)⊗σ , s) has a simple pole
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at s = s0. Then the residue of En,∗
ab (φ1(τ,b)⊗σ , s) at s0 is square-integrable except

at s0 = (b− 1)/2 in Case (3).

Proof. The theorem is proved by induction on b. The key step in the proof is
to determine the cuspidal exponents in e(s0, b, τ, σ ) by applying the induction
formula (3-8), Lemma 2.1, and Lemma 2.2.

First, when b= 1, by Section 4A, if the Eisenstein series has a pole at s0> 0, then
the cuspidal exponent of the residue of the Eisenstein series is −s0 and the residue
is square-integrable. By Proposition 4.1, the Eisenstein series is holomorphic at
Re(s) ≥ 0 except at s = 1

2 or s = 1. In these cases, the cuspidal exponent of the
residues of the Eisenstein series is −s0 =−

1
2 or −1. Then e(s0, 1, τ, σ ) satisfies

the condition (6-1) and the residues are square-integrable. Hence, the statement is
true for b = 1.

Next, we assume that the statement holds for b− 1 and show that it is also true
for b by induction.

By the induction formula (3-8), we have to consider the cuspidal exponents of
the two terms

L
(
2s+ 1, τ, ρ(−)

b+1)
En−a,∗

a(b−1)

(
· , s+ 1

2

)
and

L
(
2s, τ, ρ(−)

b+1)
En−a,∗

a(b−1)

(
· , s− 1

2

)
.

If (b − 1)/2 < Re(s) ≤ (b + 1)/2, the first term En−a,∗
a(b−1)

(
· , s+ 1

2

)
is holo-

morphic. Since b ≥ 2 and En,∗
ab (φ1(τ,b)⊗σ , s) has a pole at s0, the second term

En−a,∗
a(b−1)

(
· , s− 1

2

)
has a pole at s0. By Lemma 2.2, the set e(s0, b, τ, σ ) of the

cuspidal exponents equals{(
−s0−

b− 1
2

, c1, . . . , cb−1

) ∣∣ (c1, . . . , cb−1) ∈ e
(
s0−

1
2 , b− 1, τ, σ

)}
.

By induction, e
(
s0 −

1
2 , b− 1, τ, σ

)
satisfies the condition (6-1). It follows that

e(s0, b, τ, σ ) also satisfies the condition (6-1). Hence the residue of the Eisenstein
series En,∗

ab (φ1(τ,b)⊗σ , s) at s0 is square-integrable.
Next we consider the points at 0 < Re(s) ≤ (b − 1)/2. By the normalized

induction formula (3-8), Lemma 2.1, and Lemma 2.2, the set of cuspidal exponents
e(s0, b, τ, σ ) is a subset of the union

(6-2)
{(

s0−
b− 1

2
, c1, . . . , cb−1

) ∣∣ (c1, . . . , cb−1) ∈ e
(
s0+

1
2 , b− 1, τ, σ

)}
∪

{(
−s0−

b− 1
2

, c1, . . . , cb−1

) ∣∣ (c1, . . . , cb−1) ∈ e
(
s0−

1
2 , b− 1, τ, σ

)}
.

When s0 =
1
2 , the set e

(
s0−

1
2 , b− 1, τ, σ

)
needs some explanation. If s0 =

1
2 and

En−a,∗
a(b−1)

(
φ1(τ,b−1)⊗σ , s− 1

2

)
in the second term vanishes at s = s0, then the second
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term is holomorphic at s = 1
2 . Hence we do not need to consider this set of cuspidal

exponents when we only consider the square-integrability for nonzero residues. On
the other hand, if En−a,∗

a(b−1)

(
φ1(τ,b−1)⊗σ , s− 1

2

)
in the second term does not vanish

at s0, by Section 1B, then the cuspidal exponent of En−a,∗
a(b−1)

(
· , s− 1

2

)
at s0 is

e
(
s0−

1
2 , b− 1, τ, σ

)
=

{(2− b
2

,
4− b

2
, . . . ,

b− 2
2

)}
.

When s0 = (b− 1)/2 in Case (3), the residue of the first term of the normalized
induction formula is nonzero due to the nonvanishing of the residue of

En−a,∗
a(b−1)(φ1(τ,b−1)⊗σ , s)

at s = b/2 in Theorem 6.2. Then e(s0, b, τ, σ ) contains the set{(
s0−

b− 1
2

, c1, . . . , cb−1

) ∣∣ (c1, . . . , cb−1) ∈ e
(
s0+

1
2 , b− 1, τ, σ

)}
,

which does not satisfy the condition (6-1), but satisfies
∑ j

i=1 ci ≤ 0.
When s0 = (b− 1)/2, but not in Case (3), then the first term in the induction

formula, En−a,∗
a(b−1)

(
· , s+ 1

2

)
, is holomorphic at s = (b−1)/2. Thus, only the second

term En−a,∗
a(b−1)

(
· , s− 1

2

)
has a possible pole at s = (b− 1)/2. Then e(s0, b, τ, σ )

equals{(
−s0−

b− 1
2

, c1, . . . , cb−1

) ∣∣ (c1, . . . , cb−1) ∈ e
(
s0−

1
2 , b− 1, τ, σ

)}
,

whose vectors satisfy the square-integrability criterion.
For s0 < (b − 1)/2, we have s0 −

1
2 < (b − 2)/2 and s0 +

1
2 < b/2. Since

−s0−(b−1)/2< 0 and s0−(b−1)/2< 0, by induction, each vector in the set (6-2)
satisfies the square-integrability criterion. This completes the proof. �

6B. Arthur parameters. From Theorem 6.1, the residual representations of Gn(A)

generated by the residues of the (normalized) Eisenstein series En,∗
ab (φ1(τ,b)⊗σ , s)

at s = s0 belonging to the set X+b,τ,σ belong to the discrete spectrum of the space of
automorphic forms on Gn(A), except one case when s0 = (b− 1)/2 for Case (3).
Denote the residual representation by E1(τ,b)⊗σ,s0 .

We will figure out the Arthur parameters for those square-integrable residual rep-
resentations E1(τ,b)⊗σ,s0 if they are nonzero. Note that the nonvanishing conditions
for those residual representations will be studied in the next subsection. We do this
case by case for s0 ∈ X+b,τ,σ .

We assume σ is an irreducible cuspidal automorphic representation of Gm(A)

with tempered global Arthur parameter ψσ [2013].

Case (1): In this case, when m > 0, the irreducible unitary cuspidal automorphic
representation τ of GLa(A) has the property that L(s, τ, ρ) has a simple pole at
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s = 1 and L
( 1

2 , τ × σ
)
6= 0, where ρ is the symmetric square representation of

GLa(C) if Gn = SO2n+1, and is the exterior square representation of GLa(C) if Gn

is Sp2n or SO2n .
We consider the residual representation E1(τ,b)⊗σ,s0 of Gn(A) at s0 = (b−2 j)/2

with j = 0, 1, . . . , [(b − 1)/2]. According to [Arthur 2013], the global Arthur
parameter ψ attached to the residual representation E1(τ,b)⊗σ,s0 of Gn(A) is

(6-3) ψ = ψ1(τ,b)⊗σ,(b−2 j)/2 =
(
τ, 2(b− j)

)
� (τ, 2 j)�ψσ ,

with j = 0, 1, . . . , [(b− 1)/2]. Note that when Gn is SO2n+1, τ is of orthogonal
type; and when Gn is Sp2n or SO2n , τ is of symplectic type. Thus ψ1(τ,b)⊗σ,(b−2 j)/2

is a global Arthur parameter for Gn . When m = 0, we have

ψ = ψ1(τ,b)⊗σ,(b−2 j)/2 =

{
(τ, 2(b− j))� (τ, 2 j) if Gn 6= Sp2n,

(τ, 2(b− j))� (τ, 2 j)� (1GL1(A), 1) if Gn = Sp2n.

Case (2): This case is the same as Case (1), and the only difference is that s0 =

(b− 2 j)/2 with j = 1, 2, . . . , [(b− 1)/2]. Hence when m > 0, the global Arthur
parameter ψ attached to the residual representation E1(τ,b)⊗σ,s0 of Gn(A) is

(6-4) ψ = ψ1(τ,b)⊗σ,(b−2 j)/2 =
(
τ, 2(b− j)

)
� (τ, 2 j)�ψσ ,

with j = 1, 2, . . . , [(b− 1)/2]; and when m = 0, we have

ψ = ψ1(τ,b)⊗σ,(b−2 j)/2 =

{(
τ, 2(b− j)

)
� (τ, 2 j) if Gn 6= Sp2n,

(τ, 2(b− j))� (τ, 2 j)� (1GL1(A), 1) if Gn = Sp2n.

Case (3): In this case, when m > 0, the irreducible unitary cuspidal automorphic
representation τ of GLa(A) has the property that L(s, τ, ρ−) has a simple pole at
s = 1 and L(s, τ × σ) also has a simple pole at s = 1, where ρ− is the exterior
square representation of GLa(C) if Gn = SO2n+1, and is the symmetric square
representation of GLa(C) if Gn is Sp2n or SO2n . Following [Arthur 2013], the global
tempered Arthur parameter for the irreducible cuspidal automorphic representation
σ is

(6-5) ψσ = (τ, 1)�ψ ′,

where ψ ′ is a global Arthur parameter that is the complement of (τ, 1) in ψσ .
We consider the residual representation E1(τ,b)⊗σ,s0 of Gn(A) at

s0 =
b+ 1− 2 j

2
with j = 0, 1, . . . , [b/2]. According to [Arthur 2013], the global Arthur parameter
ψ attached to the residual representation E1(τ,b)⊗σ,s0 of Gn(A) is

(6-6) ψ = ψ1(τ,b)⊗σ,(b+1−2 j)/2 = (τ, 2b+ 1− 2 j)� (τ, 2 j − 1)�ψσ ,
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with j = 2, 3, . . . , [b/2]. If j = 0, we have

(6-7) ψ = ψ1(τ,b)⊗σ,(b+1)/2 = (τ, 2b+ 1)�ψ ′.

Note that when j = 1, the residual representation E1(τ,b)⊗σ,s0=(b−1)/2 of Gn(A)

is not square-integrable (Theorem 6.1). Note that when Gn is SO2n+1, τ is of
symplectic type; and when Gn is Sp2n or SO2n , τ is of orthogonal type. Hence
ψ1(τ,b)⊗σ,(b−2 j)/2 with j = 0 or j = 2, 3, . . . , [b/2] is a global Arthur parameter
for Gn .

When m = 0, this case only occurs if a = 1 and τ is the trivial representation of
GL1(A). If j = 2, 3, . . . , [b/2], we have

ψ = ψ1(τ,b)⊗σ,(b+1−2 j)/2 = (τ, 2b+ 1− 2 j)� (τ, 2 j − 1)� (1GL1(A), 1).

If j = 0, according to the definition of the four cases, Gn must be Sp2n and
ψ = ψ1(τ,b)⊗σ,(n+1)/2 = (τ, 2n+ 1).

Case (4): This case is similar to Case (3). The only difference is that

s0 =
b+ 1− 2 j

2
with j = 1, 2, . . . , [b/2]. Hence when m > 0, the global Arthur parameter ψ
attached to the residual representation E1(τ,b)⊗σ,s0 of Gn(A) is

(6-8) ψ = ψ1(τ,b)⊗σ,(b+1−2 j)/2 = (τ, 2b+ 1− 2 j)� (τ, 2 j − 1)�ψσ ,

with j = 1, 2, 3, . . . , [b/2], and when m = 0, we have

ψ = ψ1(τ,b)⊗σ,(b+1−2 j)/2

=

{
(τ, 2b+ 1− 2 j)� (τ, 2 j − 1) if Gn 6= Sp2n,

(τ, 2b+ 1− 2 j)� (τ, 2 j − 1)� (1GL1(A), 1) if Gn = Sp2n.

Note that the residual representation E1(τ,b)⊗σ,(b−1)/2 of Gn(A) ( j = 1) in this case
belongs to the discrete spectrum of Gn(A).

6C. Proof of Proposition 4.4. Proposition 4.4 follows from the discussion on
square-integrability in Section 6A and the discussion on the global Arthur param-
eter in Section 6B. In fact, if there is an s0 such that 0 < Re(s0) <

1
2 , such that

the normalized Eisenstein series En,∗
ab (φ1(τ,b)⊗σ , s) has a pole at s = s0, then by

Theorem 6.1, the residue at s = s0 must be square-integrable, and hence the residual
representation contributes to the discrete spectrum. On the other hand, by the Arthur
classification [2013] of the discrete spectrum, there is no global Arthur parameter
for Gn that parametrizes such a residual representation. Hence the normalized
Eisenstein series En,∗

ab (φ1(τ,b)⊗σ , s) must be holomorphic at 0< Re(s) < 1
2 . This

proves Proposition 4.4.
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6D. Nonvanishing conditions. When b = 1, the nonvanishing of the residues of
the normalized Eisenstein series has been discussed in Proposition 4.1. In the
following, we assume that b > 1.

For s = s0 ∈ X+b,τ,σ , the normalized Eisenstein series En,∗
ab (φ1(τ,b)⊗σ , s) has a

pole at s = s0 if one of its constant terms has a pole at s = s0. The normalized
induction formula (3-8) says

En,∗
ab,Pa

(φ1⊗σ , s)((Ia, h))

= L
(
2s+ 1, τ, ρ(−)

b+1)
En−a,∗

a(b−1)

(
λ−1/2i∗n−aφQ, s+ 1

2

)
(h)

+
L
(
2s, τ, ρ(−)

b+1)
ε′b(s)

En−a,∗
a(b−1)

(
λ1/2(i∗n−a ◦ N (ω, · ))φ̃, s− 1

2

)
(h).

Hence s0 has the property that s0 ∈
(
X+b−1,τ,σ +

1
2

)
∪
(
X+b−1,τ,σ −

1
2

)
and s0 > 0.

By the discussion of the global Arthur parameters in Section 6B, if both

En−a,∗
a(b−1)

(
λ−1/2i∗n−aφQ, s+ 1

2

)
(h)

and
En−a,∗

a(b−1)

(
λ1/2(i∗n−a ◦ N (ω, · ))φ̃, s− 1

2

)
(h)

are nonzero, they cannot be proportional to each other since they have different
Langlands parameters. Hence the problem reduces to verifying the nonvanishing
of either of the two terms. Note that from the definition, both λ−1/2i∗n−aφQ and
λ1/2(i∗n−a ◦ N (ω, · ))φ̃ give general sections in the corresponding space, respec-
tively. Therefore, the existence of the poles of the normalized Eisenstein series
En,∗

ab (φ1(τ,b)⊗σ , s) at s ∈ X+b,τ,σ follows from the existence of the poles of the
normalized Eisenstein series En,∗

a(b−1)(φ1(τ,b−1)⊗σ , s) at s ∈ X+b−1,τ,σ .
By repeating the argument, this reduces to the case of b being as small as possible.

The discussion will be given for each of the four cases.

Case (1): In this case, the irreducible unitary cuspidal automorphic representation
τ of GLa(A) has the property that L(s, τ, ρ) has a simple pole at s = 1 and

L
( 1

2 , τ × σ
)
6= 0,

where ρ is the symmetric square representation of GLa(C) if Gn = SO2n+1, and
the exterior square representation of GLa(C) if Gn is Sp2n or SO2n . In this case,
the smallest possible value of b is b= 1. The existence of the pole at the only value
s = 1

2 is treated in the first case in Proposition 4.1.

Case (2): In this case, the irreducible unitary cuspidal automorphic representation
τ of GLa(A) has the property that L(s, τ, ρ) has a simple pole at s = 1 and

L
( 1

2 , τ × σ
)
= 0,
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where ρ is the symmetric square representation of GLa(C) if Gn = SO2n+1, and
the exterior square representation of GLa(C) if Gn is Sp2n or SO2n . In this case,
the smallest possible value of b is b = 3, which leads us to consider the existence
of the pole at s = 1

2 . The normalized induction formula is

En,∗
3a,Pa

(φ1⊗σ , s)((Ia, h))

= L(2s+ 1, τ, ρ)En−a,∗
2a

(
λ−1/2i∗n−aφQ, s+ 1

2

)
(h)

+
L(2s, τ, ρ)
ε′3(s)

En−a,∗
2a

(
λ1/2(i∗n−a ◦ N (ω, · ))φ̃, s− 1

2

)
(h).

It follows from Theorem 1.2 that the first term

L(2s+ 1, τ, ρ)En−a,∗
2a

(
λ−1/2i∗n−aφQ, s+ 1

2

)
(h)

is holomorphic at s = 1
2 , since L(2s+1, τ, ρ) is holomorphic at s = 1

2 and s+ 1
2 = 1

does not belong to the empty set X+τ,2,σ in the case of the normalized Eisenstein
series En−a,∗

2a

(
λ−1/2i∗n−aφQ, s+ 1

2

)
(h).

The second term

L(2s, τ, ρ)
ε′3(s)

En−a,∗
2a

(
λ1/2(i∗n−a ◦ N (ω, · ))φ̃, s− 1

2

)
(h)

has a simple pole at s = 1
2 if and only if the normalized Eisenstein series

En−a,∗
2a (φ1(τ,2)⊗σ , s)

is not identically zero at s = 0.

Case (3): In this case, the irreducible unitary cuspidal automorphic representation
τ of GLa(A) has the property that L(s, τ, ρ−) has a simple pole at s = 1 and
that L(s, τ × σ) also has a simple pole at s = 1, where ρ− is the exterior square
representation of GLa(C) if Gn = SO2n+1, and the symmetric square representation
of GLa(C) if Gn is Sp2n or SO2n . In this case, the smallest possible value of b is
b = 1. The existence of the pole at the only value s = 1 is treated in the second
case in Proposition 4.1.

Case (4): In this case, the irreducible unitary cuspidal automorphic representation
τ of GLa(A) has the property that L(s, τ, ρ−) has a simple pole at s = 1 and
L(s, τ ×σ) is holomorphic at s = 1, where ρ− is the exterior square representation
of GLa(C) if Gn = SO2n+1, and the symmetric square representation of GLa(C) if
Gn is Sp2n or SO2n . In this case, the smallest possible value of b is b = 2, which
leads us to consider the existence of the pole at s = 1

2 . The normalized induction
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formula is

En,∗
2a,Pa

(φ1⊗σ , s)((Ia, h))

= L(2s+ 1, τ, ρ−)En−a,∗
a

(
λ−1/2i∗n−aφQ, s+ 1

2

)
(h)

+
L(2s, τ, ρ−)

ε′2(s)
En−a,∗

a
(
λ1/2(i∗n−a ◦ N (ω, ·))φ̃, s− 1

2

)
(h).

It follows from Theorem 1.2 that the first term

L(2s+ 1, τ, ρ−)En−a,∗
a

(
λ−1/2i∗n−aφQ, s+ 1

2

)
is holomorphic at s = 1

2 with the same argument as in Case (2). The second term

L(2s, τ, ρ−)
ε′2(s)

En−a,∗
a

(
λ1/2(i∗n−a ◦ N (ω, · ))φ̃, s− 1

2

)
has a simple pole at s = 1

2 if and only if the normalized Eisenstein series

En−a,∗
a (φτ⊗σ , s)

does not vanish identically at s = 0.
The above discussion leads to the following theorem.

Theorem 6.2. With the notation above, the following hold.

(1) Assume that L
( 1

2 , τ × σ
)
6= 0 and L(s, τ, ρ) has a simple pole at s = 1. The

normalized Eisenstein series

En,∗
ab (φ1(τ,b)⊗σ , s)

has a simple pole at each s ∈ X+b,τ,σ , which is defined in Case (1).

(2) Assume that L
( 1

2 , τ × σ
)
= 0 and L(s, τ, ρ) has a simple pole at s = 1. The

normalized Eisenstein series

En,∗
ab (φ1(τ,b)⊗σ , s)

has a simple pole at each s ∈ X+b,τ,σ , which is defined in Case (2), if and only
if the normalized Eisenstein series

En−a,∗
2a (φ1(τ,2)⊗σ , s)

is not identically zero at s = 0.

(3) Assume that L(s, τ, ρ−) and L(s, τ × σ) have a simple pole at s = 1. The
normalized Eisenstein series

En,∗
ab (φ1(τ,b)⊗σ , s)

has a simple pole at each s ∈ X+b,τ,σ , which is defined in Case (3).
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(4) Assume that L(s, τ, ρ−) has a simple pole at s = 1 and L(s, τ × σ) is holo-
morphic at s = 1. The normalized Eisenstein series

En,∗
ab (φ1(τ,b)⊗σ , s)

has a simple pole at each s ∈ X+b,τ,σ , which is defined in Case (4), if and only
if the normalized Eisenstein series

En−a,∗
a (φτ⊗σ , s)

does not vanish identically at s = 0.

Remark 6.3. The nonvanishing results may also apply to the case of m = 0 accord-
ingly, but we omit the discussion here. Finally, it is natural to expect that the results
discussed in this section hold for quasisplit unitary groups.
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HARMONIC MAPS ON DOMAINS WITH
PIECEWISE LIPSCHITZ CONTINUOUS METRICS

HAIGANG LI AND CHANGYOU WANG

We study harmonic maps (�, g) → (N, h), where � ⊂ Rn is a bounded
domain divided into two pieces, the Riemannian metric g is Lipschitz in
each piece, and (N, h) is a closed Riemannian submanifold of Rk. We prove
the partial regularity of stationary harmonic maps, and the global Lips-
chitz and piecewise C1,α-regularity of weakly harmonic maps from (�, g)
to manifolds (N, h) that support convex distance square functions.

1. Introduction

Throughout this paper we assume that �=�+ ∪�− ∪0 is a bounded domain of
Rn decomposed into two subdomains �+ and �− by a C1,1-hypersurface 0, and
that g is a piecewise Lipschitz metric on �, satisfying g ∈ C0,1(�+)∩C0,1(�−)

and discontinuous at every x ∈ 0. For example, let �= B1 ⊂ Rn be the unit ball,
0 = B1 ∩ {x = (x ′, 0) ∈ Rn

}, and

ḡ(x)=
{

g0 if x ∈ B+1 = {x
n > 0} ∩ B1,

kg0 if x ∈ B−1 = {x
n < 0} ∩ B1,

where g0 is the standard metric on Rn and k (6= 1) is a positive constant. Let
(N , h) ↪→ Rk be an l-dimensional, smooth compact Riemannian manifold without
boundary, isometrically embedded in the Euclidean space Rk .

Motivated by the recent studies on elliptic systems arising from composite
materials (see [Li and Nirenberg 2003]) and the periodic homogenization theory in
calculus of variations (see [Avellaneda and Lin 1987] and [Lin and Yan 2003]), we
are interested in the regularity issue of harmonic maps from (�, g) to (N , h).

In order to describe the problem, let’s recall some notations. Throughout this
paper, we use the Einstein convention for summation. For the metric g= gi j dx i dx j ,
let (gi j )= (gi j )

−1, and dvg =
√

g dx(=
√

det (gi j ) dx) be the volume form of g.
For 1< p <+∞, define the Sobolev space

W 1,p(�, N )=
{
u :�→Rk

∣∣ u(x)∈N a.e. x ∈�, E p(u, g)=
´
�
|∇u|pg dvg<∞

}
,

MSC2010: 35J50, 58E20.
Keywords: piecewise continuous metric, harmonic map, regularity.
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where

|∇u|2g ≡ gi j
〈
∂u
∂xi

,
∂u
∂x j

〉
is the energy density of u with respect to g, and 〈 · , · 〉 denotes the inner product in
Rk . Denote W 1,2(�, N ) by H 1(�, N ). Now let’s recall the definition of stationary
harmonic maps.

Definition 1.1. A map u ∈ H 1(�, N ) is called a (weakly) harmonic map if it is a
critical point of E2( · , g), i.e., if u satisfies

(1-1) 1gu+ A(u)(∇u,∇u)g = 0 in �

in the sense of distributions. Here

1g =
1
√

g
∂

∂xi

(
√

ggi j ∂

∂x j

)
is the Laplace–Beltrami operator on (�, g), A( · )( · , · ) is the second fundamental
form of (N , h) ↪→ Rk , and A(u)(∇u,∇u)g = gi j A(u)(∂u/∂xi , ∂u/∂x j ).

Definition 1.2. A (weakly) harmonic map u ∈ H 1(�, N ) is called a stationary
harmonic map if, in addition, it is a critical point of E2( · , g) with respect to the
following domain variations:

(1-2)
d
dt

∣∣∣∣
t=0

ˆ
�

∣∣∇ut
∣∣2
g dvg = 0, with ut(x)= u

(
Ft(x)

)
,

where F(t, x) := Ft(x) ∈C1
(
[−δ, δ],C1(�,�)

)
, for some small δ > 0, is a family

of diffeomorphisms that satisfies

(1-3)


F0(x)= x for x ∈�,

Ft(x)= x for (x, t) ∈ ∂�×[−δ, δ],

Ft
(
�±

)
⊂�± for t ∈ [−δ, δ].

In particular, Ft(0)⊂ 0 for 0≤ t ≤ δ.

It is readily seen that any minimizing harmonic map from (�, g) to (N , h) is a
stationary harmonic map. Definition 1.2 implies that a stationary harmonic map on
(�, g) is a stationary harmonic map on (�±, g). Since g ∈ C0, 1(�±), we can see
that u satisfies an energy monotonicity inequality on �±. We will show in Section 2
that a stationary harmonic map on (�, g) also satisfies an energy monotonicity
inequality in 0 under the condition (1-4) below.

The first result is concerned with the (partial) Lipschitz and (partial) piecewise
C1,α-regularity of stationary harmonic maps. In this context, we are able to extend
the well-known partial regularity theorem of stationary harmonic maps on domains
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with smooth metrics, due to Hélein [2002], Evans [1991], and Bethuel [1993]. More
precisely:

Theorem 1.1. Let u ∈H 1(�, N ) be a stationary harmonic map on (�, g). Suppose
that g satisfies the following jump condition on 0 for n ≥ 3: for any x ∈ 0, there
exists a positive constant k(x) 6= 1 such that

(1-4) lim
y∈�+
y→x

g(y)= k(x) lim
y∈�−
y→x

g(y).

There exists a closed set 6 ⊂�, with H n−2(6)= 0, such that u ∈ Liploc(�\6, N ),
and for some 0< α < 1, u ∈ C1,α

loc

(
(�+ ∪0) \6, N

)
∩C1,α

loc

(
(�− ∪0) \6, N

)
.

The jump condition is needed for both energy monotonicity inequalities for u
and the piecewise C1,α-regularity of u.

We point out that in dimension n = 2, since the energy monotonicity inequality
automatically holds for H 1-maps, Theorem 1.1 holds for any weakly harmonic
map from domains of piecewise C0,1-metrics, i.e., any weakly harmonic map
on domains with piecewise Lipschitz continuous metrics satisfying (1-4) is both
Lipschitz continuous and piecewise C1,α for some 0< α < 1.

Weakly harmonic maps from domains with smooth metrics into Riemannian
manifolds may not enjoy partial regularity properties in dimensions n ≥ 3; see
[Rivière 1995]. Here we consider weakly harmonic maps on domains with piece-
wise Lipschitz continuous metrics into a Riemannian manifold (N , h), on which
d2

N ( · , p) is convex for p ∈ N . Such Riemannian manifolds N include those with
nonpositive sectional curvatures and geodesic convex balls in Riemannian manifolds.
In particular, we extend the classical regularity theorems on harmonic maps on
domains with smooth metrics, due to [Eells and Sampson 1964] and [Hildebrandt
et al. 1977].

Theorem 1.2. Let g satisfy the conditions of Theorem 1.1. Assume that on the
universal cover (Ñ , h̃) of (N , h),1 the square of distance function d2

Ñ
( · , p) is convex

for any p ∈ Ñ . If u ∈ H 1(�, N ) is a weakly harmonic map, then u ∈ Liploc(�, N ),
and for some 0< α < 1, u ∈ C1,α

loc (�
+
∪0, N )∩C1,α

loc (�
−
∪0, N ).

The idea for the proof of Theorem 1.1 is motivated in [Evans 1991] and [Bethuel
1993]. However, there are several new technical difficulties:

(i) Establishing an almost energy monotonicity inequality for stationary harmonic
maps in (�, g). This is achieved by observing that an exact monotonicity
inequality holds at any x ∈ 0, see Section 2 below.

1Here the covering map 5 : Ñ → N is a Riemannian submersion.
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(ii) Establishing a Hodge decomposition in L p(B,Rn), for any 1< p <+∞, on
a ball B = Br (0), equipped with certain piecewise continuous metrics g. More
precisely, we need to show that the solution of

∂

∂xi

(
ai j

∂v

∂x j

)
= div f in B,

v = 0 on ∂B

enjoys a W 1,p-estimate: for any 1< p <+∞,

‖∇v‖L p(B) ≤ C‖ f ‖L p(B)

provided that (ai j ) ∈C(B±)∩C(Bδ) for some δ > 0, is uniformly elliptic, but
is discontinuous on ∂B+ \ Bδ, where Bδ =

{
x ∈ B : dist(x, ∂B) ≤ δ

}
. This

follows from a recent theorem in [Byun and Wang 2010; Dong and Kim 2010];
see also [Dong and Kim 2011a; 2011b] and Section 3 below.

(iii) Employing the moving frame method to establish the decay estimate in suitable
Morrey spaces under a smallness condition, analogous to [Ishizuka and Wang
2008]. To obtain Lipschitz and piecewise C1,α-regularity, we compare the har-
monic map system with an elliptic system with piecewise constant coefficients
and perform a hole-filling argument, similar to [Giaquinta and Hildebrandt
1982].

The paper is organized as follows. In Section 2, we derive an almost energy
monotonicity inequality. In Section 3, we show the global W 1,p (1 < p <∞)
estimate for elliptic systems with certain piecewise continuous coefficients, and a
Hodge decomposition theorem. In Section 4, we adapt the moving frame method of
[Hélein 2002] and [Bethuel 1993] to establish an ε-Hölder continuity. In Section 5,
we establish both Lipschitz and piecewise C1,α regularity for Hölder continuous
harmonic maps. In Section 6, we consider harmonic maps into manifolds supporting
convex distance square functions and prove Theorem 1.2.

2. Energy monotonicity inequality

This section is devoted to the derivation of energy monotonicity inequalities for
stationary harmonic maps from (�, g) to (N , h).

Theorem 2.1. Under the same assumptions as in Theorem 1.1, there exist C > 0
and r0 > 0, depending only on �, 0, and g, such that if u ∈ W 1,2(�, N ) is a
stationary harmonic map on (�, g), then for any x0 ∈�, there holds

(2-1) s2−n
ˆ

Bs(x0)

|∇u|2g dvg ≤ eCrr2−n
ˆ

Br (x0)

|∇u|2g dvg

for all 0< s ≤ r ≤min{r0, dist(x0, ∂�)}.
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Since g ∈ C0,1(�±), there are C > 0 and r0 > 0 such that (2-1) holds for any
x0 ∈�

± and 0< s ≤ r ≤min{r0, dist(x0, ∂�
±)}; see [Hélein 2002]. In particular,

(2-1) holds for any x0 ∈ � \ 0
r0 and 0 < s ≤ r ≤ min{r0, dist(x0, ∂�)}, where

0r0 = {x ∈ � : dist(x, 0) ≤ r0} is the r0-neighborhood of 0. To show (2-1) for
x0 ∈ 0

r0 , it suffices to consider the case x0 ∈ 0.
It follows from the assumption on 0 and g that there exists r0 > 0 such that

for any x0 ∈ 0 there exists a C1,1-diffeomorphism 80 : B1 → Br1(x0), where
r1 =min{r0, dist(x0, ∂�)}, such that{

80(B±1 )=�
±
∩ Br1(x0),

80(01)= 0 ∩ Br1(x0), where 01 = {x ∈ B1 : xn = 0}.

Define ũ(x)= u(80(x)) and g̃(x)=8∗0(g)(x) for x ∈ B1. Then it is readily seen
that g̃ is piecewise C0,1, with 0 as its discontinuity set, and satisfies (1-4) on 01.
(In fact, since

8∗0(g)i j (x)= gkl(80(x))
∂8k

0

∂xi
(x)

∂8l
0

∂x j
(x),

condition (1-4) implies that

lim
y∈�+
y→x

8∗0g(y)= k(80(x)) lim
y∈�−
y→x

8∗0g(y)

for any x ∈01.) It is also easy to see that, if u : (Br1(x0), g)→ (N , h) is a stationary
harmonic map, so ũ : (B1, g̃)→ (N , h).

Thus we may assume that � = B1, that g is a piecewise C0,1-metric which
satisfies (1-4) on the set of discontinuity 01, and that u : (B1, g)→ (N , h) is a
stationary harmonic map. It suffices to establish (2-1) in B1/2. We first derive a
stationarity identity for u.

Proposition 2.2. Let u ∈ W 1,2(B1, N ) be a stationary harmonic map on (B1, g).
Then

(2-2)
ˆ

B1

(
2gi j

〈
∂u
∂xk

,
∂u
∂x j

〉
Y k

i − |∇u|2g div Y
)
√

g dx

=

ˆ
B1

∂

∂xk

(√
ggi j)Y k

〈
∂u
∂xi

,
∂u
∂x j

〉
dx

for all Y = (Y 1, . . . , Y n−1, Y n) ∈ C1
0(B1,Rn) satisfying

(2-3) Y n(x)


≥ 0 for xn > 0,
= 0 for xn

= 0,
≤ 0 for xn < 0,

where Y k
i = ∂Y k/∂xi and div Y =

∑n
i=1 ∂Y i/∂xi .
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Proof. Let Y ∈ C1
0(B1,Rn) satisfy (2-3). Then there exists δ > 0 such that Ft(x)=

x + tY (x), t ∈ [−δ, δ], is a family of diffeomorphisms from B1 to B1 satisfying
the condition (1-3). Hence

0=
d
dt

∣∣∣∣
t=0

ˆ
B1

∣∣∇u(Ft(x))
∣∣2
g dvg

=
d
dt

∣∣∣∣
t=0

(ˆ
B+1

∣∣∇u(Ft(x))
∣∣2
g dvg +

ˆ
B−1

∣∣∇u(Ft(x))
∣∣2
g dvg

)
.

Set G t = F−1
t , for t ∈ [−δ, δ]. Direct calculations yield

d
dt

∣∣∣∣
t=0

ˆ
B±1

∣∣∇(u(Ft(x))
∣∣2
g dvg

=
d
dt

∣∣∣∣
t=0

ˆ
B±1

√
g(x + tY (x))gi j (x + tY (x))

〈
∂u
∂xk

,
∂u
∂xl

〉
× (x + tY (x))(δki + tY k

i )(δl j + tY l
j ) dx

=

ˆ
B±1

√
g(x)gi j (x)

〈
∂u
∂xk

,
∂u
∂xl

〉
(δki Y l

j + δl j Y k
i ) dx

+

ˆ
B±1

d
dt

∣∣∣∣
t=0

(
gi j (G t(x))

√
g(G t(x))J G t(x)

) 〈 ∂u
∂xi

,
∂u
∂x j

〉
dx

=

ˆ
B±1

(
2gi j

〈
∂u
∂xi

,
∂u
∂xl

〉
Y l

j − gi j
〈
∂u
∂xi

,
∂u
∂x j

〉
div Y

)
√

g dx

−

ˆ
B±1

∂

∂xk

(√
ggi j)Y k

〈
∂u
∂xi

,
∂u
∂x j

〉
dx,

where we have used the equalities

d
dt

∣∣∣
t=0

J G t(x)=− div Y,

d
dt

∣∣∣
t=0

G t(x)=−Y (x),

d
dt

∣∣∣
t=0

(
gi j (G t(x))

√
g(G t(x))

)
=−

∂

∂xk

(√
ggi j

)
Y k .

This completes the proof. �

Proposition 2.3. Let u ∈ W 1,2(B1, N ) be a stationary harmonic map on (B1, g).
There exists C > 0 such that:

(i) For any x0 = (x ′0, xn
0 ) ∈ B1/2 \ 01, there exists 0 < R0 ≤ min

{1
4 , |x

n
0 |
}

such
that

(2-4) r2−n
ˆ

Br (x0)

|∇u|2g dvg ≤ eC R R2−n
ˆ

BR(x0)

|∇u|2g dvg if 0< r ≤ R < R0.
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(ii) For any x0 ∈ B1/2,

(2-5) r2−n
ˆ

Br (x0)

|∇u|2g dvg ≤ eC R R2−n
ˆ

BR(x0)

|∇u|2g dvg if 0< r ≤ R ≤ 1
4 .

Proof. (i) By choosing Y ∈ C∞c (B
+

1 ,Rn) or Y ∈ C∞c (B
−

1 ,Rn), we conclude that
u is a stationary harmonic map on ( B+1 , g) and ( B−1 , g). Hence the monotonicity
inequality (2-4) holds; see [Hélein 2002].

(ii) Step 1. We first consider the case where x0 ∈01. Without loss of generality, we
can assume that x0 = (0′, 0). For ε > 0 and 0< r ≤ 1

2 , let Yε(x)= xηε(x), where
ηε(x)= ηε(|x |) ∈ C∞0 (B1) satisfies

(2-6) 0≤ ηε ≤ 1, η′ε ≤ 0, |η′ε | ≤
2
ε
, ηε(s)=

{
1 for 0≤ s ≤ r − ε,
0 for s ≥ r.

Then

(2-7) (Yε)
j
i = δi jηε(|x |)+ η′ε(|x |)

x i x j

|x |
.

Substituting Yε into the right side of (2-2), and using∣∣∣∣ ∂∂xk

(√
ggi j)∣∣∣∣≤ C for a.e. x ∈ B1 \01,

we have

(2-8)
∣∣∣∣ ˆ

B1

∂

∂xk

(√
ggi j)Y k

ε

〈
∂u
∂xi

,
∂u
∂x j

〉
dx
∣∣∣∣≤ Cr

ˆ
Br

|∇u|2 dx

≤ Cr
ˆ

Br

|∇u|2g dvg.

Substituting (2-7) into the left side of (2-2), we obtain

(2-9)
ˆ

B1

(
2gi j

〈
∂u
∂x j

,
∂u
∂xk

〉
(Yε)ki − |∇u|2g div Yε

)
√

g dx

= (2− n)
ˆ

B1

|∇u|2gηε(|x |)
√

g dx −
ˆ

B1

|∇u|2g|x |η
′

ε(|x |)
√

g dx

+

ˆ
B1

2gi j
〈
∂u
∂xi

,
∂u
∂xk

〉
xk x j

|x |
η′ε(|x |)

√
g dx .

Define ḡ by

ḡ(x ′, xn)=

{
limy→0, yn≥0 g(y) if xn

≥ 0,
limy→0, yn<0 g(y) if xn < 0.

Then we have

(2-10) |g(x)− ḡ(x)| ≤ C |x | for all x ∈ B1.
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Further, by (1-4) we can assume

ḡ(x)=
{

g0 if xn
≥ 0,

kg0 if xn < 0 (k 6= 1).

Hence we can write

(2-11)
ˆ

B1

2gi j
〈
∂u
∂xi

,
∂u
∂xk

〉
xk x j

|x |
η′ε(|x |)

√
g dx = Iε + IIε .

where

Iε = 2
ˆ

B1

ḡi j
〈
∂u
∂xi

,
∂u
∂xk

〉
xk x j

|x |
η′ε(|x |)

√
g dx,

IIε = 2
ˆ

B1

(gi j
− ḡi j )

〈
∂u
∂xi

,
∂u
∂xk

〉
xk x j

|x |
η′ε(|x |)

√
g dx .

Since

ḡi j
〈
∂u
∂xi

,
∂u
∂xk

〉
xk x j

|x |
=

{
|x ||∂u/∂r |2 if xn

≥ 0,

(1/k)|x ||∂u/∂r |2 if xn < 0

is nonnegative in B1 and η′ε(|x |)≤ 0, we have Iε ≤ 0. For IIε , by (2-10) we have

(2-12) |IIε | ≤ Cr2
ˆ

Br

|∇u|2g |η
′

ε |(|x |) dvg.

Putting these estimates first into (2-11) and then into (2-9), and finally combining
(2-9) and (2-8) with (2-2), we obtain, after taking ε to zero,

(2-13) (2− n)
ˆ

Br

|∇u|2g dvg + r
ˆ
∂Br

|∇u|2g
√

g d H n−1

≥−C
(

r
ˆ

Br

|∇u|2g dvg + r2
ˆ
∂Br

|∇u|2g
√

gd H n−1
)
.

It is not hard to see that (2-13) implies

d
dr

(
eCrr2−n

ˆ
Br

|∇u|2g dvg

)
≥ 0,

so that (2-5) holds when x0 ∈ B1/2.

Step 2. To show (2-5) in the general case, it suffices to consider x0 ∈ B1/2 \01 such
that

|BR(x0)∩ B+1 |> 0 and |BR(x0)∩ B−1 |> 0.

For simplicity, assume x0 ∈ B−1 . We consider two cases:
Suppose d(x0, 01)= |xn

0 | ≥
1
4 R. Then:



HARMONIC MAPS ON DOMAINS WITH PIECEWISE LIPSCHITZ METRICS 133

• If R ≥ r ≥ 1
4 R, it is easy to see that

r2−n
ˆ

Br (x0)

|∇u|2g dvg ≤ 4n−2 R2−n
ˆ

BR(x0)

|∇u|2g dvg.

• If 0< r < 1
4 R (≤ d(x0, 01)), we have BR/4(x0)⊂ B−1 , so (2-4) implies

r2−n
ˆ

Br (x0)

|∇u|2g dvg ≤ eC R
( R

4

)2−n ˆ
BR/4(x0)

|∇u|2g dvg

≤ eC R R2−n
ˆ

BR(x0)

|∇u|2g dvg.

Suppose instead that d(x0, 01)= |xn
0 |<

1
4 R. Then:

• If R ≥ r ≥ 1
4 R, then

r2−n
ˆ

Br (x0)

|∇u|2g dvg ≤ 4n−2 R2−n
ˆ

BR(x0)

|∇u|2g dvg.

• If 0< r ≤ d(x0, 01)= |xn
0 |<

1
4 R, then by setting x̄0 = (x1

0 , . . . , xn−1
0 , 0) we

have

Br (x0)⊂ B|xn
0 |
(x0)⊂ B2|xn

0 |
(x̄0)⊂ BR/2(x̄0)⊂ BR(x0),

so that (2-5) yields

r2−n
ˆ

Br (x0)

|∇u|2g dvg ≤ |xn
0 |

2−n
ˆ

B|xn
0 |
(x0)

|∇u|2g dvg

≤ 2n−2(2|xn
0 |)

2−n
ˆ

B2|xn
0 |
(x̄0)

|∇u|2g dvg

≤ 2n−2eC R
( R

2

)2−n
ˆ

BR/2(x̄0)

|∇u|2g dvg

≤ eC R R2−n
ˆ

BR(x0)

|∇u|2g dvg.

• If d(x0, 01) (= |xn
0 |)≤ r < 1

4 R, then we have

Br (x0)⊂ B2r (x̄0)⊂ BR/2(x̄0)⊂ BR(x0),
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so that (2-5) yields

r2−n
ˆ

Br (x0)

|∇u|2g dvg ≤ 2n−2(2r)2−n
ˆ

B2r (x̄0)

|∇u|2g dvg

≤ 2n−2eC R
( R

2

)2−n ˆ
BR/2(x̄0)

|∇u|2g dvg

≤ eC R R2−n
ˆ

BR(x0)

|∇u|2g dvg.

Therefore (2-5) is proved in all cases. �

3. W1, p-estimate for elliptic equations with piecewise continuous coefficients

In this section, we will provide the global W 1,p-estimate for elliptic equations with
piecewise continuous coefficients. The proof is a slight modification of that of
[Dong and Kim 2010] (see also [Dong and Kim 2011a; 2011b]) or [Byun and
Wang 2010]. As a corollary, we will establish the Hodge decomposition theorem
(Theorem 3.2) for piecewise continuous metrics g, a crucial ingredient to prove
Theorem 1.1.

For a ball B = Br (0) ⊂ Rn , set Bε = {x ∈ B : dist(x, ∂B) ≤ ε} for ε > 0. Let
(ai j (x))1≤i, j≤n be bounded measurable, uniformly elliptic on B; i.e., there exist
0< λ≤3<+∞ such that

(3-1) λ|ξ |2 ≤ ai j (x)ξαi ξ
j
β ≤3|ξ |

2 a.e. x ∈ B for all ξ ∈ Rn.

Theorem 3.1. Assume (ai j ) satisfies (3-1), and there exists ε > 0 such that (ai j ) ∈

C
(
B±
)
∩ C (Bε) and is discontinuous on ∂B+ \ Bε . For p ∈ (1,+∞), let f ∈

L p(B,Rn). Then there exists a unique weak solution v ∈W 1,p
0 (B,Rn) to

(3-2)


∑
i, j

∂

∂xi

(
ai j

∂v

∂x j

)
=
∑

i

∂ fi
∂xi

in B,

u = 0 on ∂B,

that satisfies

(3-3) ‖∇v‖L p(B) ≤ C ‖ f ‖L p(B)

for some C > 0 depending only on p and (ai j ).

Proof. By (3-1), we see that for any δ > 0, there exists R = R(δ) > 0 such that
the coefficient function (ai j ) satisfies the (δ, R)-vanishing of codimension-one
conditions (2.5) and (2.6) of [Byun and Wang 2010, p. 2562]; see also [Dong and
Kim 2010; 2011a; 2011b]. In fact, we have

lim
r↓0

max
x0=(x ′0,x

n
0 )∈B

∥∥ai j (x ′, xn)− ai j (x ′0, xn)
∥∥

L∞(Br ((x ′0,x
n
0 )))
= 0.
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Therefore Theorem 3.1 follows directly from [Byun and Wang 2010, Theorem 2.2,
p. 2653]. �

As an immediate consequence of Theorem 3.1, we have the following Hodge
decomposition on B equipped with certain piecewise continuous metrics g.

Theorem 3.2. Let ḡ be a piecewise continuous metric on B such that ḡ is continuous
on B± and on Bδ for some δ > 0, and is discontinuous on ∂B+ \ Bδ . Then for any
p ∈ (1,+∞) and F = (F1, . . . , Fn) ∈ L p(B,Rn), there exist G ∈ W 1,p

0 (B) and
H ∈ L p(B,Rn) such that

(3-4) F =∇G+ H, divḡ H
(
:=

1
√

ḡ
∂

∂xi
(
√

ḡḡi j H j )

)
= 0 in B.

Further, there exists C = C(p, n, ḡ) > 0 such that

(3-5) ‖∇G‖L p(B)+‖H‖L p(B) ≤ C ‖F‖L p(B) .

Proof. For 1≤ i, j ≤ n, set ai j =
√

ḡḡi j on B. Then (ai j ) satisfies the conditions
of Theorem 3.1, so that there exists a unique solution G ∈W 1,p

0 (B) to

(3-6)


∂

∂xi

(
√

ḡḡi j ∂G
∂x j

)
=

∂

∂xi

(√
ḡḡi j F j

)
in B,

G = 0 on ∂B,

and
‖∇G‖L p(B) ≤ C

∥∥√ḡḡi j F j
∥∥

L p(B) ≤ C ‖F‖L p(B) .

Set H = F −∇G. Then we have

divḡ H =
1
√

ḡ
∂

∂xi

(√
ḡḡi j

(
F j −

∂G
∂x j

))
= 0 on B,

and
‖H‖L p(B1/2) ≤ ‖F‖L p(B1/2)+‖∇G‖L p(B) ≤ C ‖F‖L p(B) .

This completes the proof. �

4. Hölder continuity

In this section, we will prove that any stationary harmonic map on (B1, g), with
g ∈C0,1(B±1 ∪01), is Hölder continuous provided that

´
B1
|∇u|2g dvg is sufficiently

small. The idea is based on suitable modifications of the original argument in
[Bethuel 1993] (see also [Ishizuka and Wang 2008]), thanks to both the energy
monotonicity inequality and the Hodge decomposition theorem established in the
previous two sections. More precisely:
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Theorem 4.1. There exist ε0 > 0 and α0 ∈ (0, 1), depending only on n, g, such
that if the metric g ∈ C0,1(B±1 ∪ 01) satisfies the condition (1-4) on 01, and u ∈
W 1,2(B1, N ) is a stationary harmonic map satisfying

(4-1) r2−n
0

ˆ
Br0 (x0)

|∇u|2g dvg ≤ ε
2
0

for some x0 ∈ B1/2 and 0< r0 ≤
1
4 , then u ∈ Cα0(Br0/2(x0), N ), and

(4-2) [u]Cα0 (Br0/2(x0)) ≤ C(r0, ε0).

Proof of Theorem 4.1. The proof is based on suitable modifications of [Bethuel
1993; Ishizuka and Wang 2008]. First, observe that if x0 = (x ′0, xn

0 ) ∈ B±, it
follows from the monotonicity inequality (2-5) that we may assume (4-1) holds
for some 0 < r0 < |xn

0 |. Then the ε0-regularity theorem in [Bethuel 1993] (see
[Ishizuka and Wang 2008] for domains with C0,1metrics) implies that for some
0< α0 < 1, u ∈ Cα0(Br0/2(x0)) and (4-2) holds. Hence it suffices to consider the
case x0 = (x ′0, 0) ∈ 01/2. By translation and scaling, we may assume x0 = (0, 0)
and proceed as follows.

Step 1. As in [Bethuel 1993; Hélein 2002; Ishizuka and Wang 2008], we assume that
there exists an orthonormal frame on u∗TN |B1 . For 0<θ < 1

2 , to be determined later,
let {eα}lα=1 ⊂W 1,2(B2θ ,Rk) be a Coulomb gauge orthonormal frame of u∗TN |B2θ ;
that is,

(4-3)

divg(〈∇eα, eβ〉)= 0 in B2θ (1≤ α, β ≤ l),
l∑

α=1

ˆ
B2θ

|∇eα|2g dvg ≤ C
ˆ

B2θ

|∇u|2g dvg.

For 1≤ α ≤ l, consider 〈∇ ((u− u2θ )η) , eα〉, where u2θ =
ffl

B2θ
u is the average of

u on B2θ , and η ∈ C∞0 (B1) satisfies

0≤ η ≤ 1; η = 1 in Bθ ; η = 0 outside B7θ/4; |∇η| ≤
2
θ
.

Define the metric g̃ on B2θ by

g̃(x)= η(x)g(x)+ (1− η(x))g0(x), x ∈ B2θ .

Then it is easy to see that

g̃ ≡ g on Bθ ; g̃ ≡ g0 outside B7θ/4; g̃ ∈ C(B±2θ )∩C(B2θ \ B7θ/4).

In particular, g̃ satisfies the conditions of Theorem 3.2. Hence, by Theorem 3.2, for
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1< p < n/(n− 1), there exist φα ∈W 1, p
0 (B2θ ) and ψα ∈ L p(B2θ ) such that

(4-4)
〈∇((u−u2θ )η), eα〉 = ∇φα+ψα, divg̃(ψα)= 0 in B2θ ,

‖∇φα‖L p(B2θ )+‖ψα‖L p(B2θ ) . ‖∇((u−u2θ )η)‖L p(B2θ ) . ‖∇u‖L p(B2θ ).

Since u satisfies the harmonic map equation (1-1), we have

(4-5) divg (〈∇u, eα〉)= gi j
∇i u〈∇j eα, eβ〉 eβ in B1.

Thus we obtain

(4-6) 1gφα = gi j
∇i u〈∇j eα, eβ〉 eβ in Bθ .

Decompose φα = φ
(1)
α +φ

(2)
α , where φ(1)α solves

(4-7)
{
1gφ

(1)
α = 0 in Bθ ,

φ
(1)
α = φα on ∂Bθ ,

and φ(2)α solves

(4-8)
{
1gφ

(2)
α = gi j

∇i u〈∇j eα, eβ〉 eβ in Bθ ,
φ
(2)
α = 0 on ∂Bθ .

Step 2: Estimation of φ(1)α . We will need the Morrey space defined, for arbitrary
E ⊂ Rn , by

M p,p(E) :=
{

f : E→R

∣∣∣ ‖ f ‖p
M p,p(E) := sup

Br (x)⊂Rn

{
r p−n

´
Br (x)∩E | f |

p dx
}
<+∞

}
.

It is well-known (see [Gilbarg and Trudinger 1983]) that φ(1)α ∈ Cα0(Bθ ) for some
α0 ∈ (0, 1), and for any 0< r ≤ θ/2,

(4-9)
[
φ(1)α

]p
Cα0 (Br/2)

. θ p−n
ˆ

Bθ
|∇φ(1)α |

p dx ≤ Cθ p−n
ˆ

B2θ

|∇u|p dx,

and

(4-10) (τθ)p−n
ˆ

Bτθ
|∇φ(1)α |

p
≤ Cτ pα0‖∇u‖M p,p(B1) for all 0< τ < 1,

Step 3: Estimation of φ(2)α . Denote by H1(Rn) the Hardy space on Rn and BMO(E)
the BMO space on E for any open set E⊂Rn . By (4.13) of [Ishizuka and Wang 2008,
p. 435], for p′ = p/(p− 1) > n, there exists h ∈W 1,p′

0 (Bθ ), with ‖∇h‖L p′ (Bθ ) = 1,
such that ∥∥∇φ(2)α ∥∥

L p(Bθ )
≤ C

ˆ
Bθ
〈∇φ(2)α ,∇h〉g dvg.
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Using (4-8), (4-4), and the duality between H1 and BMO, we show that

(4-11)
∥∥∇φ(2)α ∥∥

L p(Bθ )
≤ C

ˆ
Bθ

√
ggi j 〈
∇i u, 〈∇j eα, eβ〉

〉
(eβh) dx

=−C
ˆ

Bθ

√
ggi j
〈∇j eα, eβ〉∇i (eβh)u dx

≤ C
∥∥√ggi j

〈∇j eα, eβ〉∇i (eβh)
∥∥

H1(Rn)
[u]BMO(Bθ )

. ‖
√

ggi j
〈∇j eα, eβ〉‖L2(Bθ )‖∇(eβh)‖L2(Bθ )[u]BMO(Bθ )

. ‖∇u‖L2(B2θ )‖∇u‖M p,p(B1) · θ
n/p−n/2.

(Here, to go from the third line to the fourth, we used that h ∈W 1,p′
0 (Bθ ) and that

divg〈∇eα, eβ〉 vanishes in Bθ , so
√

ggi j
〈∇j eα, eβ〉∇i (eβh) ∈H1(Rn) and∥∥√ggi j

〈∇j eα, eβ〉∇i (eβh)
∥∥

H1(Rn)
≤ C

∥∥√ggi j
〈∇j eα, eβ〉

∥∥
L2(Bθ )

‖∇i (eβh)‖L2(Bθ ).

This last factor satisfies

‖∇(eβh)‖L2(Bθ ) ≤ ‖∇eβ‖L2(Bθ )‖h‖L∞(Bθ )+‖∇h‖L p(Bθ )θ
n/p−n/2

≤ Cθn/p−n/2,

since the Sobolev embedding implies (because p′ > n) that h ∈ C1−n/p′(Bθ ) and

‖h‖L∞(Bθ ) ≤ Cθ1−n/p′ .

Finally, the estimate [u]BMO(Bθ ) ≤ C‖∇u‖M p,p(B1) is a consequence of the Poincaré
inequality.)

Putting the estimates of φ(1)α and φ(2)α together, we obtain that, for all 0< τ < 1,

(4-12)
(
(τθ)p−n

ˆ
Bτθ
|∇φα|

pdx
)1/p

≤ C
(
τα0 + τ 1−n/pε0

)
‖∇u‖M p,p(B1).

Step 4: Estimation of ψα. Since divg̃(ψα)= 0 on B2θ , we have
ˆ

B2θ

|ψα|
2
g̃ dvg̃ =

ˆ
B2θ

〈ψα+∇φα, ψα〉g̃ dvg̃

=

ˆ
B2θ

〈
〈∇((u− u2θ )η), eα〉, ψα

〉
g̃ dvg̃

=−

ˆ
B2θ

(u− u2θ )η〈∇eα, ψα〉g̃ dvg̃

.
∥∥√g̃ g̃i j

∇i eαψ j
α

∥∥
H1 [(u− u2θ )η]BMO

. ‖ψα‖L2(B2θ )‖∇eα‖L2(B2θ ) [(u− u2θ )η]BMO

. ‖∇u‖L2(B2θ )‖ψα‖L2(B2θ )‖∇u‖M p,p(B1),
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where we have used the inequality

[(u− u2θ )η]BMO ≤ C [u]BMO(B2θ ) ≤ C ‖∇u‖M p,p(B1) .

This, combined with Hölder’s inequality, implies

(4-13)
(
θ p−n

ˆ
Bθ
|ψα|

p
)1/p

≤ Cε0 ‖∇u‖M p,p(B1) .

Step 5: Decay estimation of ∇u. Putting (4-12) and (4-13) together, we have that,
for some 0< α0 < 1,

(4-14)
(
(τθ)p−n

ˆ
Bτθ
|∇u|p

)1/p

≤ C(ε0+ τ
α0 + τ 1−n/pε0)‖∇u‖M p,p(B1)

for any 0< τ < 1 and 0< θ < 1
2 . Now we claim that for some α0 ∈ (0, 1), we have

(4-15) ‖∇u‖M p,p(Bτ/4) ≤ C(ε0+ τ
α0 + τ 1−n/pε0) ‖∇u‖M p,n−p(B1)

for all 0< τ < 1. To show this, let Bs(y)⊂ Bτ/4. We divide into three cases:

(a) y ∈ Bτ/4 ∩ B± and s < |yn
|. As remarked at the beginning of the proof, for

some 0< α0 < 1 we have(
s p−n

ˆ
Bs(y)
|∇u|p

)1/p

≤ C
(

s
|yn|

)α0
(
|yn
|

p−n
ˆ

B|yn |(y)
|∇u|p

)1/p

≤ C
(

s
|yn|

)α0
(
(2|yn
|)p−n

ˆ
B2|yn |(y′,0)

|∇u|p
)1/p

≤ C
((
τ

2

)p−n
ˆ

Bτ/2(y′,0)
|∇u|p

)1/p

(since |yn
| ≤ τ/4)

≤ C(ε0+ τ
α0 + τ 1−n/pε0)‖∇u‖M p,p(B1) (by (4-14)).

(b) y ∈ Bτ/4 ∩ B± and s ≥ |yn
|. Then Bs(y)⊂ B|yn |+s(y′, 0)⊂ B2s(y′, 0). Hence(

s p−n
ˆ

Bs(y)
|∇u|p

)1/p

≤ 2n/p−1
(
(2s)p−n

ˆ
B2s(y′,0)

|∇u|p
)1/p

≤ C(ε0+ τ
α0 + τ 1−n/pε0) ‖∇u‖M p,p(B1) (by (4-14)).

(c) y ∈ Bτ/4 ∩01, i.e., yn
= 0. Then it follows directly from (4-14) that(

s p−n
ˆ

Bs(y)
|∇u|p

)1/p

≤ C(ε0+ τ
α0 + τ 1−n/pε0) ‖∇u‖M p,p(B1) .

Combining (a), (b) and (c) together and taking the supremum over all Bs(y)⊂ Bτ/4,
we obtain (4-15).
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It is clear that by first choosing τ and then ε sufficiently small, we can arrange
that

‖∇u‖M p,p(Bτ/4) ≤
1
2 ‖∇u‖M p,p(B1) .

Iterating this inequality finitely many times yields that there exists α1 ∈ (0, 1) such
that for any x ∈ B1/4 and 0< r ≤ 1

2 , it holds

r p−n
ˆ

Br (x)
|∇u|p dx ≤ C r pα1 ‖∇u‖p

M p,p(B1)
.

This implies u ∈ Cα1(B1/2) by Morrey’s lemma. The proof is now completed. �

5. Lipschitz and piecewise C1,α-regularity

In this section, we will first establish Lipschitz and piecewise C1,α-regularity
for stationary harmonic maps on domains with piecewise C0, 1-metrics, under a
smallness condition of energy. Then we will prove Theorem 1.1.

Theorem 5.1. There exist ε0 > 0 and β0 ∈ (0, 1), depending only on n and g,
such that if the metric g ∈ C0,1(B±1 ∪01) satisfies the condition (1-4) on 01, and
u ∈W 1,2(B1, N ) is a stationary harmonic map on (B1, g) satisfying

(5-1) r2−n
0

ˆ
Br0 (x0)

|∇u|2g dvg ≤ ε
2
0

for some x0 ∈ B1/2 and 0 < r0 ≤
1
4 , then u ∈ C1,β0

(
Br0/2(x0) ∩ B±, N

)
, and

u ∈ C0,1
(
Br0/2(x0), N

)
.

Proof. The proof is based on the hole filling argument and the freezing coefficient
method. It is divided into two steps.

Step 1: u∈Cα(B3r0/4(x0), N ) for any 0<α<1. To see this, first recall Theorem 4.1
implies that there exists 0 < α0 <

2
3 such that u ∈ Cα0(B7r0/8(x0)) and for any

y ∈ B7r0/8(x0), it holds

(5-2) s2−n
ˆ

Bs(y)
|∇u|2 dx ≤ C

( s
r

)2α0
r2−n

ˆ
Br (y)
|∇u|2 dx, 0< s ≤ r <

r0

8
,

and

(5-3) oscBr (y)u ≤ Crα0, 0< r <
r0

8
.

For y ∈ B7r0/8(x0) and 0< r < r0/8, let v : Br (y)→ Rk solve

(5-4)
{
1gv = 0 in Br (y),
v = u on ∂Br (y).
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By the maximum principle and (5-3), we then have

oscBr (y)v ≤ osc∂Br (y)u ≤ Crα0 .

Moreover, since g ∈ C0,1(B±1 ∪ 01), it follows from [Li and Nirenberg 2003,
Theorem 1.1] that v ∈ C0,1

(
Br/2(y),Rk

)
and v ∈ C1,β

(
Br/2(y)∩ B±,Rk

)
for any

0< β < 1.
Multiplying (1-1) and (5-4) by u− v, subtracting one result from the other and

integrating over Br (y), we obtainˆ
Br (y)
|∇(u− v)|2 dx .

ˆ
Br (y)
|∇u|2|u− v|. rn−2+3α0 .

This, combined withˆ
Br/2(y)

|∇v|2 dx ≤ C‖∇v‖2L∞(Br/2(y))r
n,

implies (r
2

)2−n
ˆ

Br/2(y)
|∇u|2 dx ≤ C

(
‖∇v‖2L∞(Br/2(y)) r2

+ r3α0
)
≤ Cr3α0 .

This, combined with Morrey’s lemma, yields u ∈ C3α0/2(B7r0/8(x0)). Repeating
this argument, we can show that u ∈ Cα(B3r0/4(x0)) for any 0< α < 1, and

(5-5) r2−n
ˆ

Br (y)
|∇u|2 dx ≤ Cr2α for all y ∈ B3r0/4(x0), 0< r <

r0

4
.

Step 2: There exists 0< β0 < 1 such that u ∈ C1,β0
(
Br0/2(x0)∩ B±, N

)
. There are

two cases to consider:

Case I: x0 = (x ′0, xn
0 ) ∈ B±1 . We may assume 0< r0 < |xn

0 |, so that Br0(x0)⊂ B±.
For Br (x)⊂ Br0(x0), let v : Br (x)→ Rk solve

(5-6)
{
1gv = 0 in Br (x),
v = u on ∂Br (x).

Then by (5-5), for any 2
3 < α < 1,

(5-7)
ˆ

Br (x)
|∇(u− v)|2 dx ≤ C

ˆ
Br (x)
|∇u|2|u− v| dx ≤ C r3α+n−2.

Also, since g ∈ C0,1(Br0(x0)), we have for any 0< β < 1 that v ∈ C1,β(Br/2(x))
and

(5-8)
 

Bs(x)
|∇v− (∇v)Bs(x)|

2 dx ≤ C
( s

r

)2β
 

Br (x)
|∇u− (∇u)Br (x)|

2 dx,
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for < s ≤ r/2. (Here
ffl

E f = 1
|E |

´
E f dx .) Note that (5-8) also holds trivially for

r/2≤ s ≤ r . Combining (5-7) and (5-8) we obtain, for any 0< θ < 1, 
Bθr (x)

∣∣∇u− (∇u)Bθr (x)
∣∣2 dx

≤ 2
( 

Bθr (x)
|∇u−∇v|2 dx +

 
Bθr (x)

∣∣∇v− (∇v)Bθr (x)
∣∣2 dx

)
≤ C

(
θ2β

 
Br (x)

∣∣∇u− (∇u)Br (x)
∣∣2 dx + θ−nr3α−2

)
.

For (3α− 2)/2< β0 < β, let 0< θ0 < 1 be such that Cθ2β
0 = θ

2β0
0 . Then

(5-9)
 

Bθ0r (x)

∣∣∇u−(∇u)Bθ0r (x)
∣∣2 dx ≤ θ2β0

0

 
Br (x)

∣∣∇u−(∇u)Br (x)
∣∣2 dx+Cr3α−2.

Iterating (5-9) m-times, m ≥ 1, yields

(5-10)
 

Bθm
0 r (x)

∣∣∇u− (∇u)Bθ0r (x)
∣∣2 dx

≤
(
θm

0
)2β0

 
Br (x)

∣∣∇u− (∇u)Br (x)
∣∣2 dx +C(θm

0 r)3α−2
m∑

j=1

θ
j (2β0−(3α−2))

0

≤ (θm
0 )

3α−2
(  

Br (x)

∣∣∇u− (∇u)Br (x)
∣∣2 dx +Cr3α−2

)
.

This clearly implies that ∇u ∈ C3α/2−1(Br0(x0)).

Case II: x0 = (x ′0, 0) ∈ 01. For simplicity, we assume x ′0 = 0. Define ḡ on B1 by

ḡ(x)=
{

lim t↓0+g(0′, t) if x ∈ B+1
lim t↑0−g(0′, t) if x ∈ B−1 .

Then we have

(5-11) |g(x)− ḡ(x)| ≤ C |x |, x ∈ B1.

Moreover, by suitable dilations and rotations of the coordinate system, (1-4) implies
that there exists a positive constant k 6= 1 such that

ḡ(x)= (1+ (k− 1)χB−1
(x))g0, x ∈ B1,

where χB−1
is the characteristic function of B−1 .

For 0< r < r0/2, let v : Br (0)→ Rk solve

(5-12)
{
1ḡv = 0 in Br (0),
v = u on ∂Br (0).
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Then we have

oscBr (0)v ≤ oscBr (0)u ≤ Crα,
ˆ

Br (0)
|∇v|2 dx ≤ C

ˆ
Br (0)
|∇u|2 ≤ Crn−2+2α.

Multiplying (1-1) and (5-12) by u− v and integrating over Br (0), we obtainˆ
Br (0)
|∇(u− v)|2 dx

≤

ˆ
Br (0)

gi j (u− v)i (u− v) j
√

g dx

≤ C
ˆ

Br (0)
|∇u|2|u− v| dx +

ˆ
Br (0)
|
√

ggi j
−
√

ḡḡi j
||vi ||(u− v) j | dx

≤ C oscBr (0)v

ˆ
Br (0)
|∇u|2 dx +Cr2

ˆ
Br (0)
|∇v|2+

1
2

ˆ
Br (0)
|∇(u− v)|2 dx

≤ Crn−2+3α
+Crn+α

+
1
2

ˆ
Br (0)
|∇(u− v)|2 dx .

This implies

(5-13)
ˆ

Br (0)
|∇(u− v)|2 dx ≤ Crn−2+3α.

It is well-known that v ∈C∞
(
B±s (0)

)
for any 0< s < r . In fact, (5-12) is equivalent

to:

(5-14)
∂

∂xi

(
(1+ (kn/2

− 1)χB−1
)
∂v

∂xi

)
= 0 in Br (0),

we conclude

(i) ∂v/∂xn satisfies the jump property on 01:

lim
xn↓0+

∂v

∂xn
(x ′, xn)= kn/2 lim

xn↑0−

∂v

∂xn
(x ′, xn) for all (x ′, 0) ∈ 01 ∩ Br (0).

(ii) ∇αv ∈ C0(Br (0)) for any multiindex α = (α1, . . . , αn−1, 0).

(iii) ∇v ∈ L∞(Bs(0)) for any 0< s < r , and

(5-15) ‖∇v‖2L∞(Br/2(0)) ≤ Cr2−n
ˆ

Br (0)
|∇u|2.

For f : Br (0)→ Rk , set

(5-16) D̃ f :=
( ∂ f
∂x1

, . . . ,
∂ f
∂xn−1

, (1+ (kn/2
− 1)χB−1

)
∂ f
∂xn

)
,
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and denote by (D̃ f )s =
ffl

Bs(0)
D̃ f dx the average of D̃ f over Bs(0). Then, for any

0< β < 1,
 

Bs(0)

∣∣D̃v− (D̃v)s∣∣2 dx ≤ C
( s

r

)2β
 

Br (0)

∣∣D̃u− (D̃u)r
∣∣2 dx for all 0< s ≤ r.

Combining this with (5-13) yields, for any 0< θ < 1,
 

Bθr (0)

∣∣D̃u− (D̃u)θr
∣∣2 dx ≤ Cθ2β

 
Br (0)

∣∣D̃u− (D̃u)r
∣∣2 dx +Cθ−nr3α−2.

As in case I, iterations of this inequality yield, for any 0< s ≤ r ,
 

Bs(0)

∣∣D̃u− (D̃u)s
∣∣2 dx ≤ C

( s
r

)3α−2
 

Br (0)

∣∣D̃u− (D̃u)r
∣∣2 dx +Cs3α−2.

This, combined with case I, implies that for any Br (x)⊂ Br0(x0) and 0< s ≤ r ,
 

Bs(x)

∣∣D̃u− (D̃u)x,s
∣∣2 dx ≤ C

( s
r

)3α−2
 

Br (x)

∣∣D̃u− (D̃u)x,r
∣∣2 dx +Cs3α−2,

where (D̃u)x,s denotes the average of D̃u over Bs(x). It is readily seen that the
preceding inequality yields u ∈C1,3α/2−1(Br0/2(x0)∩ B±1 ) and u ∈C0,1(Br0/2(x0)).
This completes the proof. �

Proof of Theorem 1.1 . Define the singular set

6 =

{
x ∈� : lim

r→0
r2−n

ˆ
Br (x)
|∇u|2 dx ≥ ε2

0

}
.

Then by a covering argument we have H n−2(6)= 0; see [Evans and Gariepy 1992].
For any x0 ∈� \6, there exists 0< r0 < dist(x0, ∂�) such that

r2−n
0

ˆ
Br0 (x)
|∇u|2 dx ≤ ε2

0 .

Hence by Theorems 2.1, 4.1, and 5.1, we have

u ∈ C1,α(Br0/2(x0)∩�±, N ) and u ∈ C0,1(Br0/2(x0), N ),

for some 0< α < 1. In particular, we have

lim
r↓0

r2−n
ˆ

Br (x)
|∇u|2 dx = 0 for all x ∈ Br0/2(x0),

so that Br0/2(x0)∩6 =∅, i.e., 6 is closed. This completes the proof. �
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6. Harmonic maps to manifolds supporting convex distance square functions

In this section, we consider weakly harmonic maps u from (�, g), with g the
piecewise Lipschitz continuous metric as in Theorem 1.1, to (N , h), whose universal
cover (Ñ , h̃) supports a convex distance square function d2

Ñ
( · , p) for any p ∈ Ñ .

We will establish both the global Lipschitz continuity and piecewise C1,α-regularity
for such harmonic maps u. This can be viewed as a generalization of the well-known
regularity theorem of Eells and Sampson [1964] and Hildebrand, Kaul and Widman
[Hildebrandt et al. 1977].

The crucial step is the following theorem on Hölder continuity.

Theorem 6.1. Assume that the metric g is bounded measurable on �, i.e., there
exist two constants 0 < λ < 3 < +∞ such that λIn ≤ g(x) ≤3In for a.e. x ∈ �,
and the universal cover (Ñ , h̃) of (N , h) supports a convex distance square function
d2

Ñ
( · , p) for any p ∈ Ñ . If u ∈ H 1(�, N ) is a weakly harmonic map, then there

exists α ∈ (0, 1) such that u ∈ Cα(�, N ).

Proof. Here we sketch a proof that is based on modifications of that in [Lin
1997]. Similar ideas have been used by Evans in his celebrated work [1982] and
by Caffarelli [1982] for quasilinear systems under smallness conditions. First, by
lifting u :�→ N to a harmonic map ũ :�→ Ñ , we may assume (N , h)= (Ñ , h̃)
and d2

N ( · , p) is convex on N for any p ∈ N .
We first claim that

(6-1) 1gd2(u, p)≥ 0.

In fact, by the chain rule of harmonic maps (see [Jost 1991]), we have

1gd2(u, p)=∇ud2(u, p)(1gu)+∇2
u d2(u, p)(∇u,∇u)g.

Since 1gu ⊥ Tu N , ∇ud2(u, p) ∈ Tu N , the first term in the right side vanishes. By
the convexity of d2

N , the second term in the right side satisfies

∇
2
u d2(u, p)(∇u,∇u)g ≥ 0.

Since u ∈ H 1(�, N ), by suitably choosing p ∈ N and applying Poincaré inequality
and Harnack’s inequality, (6-1) implies u ∈ L∞loc(�, N ).

For a set E⊂N , let diamN E denote the diameter of E with respect to the distance
function dN ( · , · ). For any ball Br (x)⊂�, we want to show that u ∈ Cα(Br/2(x))
for some 0< α < 1. To do it, set Cr := diamN u(Br (x)). We may assume Cr > 0
(otherwise, u is constant on Br (x) and we are done). Now we want to show that
there exists 0< δ0 = δ0(N )≤ 1

2 such that

(6-2) diamN u(Bδ0r (x))≤ 1
2Cr .
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Since ur (y)= u(x+r y) : B1(0)→ N is a harmonic map (B1(0), gr ), with gr (y)=
g(x + r y), we may, for simplicity, assume x = 0 and r = 2. For any 0 < ε < 1

2 ,
since u(B1) ⊂ N is a bounded set, there exists m = m(ε) ≥ 1 such that u(B1) is
covered by m balls B1, . . . , Bm of radius εC1.

Claim. There exists sufficiently small ε > 0 such that u(B1/2) can be covered by at
most (m− 1) balls among B1, . . . , Bm .

To see this, let xi ∈ B1 such that Bi
⊂ B2ε C1(pi ), pi = u(xi ), for 1≤ i ≤m. Let

1 ≤ m′ ≤ m be the maximum number of points in {pi }
m
i=1 such that the distance

between any two of them is at least C1/32. Thus the sets BC1/16(pi ), for 1≤ i ≤
m′, cover u(B1). For convenience, set Ui = u−1

(
B N (pi ,C1/16)

)
, the notation

B N (x, R) referring to the ball in N with center x and radius R. We will show that
there exists i0 ∈ {1, . . . ,m′} such that

(6-3) 1
4C2

1 ≤ sup
x∈B2

d2
N (u(x), pi0)≤ C2

1 ,

and

(6-4) H n(Ui0 ∩ B1/2)≥ c0,

for some universal constant c0 > 0. Indeed, since B1/2 ⊂
m′⋃

i=1
Ui , we have

m′∑
i=1

H n(Ui ∩ B1/2)≥ H n(B1/2).

Hence there exists i0 ∈ {1, . . . ,m′} such that

H n(Ui ∩ B1/2)≥ c0 :=
1

m′
H n(B1/2).

This implies (6-4). Now (6-3) follows from the triangle inequality.
Next we define

f (x) := sup
z∈B1

d2
N (u(z), pi0)− d2

N (u(x), pi0), x ∈ B1.

It is clear that f ≥ 0 in B1, and (6-1) implies 1g f ≤ 0 in B1. By Moser’s Harnack
inequality, we have

inf
B1/2

f ≥ C
 

B1

f ≥ C
ˆ

B1/2

f ≥ C
ˆ

B1/2∩Ui0

f

≥ C
(
sup
B1

d2
N (u, pi0)− sup

B1∩Ui0

d2
N (u, pi0)

)
H n(B1/2Ui0

)
≥ C

( 1
4C2

1 −
1

256C2
1
)

c0 =: θ
2
0 C2

1
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for some universal constant θ0 > 0. This implies

(6-5) sup
z∈B1

dN (u(z), pi0)− sup
z∈B1/2

dN (u(z), pi0)≥ θ0C1 = (1− θ0)C1.

Now we argue that the claim follows from (6-5). For, otherwise, we would have
u(B1/2)∩ B2εC1(p j ) 6=∅ for all 1≤ j ≤ m. Let z0 ∈ B1 be such that

εC1+ dN (u(z0), pi0)≥ sup
B1

dN (u(z), pi0).

Since u(B1) ⊂
⋃m

i= B2εC1(pi ), there exists pi1 ∈ {p1, . . . , pm} such that u(z0) ∈

B2εC1(pi1). Since u(B1/2) ∩ B2εC1(pi1) 6= ∅, there exists z1 ∈ B1/2 such that
u(z1) ∈ B2εC1(pi1). Therefore we have dN (u(z1), u(z0)) ≤ 2εC1. Therefore we
have

sup
z∈B1

dN (u(z), pi0)− sup
z∈B1/2

dN (u(z), pi0)≤ εC1+ dN (u(z0), pi0)− dN (u(z1), pi0)

≤ εC1+ dN (u(z0), u(z1))≤ 3εC1.

This contradicts (6-5) if ε > 0 is chosen to be sufficiently small.
From this claim, we have either

(i) diamN u(B1/2)≤
1
2C1 — in which case (6-2) holds with δ0 =

1
2 — or

(ii) diamN u(B1/2) >
1
2C1.

Then we consider v(x)= u(x/2) : B1→ N and conclude:

• v is a harmonic map on (B1, g1/2), with the metric g1/2(x)= g(x/2).

•
1
2C1 < diamN v(B1)≤ C1.

• v(B1) is covered by at most m−1 balls B1, . . . , Bm−1 of radius εC1.

Thus the claim is applicable to v so that u(B1/4) = v(B1/2) can be covered by at
most m−2 balls among B1, . . . , Bm−1.

If diamN v(B1/2) ≤
1
2C1, we are done. Otherwise, we can repeat the above

argument. It is clear that the process can at most be repeated m times, and the
process will not be stopped at step k0 ≤ m unless diamN u(B2−k0 ) ≤

1
2C1. Thus

(6-2) is proven.
It is readily seen that iteration of (6-2) implies Hölder continuity. �

Proof of Theorem 1.2. First, by Theorem 6.1 and the argument from Section 4, we
can show that for some 0< α < 1,ˆ

Br (x)
|∇u|2 dx ≤ Crn−2+2α for all Br (x)⊂�.

Then we can follow the proof of (5-2) to show that u ∈C0,1(�)∩C1,α(�±∪0, N ).
�
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q-HYPERGEOMETRIC DOUBLE SUMS AS
MOCK THETA FUNCTIONS

JEREMY LOVEJOY AND ROBERT OSBURN

In memory of Basil Gordon

Recently, Bringmann and Kane established two new Bailey pairs and used
them to relate certain q-hypergeometric series to real quadratic fields. We
show how these pairs give rise to new mock theta functions in the form of
q-hypergeometric double sums. We also prove an identity between one of
these sums and two classical mock theta functions introduced by Gordon
and McIntosh.

1. Introduction

A Bailey pair relative to a is a pair of sequences (αn, βn)n≥0 satisfying

(1-1) βn =

n∑
k=0

αk

(q)n−k(aq)n+k
.

Here we have used the standard q-hypergeometric notation,

(1-2) (a)n = (a; q)n =
n∏

k=1

(1− aqk−1),

valid for n ∈ N ∪ {∞}. The Bailey lemma states that if (αn, βn) is a Bailey pair
relative to a, then so is (α′n, β

′
n), where

(1-3) α′n =
(b)n(c)n(aq/bc)n

(aq/b)n(aq/c)n
αn, β ′n =

n∑
k=0

(b)k(c)k(aq/bc)n−k(aq/bc)k

(aq/b)n(aq/c)n(q)n−k
βk .

Inserting (1-3) into (1-1) with n→∞ gives

(1-4)
∑
n≥0

(b)n(c)n(aq/bc)nβn =
(aq/b)∞(aq/c)∞
(aq)∞(aq/bc)∞

∑
n≥0

(b)n(c)n(aq/bc)n

(aq/b)n(aq/c)n
αn,
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valid whenever both sides converge. For more on Bailey pairs, including histori-
cal perspectives and recent advances, see [Andrews 1986b, Chapter 3; 2001], or
[Warnaar 2001].

In a recent study of multiplicative q-series, Bringmann and Kane [2011] estab-
lished two new and interesting Bailey pairs. They showed that (an, bn) is a Bailey
pair relative to 1, where

a2n = (1− q4n)q2n2
−2n

n−1∑
j=−n

q−2 j2
−2 j ,(1-5)

a2n+1 =−(1− q4n+2)q2n2
n∑

j=−n

q−2 j2
,(1-6)

bn =
(−1)n(q; q2)n−1

(q)2n−1
χ(n 6= 0),(1-7)

and (αn, βn) is a Bailey pair relative to q , where

α2n =
1

1− q

(
q2n2

+2n
n−1∑
j=−n

q−2 j2
−2 j
+ q2n2

n∑
j=−n

q−2 j2
)
,(1-8)

α2n+1 =−
1

1− q

(
q2n2

+4n+2
n∑

j=−n

q−2 j2
+ q2n2

+2n
n∑

j=−n−1

q−2 j2
−2 j
)
,(1-9)

βn =
(−1)n(q; q2)n

(q)2n+1
.(1-10)

These closely resemble Bailey pairs related to seventh order mock theta functions
[Andrews 1986a], but surprisingly no q-series obtained by a direct substitution of
either (1-5)–(1-7) or (1-8)–(1-10) in (1-4) is a genuine mock theta function. For
example, it turns out that substituting (1-5)–(1-7) in (1-4) with b, c→∞ yields

−q
(−q)∞

ω(q)

where ω(q) is one of the third order mock theta functions. The presence of the
infinite product means that this is not a mock theta function but a mixed mock
modular form.

Recall that mock theta functions are q-series which were introduced by Ramanu-
jan in his last letter to G. H. Hardy on January 12, 1920. Until 2002, it was not
known how these functions fit into the theory of modular forms. Thanks to work of
Zwegers [2002] and Bringmann and Ono [2006; 2010], we now know that each of
Ramanujan’s examples of mock theta functions is the holomorphic part of a weight
1
2 harmonic weak Maass form f (τ ) (as usual, q := e2π iτ where τ = x + iy ∈ H).
Following [Zagier 2009], the holomorphic part of any weight k harmonic weak
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Maass form f is called a mock modular form of weight k. If k= 1
2 and the image of

f under the operator ξk := 2iyk∂/∂τ is a unary theta function, then the holomorphic
part of f is called a mock theta function. Specializations of the Appell–Lerch series

m(x, q, z) :=
1

j (z, q)

∑
r∈Z

(−1)r q(
r
2)zr

1− qr−1xz

are perhaps the most well-known and most important class of mock theta functions
[Zagier 2009; Zwegers 2002]. Here x , z ∈ C∗ := C \ {0} with neither z nor xz an
integral power of q , and

j (x, q) := (x)∞(q/x)∞(q)∞.

For more on mock theta functions, their remarkable history and modern develop-
ments, see [Ono 2009] and [Zagier 2009].

The goal of this paper is to obtain genuine mock theta functions from the Bailey
pairs of Bringmann and Kane by first moving a step along the Bailey chain. Applying
(1-3) to (an, bn) with (b, c)→ (−1,∞) and to (αn, βn) with (b, c)→ (−q,∞),
we obtain the Bailey pairs recorded in the following two lemmas.

Lemma 1.1. The pair (a′n, b′n) is a Bailey pair relative to 1, where

a′2n = 2(1− q2n)q4n2
−n

n−1∑
j=−n

q−2 j2
−2 j,

a′2n+1 =−2(1− q2n+1)q4n2
+3n+1

n∑
j=−n

q−2 j2
,

b′n =
1

(−q)n

n∑
j=1

(−1) j (q; q2) j−1(−1) j q(
j+1
2 )

(q)n− j (q)2 j−1
.

Lemma 1.2. The pair (α′n, β
′
n) is a Bailey pair relative to q, where

α′2n =
1

1− q

(
q4n2

+3n
n−1∑
j=−n

q−2 j2
−2 j
+ q4n2

+n
n∑

j=−n

q−2 j2
)
,

α′2n+1 =−
1

1− q

(
q4n2

+7n+3
n∑

j=−n

q−2 j2
+ q4n2

+5n+1
n∑

j=−n−1

q−2 j2
−2 j
)
,

β ′n =
1

(−q)n

n∑
j=0

(−q) j (q; q2) j (−1) j q(
j+1
2 )

(q)n− j (q)2 j+1
.
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With our main result, we present four mock theta functions arising from the
Bailey pairs in Lemmas 1.1 and 1.2. Define

θn,p(x, y, q)

:=
1

J 0,np(2n+p)

p−1∑
r∗=0

p−1∑
s∗=0

qn(r−(n−1)/2
2 )+(n+p)(r−(n−1)/2)(s+(n+1)/2)+n(s+(n+1)/2

2 )

×

(−x)r−(n−1)/2(−y)s+(n+1)/2 J 3
p2(2n+p) j

(
−qnp(s−r)xn/yn, qnp2)

j
(
q p(2n+p)r+p(n+p)/2(−y)n+p/(−x)n, q p2(2n+p)

)
×

j
(
q p(2n+p)(r+s)+p(n+p)x p y p, q p2(2n+p)

)
j
(
q p(2n+p)s+p(n+p)/2(−x)n+p/(−y)n, q p2(2n+p)

) ,
where r := r∗+{(n− 1)/2} and s := s∗+{(n− 1)/2} with 0≤ {α}< 1 denoting
the fractional part of α. Also, Jm := Jm,3m with Ja,m := j (qa, qm), and J a,m :=

j (−qa, qm).

Theorem 1.3. The following are mock theta functions:

W1(q):=
∑

n≥ j≥1

(−1) j (q;q2) j−1(−1) j qn2
+( j+1

2 )

(−q)n(q)n− j (q)2 j−1
(1-11)

=4m(−q17,q48,−1)−4q−5m(−q,q48,−1)−
2q2θ3,2(q5,q5,q)

j (q,q3)
,

W2(q):=
∑

n≥ j≥1

(q;q2)n(−1) j (q;q2) j−1(−1)n+ j q(
j+1
2 )

(−q)n(q)n− j (q)2 j−1
(1-12)

=4m(−q,q8,−1)+
2qθ1,2(−q2,−q2,q)

j (−1,q)
,

W3(q):=
∑

n≥ j≥1

(q;q2)n(−1) j (q2
;q4) j−1(−1)n+ j qn2

+ j2
+ j

(−q2;q2)n(q2;q2)n− j (q2;q2)2 j−1
(1-13)

=4m(−q,q12,−1)+
2q3θ1,1(−q7,−q7,q4)

j (−q,q4)
,

W4(q):=
∑

n≥ j≥0

(−q) j (q;q2) j (−1) j qn2
+n+( j+1

2 )

(−q)n(q)n− j (q)2 j+1
(1-14)

=−2q−4m(−q5,q48,−1)−2q−2m(−q11,q48,−1)+
θ3,2(q3,q3,q)

j (q,q3)
.

It should be noted that the series defining W2(q) does not converge. However,
similar to the sixth order mock theta function µ(q) [Andrews and Hickerson 1991],
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the sequence of even partial sums and the sequence of odd partial sums both
converge. We define W2(q) as the average of these two values.

To prove Theorem 1.3 we first use the Bailey machinery to express the Wi in
terms of Hecke-type double sums fa,b,c(x, y, q), where

(1-15) fa,b,c(x, y, q) :=
∑

sg(r)=sg(s)

sg(r)(−1)r+s xr ysqa(r
2)+brs+c(s

2).

Here x , y ∈ C∗ and sg(r) := 1 for r ≥ 0 and sg(r) := −1 for r < 0. Then we apply
recent results of Hickerson and Mortenson [2012] to express the Hecke-type double
sums as Appell–Lerch series m(x, q, z) (up to the addition of weakly holomorphic
modular forms).

We highlight one connection to classical mock theta functions. Namely, we ex-
press the multisum (1-12) in terms of the “eighth order” mock theta functions S1(q)
and T1(q), defined by (see [Gordon and McIntosh 2000])

S1(q) :=
∑
n≥0

qn(n+2)(−q; q2)n

(−q2; q2)n
and T1(q) :=

∑
n≥0

qn(n+1)(−q2
; q2)n

(−q; q2)n+1
.

Corollary 1.4. We have the identity

W2(q)= 2qT1(q)− q S1(q).

Similar identities involving mock theta functions and multisums were given in
[Andrews 2007, Section 13], and more could be deduced from [Bringmann et al.
2010, Theorem 2.4].

The paper proceeds as follows. Some background material on Hecke-type double
sums and Appell–Lerch series is collected in Section 2, and Theorem 1.3 and
Corollary 1.4 are established in Section 3.

2. Preliminaries

We recall some relevant preliminaries. The most important is a result which allows
us to convert from the Hecke-type double sums (1-15) to Appell–Lerch series.
Define

(2-1) ga,b,c(x, y, q, z1, z0)

:=

a−1∑
t=0

(−y)tqc(t
2)j (qbt x,qa)m

(
−qa(b+1

2 )−c(a+1
2 )−t (b2

−ac) (−y)a

(−x)b
,qa(b2

−ac), z0

)

+

c−1∑
t=0

(−x)tqa(t
2)j(qbt y,qc)m

(
−qc(b+1

2 )−a(c+1
2 )−t (b2

−ac) (−x)c

(−y)b
,qc(b2

−ac), z1

)
.
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Following Hickerson and Mortenson, we use the term “generic” to mean that
the parameters do not cause poles in the Appell–Lerch series or in the quotients of
theta functions.

Theorem 2.1 [Hickerson and Mortenson 2012, Theorem 0.3]. Let n and p be
positive integers with (n, p)= 1. For generic x , y ∈ C∗,

fn,n+p,n(x, y, q)= gn,n+p,n(x, y, q,−1,−1)+ θn,p(x, y, q).

We shall also require certain facts about j (x, q), m(x, q, z) and fa,b,c(x, y, q).
From the definition of j (x, q), we have

(2-2) j (qnx, q)= (−1)nq−(
n
2)x−n j (x, q)

where n ∈ Z and

(2-3) j (x, q)= j (q/x, q)=−x j (x−1, q).

Next, some relevant properties of the sum m(x, q, z) are given in the following
(see (2.2b) of Proposition 2.1 and Theorem 2.3 in [Hickerson and Mortenson 2012]).

Proposition 2.2. For generic x , z, z0 ∈ C∗, we have

m(x, q, z)= x−1m(x−1, q, z−1),(2-4)

m(x, q, z)= m(x, q, z0)+
z0 J 3

1 j (z/z0, q) j (xzz0, q)
j (z0, q) j (z, q) j (xz0, q) j (xz, q)

.(2-5)

Finally, two important transformation properties of fa,b,c(x, y, q) are given in
the following (see Propositions 5.1 and 5.2 in [Hickerson and Mortenson 2012]).

Proposition 2.3. For x , y ∈ C∗, we have

(2-6) fa,b,c(x, y, q)

= fa,b,c(−x2qa,−y2qc,q4)−x fa,b,c(−x2q3a,−y2qc+2b,q4)

−y fa,b,c(−x2qa+2b,−y2q3c,q4)+xyqb fa,b,c(−x2q3a+2b,−y2q3c+2b,q4),

(2-7) fa,b,c(x, y, q)=−
qa+b+c

xy
fa,b,c(q2a+b/x, q2c+b/y, q).

3. Proof of Theorem 1.3

Proof of Theorem 1.3. Recall that the goal is to express each double sum q-series
in terms of Appell–Lerch series. For (1-11), apply Lemma 1.1 and let b, c→∞ in
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(1-4) to obtain

W1(q)=
∑
n≥0

qn2
b′n(q)=

1
(q)∞

∑
n≥0

qn2
a′n(q)

=
1

(q)∞

(∑
n≥0

q4n2
a′2n(q)+

∑
n≥0

q4n2
+4n+1a′2n+1(q)

)

=
2

(q)∞

(∑
n≥0

q8n2
−n

n−1∑
j=−n

q−2 j2
−2 j
−

∑
n≥0

q8n2
+n

n−1∑
j=−n

q−2 j2
−2 j

−

∑
n≥0

q8n2
+7n+2

n∑
j=−n

q−2 j2
−

∑
n≥0

q8n2
+9n+3

n∑
j=−n

q−2 j2
)
.

After replacing n with−n in the second sum and n with−n−1 in the fourth sum,
we let n = (r + s+1)/2, j = (r − s−1)/2 in the first two sums and n = (r + s)/2,
j = (r − s)/2 in the latter two sums to find

W1(q)=
2q2

(q)∞

(( ∑
r,s≥0

r 6≡s (mod 2)

−

∑
r,s<0

r 6≡s (mod 2)

)
q

3
2 r2
+5rs+ 7

2 r+ 3
2 s2
+

7
2 s

−

( ∑
r,s≥0

r≡s (mod 2)

−

∑
r,s<0

r≡s (mod 2)

)
q

3
2 r2
+5rs+ 7

2 r+ 3
2 s2
+

7
2 s
)

=−
2q2

(q)∞

((∑
r,s≥0

−

∑
r,s<0

)
q

3
2 r2
+5rs+ 7

2 r+ 3
2 s2
+

7
2 s
)

=−
2q2

(q)∞
f3,5,3(q5, q5, q).

By Theorem 2.1, (2-1), (2-2) and (2-3), we have

f3,5,3(q5,q5,q)

=−2q−2 j (q,q3)m(−q17,q48,−1)+2q−7 j (q,q3)m(−q,q48,−1)+θ3,2(q5,q5,q)

and so

W1(q)= 4m(−q17, q48,−1)− 4q−5m(−q, q48,−1)−
2q2θ3,2(q5, q5, q)

j (q, q3)
.

For (1-12), apply Lemma 1.1 and let b =−
√

q and c =
√

q in (1-4) to get

W2(q)=
∑
n≥0

(−1)n(q; q2)nb′n(q)=
(q; q2)∞

2(q2; q2)∞

∑
n≥0

(−1)na′n(q)
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=
(q; q2)∞

2(q2; q2)∞

(∑
n≥0

a′2n(q)−
∑
n≥0

a′2n+1(q)
)

=
(q; q2)∞

(q2; q2)∞

(∑
n≥0

q4n2
−n

n−1∑
j=−n

q−2 j2
−2 j
−

∑
n≥0

q4n2
+n

n−1∑
j=−n

q−2 j2
−2 j

+

∑
n≥0

q4n2
+3n+1

n∑
j=−n

q−2 j2
−

∑
n≥0

q4n2
+5n+2

n∑
j=−n

q−2 j2
)
.

As before, we proceed with

W2(q)=
(q; q2)∞

(q2; q2)∞

(( ∑
r,s≥0

r 6≡s (mod 2)

−

∑
r,s<0

r 6≡s (mod 2)

)
q

1
2 r2
+3rs+ 3

2 r+ 1
2 s2
+

3
2 s+1

+

( ∑
r,s≥0

r≡s (mod 2)

−

∑
r,s<0

r≡s (mod 2)

)
q

1
2 r2
+3rs+ 3

2 r+ 1
2 s2
+

3
2 s+1

)

=
(q; q2)∞

(q2; q2)∞

((∑
r,s≥0

−

∑
r,s<0

)
q

1
2 r2
+3rs+ 3

2 r+ 1
2 s2
+

3
2 s+1

)

=
q(q; q2)∞

(q2; q2)∞
f1,3,1(−q2,−q2, q).

By Theorem 2.1, (2-1) and (2-2), we have

f1,3,1(−q2,−q2, q)= 2q−1 j (−1, q)m(−q, q8,−1)+ θ1,2(−q2,−q2, q)

and so

W2(q)= 4m(−q, q8,−1)+
2qθ1,2(−q2,−q2, q)

j (−1, q)
.

For (1-13), apply Lemma 1.1 and let b = q , c→∞ and q→ q2 in (1-4) to get

W3(q)=
∑
n≥0

(−1)n(q; q2)nqn2
b′n(q

2)=
(q; q2)∞

(q2; q2)∞

∑
n≥0

(−1)nqn2
a′n(q

2)

=
(q; q2)∞

(q2; q2)∞

(∑
n≥0

q4n2
a′2n(q

2)−
∑
n≥0

q4n2
+4n+1a′2n+1(q

2)

)
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=
2(q; q2)∞

(q2; q2)∞

(∑
n≥0

q12n2
−2n

n−1∑
j=−n

q−4 j2
−4 j
−

∑
n≥0

q12n2
+2n

n−1∑
j=−n

q−4 j2
−4 j

+

∑
n≥0

q12n2
+10n+3

n∑
j=−n

q−4 j2
−

∑
n≥0

q12n2
+14n+5

n∑
j=−n

q−4 j2
)
.

So,

W3(q)=
2(q; q2)∞

(q2; q2)∞

(( ∑
r,s≥0

r 6≡s (mod 2)

−

∑
r,s<0

r 6≡s (mod 2)

)
q2r2
+8rs+5r+2s2

+5s+3

+

( ∑
r,s≥0

r≡s (mod 2)

−

∑
r,s<0

r≡s (mod 2)

)
q2r2
+8rs+5r+2s2

+5s+3
)

=
2(q; q2)∞

(q2; q2)∞

((∑
r,s≥0

−

∑
r,s<0

)
q2r2
+8rs+5r+2s2

+5s+3
)

=
2q3(q; q2)∞

(q2; q2)∞
f1,2,1(−q7,−q7, q4).

By Theorem 2.1, (2-1), (2-2) and (2-3), we have

f1,2,1(−q7,−q7, q4)= 2q−3 j (−q, q4)m(−q, q12,−1)+ θ1,1(−q7,−q7, q4)

and so

W3(q)= 4m(−q, q12,−1)+
2q3θ1,1(−q7,−q7, q4)

j (−q, q4)
.

Finally, for (1-14), apply Lemma 1.2 and let b, c→∞ in (1-4) to get

W4(q)=
∑
n≥0

qn2
+nβ ′n(q)=

(1− q)
(q)∞

∑
n≥0

qn2
+nα′n(q)

=
(1− q)
(q)∞

(∑
n≥0

q4n2
+2nα′2n(q)+

∑
n≥0

q4n2
+6n+2α′2n+1(q)

)

=
1

(q)∞

(∑
n≥0

q8n2
+5n

n−1∑
j=−n

q−2 j2
−2 j
+

∑
n≥0

q8n2
+3n

n∑
j=−n

q−2 j2

−

∑
n≥0

q8n2
+13n+5

n∑
j=−n

q−2 j2
−

∑
n≥0

q8n2
+11n+3

n∑
j=−n−1

q−2 j2
−2 j
)
.

After replacing n with −n−1 in the third and fourth sums, we let n= (r+s+1)/2,
j = (r − s− 1)/2 in the first and fourth sums and n = (r + s)/2, j = (r − s)/2 in
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the second and third sums to get

W4(q)=
1

(q)∞

(( ∑
r,s≥0

r 6≡s (mod 2)

−

∑
r,s<0

r 6≡s (mod 2)

)
q

3
2 r2
+5rs+ 13

2 r+ 3
2 s2
+

13
2 s+5

+

( ∑
r,s≥0

r≡s (mod 2)

−

∑
r,s<0

r≡s (mod 2)

)
q

3
2 r2
+5rs+ 3

2 r+ 3
2 s2
+

3
2 s
)

=
1

(q)∞

(
2q13 f3,5,3(−q25,−q29, q4)

+ f3,5,3(−q9,−q9, q4)+ q11 f3,5,3(−q25,−q25, q4)
)

=
1

(q)∞
f3,5,3(q3, q3, q),

where in the last step we have used (2-6) and (2-7). By Theorem 2.1, (2-1), (2-2),
(2-3) and (2-4), we have

f3,5,3(q3, q3, q)

=−2q−4 j (q, q3)m(−q5, q48,−1)−2q−2 j (q, q3)m(−q11, q48,−1)+θ3,2(q3, q3, q)

and so

W4(q)=−2q−4m(−q5, q48,−1)−2q−2m(−q11, q48,−1)+
θ3,2(q3, q3, q)

j (q, q3)
. �

Proof of Corollary 1.4. Equations (4.36) and (4.38) of [Hickerson and Mortenson
2012] state that

S1(q)=−2q−1m(−q, q8,−1)+
J 3,8 J 2

2,8

q J 2
1,8

, T1(q)= q−1m(−q, q8, q6).

By (1-12), (2-3) and (2-5), the claim is equivalent to the identity

J 3,8 J 2
2,8

J 2
1,8
+

2qθ1,2(−q2,−q2, q)
j (−1, q)

=
−2 j (q8, q24)3 j (−q6, q8)

j (q6, q8) j (−1, q8) j (−q7, q8)
.

We have verified this identity using a MAPLE program [Garvan 2010]. �
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XIU-HUA LUO AND PU ZHANG

Dedicated to the memory of Hua Feng

Given a finite-dimensional algebra A over a field k, and a finite acyclic
quiver Q, let 3= A⊗k k Q, where k Q is the path algebra of Q over k. Then
the category 3-mod of 3-modules is equivalent to the category Rep( Q, A)

of representations of Q over A. This yields the notion of monic representa-
tions of Q over A. We denote the full subcategory of Rep( Q, A) consisting
of monic representations of Q over A by Mon( Q, A). It is proved that
Mon( Q, A) has Auslander–Reiten sequences.

The main result of this paper explicitly describes the Gorenstein-projec-
tive 3-modules via the monic representations plus an extra condition. As a
corollary, we prove the equivalence of three conditions: A is self-injective;
Gorenstein-projective 3-modules are exactly the monic representations of
Q over A; Mon( Q, A) is a Frobenius category.

1. Introduction

Let A be an Artin algebra, and A-mod the category of finitely generated left
A-modules. A complete A-projective resolution is an exact sequence of finitely
generated projective A-modules

P• = · · · → P−1
→ P0 d0

−→ P1
→ · · ·

such that HomA(P•, A) is also exact. A module M ∈ A-mod is Gorenstein-projective
if there exists a complete A-projective resolution P• such that M ∼= Ker d0. Let
P(A) be the full subcategory of A-mod of projective modules, and GP(A) the full
subcategory of A-mod of Gorenstein-projective modules. Then

P(A)⊆ GP(A)⊆ ⊥A = {X ∈ A-mod | ExtiA(X, A)= 0 for all i ≥ 1}.

The authors were supported by the NSF of China (11271251) and the Doctoral Fund of the Ministry
of Education of China (20120073110058). Pu Zhang is the corresponding author.
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It is clear that GP(A) = A-mod if and only if A is self-injective. If A is of
finite global dimension, GP(A) = P(A) (but the converse is not true); and if
A is a Gorenstein algebra (that is, inj.dim A A <∞ and inj.dim AA <∞), then
GP(A)= ⊥A (but the converse is not true); see, for example, [Enochs and Jenda
2000, Corollary 11.5.3]. This class of modules enjoys more stable properties than
the usual projective modules (see [Auslander and Bridger 1969], where it was
called a module of G-dimension zero); it becomes a main ingredient in the relative
homological algebra [Enochs and Jenda 1995; 2000] and in the representation theory
of algebras (see [Auslander and Reiten 1991a; 1991b; Beligiannis 2005; Gao and
Zhang 2010; Iyama et al. 2011], for example), and plays a central role in the Tate
cohomology of algebras (see [Avramov and Martsinkovsky 2002; Buchweitz 1987],
for example). An important feature is that GP(A) is a Frobenius category with
relative projective-injective objects being projective A-modules, and hence the stable
category GP(A) of GP(A) modulo P(A) is a triangulated category. By [Buchweitz
1987; Happel 1991], the singularity category of a Gorenstein algebra A is triangle
equivalent to GP(A). Thus explicitly constructing all the Gorenstein-projective
modules is a fundamental problem, and is useful to all of these applications.

On the other hand, the submodule category has been extensively studied by
C. M. Ringel and M. Schmidmeier [2006; 2008a; 2008b]; see also [Simson 2007].
By [Kussin et al. 2012] it is also related to the singularity category; see also [Chen
2011]. It turns out that the category of the Gorenstein-projective modules is closely
related to the submodule category (see [Li and Zhang 2010; Xiong and Zhang
2012]), or, in general, to the monomorphism category [Zhang 2011]. The present
paper explores such a relation in a more general set-up.

Given a finite-dimensional algebra A over a field k, and a finite acyclic quiver Q
(here “acyclic” means that Q has no oriented cycles), let

3= A⊗k k Q,

where k Q is the path algebra of Q over k. We call3 the path algebra of a finite quiver
Q over A. As in the case of A=k,3-mod is equivalent to the category Rep(Q, A) of
representations of Q over A. This interpretation permits us to introduce the so-called
monic representations of Q over A. See Definition 2.2. Let Mon(Q, A) be the full
subcategory of Rep(Q, A) consisting of monic representations of Q over A. Then
Mon(Q, A) is a resolving, functorially finite subcategory of Rep(Q, A), and hence
has Auslander–Reiten sequences (see Theorem 3.1). The main result of this paper,
Theorem 5.1, explicitly describes all the Gorenstein-projective 3-modules, via the
monic representations of Q over A plus an extra condition. We emphasize that here
3 is not necessarily Gorenstein. By our main result, if we know all the Gorenstein-
projective A-modules, we know all the Gorenstein-projective 3-modules, and, in
this way, we give an inductive construction of the Gorenstein-projective modules.
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The proof of Theorem 5.1 use induction on |Q0| and a description of the Gorenstein-
projective modules over the triangular extension of two algebras via a bimodule
which is projective in both sides (Theorem 4.1). As a corollary, we see that A is
self-injective if and only if GP(3) =Mon(Q, A), and if and only if Mon(Q, A)
is a Frobenius category (Corollary 6.1). As another corollary, if Q has an arrow,
P(3)=Mon(Q, A) if and only if 3 is hereditary (Corollary 6.3).

2. Monic representations of a quiver over an algebra

Throughout this section k is a field, Q a finite quiver, and A a finite-dimensional
k-algebra. We consider the path algebra AQ of Q over A, describe its module
category, and introduce the concept of monic representations of Q over A. In
Subsections 2A–2D, Q is not assumed to be acyclic if not otherwise stated.

2A. Given a finite quiver

Q = (Q0, Q1, s, e),

let P be the set of paths of Q. We write the conjunction of paths from right to left. If
p= αl · · ·α1 ∈P with αi ∈ Q1, l ≥ 1, and e(αi )= s(αi+1) for 1≤ i ≤ l−1, we call
l the length of p and denote it by l(p), and define the starting vertex s(p)= s(α1)

and the ending vertex e(p) = e(αl). We denote a vertex i by ei , and regard it as
a path of length 0, with s(ei ) = i = e(ei ). Let k Q be the path algebra of Q over
k. It is well-known that the category k Q-mod of finite-dimensional k Q-modules
is equivalent to the category Rep(Q, k) of finite-dimensional representations of Q
over k; see, for example, [Ringel 1984, p. 44].

2B. Let 3 = AQ be the free left A-module with basis P . An element of AQ is
written as a finite sum

∑
p∈P ap p, where ap ∈ A and ap = 0 for all but finitely

many p. Then 3 is a k-algebra, with multiplication bilinearly given by

(ap p)(bqq)= (apbq)(pq),

where apbq is the product in A, and pq is the product in k Q. We have isomorphisms
3∼= A⊗k k Q ∼= k Q⊗k A of k-algebras, and we call 3= AQ the path algebra of
Q over A.

For example, if Q =•
n
→· · ·→•

1
, the algebra 3 is given by the upper triangular

matrix algebra of A:

Tn(A)=


A A · · · A A
0 A · · · A A
...
...
. . .

...
...

0 0 · · · A A
0 0 · · · 0 A

 ,
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In general, if Q is acyclic and Q0 is labeled as 1, . . . , n in such a way that j > i
whenever there is an arrow α : j→ i in Q1, then

(2-1) k Q ∼=


k km21 km31 · · · kmn1

0 k km32 · · · kmn2

0 0 k · · · kmn3

...
...

...
...

0 0 0 · · · k


n×n

,

where m j i is the number of paths from j to i and km j i is the direct sum of m j i

copies of k, and hence

(2-2) 3∼=


A Am21 Am31 · · · Amn1

0 A Am32 · · · Amn2

0 0 A · · · Amn3

...
...

...
...

0 0 0 · · · A


n×n

.

2C. By definition, a representation X of Q over A is a datum

X = (X i , Xα, i ∈ Q0, α ∈ Q1),

where X i is an A-module for each i ∈ Q0 and Xα : Xs(α)→ Xe(α) is an A-map
for each α ∈ Q1. It is a finite-dimensional representation if each X i is finite-
dimensional. We call X i the i-th branch of X . A morphism f from representation
X to representation Y is a datum ( fi , i ∈ Q0), where fi : X i → Yi is an A-map for
each i ∈ Q0, such that, for each arrow α : j→ i , the diagram

(2-3)

X j
f j //

Xα
��

Y j

Yα
��

X i
fi // Yi

commutes. We call fi the i-th branch of f . If p = αl · · ·α1 ∈ P with αi ∈ Q1,
l ≥ 1, and e(αi )= s(αi+1) for 1≤ i ≤ l−1, we put X p to be the A-map Xαl · · · Xα1 .
Denote by Rep(Q, A) the category of finite-dimensional representations of Q over A.
A morphism f = ( fi , i ∈ Q0) in Rep(Q, A) is a monomorphism (epimorphism,
isomorphism) if and only if fi is injective (surjective, an isomorphism) for each
i ∈ Q0.

Lemma 2.1. Let 3 be the path algebra of Q over A. Then we have an equivalence
3-mod∼= Rep(Q, A) of categories.

We omit the proof of Lemma 2.1, which is similar to the case of A = k; see
[Auslander et al. 1995, Theorem 1.5, p. 57; Ringel 1984, p. 44]. Throughout this
paper we will identify a 3-module with a representation of Q over A. Under this
identification, a 3-module X is a representation (X i , Xα, i ∈ Q0, α ∈ Q1) of Q
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over A, where X i = (1ei )X , 1 is the identity of A, and the A-action on X i is given
by a(1ei )x = (1ei )(aei )x for all x ∈ X and a ∈ A; and Xα : Xs(α)→ Xe(α) is the
A-map given by the left action by 1α ∈ 3. On the other hand, a representation
(X i , Xα, i ∈ Q0, α ∈ Q1) of Q over A is a 3-module X =

⊕
i∈Q0

X i , with the
3-action on X given by

(ap)(xi )=


0 if s(p) 6= i,
axi if p = ei ,

aX p(xi ) ∈ Xe(p) if s(p)= i and l(p)≥ 1,

for all a ∈ A, p ∈ P, xi ∈ X i . Let f : X → Y be a morphism in Rep(Q, A).
Then Ker f and Coker f can be explicitly written out. For example, Coker f =
(Coker fi , Ỹα, i ∈ Q0, α ∈ Q1), where, for each arrow α : j→ i ,

Ỹα : Coker f j → Coker fi

is the A-map induced by Yα; see (2-3). A sequence of morphisms

0−→ X
f
−→ Y

g
−→ Z −→ 0

in Rep(Q, A) is exact if and only if each

0−→ X i
fi
−→ Yi

gi
−→ Zi −→ 0

is exact in A-mod, for i ∈ Q0.
In the following, if Q0 is labeled as 1, . . . , n, we also write a representation X

of Q over A as X1
...

Xn


(Xα, α∈Q1)

,

and a morphism in Rep(Q, A) as  f1
...

fn

 .
2D. The following is a central notion of this paper.

Definition 2.2. A representation X = (X i , Xα, i ∈ Q0, α ∈ Q1) of Q over A is a
monic representation, or a monic 3-module, if, for each i ∈ Q0, the A-map

(Xα) α∈Q1
e(α)=i

:

⊕
α∈Q1

e(α)=i

Xs(α)→ X i

is injective, or, equivalently, if the following two conditions are satisfied.
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(m1) For each α ∈ Q1, the map Xα : Xs(α)→ Xe(α) is injective.

(m2) For each i ∈ Q0, there holds
∑

α∈Q1
e(α)=i

Im Xα =
⊕

α∈Q1
e(α)=i

Im Xα.

Denote by Mon(Q, A) the full subcategory of Rep(Q, A) consisting of monic
representations of Q over A. We call Mon(Q, A) the monomorphism category of
A over Q.

If Q is a quiver in which, for any vertex i , there is at most one arrow ending at i ,
condition (m2) vanishes. For example, if Q = •→ • , then Mon(Q, A) is called
the submodule category of A in [Ringel and Schmidmeier 2006; 2008a]. If

Q = •
n
→ · · · → •

1
,

Mon(Q, A) is called the filtered chain category of A in [Arnold 2000; Simson
2007].

2E. Let Q be a finite acyclic quiver, A a finite-dimensional algebra, and 3 =
A ⊗k k Q. Throughout this paper, we label the vertices of Q as 1, 2, . . . , n, in
such a way that if there is an arrow from j to i , then j > i . Denote by P(i) the
indecomposable projective k Q-module at i ∈ Q0. It is clear that P(i)∈Mon(Q, k);
it follows that M⊗k P(i)∈Mon(Q, A) for M ∈ A-mod. Thus we have the functors

−⊗k P(i) : A-mod→Mon(Q, A), −i : Rep(Q, A)→ A-mod

(by taking the i-th branch).
We also need the adjoint pair (−⊗k P(i),−i ).

Lemma 2.3. For each object X = (X i , Xα, i ∈ Q0, α ∈ Q1) ∈ 3-mod and each
A-module M , we have isomorphisms of abelian groups, which are natural in both
positions

(2-4) Hom3(M ⊗k P(i), X)∼= HomA(M, X i )

for all i ∈ Q0.

Proof. For f = ( f j , j ∈ Q0) ∈Hom3(M⊗k P(i), X), we have fi ∈HomA(M, X i ).
Since M ⊗k P(i)= (M ⊗k e j k Qei , idM ⊗α, j ∈ Q0, α ∈ Q1), it follows from the
commutative diagram (2-3) that

(2-5) f j =

{
0 if there are no paths from i to j,
m⊗k p 7→ X p fi (m) if there is a path p from i to j.

By (2-5) we see that f 7→ fi gives an injective map

Hom3(M ⊗k P(i), X)→ HomA(M, X i ).

This map is also surjective, since for a given fi ∈HomA(M, X i ), f = ( f j , j ∈ Q0)

given by (2-5) is indeed a morphism in Rep(Q, A) from M ⊗k P(i) to X . �
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Proposition 2.4. (i) The indecomposable projective 3-modules have the form
P ⊗k P(i), where P is an indecomposable projective A-module, and P(i) is
the indecomposable projective k Q-module at i ∈ Q0.

(ii) The indecomposable projective objects in Mon(Q, A) are exactly the indecom-
posable projective 3-modules.

(iii) If I is an indecomposable injective A-module and P(i) is the indecomposable
projective k Q-module at i ∈ Q0, I ⊗k P(i) is an indecomposable injective
object in Mon(Q, A).

Proof. (i) As a direct summand of the regular 3-module 33, we see that P⊗k P(i)
is a projective 3-module, and each projective 3-module has this form. By (2-4)
we have

End3(P ⊗k P(i))∼= HomA(P, (P ⊗k P(i))i )= EndA(P),

from which we see that P ⊗k P(i) is indecomposable.

(ii) Note that P⊗k P(i)∈Mon(Q, A). By (i) we know that it is an indecomposable
projective object in Mon(Q, A). On the other hand, it is clear that Mon(Q, A) is
closed under taking subobjects, as a consequence any indecomposable projective
object in Mon(Q, A) has this form.

(iii) Note that I ⊗k P(i) is an indecomposable object in Mon(Q, A). Put L =
D(AA)⊗k k Q, where D = Homk(−, k). It suffices to prove that L is an injective
object in Mon(Q, A), by induction on |Q0|. We write L= (L i , Lα, i ∈ Q0, α ∈ Q1).

Let Q′ be the quiver obtained from Q by deleting a sink vertex 1, L ′ the repre-
sentation in Rep(Q′, A) obtained from L by deleting the branch L1. We observe
that L ′ = D(AA)⊗k k Q′, and by inductive hypothesis L ′ is an injective object in
Mon(Q′, A).

Let 0 → X
f
−→ Y

g
−→ Z → 0 be an exact sequence in Mon(Q, A), with

X = (X i , Xα, i ∈ Q0, α ∈ Q1), and h : X→ L a morphism in Rep(Q, A). Let X ′

be the representation in Rep(Q′, A) obtained from X by deleting the branch X1,
and similarly for Y ′, Z ′. Then we have an exact sequence

0−→ X ′
f ′
−→ Y ′

g′
−→ Z ′−→ 0

in Mon(Q′, A), where f ′ is the morphism in Rep(Q′, A) obtained from f by
deleting the branch f1, and similarly for g′ and for h′ : X ′→ L ′. Since L ′ is an
injective object in Mon(Q′, A), by definition we have a morphism

u′ =

u2
...

un

 : Y ′→ L ′
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in Rep(Q′, A) such that h′ = u′ f ′. It suffices to construct an A-map

u1 : Y1→ L1

such that u =


u1
u2
...

un

 : Y → L is a morphism in Rep(Q, A), and that h1 = u1 f1.

First, we have an A-map u′1 : Y1→ L1 such that the diagram

X1
� � f1 //

h1
��

Y1

u′1~~
L1 .

commutes. Consider the A-map

(Lαus(α)− u′1Yα) α∈Q1
e(α)=1

:

⊕
α∈Q1

e(α)=1

Ys(α)→ L1.

Since we have the exact sequence of A-modules

0−→
⊕
α∈Q1

e(α)=1

Xs(α)
diag( fs(α))
−−−−−→

⊕
α∈Q1

e(α)=1

Ys(α)
diag(gs(α))
−−−−−→

⊕
α∈Q1

e(α)=1

Zs(α)−→ 0,

and since

(Lαus(α)− u′1Yα) α∈Q1
e(α)=1

◦ diag( fs(α))= (Lαus(α) fs(α)− u′1Yα fs(α)) α∈Q1
e(α)=1

= (Lαus(α) fs(α)− u′1 f1 Xα) α∈Q1
e(α)=1

= (Lαhs(α)− h1 Xα) α∈Q1
e(α)=1

= 0,

where the second equality follows from the fact that f : X→ Y is a morphism in
Rep(Q, A), it follows that (Lαus(α)−u′1Yα) α∈Q1

e(α)=1
factors through diag(gs(α)). That

is, there is an A-map
v1 :

⊕
α∈Q1

e(α)=1

Zs(α)→ L1,

such that

(Lαus(α)− u′1Yα) α∈Q1
e(α)=1

= v1 ◦ diag(gs(α)).

Since L1 is an injective A-module and

(Zα) α∈Q1
e(α)=1

:

⊕
α∈Q1

e(α)=1

Zs(α)→ Z1
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is an injective A-map, it follows that there is an A-map w1 : Z1→ L1, such that
v1 = w1 ◦ (Zα) α∈Q1

e(α)=1
. So we have

(Lαus(α)− u′1Yα) α∈Q1
e(α)=1

= w1 ◦ (Zα) α∈Q1
e(α)=1

◦ diag(gs(α))= (w1g1Yα) α∈Q1
e(α)=1

,

where the second equality follows from the fact that g : Y → Z is a morphism in
Rep(Q, A). This means that for each α ∈ Q1 with e(α)= 1 we have

(2-6) Lαus(α)− u′1Yα = w1g1Yα.

Now put u1 = u′1 +w1g1 : Y1 → L1. Then (2-6) together with the inductive
hypothesis implies that

u =


u1
u2
...

un

 : Y → L

is a morphism in Rep(Q, A). It is clear that

u1 f1 = (u′1+w1g1) f1 = u′1 f1 = h1.

This completes the proof. �

2F. Recall from [Auslander and Reiten 1991a] that a full subcategory X of A-mod is
resolving if X contains all projective A-modules and X is closed under extensions,
kernels of epimorphisms, and direct summands. It is straightforward to verify
that Mon(Q, A) is closed under extensions, kernels of epimorphisms, and direct
summands. By Proposition 2.4 we have the following.

Corollary 2.5. For a finite acyclic quiver Q and a finite-dimensional algebra A,
Mon(Q, A) is a resolving subcategory of Rep(Q, A).

2G. There is another similar but different notion. Let A = k Q/I be a finite-
dimensional k-algebra, where I is an admissible ideal of k Q. An I -bounded
representations of Q over k is a datum X = (X i , Xα, i ∈ Q0, α ∈ Q1), where X i is a
k-space for each i ∈ Q0, and Xα : Xs(α)→ Xe(α) is a k-linear map for each α ∈ Q1,
such that

∑
p∈P cp X p = 0 for each element

∑
p∈P cp p ∈ I , where l(p) ≥ 2 and

cp ∈ k. An I -bounded representation X = (X i , Xα, i ∈ Q0, α ∈ Q1) of Q over k is
a monic representation, if for each i ∈ Q0 the k-linear map

(Xα) α∈Q1
e(α)=i

:

⊕
α∈Q1

e(α)=i

Xs(α)→ X i

is injective. Let Rep(Q, I, k) be the category of finite-dimensional I -bounded
representations of Q over k. There is an equivalence of categories between A-mod
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and Rep(Q, I, k); see [Auslander et al. 1995, Proposition 1.7, p. 60; Ringel 1984,
p. 45]. Let Mon(Q, I, k) denote the full subcategory of Rep(Q, I, k) of I -bounded
monic representations Q over k. Then Mon(Q, 0, k)=Mon(Q, k).

Proposition 2.6. Let A = k Q/I be a finite-dimensional k-algebra, where I is an
admissible ideal of k Q. Then P(A)⊆Mon(Q, I, k) if and only if A is hereditary.

Proof. If A is hereditary, I = 0. It is clear P(k Q)⊆Mon(Q, 0, k).
Conversely, if I 6= 0, take an element

∑
p∈P cp p ∈ I with l(p)≥ 2 and cp ∈ k.

We may assume that all the paths p with cp 6= 0 have the same starting vertex j
and the same ending vertex i . Consider the projective A-module P( j)= Ae j . As
an I -bounded representation of Q over k, we write P( j) as

P( j)= (et k Qe j , fα, t ∈ Q0, α ∈ Q1).

Let α1, . . . , αm be all the arrows of Q ending at i . We claim that

( fαv )1≤v≤m :
⊕

1≤v≤m

es(αv)k Qe j → ei k Qe j

is not injective, where fαv is the k-linear map given by the left multiplication by
αv . Since each path from j to i must go through some αv , and

∑
p∈P cp f p = 0, it

follows that ∑
1≤v≤m

dimk(es(αv)k Qe j ) > dimk(ei k Qe j ).

This justifies the claim, that is, P( j) /∈Mon(Q, I, k). �

Now, let 3 = A⊗k k Q be the path algebra of Q over A. Assume that 3 is of
the form 3= k Q′/I ′, where Q′ is a finite quiver and I ′ is an admissible ideal of
k Q′. We emphasize that, in general,

Mon(Q, A) 6=Mon(Q′, I ′, k).

In fact, P(3)⊆Mon(Q, A) (Proposition 2.4); but generally P(3)⊆Mon(Q′, I ′, k)
is not true, as Proposition 2.6 shows. This is the reason why we do not use the
notation Mon(3).

3. Functorial finiteness of Mon( Q, A) in Rep( Q, A)

The aim of this section is to prove the following.

Theorem 3.1. Let Q be a finite acyclic quiver, and A a finite-dimensional algebra.
Then Mon(Q, A) is functorially finite in Rep(Q, A) and Mon(Q, A) has Auslander–
Reiten sequences.
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The idea of the proof given below is essentially due to Ringel and Schmidmeier
[2008a] for the case of Q = •→ •. The same result for the case of

Q = •
n
→ · · · → •

1

has been obtained in [Moore 2010; Zhang 2011].

3A. Let Q be a finite acyclic quiver. Remember we label the vertices of Q as
1, 2, . . . , n, such that if there is an arrow from j to i , j > i . So vertex 1 is a sink.
Denote by P(→ i) the set of all the paths p with ending vertex e(p) = i and
l(p)≥ 1.

For X ∈ Rep(Q, A) and i ∈ Q0, put Ki to be the kernel of the A-map

(Xα) α∈Q1
e(α)=i

:

⊕
α∈Q1

e(α)=i

Xs(α)→ X i .

Fix an injective envelope δi : Ki ↪→ IKi of Ki . Then there is an A-map

(ϕα) α∈Q1
e(α)=i

:

⊕
α∈Q1

e(α)=i

Xs(α)→ IKi

such that the diagram

(3-1)

Ki
� � //

� _

δi

��

⊕
α∈Q1
e(α)=i

Xs(α)

(ϕα) α∈Q1
e(α)=i{{

IKi .

commutes for each i ∈ Q0. We construct a representation

rMon(X)= (rMon(X)i , rMon(X)α, i ∈ Q0, α ∈ Q1) ∈ Rep(Q, A)

as follows. For each i ∈ Q0, define

(3-2) rMon(X)i = X i ⊕ IKi ⊕
⊕

p∈P(→i)

IKs(p).

(Note that if i is a source, by definition rMon(X)i = X i , and that if p1, . . . , pm are
all the paths in P(→ i) with the same starting vertex j , the IK j ⊕ · · ·⊕ IK j︸ ︷︷ ︸

m

is a
direct summand of

⊕
p∈P(→i) IKs(p).)

For each arrow α : j→ i , define

rMon(X)α : X j ⊕ IK j ⊕
⊕

p∈P(→ j)

IKs(p)→ X i ⊕ IKi ⊕
⊕

q∈P(→i)

IKs(q)
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to be the A-map given by

(3-3) x j + k j +
∑

p∈P(→ j)

ks(p) 7→ Xα(x j )+ϕα(x j )+ k j +
∑

p∈P(→ j)

ks(αp),

where x j ∈ X j , k j ∈ IK j , ks(p) ∈ IKs(p). Note that s(p)= s(αp), and that ks(αp) is
just ks(p). Also note that at the right side of (3-3), k j and

∑
p∈P(→ j) ks(αp) belong

to different direct summands of
⊕

q∈P(→i) IKs(q).

Lemma 3.2. For X ∈ Rep(Q, A), we have rMon(X) ∈Mon(Q, A).

Proof. For each i ∈ Q0, let α1, . . . , αm be all the arrows ending at i . By definition
we only need to prove that the A-map

(rMon(X)α1, . . . , rMon(X)αm ) :
⊕

1≤ j≤m

rMon(X)s(α j )→ rMon(X)i

is injective. This is clear by (3-1)–(3-3). For completeness we include a justification.
Suppose z j = xs(α j )+ks(α j )+(

∑
p∈P(→s(α j ))

ks(p))∈ rMon(X)s(α j ), j=1, . . . ,m,
and

∑
1≤ j≤m rMon(X)α j (z j )= 0. Then by (3-3) we have

0=
∑

1≤ j≤m

Xα j (xs(α j ))+
∑

1≤ j≤m

ϕα j (xs(α j ))+
∑

1≤ j≤m

ks(α j )+

∑
1≤ j≤m

∑
p∈P(→s(α j ))

ks(α j p)

∈ X i ⊕ IKi ⊕
⊕

q∈P(→i)

IKs(q).

Thus ∑
1≤ j≤m

Xα j (xs(α j ))= 0,
∑

1≤ j≤m

ϕα j (xs(α j ))= 0,

and ks(α j ) = 0 = ks(α j p) for all j = 1, . . . ,m and all p ∈ P(→ s(α j )). Note that∑
1≤ j≤m Xα j (xs(α j ))= 0 implies xs(α1)

...

xs(αm )

 ∈ Ki .

By (3-1) we have

δi

 xs(α1)
...

xs(αm )

= ∑
1≤ j≤m

ϕα j (xs(α j ))= 0.

Since δi is injective, we have xs(α j ) = 0 for j = 1, . . . ,m. Thus z j = 0 for
j = 1, . . . ,m. This completes the proof. �
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3B. Let X be a full subcategory of A-mod. Recall from [Auslander and Reiten
1991a] that a right X -approximation of M is a morphism f : X→ M with X ∈ X
such that the induced homomorphism HomA(X ′, X)→HomA(X ′,M) is surjective
for each X ′ ∈ X . If every object M admits a right X -approximation, X is called
a contravariantly finite subcategory in A-mod. Dually one has the concept of a
covariantly finite subcategory in A-mod. If X is both contravariantly and covariantly
finite in A-mod, X is a functorially finite subcategory in A-mod.

Proposition 3.3. Let Q be a finite acyclic quiver, and A a finite-dimensional
algebra. Then Mon(Q, A) is contravariantly finite in Rep(Q, A).

More precisely, let X ∈ Rep(Q, A), f = ( fi , i ∈ Q0) : rMon(X)→ X , where
fi : rMon(X)i → X i is the canonical projection. Then f is a right Mon(Q, A)-
approximation of X.

Proof. We use induction to prove that f is a right Mon(Q, A)-approximation of X .
The assertion trivially holds if |Q0| = 1. Suppose that the assertion holds for the
quivers Q with |Q0| = n− 1. Assume that |Q0| = n and that

g =

g1
...

gn

 : Y → X

is a morphism in Rep(Q, A) with Y ∈Mon(Q, A). We need to prove that there is
a morphism

h =

h1
...

hn

 : Y → rMon(X)

in Rep(Q, A) such that g = f h.
Let Q′ be the quiver obtained from Q by deleting vertex 1, X ′ the representation

in Rep(Q′, A) obtained from X by deleting the branch X1, and Y ′ the representation
in Mon(Q′, A) obtained from Y by deleting the branch Y1. Then by definition
rMon(X ′) is exactly the representation in Mon(Q′, A) obtained from rMon(X) by
deleting the branch rMon(X)1. Further, f2

...

fn

 : rMon(X ′)→ X ′ and

g2
...

gn

 : Y ′→ X ′

are morphisms in Rep(Q′, A). By the inductive hypothesis there is a morphismh2
...

hn

 : Y ′→ rMon(X ′)
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in Rep(Q′, A), such that g2
...

gn

=
 f2
...

fn

h2
...

hn

 .
Let α1, . . . , αm be all the arrows ending at 1. Since

(Yα1, . . . , Yαm ) :
⊕

1≤ j≤m

Ys(α j )→ Y1

is an injective A-map and IK1⊕
(⊕

p∈P(→1) IKs(p)
)

is an injective A-module, it
follows that there is a map

η : Y1→ IK1⊕
⊕

p∈P(→1)

IKs(p)

such that the diagram

⊕
1≤ j≤m

Ys(α j ) Y1

⊕
1≤ j≤m

rMon(X)s(α j ) IK1⊕
⊕

p∈P(→1)
IKs(p)

(Yα1 ,...,Yαm ) //

h̃
�� (B1,...,Bm) //

η

��

commutes, where h̃ = diag(hs(α1), . . . , hs(αm)) and, for each j = 1, . . . ,m,

B j : rMon(X)s(α j )→ IK1⊕
⊕

p∈P(→1)

IKs(p)

is the A-map given by

xs(α j )+ ks(α j )+

∑
p∈P(→s(α j ))

ks(p) 7→ ϕα j (xs(α j ))+ ks(α j )+

∑
p∈P(→s(α j ))

ks(α j p)

for

xs(α j )+ ks(α j )+

∑
p∈P(→s(α j ))

ks(p) ∈ rMon(X)s(α j )

= Xs(α j )⊕ IKs(α j )⊕

⊕
p∈P(→s(α j ))

IKs(p).

For y ∈ Ys(α j ), suppose

hs(α j )(y)= xs(α j )+ ks(α j )+

∑
p∈P(→s(α j ))

ks(p) ∈ rMon(X)s(α j ).
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Then we have

rMon(X)α j hs(α j )(y)= Xα j (xs(α j ))+ϕα j (xs(α j ))+ ks(α j )+

∑
p∈P(→s(α j ))

ks(α j p)

= Xα j (xs(α j ))+ B j hs(α j )(y)

= Xα j ( fs(α j )hs(α j )(y))+ B j hs(α j )(y)

= Xα j gs(α j )(y)+ B j hs(α j )(y)

= g1Yα j (y)+ ηYα j (y),

where the last equality uses the fact that g : Y → X is a morphism in Rep(Q, A).
Now we define h1 : Y1→ rMon(X)1 to be the A-map given by

h1(y)= g1(y)+ η(y)

for each y ∈ Y1. From the computation above we have rMon(X)α j hs(α j ) = h1Yα j

for j = 1, . . . ,m. It follows that

h =

h1
...

hn

 : Y → rMon(X)

is a morphism in Rep(Q, A). Since f1 : rMon(X)1→ X1 is the canonical projection,
we have f1η = 0 and f1g1 = g1, and hence f h = g. This completes the proof. �

3C. Proof of Theorem 3.1. By Corollary 2.5 and Proposition 3.3 we know that
Mon(Q, A) is a resolving, contravariantly finite subcategory of Rep(Q, A), and
hence Mon(Q, A) is functorially finite in Rep(Q, A); see [Krause and Solberg 2003,
Corollary 2.6(i)]. It follows that Mon(Q, A) has Auslander–Reiten sequences, by
[Auslander and Smalø 1981, Theorem 2.4]. �

4. Gorenstein-projective modules over the upper triangular matrix algebras

4A. Let A and B be rings, M an A-B-bimodule, and3=
( A

0
M
B

)
the upper triangular

matrix ring, where the addition and multiplication are given by the ones of matrices.
We assume that 3 is an Artin algebra [Auslander et al. 1995, p. 72], and consider
finitely generated 3-modules. A 3-module can be identified with a triple

( X
Y

)
φ
,

or simply
( X

Y

)
if φ is clear, where X ∈ A-mod, Y ∈ B-mod, and φ : M ⊗B Y → X

is an A-map. A 3-map
( X

Y

)
φ
→
( X ′

Y ′
)
φ′

can be identified with a pair
( f

g

)
, where

f ∈ HomA(X, X ′), g ∈ HomB(Y, Y ′) are such that the diagram

M ⊗B Y

id⊗g
��

φ
// X

f
��

M ⊗B Y ′
φ′

// X ′
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commutes. A sequence of 3-maps

0→
(X1

Y1

)
φ1

( f1
g1

)
−−−→

(X2
Y2

)
φ2

( f2
g2

)
−−−→

(X3
Y3

)
φ3
→ 0

is exact if and only if

0−→ X1
f1
−→ X2

f2
−→ X3−→ 0

is an exact sequence of A-maps, and

0−→ Y1
g1
−→ Y2

g2
−→ Y3−→ 0

is an exact sequence of B-maps. The indecomposable projective 3-modules are
exactly (

P
0

)
and

(
M ⊗B Q

Q

)
id
,

where P runs over indecomposable projective A-modules and Q runs over inde-
composable projective B-modules.

Note that an algebra 3 is of the form above if and only if there is an idempotent
decomposition 1= e+ f such that f3e = 0; and in this case

3=

(
e3e e3 f

0 f3 f

)
.

4B. The following result describes the Gorenstein-projective 3-modules, if A M
and MB are projective modules.

Theorem 4.1. Let

3=

(
A M
0 B

)
be an Artin algebra, M an A-B-bimodule such that A M and MB are projective
modules. Then (

X
Y

)
φ

∈ GP(3)

if and only if φ : M ⊗B Y → X is injective, Cokerφ ∈ GP(A), and Y ∈ GP(B). In
this case, X ∈ GP(A) if and only if M ⊗B Y ∈ GP(A).

Note that here 3 is not assumed to be Gorenstein: this will be important to the
main result in the next section. The same result under the assumption that 3 is
Gorenstein can be found in [Xiong and Zhang 2012, Corollary 3.3] (however, the
proof there cannot be generalized to the non-Gorenstein case). The same corollary
implies that, if3 is Gorenstein in Theorem 4.1,

(X
Y
)
φ
∈GP(3) implies X ∈GP(A).
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Proof of Theorem 4.1. The last assertion is easy: it follows from the exact sequence

0−→M ⊗B Y
φ
−→ X −→Cokerφ−→ 0

and the fact that GP(A) is closed under extensions and the kernels of epimorphisms;
see, for example, [Holm 2004].

We next prove the “if” part of the first equivalence in the theorem. We assume
that φ : M ⊗B Y → X is injective, Cokerφ ∈ GP(A), and Y ∈ GP(B). Then we
have a complete B-projective resolution

(4-1) Q• = · · ·−→ Q−1
−→ Q0 d ′0

−→ Q1
−→· · ·

with Y = Ker d ′0, and a complete A-projective resolution

(4-2) P• = · · ·−→ P−1
−→ P0 d0

−→ P1
−→· · ·

with Cokerφ=Ker d0. Since MB is projective, we get the following exact sequences
of A-modules:

0→ M ⊗B Y → M ⊗B Q0
→ M ⊗B Q1

→ · · · ,

0→ Cokerφ→ P0
→ P1

→ · · · .

Since A M is projective, M ⊗B Qi is a projective A-module for each i ≥ 0. Since
Ext1A(Cokerφ,M ⊗B Q0)= 0, it follows from the exact sequence

0→ M ⊗B Y
φ
→ X→ Cokerφ→ 0

that the map M ⊗B Y → M ⊗B Q0 factors through φ. So, by a version of the
horseshoe lemma, we see that there is an exact sequence of A-modules

(4-3) 0→ X→ P0
⊕ (M ⊗B Q0)

∂0

−→ P1
⊕ (M ⊗B Q1)→ · · ·

with

∂ i
=

(d i 0
σ i id⊗B d ′i

)
, σ i

: P i
→ M ⊗B Qi

for all i ∈ Z, such that the diagram

(4-4)

0 // M ⊗B Y

φ

��

// M ⊗B Q0

(0
id)
��

id⊗B d ′0 // M ⊗B Q1

(0
id)
��

// · · ·

0 // X // P0
⊕ (M ⊗B Q0)

∂0
// P1
⊕ (M ⊗B Q1) // · · ·
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commutes. By the same argument we get the following commutative diagram with
exact rows:

(4-5)

· · · // M ⊗B Q−2

(0
id)
��

id⊗B d ′−2
// M ⊗B Q−1

(0
id)
��

// M ⊗B Y

φ

��

// 0

· · · // P−2
⊕ (M ⊗B Q−2)

∂−2
// P−1

⊕ (M ⊗B Q−1) // X // 0.

Putting (4-4) and (4-5) together, we get the exact sequence of projective 3-modules

(4-6) L• = · · ·−→

(
P−1
⊕ (M ⊗B Q−1)

Q−1

)

−→

(
P0
⊕ (M ⊗B Q0)

Q0

)
(0

id)

(
∂0

d ′0
)

−−−−→

(
P1
⊕ (M ⊗B Q1)

Q1

)
−→· · ·

with Ker
(
∂0

d ′0
)
=

(X
Y

)
φ

.

For each projective A-module P , Hom3

(
L•,

( P
0

))
∼= HomA(P•, P) is exact,

since P• is a complete projective resolution. For each projective B-module Q, since
Q• is a complete projective resolution, HomB(Q•, Q) is exact. Since M ⊗B Q is
projective, HomA(P•,M ⊗B Q) is exact. Note that

Hom3

(
L•,

(M ⊗B Q
Q

))
∼= HomA(P•,M ⊗B Q)⊕HomB(Q•, Q);

here the direct sum only means that each term of the complex at the left side is a
direct sum of terms of complexes at the right side, that is, it does not mean a direct
sum of complexes; in fact, the complex at the right side has differentials(

HomA(d i ,M ⊗B Q) HomA(σ
i ,M ⊗B Q)

0 HomB(d ′i , Q)

)
.

By the canonical exact sequence of complexes

0→HomA(P•,M⊗B Q)

(
id
0
)

−−→Hom3

(
L•,

(M⊗B Q
Q

))
(0 id)
−−−→HomB(Q•, Q)→ 0,

we know that
Hom3

(
L•,

(M ⊗B Q
Q

))
is also exact. We conclude that L• is a complete 3-projective resolution, and hence( X

Y

)
φ

is a Gorenstein-projective 3-module.
Conversely, assume that

( X
Y

)
φ
∈ GP(3). Then there is a complete 3-projective

resolution (4-6) with

Ker
(
∂0

d ′0
)
=

(X
Y

)
φ
.
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Then we get an exact sequence (4-1) of projective B-modules with Ker d ′0 = Y ,
and the exact sequence

(4-7) V • =

· · ·→ P−1
⊕(M⊗B Q−1)→ P0

⊕(M⊗B Q0)
∂0

−→ P1
⊕(M⊗B Q1)→· · ·

of projective A-modules with Ker ∂0
= X . Since MB is projective, it follows that

M ⊗B Q• is exact. Since
( ∂ i

d ′i
)

is a 3-map, by (4-6) we know that ∂ i is of the form

∂ i
=

(d i 0
σ i id⊗B d ′i

)
,

where σ i
: P i
→ M ⊗B Qi for all i ∈ Z, and

P• = · · ·−→ P−1
−→ P0 d0

−→ P1
−→· · ·

is a complex. By the canonical exact sequence of complexes

0−→M⊗B Q•
(

id
0
)

−−→ V •
(0 id)
−−−→ HomB(Q•, Q)P•−→ 0,

we see that P• is also exact.
From (4-6) we have the following commutative diagram with exact rows and

columns:
0

��

0

��
0 // M ⊗B Y //

φ

��

M ⊗B Q0 //(0
id

)
��

M ⊗B Q1 //(0
id

)
��

· · ·

0 // X //

��

P0
⊕ (M ⊗B Q0) //

(id,0)
��

P1
⊕ (M ⊗B Q1) //

(id,0)
��

· · ·

0 // Cokerφ //

��

P0 //

d0

��

P1 //

��

· · ·

0 0 0

Thus φ : M ⊗B Y −→ X is injective and Ker d0 ∼= Cokerφ. For each projective
A-module P , since

Hom3

(
L•,

(P
0
))
∼= HomA(P•, P)

and L• is a complete projective resolution, it follows that P• is a complete projective
resolution, and hence Cokerφ is a Gorenstein-projective A-module.
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For each projective B-module Q, since P• is a complete projective resolution,
it follows that HomA(P•,M ⊗B Q) is exact. Since L• is a complete projective
resolution, it follows that

Hom3

(
L•,

(M ⊗B Q
Q

))
∼= HomA(P•,M ⊗B Q)⊕HomB(Q•, Q)

is exact (again, the direct sum does not mean a direct sum of complexes). By
the same argument we know that HomB(Q•, Q) is exact. It follows that Y is a
Gorenstein-projective B-module. �

5. Main result

5A. The aim of this section is to prove the following characterization of Gorenstein-
projective 3-modules, where 3 is the path algebra of a finite acyclic quiver over
a finite-dimensional algebra. We emphasize that here 3 is not assumed to be
Gorenstein.

Theorem 5.1. Let Q be a finite acyclic quiver, and A a finite-dimensional algebra
over a field k. Let3= A⊗k k Q, and X = (X i , Xα, i ∈ Q0, α ∈ Q1) be a3-module.
Then X ∈ GP(3) if and only if X ∈Mon(Q, A) and X satisfies this condition:

(G) for each i ∈ Q0, X i and the quotient X i

/⊕
α∈Q1

e(α)=i

Im Xα lie in GP(A).

Example 5.2. (i) Taking

Q = •
n
→ · · · → •

1

in Theorem 5.1, we get that a Tn(A)-module X = (X i , φi ) is Gorenstein-projective if
and only if each φi is injective and that each X i is a Gorenstein-projective A-module
and each Cokerφi is a Gorenstein-projective A-module. Under the assumption that
A is Gorenstein, this result has been obtained in [Zhang 2011, Corollary 4.1]; the
case for n = 2 was treated in [Li and Zhang 2010, Theorem 1.1(i)]; see also [Iyama
et al. 2011, Proposition 3.6(i)].

(ii) Let 3 be the k-algebra given by quiver

•
3

λ3

�� β // •
1

λ1

��
•
2

λ2

��αoo

with relations λ2
1, λ2

2, λ2
3, αλ2− λ1α, βλ3− λ1β. Then

3= A⊗k k Q =
(A A A

0 A 0
0 0 A

)
,
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where Q is the quiver
•
3
−→•

1
←− •

2
,

and A = k[x]/〈x2
〉. Let k be the simple A-module, and σ : k ↪→ A the inclusion.

By Theorem 5.1, the following 3-modules lie in GP(3):

(X1 = A, X2 = 0, X3 = 0, Xα = 0= Xβ),

(X1 = A, X2 = A, X3 = 0, Xα = id, Xβ = 0),

(X1 = A, X2 = 0, X3 = A, Xα = 0, Xβ = id),

(X1 = k, X2 = 0, X3 = 0, Xα = 0= Xβ),

(X1 = k, X2 = k, X3 = 0, Xα = id, Xβ = 0),

(X1 = k, X2 = 0, X3 = k, Xα = 0, Xβ = id),

(X1 = A, X2 = k, X3 = 0, Xα = σ, Xβ = 0),

(X1 = A, X2 = 0, X3 = k, Xα = 0, Xβ = σ),(
X1 = A⊕ k, X2 = k, X3 = k, Xα =

(0
id

)
, Xβ =

(
σ
id

))
.

In fact this is the complete list of the pairwise nonisomorphic indecomposable
Gorenstein-projective 3-modules. Also by Theorem 5.1,

(Y1 = A, Y2 = k, Y3 = k, Yα = σ = Yβ) /∈ GP(3).

For a description of all the pairwise nonisomorphic indecomposable Gorenstein-
projective 3-modules see [Ringel and Zhang 2011], where 3 is the path algebra of
an arbitrary acyclic quiver over A = k[x]/〈x2

〉.

5B. We prove Theorem 5.1 by using Theorem 4.1 and induction on |Q0|.
Remember we label Q0 as 1, . . . , n, in such a way that j > i if α : j→ i is in

Q1. Thus n is a source of Q. Denote by Q′ the quiver obtained from Q by deleting
vertex n, and 3′ = A⊗k k Q′. Let P(n) be the indecomposable projective (left)
k Q-module at vertex n. Put P = A⊗k radP(n). Clearly P is a 3′-A-bimodule and
3=

(
3′

0
P
A

)
; compare (2-2).

Since k Q is hereditary, radP(n) is a projective k Q′-module, and hence P =
A⊗k radP(n) is a (left) projective 3′-module, and a (right) projective A-module
(since as a right A-module, P is a direct sum of copies of AA). So we can apply
Theorem 4.1. For this, we write a 3-module X = (X i , Xα, i ∈ Q0, α ∈ Q1) as
X =

( X ′
Xn

)
φ

, where X ′ = (X i , Xα, i ∈ Q′0, α ∈ Q′1) is a 3′-module, and

φ : P ⊗A Xn→ X ′

is a 3′-map. The explicit expression of φ is given in the proof of Lemma 5.4. We
keep all these notations of Q′, 3′, P(n), P , X ′ and φ throughout this section.
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5C. By a direct translation from Theorem 4.1 in this special case, we have:

Lemma 5.3. Let X =
( X ′

Xn

)
φ

be a 3-module. Then X ∈ GP(3) if and only if X
satisfies the following conditions:

(i) Xn ∈ GP(A).
(ii) φ : P ⊗A Xn→ X ′ is injective.

(iii) Cokerφ ∈ GP(3′).

For each i ∈ Q′0, put A(n→ i) to be the set of arrows from n to i ; and P(n→ i)
the set of paths from n to i . For an integer m ≥ 0 and a module M , let Mm denote
the direct sum of m copies of M .

Lemma 5.4. Let X = (X i , Xα, i ∈ Q0, α ∈ Q1) be a 3-module. If Xβ is injective
for each β ∈ Q′1, φ : P ⊗A Xn→ X ′ is injective if and only if Xα is injective for all
α ∈ Q1, and

∑
p∈P(n→i) Im X p =

⊕
p∈P(n→i) Im X p for all Q′0.

Proof. For i ∈ Q′0, set mi = |P(n→ i)|. As a k Q′-module, radP(n) can be written
as  km1

...

kmn−1


(see (2-1) and Section 5B), hence we have isomorphisms of 3′-modules

P ⊗A Xn ∼= (radP(n)⊗k A)⊗A Xn ∼= radP(n)⊗k Xn ∼=

 Xm1
n
...

Xmn−1
n

 .
Let P(n→ i)= {p1, . . . , pmi }. Then φ is of the form φ1

...

φn−1

 : P ⊗A Xn ∼=

 Xm1
n
...

Xmn−1
n

→
 X1

...

Xn−1

 ,
where φi = (X p1, . . . , X pmi

) : Xmi
n → X i (for the meaning of X p see Section 2C).

So φ is injective if and only if φi is injective for each i ∈ Q′0, and if and only if∑
p∈P(n→i)

Im X p =
⊕

p∈P(n→i)

Im X p and X p is injective for all p ∈ P(n→ i).

From this and the assumption the assertion follows. �

Lemma 5.5. Let X =
( X ′

Xn

)
φ

be a monic 3-module.

(1) For each i ∈ Q′0 there holds
∑

p∈P(n→i) Im X p =
⊕

p∈P(n→i) Im X p.

(2) φ : P ⊗A Xn→ X ′ is injective.
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(3) Cokerφ =
(
X i/

⊕
p∈P(n→i) Im X p, X̃α, i ∈ Q′0, α ∈ Q′1

)
, where, for each

α : j→ i in Q′1,

X̃α : X j

/ ⊕
q∈P(n→ j)

Im Xq → X i

/ ⊕
p∈P(n→i)

Im X p

is the A-map induced by Xα.

Proof. By Lemma 5.4 and its proof, it suffices to prove (1). For each i ∈ Q′0, set
li = 0 if P(n→ i) is empty, and li =max{l(p) | p ∈ P(n→ i)} otherwise, where
l(p) is the length of p. We use induction on li . If li = 0, (1) trivially holds. Suppose
li > 1. Let

∑
p∈P(n→i) X p(xn,p)= 0 for xn,p ∈ Xn . Since∑
p∈P(n→i)−A(n→i)

Im X p =
∑
α∈Q′1

e(α)=i

Xα

( ∑
q∈P(n→s(α))

Im Xq

)
,

we have

0=
∑

p∈P(n→i)

X p(xn,p)=
∑

α∈A(n→i)

Xα(xn,α)+
∑

p∈P(n→i)−A(n→i)

X p(xn,p)

=

∑
α∈A(n→i)

Xα(xn,α)+
∑
β∈Q′1

e(β)=i

Xβ

( ∑
q∈P(n→s(β))

Xq(xn,βq)

)
.

By (m2) in Definition 2.2 we know that Xα(xn,α)= 0 for α ∈A(n→ i), and

Xβ

( ∑
q∈P(n→s(β))

Xq(xn,βq)

)
= 0

for β ∈ Q′1 with e(β) = i . So
∑

q∈P(n→s(β)) Xq(xn,βq) = 0 by condition (m1) in
Definition 2.2. Since ls(β) < li for each β ∈ Q′1 with e(β)= i , it follows from the
inductive hypothesis that Xq(xn,βq)= 0 for β ∈ Q′1, e(β)= i , and q ∈P(n→ s(β)).
This proves (1) and the lemma. �

Lemma 5.6. Let X =
( X ′

Xn

)
φ

be a monic 3-module. Then Cokerφ is a monic
3′-module.

Proof. We need to prove that, for each i ∈ Q′0, the 3′-map

(X̃α) α∈Q′1
e(α)=i

:

⊕
α∈Q′1

e(α)=i

(
Xs(α)

/ ⊕
q∈P(n→s(α))

Im Xq

)
→ X i

/ ⊕
p∈P(n→i)

Im X p

is injective. For this, assume that∑
α∈Q′1

e(α)=i

X̃α(xs(α),α)= 0,
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where xs(α),α is the image of xs(α),α ∈ Xs(α) in Xs(α)/
⊕

q∈P(n→s(α)) Im Xq . Then∑
α∈Q′1

e(α)=i

Xα(xs(α),α) ∈
⊕

p∈P(n→i)

Im X p.

So there are xn,p ∈ Xn such that∑
α∈Q′1

e(α)=i

Xα(xs(α),α)=
∑

p∈P(n→i)

X p(xn,p).

Thus

0=
∑
α∈Q′1

e(α)=i

Xα(xs(α),α)−
∑

p∈P(n→i)

X p(xn,p)

=

∑
α∈Q′1

e(α)=i

Xα(xs(α),α)−
∑

β∈A(n→i)

Xβ(xn,β)−
∑
α∈Q′1

e(α)=i

Xα

( ∑
q∈P(n→s(α))

Xq(xn,αq)

)

=

∑
α∈Q′1

e(α)=i

Xα(xs(α),α −
∑

q∈P(n→s(α))

Xq(xn,αq))−
∑

β∈A(n→i)

Xβ(xn,β).

Using the assumption on X , we get

xs(α),α =
∑

q∈P(n→s(α))

Xq(xn,αq),

that is, xs(α),α = 0. �

Lemma 5.7. Let X =
( X ′

Xn

)
φ

be a monic 3-module satisfying (G). Then(
X i

/ ⊕
p∈P(n→i)

Im X p

)/( ⊕
α∈Q′1

e(α)=i

Im X̃α

)

is a Gorenstein-projective A-module for all i ∈ Q′0.

Proof. Since ⊕
p∈P(n→i)−A(n→i)

Im X p ⊆
∑
β∈Q1

e(β)=i

Im Xβ,

it follows that∑
α∈Q′1

e(α)=i

Im X̃α =
( ∑
α∈Q′1

e(α)=i

Im Xα +
⊕

p∈P(n→i)

Im X p

)/( ⊕
p∈P(n→i)

Im X p

)
(5-1)
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=

( ∑
β∈Q1

e(β)=i

Im Xβ +
⊕

p∈P(n→i)−A(n→i)

Im X p

)/( ⊕
p∈P(n→i)

Im X p

)

=

( ∑
β∈Q1

e(β)=i

Im Xβ

)/( ⊕
p∈P(n→i)

Im X p

)

=

( ⊕
β∈Q1

e(β)=i

Im Xβ

)/( ⊕
p∈P(n→i)

Im X p

)

(the last equality following by (m2) in Definition 2.2). Hence the desired quotient
is X i/

⊕
β∈Q1

e(β)=i
Im Xβ , which is Gorenstein-projective by (G). �

Lemma 5.8. Let X =
( X ′

Xn

)
φ

be a monic 3-module satisfying (G). Then

X i

/ ⊕
p∈P(n→ j)

Im X p

is a Gorenstein-projective A-module for each i ∈ Q′0.

Proof. We prove the assertion by using induction on li , which is defined in the
proof of Lemma 5.5. If i ∈ Q′0 with li = 0, the assertion follows from (G).

Suppose li > 1. Since
⊕

p∈P(n→i) Im X p ⊆
⊕

α∈Q1
e(α)=i

Im Xα, we have the exact
sequence

0−→
( ⊕
α∈Q1

e(α)=i

Im Xα

)/( ⊕
p∈P(n→i)

Im X p

)
−→ X i

/ ⊕
p∈P(n→i)

Im X p −→ X i

/⊕
α∈Q1

e(α)=i

Im Xα −→ 0,

and by (G) the last term on the second line is Gorenstein-projective. It suffices to
prove that the term on the first line is Gorenstein-projective. By (5-1) this term is⊕

α∈Q′1
e(α)=i

Im X̃α. By Lemma 5.6 each X̃α is injective, and it follows that

Im X̃α ∼= X j

/ ⊕
p∈P(n→ j)

Im X p,

where j = s(α). Since l j < li , the conclusion of the lemma follows from the
inductive hypothesis. �

Lemma 5.9. The sufficiency in Theorem 5.1 holds. That is, if

X = (X i , Xα, i ∈ Q0, α ∈ Q1)

is a monic 3-module satisfying (G), X is Gorenstein-projective.
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Proof. Using induction on n = |Q0|, the assertion clearly holds for n = 1. Suppose
that the assertion holds for n− 1 with n ≥ 2. It suffices to prove that X satisfies
Lemma 5.3(i)–(iii).

Condition (i) is contained in (G); and condition (ii) follows from Lemma 5.5(2).
By Lemma 5.6 Cokerφ is a monic3′-module; and by Lemmas 5.7 and 5.8 we know
that Cokerφ satisfies (G). It follows from the inductive hypothesis that condition
(iii) is satisfied. �

Lemma 5.10. Let X = (X i , Xα, i ∈ Q0, α ∈ Q1) be a 3-module with Xn a
Gorenstein-projective A-module. Then P ⊗A Xn is a Gorenstein-projective 3′-
module, where P is defined in Section 5B.

Proof. Let P(n) be the indecomposable projective k Q-module at vertex n. Writing
radP(n) as a representation of Q′ over k, we have

radP(n)= (kmi , fα, i ∈ Q′0, α ∈ Q′1),

where mi = |P(n→ i)| for each i ∈ Q′0. By the construction of P(n) we know
that radP(n) has the following three properties:

(1) Each fα : kms(α)→ kme(α) is injective.

(2) For each i ∈ Q′0, ∑
α∈Q′1

e(α)=i

Im fα =
⊕
α∈Q′1

e(α)=i

Im fα.

(3) For each i ∈ Q′0, kmi /
(⊕

α∈Q′1
e(α)=i

Im fα
)

and k|A(n→i)| are isomorphic as k-
spaces.

It follows that

P ⊗A Xn ∼= (radP(n)⊗k A)⊗A Xn

∼= radP(n)⊗k Xn = (Xmi
n , fα ⊗k idXn , i ∈ Q′0, α ∈ Q′1).

By (1), (2), and (3) we clearly see that P ⊗A Xn is a monic 3′-module satisfying
(G); for example, by (3) we know that

Xmi
n

/⊕
α∈Q′1

e(α)=i

Im( fα ⊗k idXn )
∼= X |A(n→i)|

n

is a Gorenstein-projective A-module. Now the result follows from Lemma 5.9. �
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5D. Proof of Theorem 5.1. By Lemma 5.9 it remains to prove necessity, namely,
if X is a Gorenstein-projective 3-module, X is a monic 3-module satisfying (G).
Using induction on n = |Q0|, the assertion is clear for n = 1. Suppose that the
assertion holds for n − 1 with n ≥ 2. We write X as

( X ′
Xn

)
φ
. Then X satisfies

conclusions (i)–(iii) of Lemma 5.3.
By (i) and Lemma 5.10 we know that P ⊗A Xn is a Gorenstein-projective 3′-

module. Then, by (ii) and (iii), we know that X ′ ∈ GP(3′), since GP(3′) is
closed under extensions. By the inductive hypothesis X ′ is a monic 3′-module
satisfying (G). Hence:

(1) Xβ is injective for each β ∈ Q′1.

(2) X i is Gorenstein-projective for each i ∈ Q′0.

(3) Xα is injective for each α ∈ Q1.

(4)
∑

p∈P(n→i) Im X p =
⊕

p∈P(n→i) Im X p for all i ∈ Q′0.

We get (3) and (4) from (1), condition (ii), and Lemma 5.4.
Since Cokerφ =

(
X i/

⊕
p∈P(n→i) Im X p, X̃α, i ∈ Q′0, α ∈ Q′1

)
is a Gorenstein-

projective 3′-module, it follows from the inductive hypothesis that the following
properties hold:

(5) For each α ∈ Q′1, X̃α is injective.

(6)
∑

α∈Q′1
e(α)=i

Im X̃α =
⊕

α∈Q′1
e(α)=i

Im X̃α, for all i ∈ Q′0.

Claim 1: X satisfies (m2) in Definition 2.2.

Indeed, suppose

(5-2)
∑
α∈Q1

e(α)=i

Xα(xs(α),α)= 0.

Since ∑
α∈Q1

e(α)=i

Xα(xs(α),α)=
∑

α∈A(n→i)

Xα(xs(α),α)+
∑
α∈Q′1

e(α)=i

Xα(xs(α),α),

it follows that∑
α∈Q′1

e(α)=i

X̃α(xs(α),α)=
∑
α∈Q′1

e(α)=i

Xα(xs(α),α)+
⊕

p∈P(n→i)

Im X p

=−

∑
α∈A(n→i)

Xα(xs(α),α)+
⊕

p∈P(n→i)

Im X p = 0,

where we used (5-2) for the second equality.
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Then by (6) we have X̃α(xs(α),α)= 0; and by (5) we know xs(α),α = 0 for each
α ∈ Q′1 with e(α)= i . This means that there are xn,q ∈ Xn such that

xs(α),α =
∑

q∈P(n→s(α))

Xq(xn,q) ∈
∑

q∈P(n→s(α))

Im Xq

for each α ∈ Q′1 with e(α)= i . By (5-2) we have

0 =
∑

α∈A(n→i)

Xα(xn,α)+
∑
α∈Q′1

e(α)=i

Xα

( ∑
q∈P(n→s(α))

Xq(xn,q)

)
.

By (4) we know that Xα(xn,α)= 0 for all α ∈A(n→ i), and that XαXq(xn,q)= 0
for all α ∈ Q′1 with e(α)= i and q ∈ P(n→ s(α)). Thus Xα(xs(α),α)= 0, for all
α ∈ Q1 with e(α)= i . This proves Claim 1.

Claim 2: X i/
⊕

β∈Q1
e(β)=i

Im Xβ is a Gorenstein-projective A-module for each i ∈ Q0.

Indeed, since Cokerφ is a Gorenstein-projective 3′-module, by the inductive
hypothesis we know that(

X i

/ ⊕
p∈P(n→i)

Im X p

)/ ⊕
α∈Q′1

e(α)=i

Im X̃α

is a Gorenstein-projective A-module: it is exactly the desired module by (5-1).
Now, (3) and Claim 1 mean that X is a monic 3-module; and (2), together with

conclusion (i) of Lemma 5.3 and Claim 2, means that X satisfies (G). �

6. Corollaries

6A. For the definition of a Frobenius category in the sense of [Quillen 1973],
we refer to [Happel 1988, p. 11; Keller 1990, Appendix A]. As a consequence
of Theorem 5.1 and Proposition 2.4, we get the following characterization of
self-injectivity.

Corollary 6.1. Let A be a finite-dimensional algebra, and Q a finite acyclic quiver.
Then the following are equivalent:

(i) A is self-injective.

(ii) GP(A⊗k k Q)=Mon(Q, A).

(iii) Mon(Q, A) is a Frobenius category.

Proof. (i) =⇒ (ii): If A is self-injective, every A-module is Gorenstein-projective,
and hence (ii) follows from Theorem 5.1. The implication (ii)=⇒ (iii) is well-known.
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(iii) =⇒ (i): Take a sink of Q, say vertex 1, and consider D(AA)⊗k P(1). By
Proposition 2.4 (iii) it is an injective object in Mon(Q, A), and hence, by assumption,
it is a projective object in Mon(Q, A). By Proposition 2.4(ii) we know that D(AA),
the first branch of D(AA)⊗k P(1), is a projective A-module, that is, A is self-
injective. �

Let Db(3) be the bounded derived category of 3, and K b(P(3)) the bounded
homotopy category of P(3). By definition the singularity category Db

sg(3) of
3 is the Verdier quotient Db(3)/K b(P(3)). Buchweitz [1987, Theorem 4.4.1]
proved that if 3 is Gorenstein, there is a triangle-equivalence Db

sg(3)
∼= GP(3),

where GP(3) is the stable category of GP(3) modulo P(3); see also [Happel
1991, Theorem 4.6]. Note that if A is Gorenstein, 3= A⊗k k Q is Gorenstein; see
[Auslander and Reiten 1991b, Proposition 2.2]. So we have the following.

Corollary 6.2. Let A be a finite-dimensional Gorenstein algebra, and Q a finite
acyclic quiver. Let 3= A⊗k k Q. Then there is a triangle-equivalence Db

sg(3)
∼=

GP(3). In particular, if A is self-injective, then there is a triangle-equivalence
Db

sg(3)
∼=Mon(Q, A).

6B. Recall the tensor product Q⊗Q′ of two finite quivers Q and Q′ (not necessarily
acyclic). By definition Q⊗ Q′ is the quiver with

(Q⊗ Q′)0 = Q0× Q′0 and (Q⊗ Q′)1 = (Q1× Q′0)∪ (Q0× Q′1).

More explicitly, if α : i→ j is an arrow of Q, then, for each vertex t ′ ∈ Q′0, there
is an arrow (α, t ′) : (i, t ′)→ ( j, t ′) of Q⊗ Q′; and if β ′ : s ′→ t ′ is an arrow of Q′,
then, for each vertex i ∈ Q0, there is an arrow (i, β ′) : (i, s ′)→ (i, t ′) of Q⊗ Q′.

Let A = k Q/I and B = k Q′/I ′ be two finite-dimensional k-algebras, where Q
and Q′ are finite quivers (not necessarily acyclic), and I, I ′ are admissible ideals of
k Q, k Q′, respectively. Then

A⊗k B ∼= k(Q⊗ Q′)/I � I ′,

where I � I ′ is the ideal of k(Q⊗ Q′) generated by (I × Q′0)∪ (Q0× I ′) and the
elements

(α, t ′)(i, β ′)− ( j, β ′)(α, s ′),

where α : i → j is an arrow of Q, and β ′ : s ′ → t ′ is an arrow of Q′. See, for
example, [Leszczyński 1994]. Note that I � I ′ may not be zero even if I = 0= I ′.
We have proved this:

Fact. A⊗k B is hereditary (that is, I � I ′ = 0) if and only if either A ∼= k|Q0| as
algebras and I ′ = 0, or B ∼= k|Q

′

0| as algebras and I = 0.
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6C. One can describe when 3 is hereditary via Mon(Q, A).

Corollary 6.3. Let A be a finite-dimensional basic algebra over an algebraically
closed field k, Q a finite acyclic quiver with |Q1| 6= 0, and 3 = A⊗k k Q. Then
P(3)=Mon(Q, A) if and only if 3 is hereditary.

Proof. Without loss of generality we may assume that A is connected (an algebra is
connected if it cannot be a product of two nonzero algebras).

If 3= A⊗k k Q is hereditary, then, by the fact above and the assumption on Q,
we have A = k, and hence Mon(Q, k)= GP(k Q) by Theorem 5.1. It follows that

Mon(Q, A)= GP(k Q)= P(k Q)= P(3).

Conversely, if A 6= k, A is not semisimple since A is assumed to be connected
and basic and k is assumed to be algebraically closed. It follows that there is a
nonprojective A-module M . Take a sink of Q, say vertex 1, and consider 3-module
X = M⊗k P(1), where P(1) is the simple projective k Q-module at vertex 1. Then
X ∈Mon(Q, A), but X /∈ P(3). �
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HELICOIDAL FLAT SURFACES
IN HYPERBOLIC 3-SPACE

ANTONIO MARTÍNEZ, JOÃO PAULO DOS SANTOS AND KETI TENENBLAT

A flat surface in hyperbolic space H3 is determined by a harmonic function
as well as by its meromorphic data. In this paper, helicoidal flat surfaces in
H3 are considered. A complete classification of the helicoidal flat fronts is
given in terms of their hyperbolic Gauss maps as well as by means of linear
harmonic functions. A family of examples that provides the classification of
the helicoidal flat fronts is included. Moreover, it is shown that a flat surface
in H3 that corresponds to a linear harmonic function is locally congruent to
a helicoidal flat front or to a peach front.

1. Introduction

The study of flat surfaces in hyperbolic 3-space has received much attention in the
last few years, mainly because Gálvez, Martínez and Milán [Gálvez et al. 2000] have
shown that flat surfaces in hyperbolic 3-space admit a Weierstrass representation
formula in terms of meromorphic data as in the theory of minimal surfaces in R3.

It is known that the only complete examples are the horospheres and the hyper-
bolic cylinders (see [Spivak 1979]). Thus, a study of flat surfaces with singularities
became essential for the advancement of the theory. An important contribution
was given in [Kokubu et al. 2005; 2004], where an extension of the Weierstrass
representation for flat surfaces with admissible singularities was introduced. Such
surfaces are called flat fronts.

Helicoidal surfaces arise as a generalization of rotational surfaces and conical
surfaces. They are invariant by a subgroup of the group of space isometries, called
the helicoidal group, defined by a translation composed with rotation around an
axis in the same direction. Rotational flat surfaces were classified in [Kokubu et al.
2004] in terms of meromorphic data.

The main purpose of this paper is to give a complete classification of the helicoidal
flat surfaces in H3 in terms of meromorphic data as well as by means of linear

Research partially supported by the Ministério de Educação, CAPES/DGU Proc. No. 246/11, Brazil;
Ministerio de Ciencia e Innovación MTM2010-1982, Spain; and Junta de Andalucía Grant FQM325.
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harmonic functions. We construct a family of examples, which we call classifying
examples, that provide the complete classification of the helicoidal flat surfaces.
These results extend those obtained previously in [Kokubu et al. 2004] for rotational
flat surfaces. Moreover, we characterize the flat fronts in H3 that correspond to
linear harmonic functions.

The paper is organized as follows:
In Section 2, we give a brief description of helicoidal flat surfaces in H3 and

present two particular cases of this class of surfaces, namely, the rotational and the
conical flat surfaces.

In Section 3, we recall the well known result that in a neighborhood of a nonum-
bilic point, any flat surface in H3 admits a local parametrization that diagonalizes
both the first and second fundamental forms determined by a (euclidean) harmonic
function. We then present the conformal representation for flat fronts described in
[Corro et al. 2010; Kokubu et al. 2005] and use it to characterize when a complex
parameter diagonalizes both the first and second fundamental forms in terms of
the hyperbolic Gauss maps. Moreover, we relate the harmonic function to the
hyperbolic Gauss maps.

In Section 4, we describe a family of flat fronts that we call classifying examples
whose hyperbolic Gauss maps are determined by a nonzero complex number, and
we obtain the corresponding harmonic function.

Finally, in Section 5, we prove that a flat front in H3 is helicoidal if and only
if it is locally congruent to one of the classifying examples. Moreover, we obtain
a complete classification of the helicoidal flat fronts in terms of their hyperbolic
Gauss maps as well as by means of suitable linear harmonic functions. We conclude
by showing that any flat surface in H3 that corresponds to a linear harmonic function
is locally congruent either to a helicoidal flat surface or to a so-called peach front.

2. Helicoidal surfaces

Helicoidal surfaces arise as a natural generalization of rotational surfaces. They
are invariant under a one-parameter group of isometries obtained by composing a
translation in a given direction with a rotation about an axis in the same direction.
We consider the half-space model of the hyperbolic 3-space, that is,

H3
= {(y1, y2, y3) ∈ R3

: y3 > 0}

endowed with the metric

〈 , 〉 =
1
y2

3

(
dy2

1 + dy2
2 + dy2

3
)
,

with ideal boundary C∞ = {(y1, y2, 0) | y1, y2 ∈ R} ∪ {∞}.
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The helicoidal group relative to the y3-axis is given as the composition

ht =

(eβt 0 0
0 eβt 0
0 0 eβt

)( cosαt − sinαt 0
sinαt cosαt 0

0 0 1

)

of a rotation around the y3-axis with angular pitch α with a hyperbolic translation
of ratio β.

Every helicoidal surface can be generated by a suitable curve γ : I → H3 by
taking the composition

(2-1) ψ(t, s)= (ht ◦ γ )(s).

Notice that the curve γ is chosen suitably so that (2-1) is a regular surface.
In order to have the helicoidal surface (2-1) flat, one has to require conditions on

the curve γ , as in the following particular cases:

(i) Rotational flat surfaces (β = 0). We start with a curve parametrized by arc
length on the plane {y2 ≡ 0}. It follows from the Gauss equation that the
remaining coordinates, y1 and y3, must satisfy the differential equation(

y1

y3

)′′ y3

y1
= 0

[do Carmo and Dajczer 1983; Spivak 1979], giving us the relation y1(s) =
(as+ b)y3(s).

(ii) Conical flat surfaces (α = 0). In this case, we just have a movement of
translation. We can start with a curve on the horosphere {y3 = c}, where c> 0
is a constant. Assuming that c = 1, we consider the curve

γ (s)=
(
r(s) cos θ(s), r(s) sin θ(s), 1

)
,

parametrized by the arc length, that is,

(r ′)2+ (rθ ′)2 = 1.

Then the surface is flat if and only if one has the following expression for r :

r(s)=
√
(as+ b)2− 1.

Therefore, we see that helicoidal surfaces arise as a generalization of the rotational
and the conical surfaces, which are well known flat examples. We want to describe
all the helicoidal flat surfaces in hyperbolic 3-space.
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3. Conformal representation

In this section, we characterize the flat surfaces in H3 by means of their first
and second fundamental forms. We start by recalling that on a neighborhood
of a nonumbilic point, any flat surface in H3 admits a local parametrization that
diagonalizes both the first and second fundamental forms, which are determined by
a (euclidean) harmonic function. We then consider the conformal representation for
flat fronts and characterize a complex parameter that diagonalizes both the first and
second fundamental forms in terms of the hyperbolic Gauss maps. We also relate
the harmonic function to these maps.

It is well known that on a neighborhood of a nonumbilical point, a flat surface in
H3 can be parametrized by lines of curvature, so that the first and second fundamental
forms are given by

I= cosh2 φ(u, v)(du)2+ sinh2 φ(u, v)(dv)2,(3-1)

II= sinhφ(u, v) coshφ(u, v)
(
(du)2+ (dv)2

)
,(3-2)

where φ is a harmonic function, that is, φuu +φvv = 0 (for details, see [Tenenblat
1998, Theorem 2.4 and Corollary 2.7]). We will show, in Section 5, that a helicoidal
flat surface in H3 is characterized as a flat surface whose first and second fundamental
forms are given by (3-1) and (3-2) where φ is linear, that is,

(3-3) φ(u, v)= au+ bv+ c,

and a, b and c are real numbers such that (a, b, c) 6= (0, ±1, 0).
We will use the conformal representation for flat surfaces in H3 introduced in

[Gálvez et al. 2000]. Let 6 be a 2-manifold and ψ :6→ H3 a flat immersion. It
follows from the Gauss equation that the second fundamental form dσ 2 is definite,
and hence 6 is orientable and inherits a canonical Riemann surface structure such
that the second fundamental form dσ 2 is hermitian. This canonical Riemann surface
structure provides a conformal representation for the immersion ψ that allows one
to recover any flat surface in H3 in terms of holomorphic data (see [Gálvez et al.
2000; Kokubu et al. 2004] for details). Throughout this paper, we will regard
6 as a Riemann surface with the conformal structure determined by the second
fundamental form dσ 2.

For any p∈6, there exist g(p), g∗(p)∈C∞ distinct points in the ideal boundary
such that the oriented normal geodesic at ψ(p) is the geodesic in H3 starting from
g∗(p) towards g(p). The maps g, g∗ :6→ C∞ are called the hyperbolic Gauss
maps, and it is proved in [Gálvez et al. 2000] that, for flat surfaces, they are
holomorphic when we regard C∞ as the Riemann sphere.

Kokubu et al. [2004] extended the conformal representation given by Gálvez et
al. [2000] for flat fronts, that is, flat immersions with some admissible singularities
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occurring where the first fundamental form degenerates. They showed how to
recover flat fronts in terms of the hyperbolic Gauss maps and how these maps are
well defined through the singularities. Reformulating the results in Theorem 2.11
and Proposition 2.5 of [Kokubu et al. 2004] to the upper half-space model, we have
the following theorem (see [Corro et al. 2010]):

Theorem 1. Let g and g∗ be nonconstant meromorphic functions on a Riemann
surface 6 such that g(p) 6= g∗(p) for all p ∈6. Assume that

(1) all the poles of the 1-form dg
g−g∗

are of order 1, and

(2) Re
∫
γ

dg
g− g∗

= 0 for each loop γ on 6.

Set

(3-4) ξ := c exp
∫

dg
g−g∗

, c ∈ C \ {0}.

Then the map ψ = (ψ1, ψ2, ψ3) :6→ H3 given by

(3-5) ψ1+ iψ2 = g−
|ξ |4(g− g∗)
|ξ |4+ |g− g∗|2

, ψ3 =
|ξ |2|g− g∗|2

|ξ |4+ |g− g∗|2

is a flat front. Moreover, if we consider the 1-forms

(3-6) ω =−
1
ξ 2 gz dz, θ =

ξ 2

(g− g∗)2
g∗z dz,

where z is a complex parameter, then the first and second fundamental forms are
represented as

I= (ω+ θ̄ )(ω̄+ θ),(3-7)

II= |θ |2− |ω|2.(3-8)

The next proposition provides a necessary and sufficient condition on the func-
tions g and g∗ in order to diagonalize the first and second fundamental forms
simultaneously:

Proposition 2. Let 6 be a flat front in H3 given as in Theorem 1. A complex
parameter for 6, η = u+ iv, diagonalizes the first and second fundamental forms
simultaneously as in (3-1) and (3-2) if and only if

(3-9)
gηg∗η

(g− g∗)2
=−

1
4
,

where ( · )η is the derivative with respect to η. In this case, the harmonic function φ
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is given by

(3-10) e2φ
=
|g∗η ||ξ |

4

|gη||g− g∗|2
=
|ξ |4

4|gη|2
.

Proof. It follows from (3-6) and (3-7) that

(3-11) I = |ω|2+ |θ |2+ 2 Re(ωθ),

where

ωθ =−
gηg∗η(dη)

2

(g− g∗)2
,

since g and g∗ are holomorphic functions on the parameter η.
By writing

gηg∗η
(g− g∗)2

= A+ iB,

we have Re(θω) = −A(du2
− dv2)+ 2B du dv. Then if η diagonalizes the first

and second fundamental forms as in (3-1) and (3-2), we must have B = 0. There-
fore gηg∗η/(g− g∗)2 is real and holomorphic, which implies it must be a constant
function.

If we write

(3-12)
gηg∗η

(g− g∗)2
= cg

and use equations (3-6) and (3-11), we have the first fundamental form as in (3-1)
if and only if

|gη|2

|ξ |4
+
|ξ |4|g∗η |

2

|g− g∗|4
− 2cg = cosh2 φ,

|gη|2

|ξ |4
+
|ξ |4|g∗η |

2

|g− g∗|4
+ 2cg = sinh2 φ.

Hence, cg =−
1
4 and (3-9) is proved.

Now we prove the expression (3-10). With this value for cg, using equations
(3-9) and (3-12), we rewrite the expressions above as

(3-13)

|gη||g− g∗|2

4|ξ |4|g∗η |
+

|ξ |4|g∗η |

4|gη||g− g∗|2
+

1
2
= cosh2 φ,

|gη||g− g∗|2

4|ξ |4|g∗η |
+

|ξ |4|g∗η |

4|gη||g− g∗|2
−

1
2
= sinh2 φ.

Considering λ=
|gη||g− g∗|2

|ξ |4|g∗η |
, we conclude that

(3-14)
(
λ+

1
λ

)
= e2φ

+ e−2φ.
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If we now consider the second fundamental form, we have

II= |θ |2− |ω|2

=

(
|ξ |4|g∗η |

4|g− g∗|2|gη|
−
|g− g∗|2|gη|

4|ξ |4|g∗η |

)
(du2
+ dv2)=

1
4

(
1
λ
− λ

)
(du2
+ dv2).

Therefore, it follows from (3-2) that we must have

(3-15)
(

1
λ
− λ

)
= e2φ

− e−2φ.

Combining (3-14) and (3-15), we conclude that

e2φ
=

1
λ
=

|ξ |4|g∗η |

|gη||g− g∗|2
. �

Corollary 3. Let 6 be a flat front in H3. Two complex parameters for 6, z and w,
diagonalize the first and second fundamental forms if and only if w=±z+c, where
c ∈ C is a constant.

4. Classifying examples

In this section, we present an important class of examples of flat fronts whose
hyperbolic Gauss maps are determined by a nonzero complex number. We call them
classifying examples. We prove that if a flat front 6 corresponds to a harmonic
function φ, then φ is linear if and only if 6 is locally congruent to one of the
classifying examples or to the peach front, which is a flat front presented in [Kokubu
et al. 2005].

Theorem 4. For each z0 ∈ C∗ = C \ {0}, consider g : C→ C∗, the holomorphic
function given by

(4-1) g(z)= e(ε sinh z0)z

and g∗ = e2z0 g. Then there exists a flat front ψz0 : C→ H3 whose singular set is

S=
{
z ∈ C

∣∣ Re[(ε cosh z0)z] = 0
}
, ε2

=−1.

Also, the first and second fundamental forms of the flat immersion ψz0 : C \S→H3

can be written as in (3-1) and (3-2), where φz0(z, z̄) is either a nonzero constant or

φz0(u, v)=−Re[(ε cosh z0)z] = au+ bv.

Proof. From the definitions of g and g∗ and since z0 6= 0, it follows immediately
that g and g∗ are meromorphic nonconstant functions and g 6= g∗. Besides, we have

dg
g− g∗

=−
ε dz
2ez0

,
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which implies that the conditions (1) and (2) of Theorem 1 are satisfied. On the
other hand,

gzg∗z
(g− g∗)2

=
e2z0(gz)

2

(1− e2z0)2g2 =
ε2e2z0 sinh2 z0

(1− e2z0)2
=−

1
4
.

By Theorem 1 and Proposition 2, there exists a flat front ψz0 : C→ H3, given by
ψz0 = (ψ1, ψ2, ψ3), with ψ1, ψ2, ψ3 as in (3-4) and (3-5). Its first and second
fundamental forms are as in (3-1) and (3-2). From the definition of g and g∗ and
Equations (3-4) and (3-10), it follows that φz0(z, z̄) is either a nonzero constant if
cosh z0 = 0, that is, ez0 =±i, or

φ(z, z̄)=−Re(ε cosh z0z)= au+ bv, a, b ∈ R.

In this last case, the singular set of ψz0 is the straight line given by

S= {z ∈ C | Re(ε cosh z0z)= 0} . �

Choosing all the possible values for z0 in Theorem 4, we obtain a family of examples
that will provide the complete classification of the helicoidal flat surfaces. We will
visualize the examples in the Poincaré ball model for H3.

(i) Rotational flat fronts. These flat fronts are obtained when e2z0 ∈ R. The
hyperbolic cylinder (Figure 1, left) is obtained when e2z0 =−1. When e2z0 < 0
with e2z0 6= −1 we have the hourglass (Figure 1, center), and for e2z0 > 0 we
have the snowman (Figure 1, right).

(ii) Conical flat fronts. This flat front (Figure 2) is obtained when e2z0 =±i. In
this case the invariance is only by the movement of translation.

(iii) Properly helicoidal flat fronts. The cases not mentioned above are invariant by
the two movements, the rotational movement and the translation (Figure 3).

The class of examples obtained from Theorem 4 will be called classifying examples.

Figure 1. Rotational flat fronts: cylinder (left), hourglass (center),
and snowman (right).
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Figure 2. Conical flat fronts.

Figure 3. Properly helicoidal flat fronts.

Remark 5. The example given in [Kokubu et al. 2005], called the peach front
(Figure 4), is a case where the hyperbolic Gauss maps satisfy g∗ = g− 1, and it
can be parametrized using Theorem 1 as

(ψ1, ψ2, ψ3)=

(
±
v

2
−

e±2v

e±2v + 1
, ∓

u
2
,

e±v

e±2v + 1

)
,

Figure 4. The peach front.
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where the first and second fundamental forms are given as (3-1) and (3-2) with
φ(u, v)=±v. Observe that this value of φ can be viewed as

φ(z, z̄)=−Re(ε cosh z0z),

with z0 = 0.

Theorem 6. Let 6 ⊂ H3 be a flat front with a complex parameter z = u+ iv that
diagonalizes the first and second fundamental forms simultaneously as in (3-1) and
(3-2). Then φ(u, v) = au + bv + c if and only if the corresponding flat front is
locally congruent to one of the classifying examples or to a peach front.

Proof. Since φ and z = u+ iv determine the first and second fundamental forms,
it is clear that any flat immersion such that φ(z, z̄) = −Re(ε cosh z0z), for some
z0 ∈ C∗, must be locally congruent to one of the classifying examples.

On the other hand, as we observed in Remark 5, the peach front has a parametriza-
tion that diagonalizes the first and second fundamental forms with φ(u, v) as above,
with z0 = 0. �

5. Characterization

In this section, we prove that a flat front in H3 is helicoidal if and only if it is
locally congruent to one of the classifying examples presented in the previous
section. Moreover, we obtain a complete classification of the helicoidal flat fronts
in terms of their hyperbolic Gauss maps, as well as by means of linear harmonic
functions. As a consequence of Theorem 6, we prove that any flat surface in H3 that
corresponds to a linear harmonic function is locally congruent either to a helicoidal
flat surface or to a peach front.

Theorem 7. A flat front in H3 is helicoidal if and only if it is locally congruent to
one of the classifying examples.

We split our proof into two lemmas. The first lemma will establish that every
classifying example has the geometric property that it is invariant by a helicoidal
group of isometries, that is, it is a helicoidal flat front. In the second, we will show
that, given any helicoidal flat front, there exists a rigid motion of H3 such that its
hyperbolic Gauss maps satisfy g∗ = e2z0 g, where z0 is a nonzero complex number.
Once we establish these two lemmas, the proof of Theorem 7 will follow as a
consequence of Proposition 2 and Theorem 6.

Lemma 8. Every classifying example is a helicoidal flat front.

Proof. The classifying examples were obtained by using the method of producing
flat fronts given by Theorem 4. Given such a flat front, its hyperbolic Gauss maps
g and g∗ satisfy g∗ = e2z0 g and g = e(ε sinh z0)z , where z0 is a nonzero complex
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number, that is, 1− ez0 6= 0. We want to obtain the immersion in H3 of the flat
front, associated to g and g∗, by using Theorem 1. Since g∗ = e2z0 g, we have

(5-1) g− g∗ = (1− e2z0)g.

Setting g = Reiv, it follows from (3-4) that

ξ = c exp
( log R+ iv

1− e2z0

)
.

From now on, we adopt the notation

1
1− e2z0

= x0+ iy0.

Then we have

(5-2) |ξ |2 = |c|2e2(x0 log R−y0v).

We can now obtain the flat front given by (3-5). Using (5-1) and (5-2), we have

ψ1+ iψ2 =

(
1−

|c|4e4(x0 log R−y0v)(x0− iy0)

|c|4e4(x0 log R−y0v)
(
x2

0 + y2
0

)
+ e(2 log R)

)
Reiv,(5-3)

ψ3 =
|c|2e2(x0 log R−y0v+log R)(

x2
0 + y2

0

)
|c|4e4(x0 log R−y0v)+ e2 log R

.(5-4)

Simplifying (5-4), we have

(5-5) ψ3 =
|c|2 Re(2x0 log R−2y0v+log R)(

x2
0 + y2

0

)
|c|4e4(x0 log R−y0v)+ e2 log R

=
|c|2 R(

x2
0 + y2

0

)
|c|4e(2x0 log R−2y0v−log R)+ e(−2x0 log R+2y0v+log R)

=
|c|2 R(

x2
0 + y2

0

)
|c|4ex + e−x

,

where x = (2x0− 1) log R− 2y0v. Using this fact, we rewrite (5-3):

(5-6) ψ1+ iψ2

=

(
1−

|c|4e(4x0 log R−4y0v)(x0− iy0)(
x2

0 + y2
0

)
|c|4e(4x0 log R−4y0v)+ e(2 log R)

)
Reiv

=

(
1−

|c|4e(2x0 log R−2y0v−log R)(x0− iy0)(
x2

0 + y2
0

)
|c|4e(2x0 log R−2y0v−log R)+ e(−2x0 log R+2y0v+log R)

)
Reiv

=

(
1−

|c|4(x0− iy0)ex(
x2

0 + y2
0

)
|c|4ex + e−x

)
Reiv.
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Now we want to prove that the immersed surface is invariant by the helicoidal
group of isometries of H3. First, let us consider the case when y0 = 0. We can see
from (5-5) and (5-6) that this case corresponds to the rotational surfaces. On the
other hand, when y0 6= 0, we can write

v = f (R)−
x

2y0
,

where f (R)= 2x0−1
2y0

log R. With this notation, we obtain

ψ1 = R
(
c1(x) cos f (R)− c2(x) sin f (R)

)
,

ψ2 = R
(
c1(x) sin f (R)+ c2(x) cos f (R)

)
,

where c1 and c2 are real functions given by

c1(x)=

(
(x2

0 + y2
0 − x0)|c|4ex

+ e−x
)

cos x
2y0
+ y0|c|4ex sin x

2y0

(x2
0 + y2

0)|c|
4ex + e−x

,

c2(x)=−

(
(x2

0 + y2
0 − x0)|c|4ex

+ e−x
)

sin x
2y0
+ y0|c|4ex cos x

2y0

(x2
0 + y2

0)|c|
4ex + e−x

.

Using the notation ψ3 = Rc3(x), we then have the following expression for the
front:

(ψ1, ψ2, ψ3)(R, x)= R

cos f (R) − sin f (R) 0
sin f (R) cos f (R) 0

0 0 1

 c1(x)
c2(x)
c3(x)

 .
When x0=

1
2 , we have f (R)= 0, and consequently there is no rotational movement.

On the other hand, if x0 6=
1
2 , we consider f (R)= y and write

(ψ1, ψ2, ψ3)(y, x)= exp
(

2y0

2x0− 1
y
)cos y − sin y 0

sin y cos y 0
0 0 1

 c1(x)
c2(x)
c3(x)

 .
This concludes the proof of the lemma. �

The second lemma will show that any helicoidal flat surface in H3 is congruent
to a surface whose hyperbolic Gauss maps satisfy g∗ = cg, where c is a complex
number.

In order to do so, we will consider an approach closer to the one given in [Ripoll
1989]. We consider hyperbolic space H3 as a submanifold of the Lorentzian 4-space
L4, endowed with coordinates (x0, x1, x2, x3) and the inner product 〈 , 〉 given by

〈 , 〉 = −dx2
0 + dx2

1 + dx2
2 + dx2

3 .
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The hyperbolic 3-space H3 will be the Riemannian 3-submanifold with sectional
curvature −1 given by the set

H3
=
{
(x0, x1, x2, x3) ∈ L4 ∣∣ − x2

0 + x2
1 + x2

2 + x2
3 =−1, x0 > 0

}
,

with the metric induced by L4.
We can see that the map

(5-7) (x0, x1, x2, x3)→
1

x0+ x3
(x1, x2, 1)

is an isometry between this model and the half-space model. Its inverse is given by

(5-8) (y1, y2, y3)→
1

2y3

(
1+

3∑
i=1

y2
i , 2y1, 2y2, 1−

3∑
i=1

y2
i

)
.

With these maps in mind we consider the helicoidal flat surfaces in H3
⊂ L4. Let

O1(4) be the orthogonal group in L4 given by all linear transformations that preserve
〈 , 〉. Now consider mt ∈ O1(4) given by the matrix

mt =


coshβt 0 0 sinhβt

0 cosαt − sinαt 0
0 sinαt cosαt 0

sinhβt 0 0 coshβt

 .
Observe that mt is a one-parameter subgroup of isometries of H3 given by a
translation 

coshβt 0 0 sinhβt
0 1 0 0
0 0 1 0

sinhβt 0 0 coshβt


along the geodesic γ : −x2

0 + x2
3 =−1, composed with the rotation

1 0 0 0
0 cosαt −sinαt 0
0 sinαt cosαt 0
0 0 0 1

 .
Also, observe that the geodesic γ we are considering is the image of the y3-axis
by the map (5-8). One verifies that any orbit of mt intersects the totally geodesic
submanifold P2

={x3 = 0} just once. Thus, up to congruences, any surface invariant
under mt is generated by a curve in P2.

In order to obtain the hyperbolic Gauss maps, we now consider H3 contained in
the Lorentzian 4-space L4. We use the theory developed in [Gálvez et al. 2000],
where there is a description of these maps using an identification between L4 and
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the set of 2× 2 hermitian matrices, Herm(2). To see this identification, let N3 be
the half part of the light cone such that x0 > 0,

N3
=
{
(x0, x1, x2, x3) ∈ L4 ∣∣−x2

0 + x2
1 + x2

2 + x2
3 = 0, x0 > 0

}
.

If we associate to each v ∈N3 the half-line [v], we obtain a partition of N3, and the
ideal boundary S2

∞
of H3 can be viewed as the quotient of N3 under the associated

equivalence relation. Thus, the induced metric is well defined up to a scalar multiple,
where S2

∞
receives a natural conformal structure as the quotient N3/R+. In this

approach, as we can see in [Gálvez et al. 2000], the hyperbolic Gauss maps of an
immersion ψ : S→ H3 with unit normal vector field N are given by

(5-9) g = [ψ + N ] and g∗ = [ψ − N ].

We use the identification between L4 and the set of 2× 2 hermitian matrices
Herm(2), where the point (x0, x1, x2, x3) is identified with the matrix

(5-10)
(

x0+ x3 x1+ ix2

x1− ix2 x0− x3

)
.

Once we have the coordinates ofψ+N andψ−N in L4, we find their corresponding
matrices and write them as

(5-11) ψ + N =
(

AĀ AB̄
ĀB B B̄

)
and ψ − N =

(
CC̄ C D̄
C̄ D DD̄

)
.

Therefore, we have the hyperbolic Gauss maps given by

(5-12) g =
A
B

and g∗ =
C
D

(see [Gálvez et al. 2000] for more details).
With this approach, we are able to establish and prove the second lemma:

Lemma 9. Let ψ : σ→H3 be an immersion of a helicoidal flat surface in H3. Then
there is a rigid motion of H3 such that its hyperbolic Gauss maps g and g∗ satisfy
g∗ = e2z0 g, where z0 6= 0 is a complex number.

Proof. We start with a helicoidal surface immersed in H3. Then considering the
half-space model for H3, there exists a rigid motion of H3 that takes the axis of the
helicoidal surface into the y3-axis. Then by considering the isometry (5-8), between
the half-space model and H3

⊂ L4, up to a rigid motion of H3, we may consider the
immersion ψ of the helicoidal surface as

ψ(t, s)= mt(γ (s)),

where γ is a curve in P2 parametrized by arc length.
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In order to describe the hyperbolic Gauss maps g and g∗, we need to obtain the
maps ψ + N and ψ − N . A normal unit vector field is given by

N =
�(ψ,ψt , ψs)

|�(ψ,ψt , ψs)|
,

where �(ψ,ψt , ψs) is the Lorentzian vector product between ψ, ψt , ψs . If we
write γ (s)= (x0(s), x1(s), x2(s), 0), we have ψt(t, s)= mt(v(s)), with the vector
v given by v(s)= (0,−αx2(s), αx1(s), βx0(s)). This fact and the orthogonality of
mt enable us to conclude that

N (t, s)= mt(η(s)),

where η(s)=
�(γ (s), v(s), γ ′(s))
|�(γ (s), v(s), γ ′(s))|

. Therefore

ψ + N = mt(γ + η), ψ − N = mt(γ − η).

From (5-11)–(5-12), we have

g(s, t)= g0(s)e(β+iα)t and g∗(s, t)= g∗0(s)e
(β+iα)t .

Now we see that g/g∗ is a function only of the variable s, and as was proved in
[Gálvez et al. 2000], g and g∗ are holomorphic when the surface is flat. Therefore,
g/g∗ is a holomorphic function that depends only on one variable, which implies

g = ω0g∗,

where ω0 ∈C is a constant. It follows from (5-11)–(5-12) and the fact that ψ and N
are orthogonal that ω0 6= 1. Therefore, there exists z0 ∈C∗ such that g = e2z0 g∗. �

Proof of Theorem 7. One direction of the proof is given by Lemma 8, that is, every
classifying example is a helicoidal flat front. Conversely, given any helicoidal flat
surface in H3, it follows from Lemma 9 that it is congruent to a surface whose
hyperbolic Gauss maps must satisfy g = e2z0 g∗, where z0 6= 0. Moreover, using
Proposition 2, we can choose a complex parameter η= u+ iv such that (3-9) holds.
Therefore, locally g is given by

g = eε(sinh z0)η.

Then it follows from (3-10) that φ must be linear. Theorem 6 implies that this
helicoidal flat front is locally congruent to one of the classifying examples. �

As a consequence of Theorem 7, Proposition 2, Theorem 4 and the definition of
the classifying examples, we have a complete classification of the helicoidal flat
fronts in terms of their hyperbolic Gauss maps, determined by a nonzero complex
number.
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Theorem 10. A flat front in H3 is helicoidal if and only if up to a rigid motion of
H3, there exists a complex parameter η such that its hyperbolic Gauss maps g and
g∗ are meromorphic functions given by

g = eε(sinh z0)η and g∗ = e2z0 g,

where z0 is a nonzero complex number and ε2
= 1.

As a consequence of Theorems 4, 7 and 10, we get the following two results
formulated in term of harmonic functions.

Theorem 11. A flat front in H3 is helicoidal if and only if there exists a local
parametrization by lines of curvature in a neighborhood of a nonsingular point,
such that the first and second fundamental forms are given by (3-1) and (3-2), where

φ = au+ bv+ c and (a, b, c) 6= (0,±1, 0).

Theorem 12. Let 6 be a flat front in H3 with a local parametrization in a neigh-
borhood of a nonsingular and nonumbilic point, such that the first and second
fundamental forms are diagonal and given by (3-1) and (3-2), where φ is a (eu-
clidean) harmonic function. Then φ is linear, that is, φ = au+ bv+ c if and only if
6 is locally congruent either to a helicoidal flat front or to a peach front.
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ON A GALOIS CONNECTION
BETWEEN THE SUBFIELD LATTICE

AND THE MULTIPLICATIVE SUBGROUP LATTICE

JOHN K. MCVEY

Given finite fields F < E , we present a collection of subgroups C � E�

and establish, to each C , a Galois connection between the intermediate field
lattice EDfL jF �L�Eg and C ’s subgroup lattice. Our main result is that,
in all but an extremely limited and completely determined family, the closed
subset of E is E itself, establishing a natural bijection between E and the
lattice fL\C jL 2 Eg. As an application, we use this bijection to calculate
the set of degrees for the complex-valued irreducible representations of the
split extension C Ì Gal.E=F /.

1. Introduction

In §3 of [McVey 2004], generalizing results in §5 of [Riedl 1999], we worked
towards (among other things) a better understanding of the groups C ÌGal.E=F /
for finite fields F <E, where C <E� is the subgroup of order jE� W F�j. While
working to generalize those results further, we discovered a Galois connection
which itself is worthy of further study. This paper’s intent is to record the Galois
connection as well as the research that motivated its initial study. The primary
assertion of the Main Theorem is that, but for a completely determined and rather
limited family, the intermediate field lattice ED fL j F �L�Eg is itself one of
the two closed subsets in the Galois connection, thereby determining a canonical
bijection between E and the other closed set fL\C jL 2 Eg. As to the motivating
research, we use this bijection to calculate the degrees of the irreducible complex
representations of the aforementioned split extension C ÌGal.E=F /, showing
every integer allowed by Itô’s theorem is a degree.

2. Towards the Galois connection

Our focus in this paper is on monotone Galois connections. To avoid confusion
between monotone and antitone connections, we define the term and present the
basic relevant results. Two monotone nondecreasing functions f W A! B and
g W B! A on partially ordered sets .A;�/ and .B;�/ form a monotone Galois
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Keywords: Galois correspondence, lattice, character degree, finite field.
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connection if
f .a/� b () a� g.b/

over all a 2 A and b 2 B. The function f is the lower adjoint and g is the
upper adjoint. The closed sets A0 and B0 of A and B respectively are defined by
A0 D g.B/ and B0 D f .A/, and satisfy

A0 D fa 2A j g ıf .a/D ag D g ıf .A/;

B0 D fb 2B j f ıg.b/D bg D f ıg.B/:

The functions f and g are inverse bijections between the sets A0 and B0.
Turning now specifically to our setting of finite fields F < E, label by � the

set of primes which divide jF�j D jF j � 1. The collection of groups to which the
Galois connection applies consists of all subgroups C �E� for which the index
jE� W C j is a �-number (thus naturally generalizing results in [Riedl 1999] where
hypotheses guaranteed jE� W C j D jF�j). Fixing a group C , the upper adjoint is
very easy to describe; it is the function “intersect with C ”.

As to the lower adjoint, define the F -closure yX of a subset X � E to be the
smallest subfield of E which contains X [F . In other words, yX is the intersection
of all fields L satisfying X [F � L � E. It should be obvious that F -closure
actually is a closure operator (i.e.,

yX �X and yyX D yX

over all subsets X �E), and that a Galois automorphism � 2Gal.E=F / centralizes
X if and only if it centralizes yX . The partially ordered sets in our Galois connection
are the lattices

(1) ED fL j F �L�E is a fieldg and CD fD jD � C is a groupg;

ordered by inclusion. The functions X 7! X \ C and X 7! yX are obviously
monotone. Given D 2C and L 2E, and noting that L\C DL�\C 2C, we have

yD �L () D �L () D �L\C;

showing that y� is a lower adjoint while . � /\C is an upper adjoint. Therefore, as
A0 D g.B/, the closed subset of C is C0 D fL\C jL 2 Eg.

We are now ready to state the Main Theorem. All but the last two sentences
were proven in the above discussion. Those last two sentences are the true content
of the theorem, and their proof is at the end of this section.

Main Theorem. Let F <E be finite fields and label by � the set of primes dividing
jF j�1. Let C be a subgroup of E� whose index jE� W C j is a �-number. Given the
partially ordered sets defined by (1), the functions y� W C! E and . � /\C W E! C
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are respectively the lower and upper adjoints of a monotone Galois connection, and
thus provide inverse bijections between the closed subsets C0 � C and E0 � E. The
closed subset C0 of C is the lattice C0 D fL\C j L 2 Eg. If jF j is a Mersenne
prime, jE W F j is even, and 4 does not divide jC j, then the closed subset E0 of E is
the set E0 D E n fKg where jK W F j D 2. Otherwise, ED E0.

Our argument for the as yet unproven portion of the Main Theorem relies
fundamentally on number theory. We ask the reader to recall Zsigmondy’s prime
theorem, as it is the foundation for what follows.

Theorem 1 [Zsigmondy 1892]. Let a; b; n be positive integers and assume a; b are
coprime and not both 1. Then, an� bn has a prime divisor which does not divide
ak � bk for integers 0< k < n, except when either

nD 6 and fa; bg D f1; 2g or nD 2 and aC b is a 2-power.

Aside from specifying fa; bg as fq; 1g with q a prime-power, the main point
behind Corollary 2 is that the order of the quantifiers changed (from ‘9 prime 8 k’
in Zsigmondy’s theorem to ‘8 k 9 prime’ in the corollary).

Corollary 2. Let n> 1 be an integer and q a power of a prime. For each integer k

with 0< k < n, there is a prime which divides qn� 1 and not qk � 1, except when
q is a Mersenne prime and nD 2. Conversely, when q is a Mersenne prime, every
prime dividing q2� 1 divides q� 1.

Proof. As stated previously, Zsigmondy’s theorem provides a universal prime (over
all k) unless we are in one of the exceptional cases. First, assume nD 6 and q D 2,
in which case qn�1D 26�1D 63D 32 �7. It suffices to check that 3 divides none
of 1D 21� 1, 7D 23� 1, and 31D 25� 1, and that 7 divides neither 3D 22� 1

nor 15D 24� 1.
In the other exceptional case, nD 2 and qC 1 is a 2-power. However, Catalan’s

conjecture (proven in [Mihăilescu 2004]) says that the integer equation xa�yb D 1

with a; b > 1 only has the solution 32 � 23. Because qC 1 is a 2-power already,
q itself must be prime, hence a Mersenne prime.

As to the converse, when q is a Mersenne prime, the only prime dividing qC 1

is 2, which necessarily divides .qC 1/� 2D q � 1. As q2 � 1D .qC 1/.q � 1/,
the result follows. �

We now leave number theory and move to algebra proper. Our first algebraic
goal is a lemma which shows how the number theory embedded in the previous
corollary can be applied to finite fields.

Lemma 3. Let F �K �L�E be finite fields. For the set � of prime divisors of
jF�j, let C be a subgroup of E� whose index is a �-number. If the prime p divides
jL�j and not jK�j, then p divides jL\C WK\C j.
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Proof. The following picture provides insight into this proof.
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That p does not divide jK�j implies p does not divide jF�j D q� 1. Since

jL� WL\C j D jL�C W C j divides jE� W C j;

which is a �-number and thus coprime to p, necessarily p divides jL\C j. As p

does not divide jK�j, it also does not divide jK\C j. �

Theorem 4. Let q be a prime-power, e > 1 an integer, and � the set of primes
dividing q � 1. Label F D Fq and E D Fqe , and let C be a subgroup of E�

whose index jE� W C j is a �-number. Then, for all fields F �L�E, the equality
LD 1L\C holds, except when the following conditions are all satisfied.

(1) q is a Mersenne prime.

(2) e is even.

(3) LD Fq2 .

(4) 4 does not divide jC j.

When these simultaneously hold, L\C D F \C , so 1L\C D F <L.

Proof. Fix the field L. Obviously, the set L\C is a subset both of 1L\C and of C .
Therefore,

L\C � 1L\C \C � yL\C DL\C;

and we have equality throughout. Applying (the contrapositive of) Lemma 3 to
K D 1L\C , the equality K \C D L\C shows that every prime dividing jL�j
divides jK�j. Labelling jL�j D qn� 1 and jK�j D qk � 1, either k D n (and we
are done) or we are in the exceptional case of Corollary 2.

Henceforth, assume nD 2 and q is a Mersenne prime. As e is a multiple of n, it
is even. Write q D 2p � 1. Consequently,

� jF�j D q� 1D 2.2p�1� 1/, which has 2-part exactly 2, while

� jL�j D q2� 1D 2pjF�j, which has 2-part 2pC1.

In particular, the 20-part of jL�j is exactly the 20-part of jF�j.
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We now split the argument as to whether or not 4 divides jC j. If 4 divides jC j,
then because 4 also divides jL�j, it divides jL\C j. However, 4 does not divide
jF�j, so L\C 6�F�. Accordingly, F < 1L\C �L, and F D Fq being a maximal
subfield of LD Fq2 shows LD 1L\C .

When 4 does not divide jC j, the 2-part of jL\C j divides jF�j. Generally, the
20-part of jL\C j divides jL�j20 D jF�j20 . It follows that jL\C j divides jF�j.
Since E� is cyclic, this shows L\C � F�, so L\C D F \C . �

With the above result in place, we use that B0 D f ıg.B/ to conclude

E0 D f
1L\C jL 2 Eg:

Meanwhile, the F -closure 1L\C equals L but for the one exception Fq2 when q is
Mersenne, e is even, and 4 fails to divide jC j. This finishes the proof of the Main
Theorem.

3. Application to degrees

Our concluding section presents the computations for the character degree set of the
split extension C ÌGal.E=F / when ED E0. We emphasize once more that this
result was the principal impetus for our study of this Galois connection. All standard
notations and conventions regarding character theory are taken from [Isaacs 1976].
The following generalizes Theorem 3.2 in [McVey 2004], and the proof here is
fundamentally the same as is presented there, the main modification being the use
of Theorem 4.

Theorem 5. Fix a prime-power q and an exponent 1 < e 2 Z, and label by F

the field Fq , by E the field Fqe , and by � the set of primes dividing q � 1. Let
� D Gal.E=F /, and fix C �E� under the assumption jE� W C j is a �-number. If
q is Mersenne and e is even, assume 4 divides jC j. Then, � normalizes C and

cd.C� /D fn j n divides eg:

Proof. Because E� is cyclic, every subgroup is characteristic. In particular, C is
fixed (setwise) under every field automorphism of E, so � normalizes C . As C

is cyclic, Irr.C / contains only linear characters and forms a cyclic group under
multiplication. Let � 2 Irr.C / be a generator, noting � is both faithful and a
homomorphism. In summary, �.d1/ D �.d2/ implies d1 D d2, �m.d/ D �.dm/,
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and �� .d� /D �.d/ for all d; d1; d2 2 C , m 2 Z, and � 2 � . Recalling C C C� is
abelian, Itô’s theorem says every degree in cd.C� / divides jC� W C j D j� j D e.

Conversely, fix a divisor n of e, and we will demonstrate an irreducible character
of C� whose degree is n. Let � be a generator of � , and label ˚ Dh�ni, observing
that j� W ˚ jDn. Let L be the fixed field for �n in the (usual) Galois correspondence
for E over F . Hence, ˚ D Gal.E=L/ and �n fixes the subgroup L\C of C . For
some generator c 2 C , let L\C D hcmi.

We claim the stabilizer of �m in � is ˚ . Given the claim, the stabilizer of �m

in C� is C˚ , and �m extends to a character ' 2 Irr.C˚/ through for example
Corollary 11.22 in [Isaacs 1976]. Also, ' induces irreducibly to C� by Clifford
correspondence. Therefore,

nD j� W ˚ j D jC� W C˚ j D jC� W C˚ j'.1/D 'C� .1/ 2 cd.C� /:

As n was an arbitrary divisor of e, we will have shown the result.
Given � 2 � and recalling � is faithful, the equalities

.�m/� .d/D �m.d��1

/D �
�
.d��1

/m
�
D �

�
.dm/�

�1�
and

�m.d/D �.dm/

imply that � centralizes �m (the left ends are equal) if and only if ��1 centralizes
dm for every d 2 C (the right ends are equal). The latter happens exactly when
��1 centralizes hcmi DL\C , which occurs if and only if ��1 centralizes 1L\C .
As LD 1L\C (Theorem 4), this is equivalent to ��1 2 Gal.E=L/D ˚ . �

In closing, we would be remiss in not mentioning an application of Theorem 5
to a remark made in [Lewis 2001]. For the subsequent, we use the notation of
[Lewis 2001]. In the paragraph preceding Lemma 3.4, Dr. Lewis made the comment
that “. . . every divisor of m occurs in cd.G=V /”, but that particular conclusion was
superfluous to Lemma 3.4, so it went unproven. Reading through the first two and
a half paragraphs of that proof, V can be viewed as the additive group of the field
Fqm , K=Z acts on Fqm by multiplication as if it were a subgroup of F�qm , and the
quotient H=K behaves as a Galois group. Lastly, the hypotheses to Example 2.4
imply m is coprime to .qm � 1/=.q � 1/. Hence, our result applies to the group
H=Z, and Lewis’ claim about the degrees is an immediate corollary of Theorem 5
and the relations G=V ŠH and cd.H /D cd.H=Z/.
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SOME CHARACTERIZATIONS OF CAMPANATO SPACES VIA
COMMUTATORS ON MORREY SPACES

SHAOGUANG SHI AND SHANZHEN LU

We give some creative characterizations of Campanato spaces via the bound-
edness of commutators associated with the Calderón–Zygmund singular in-
tegral operator by some new methods instead of the sharp maximal function
theorem.

1. Introduction and main results

Let −n/p ≤ β < 1 and 1 ≤ p <∞. A locally integrable function f is said to
belong to the Campanato spaces C p,β(Rn) if

‖ f ‖C p,β (Rn) = sup
Q
‖ f ‖C p,β (Q) := sup

Q

1
|Q|β/n

(
1
|Q|

∫
Q
| f − fQ|

p dx
)1/p

<∞,

where fQ =
1
|Q|

∫
Q f (x) dx , Q denotes any cube contained in Rn and |Q| is the

Lebesgue measure of Q.
Campanato spaces are useful tools in the regularity theory of PDEs as a result

of their better structures, which allow us to give an integral characterization of the
spaces of Hölder continuous functions. This leads to a generalization of the classical
Sobolev embedding theorem (see, e.g., [Lemarié-Rieusset 2007; Lu 1995; 1998]).
It is also well known that C1,1/p−1 is the dual space of Hardy space H p(Rn) when
0 < p < 1 (see [Triebel 1992]). For a recent account of the theory on C p,β(Rn),
we refer the reader to [Duong et al. 2007; Lin et al. 2011; Nakai 2006; Yang et al.
2010].

It’s obvious that β = 0 implies C p,0(Rn)= BMO(Rn) with the norm

(1-1) ‖ f ‖BMO(Rn) = sup
Q

1
|Q|

∫
Q
|b− bQ | dx .
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When 0< β < 1 and 1≤ p <∞, we have C p,β(Rn)= Lipβ(R
n) (see [DeVore and

Sharpley 1984; Janson et al. 1983]) with the equivalent norm

(1-2) ‖ f ‖Lipβ (Rn) ≈ sup
Q

1
|Q|1+β/n

∫
Q
| f − fQ |

≈ sup
Q

(
1

|Q|1+qβ/n

∫
Q
| f − fQ |

q
)1/q

,

where 1≤ q ≤∞ and Lipβ(R
n) is the Lipschitz functional space.

When −n/p ≤ β < 0, there are several stages in the study of C p,β(Rn). Let �
be a connected open set of Rn . Denote by � the closure of �, and by diam� the
diameter of �. For any x0 ∈Rn and l ∈ (0,∞), set B(x0, l)= {x ∈Rn

: |x−x0|< l}
and �(x0, l)= B(x0, l)∩�. The following space was first introduced by Morrey
[1938] to investigate the local behavior of solutions to the second order elliptic PDE

‖ f ‖M p,β (�) = sup
x0∈�

l∈(0,diam�)

1
|�(x0, l)|β/n

(
1

|�(x0, l)|

∫
�(x0,l)

| f |p
)1/p

,

where f ∈ L p
loc(�), 1≤ p <∞ and −n/p ≤ β < 0. When �= Rn , M p,β(Rn) is

the classical Morrey space, whose norm is defined by

‖ f ‖M p,β (Rn) = sup
Q
‖ f ‖M p,β (Q) = sup

Q

1
|Q|β/n

(
1
|Q|

∫
Q
| f |p

)1/p

.

M p,β(Rn) is an expansion of L p(Rn) in the sense that M p,−n/p(Rn) = L p(Rn).
Similarly, for 1≤ p <∞,−n/p ≤ β < 0, a function f ∈ L p

loc(�) is said to belong
to the Campanato space C p,β(�) if

‖ f ‖C p,β (�) = sup
x0∈�

l∈(0,diam�)

1
|�(x0, l)|β/n

(
1

|�(x0, l)|

∫
�(x0,l)

| f − f�(x0,l)|
p
)1/p

<∞.

Campanato [1963] proved that, if diam�<∞ and there exists a positive constant
C such that

(1-3) |�(x0, l)| ≥ Cln,

for every x0 ∈� and l ∈ (0, diam�), then

(1-4) M p,β(�)= C p,β(�).

(For more accounts about (1-4), see [Rupflin 2008], for example.) Throughout this
paper, the letter C stands for a positive constant which may vary from line to line.
When diam�=∞ (i.e., � is unbounded, as when�=Rn , for example), Sakamoto
and Yabuta [1999] pointed out that when 1≤ p<∞ and β ∈ [−n/p, 0), C p,β(Rn)
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is equivalent to M p,β(Rn). But Lin [2009] gave a counterexample to verify that
when 1≤ p <∞ and β ∈ [−n/p, 0), we have

(1-5) M p,β(Rn)( C p,β(Rn),

which implies that the statement in [Sakamoto and Yabuta 1999] may be inaccurate.
More precisely, on account of the remark above, we have

C p,β(Rn)


= BMO(Rn) for β = 0,
= Lipβ(R

n) for 0< β < 1,
⊃ M p,β(Rn) for − n/p < β < 0.

Let T be a linear operator and b a suitable function. For a proper function f ,
the commutator Tb is defined by

Tb( f ) := bT f − T (b f ).

In this paper, we give some characterizations of C p,β(Rn) in terms of the bounded-
ness of Tb, where T is the Calderón–Zygmund singular integral operator

T f (x)= p.v.
∫

Rn
K (x − y) f (y) dy;

here K ∈ C∞(Sn−1) is a Calderón–Zygmund kernel that satisfies

(1-6) K (x)= K (x/|x |)/|x |n for |x | 6= 0

and

(1-7)
∫

Sn−1
K = 0.

For more on the theory of the Calderón–Zygmund singular integral operator T , see
[Grafakos 2004; Janson 1978; Lu 2011; Lu et al. 2007; Stein 1970], for example.

There are many classical works about the characterizations of Campanato spaces
by the boundedness of Tb on Lebesgue spaces. Coifman, Rochberg and Weiss
[Coifman et al. 1976] gave a characterization of BMO(Rn) in terms of the com-
mutator Tb:

b ∈ BMO(Rn) ⇐⇒ Tb : L p(Rn)→ L p(Rn) if 1< p <∞.

Janson [1978] gave a characterization of Lipβ(R
n) by the (L p, Lq)-boundedness

of the commutator Tb: If 0< β < 1, then

b∈Lipβ(R
n) ⇐⇒ Tb : L p(Rn)→ Lq(Rn) if 1< p<q<∞ and 1/q=1/p−β/n.

Paluszyński [1995] gave a new characterization of Lipβ(R
n) by the (L p, Ḟβp,∞)-

boundedness of the commutator Tb: If 0< β < 1, then
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b ∈ Lipβ(R
n) ⇐⇒ Tb : L p(Rn)→ Ḟβp,∞(R

n) if 1< p <∞,

where Ḟβp,∞(Rn) is the homogeneous Triebel–Lizorkin space with the equivalent
norm

‖ f ‖Ḟβp,∞(Rn)
≈

∥∥∥∥sup
Q

1
|Q|1+β/n

∫
Q
|b− bQ |

∥∥∥∥
L p
.

As a natural extension of Lebesgue space, it is interesting to know whether
Campanato spaces can be characterized by the boundedness of Tb on Morrey
spaces.

Ding [1997] characterized BMO(Rn) by the (M p,β(Rn),M p,β(Rn))-boundedness
of Tb:

b ∈ BMO(Rn) ⇐⇒ Tb : M p,β(Rn)→ M p,β(Rn) if 1< p <∞, −n/p ≤ β < 0.

In the rest of this paper, we shall establish the characterizations of other cases of
Campanato spaces — namely, Lipβ(R

n) for 0< β < 1 and M p,β(Rn) for −n/p ≤
β < 0 — using certain boundedness properties of Tb on Morrey spaces.

Now, we formulate our first result as follows:

Theorem 1.1. Let 1 < p <∞, 0 < α < 1, −n/p ≤ β < 0, 1+ pβ/n < p/q,
1/q = 1/p − α/n and β̃ = (q − p)/p + qβ/n. The following statements are
equivalent:

(1) b ∈ Lipα(R
n).

(2) Tb is a bounded operator from M p,β(Rn) to Mq,β̃(Rn).

We say that a nonnegative function f belongs to the reverse Hölder class RHr if
for any Q ⊂ Rn and 1< r <∞ we have(

1
|Q|

∫
Q
| f |r dx

)1/r

≤
C
|Q|

∫
Q
| f | dx .

When r =∞, we say that f ∈ RH∞ if f ∈ L∞loc(R
n) and there exists a constant C

such that

(1-8) ‖ f ‖L∞(Q) := sup
Q3x
| f (x)| ≤

C
|Q|

∫
Q
| f | dx .

For 1 < r <∞, it is easy to see that RH∞ =
⋃

r>1 RHr . Reverse Hölder classes
contain many kinds of functions. For example, if P(x) is a polynomial and γ > 0,
then f (x)= |P(x)|γ ∈RH∞(see [Fefferman 1983]). (For more theories about RHr ,
see [Cruz-Uribe and Neugebauer 1995; Harboure et al. 1998], for example.)

Theorem 1.2. Assume max{1, n/(1−β)}< p <∞, −n/p ≤ β < 0, 1< pi <∞

(i = 1, 2), p1 ∈N even, −n/pi ≤ βi < 0, 1/p = 1/p1+ 1/p2 and β = β1+β2. If
� satisfies (1-3) and diam�<∞, the following statements are equivalent:
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(1) b ∈ M p1,β1(�).

(2) If b ∈ RH∞, Tb is a bounded operator from M p2,β2(�) to M p,β(�).

The advantage of using the assumption diam� <∞ lies in the fact that the
equivalent norm of (1-4) is used in the proof of Theorem 1.2. If �= Rn , we can
obtain the following characterizations of Campanato spaces:

Theorem 1.3. Assume max{1, n/(1−β)}< p <∞, −n/p ≤ β < 0, 1< pi <∞

(i = 1, 2), p1 ∈ N even, −n/pi ≤ βi < 0, 1/p = 1/p1+ 1/p2 and β = β1+ β2.
The following statements are equivalent:

(1) b ∈ C p1,β1(Rn).

(2) Tb is a bounded operator from M p2,β2(Rn) to C p,β(Rn) if b further satisfies
that there exists a constant C > 0 such that for any Q ⊂ Rn ,

(1-9) sup
Q
|b− bQ | ≤

C
|Q|

∫
Q
|b− bQ |.

Remark 1. Inequalities (1-8) and (1-9) can be thought of as a form of mean value
equality. Besides polynomial functions, mean value equalities also characterize
harmonic functions (see [Gilbarg and Trudinger 1983]).

Remark 2. Solutions to a large class of elliptic second order PDEs satisfy the mean
value inequality. Therefore, Theorem 1.2 and Theorem 1.3 can give characterizations
of the space of solutions to some second order elliptic PDEs. Take Laplace’s
equation, for example. If b is a solution to the equation

(1-10) 1u = 0,

where 1 is the Laplace operator and u is a function defined on the bounded domain
� ⊂ Rn , then b satisfies (1-9); see [Gilbarg and Trudinger 1983, Theorem 2.1].
Therefore, if the commutator Tb associated to b is bounded from M p2,β2(Rn) to
C p,β(Rn), then the space of solutions to (1-10) is the Campanato space C p1,β1(Rn).

Remark 3. We emphasize that the methods in dealing with C p,β when β < 0 are
quite different from that of β ≥ 0, and there are essential difficulties in establishing
the characterizations of Campanato spaces on Morrey spaces when β <0. Therefore,
we set up Theorem 1.3 under the condition that the symbol of the commutator
satisfies the mean value inequality. Condition (1-9) in Theorem 1.3 was intrinsic
to the proof of the converse characterizations of C p1,β1(Rn). Of course, there are
essential differences between the ideas in the proof of Theorem 1.2 and Theorem 1.3
and that of [Janson 1978] and [Paluszyński 1995], where the sharp maximal function
theorem were used.

Our theorems provide natural and intrinsic characterizations of Campanato spaces
on Morrey spaces. It is also worth pointing out that our paper is the first work
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on the problem of commutators whose symbol belongs to Morrey spaces. Our
viewpoints will shed some new lights on characterizations of Campanato spaces
via commutators formed by other operators on Morrey spaces, such as fractional
integrals, oscillatory integral operators and Hardy–Littlewood–Paley operators.
Besides Euclidean space, characterizations of Campanato spaces on other spaces
can similarly be considered, such as on homogeneous groups. Partly inspired by
[Janson 1978] and [Paluszyński 1995], we prove Theorems 1.1–1.3 in Section 2.

2. Proof of the main results

For the proofs we need some lemmas about the estimates of operators on Morrey
spaces.

Lemma 2.1 [Chiarenza and Frasca 1987]. Let 1 < p < n/α, 0 < α < n, 1/q =
1/p − α/n, 0 < 1+ pβ/n < p/q, −n/p ≤ β < 0 and β̃ = (q − p)/p + qβ/n.
Then the fractional integral operator

Iα f (x)=
∫

Rn

f (y)
|x − y|n−α

dy

is bounded from M p,β(Rn) to Mq,β̃(Rn).

Lemma 2.2 [Komori and Shirai 2009]. Let 1< p <∞ and −n/p ≤ β < 0. Then
T is bounded from M p,β(Rn) to M p,β(Rn).

Proof of Theorem 1.1. (1)⇒ (2). Together, (1-2) and (1-6) imply

|Tb f (x)| ≤
∫

Rn
|b(x)− b(y)||K (x − y)|| f (y)| dy

≤

∫
Rn

| f (y)|
|x − y|n−α

dy ≤ Iα(| f (x)|).

Therefore, Tb is bounded from M p,β(Rn) to Mq,β̃(Rn) by Lemma 2.1.

(2)⇒ (1). The proof consists of the construction of a proper commutator. We follow
[Janson 1978] in choosing z0 6= 0 and δ > 0 such that 1/K (z) can be expressed in
the neighborhood |z− z0|<

√
nδ as the absolute convergent Fourier series

1
K (z)

=

∑
aneivn ·z,

where the exact form of the vectors vn is irrelevant. Set z1= δ
−1z0. If |z−z1|<

√
n,

it follows from (1-6) that

(2-1)
1

K (z)
=

δ−n

K (δz)
= δ−n

∑
aneivn ·δz.

Choose now any cube Q = Q(x0, r). Set y0 = x0− r z1 and Q′ = Q(y0, r). Thus,
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if x ∈ Q and y ∈ Q′,∣∣∣∣ x − y
r
− z1

∣∣∣∣≤ ∣∣∣∣ x − x0

r
−

y− y0

r

∣∣∣∣≤√n.

Denoting s(x)= sgn(b(x)− bQ′), by (2-1) we have∫
Q
|b(x)− bQ′ | dx =

∫
Q
(b(x)− bQ′)s(x) dx

=
1
|Q′|

∫
Q

∫
Q′
(b(x)− b(y))s(x) dy dx

=
1
rn

∫∫
Rn
(b(x)− b(y))s(x)

rn K (x − y)
K ((x − y)/r)

χQ(x)χQ′(y) dy dx

= C
∑

an

∫∫
Rn
(b(x)− b(y))K (x − y)ei(δ/r)vn ·x

× s(x)χQ(x)e−i(δ/r)vn ·yχQ′(y) dy dx .

Taking

gn(y)= e−i(δ/r)vn ·yχQ′(y) and hn(x)= ei(δ/r)vn ·x s(x)χQ(x),

we obtain∫
Q
|b(x)− bQ′ | dx = C

∑
an

∫∫
Rn
(b(x)− b(y))K (x − y)gn(y)hn(x) dy dx

= C
∑

an

∫
Rn

Tbgn(x)hn(x) dx

≤ C
∑
|an|

∫
Rn
|Tbgn(x)||hn(x)| dx

≤ C
∑
|an|

∫
Rn
|Tbgn(x)| dx .

Applying the Hölder inequality to
∫

Rn |Tbgn(x)| dx , we have∫
Rn
|Tbgn(x)| dx ≤ |Q|1+(α+β)/n

‖Tbgn‖Mq,β̃ (Rn)

≤ C |Q|1+(α+β)/n
‖gn‖M p,β (Rn)

≤ C |Q|1+α/n,

since ‖gn‖M p,β (Rn) = |Q|−β/n . Thus we have obtained

1
|Q|1+α/n

∫
Q
|b(x)− bQ′ | dx ≤ C,

which completes the proof of Theorem 1.1 by (1-2). �
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Theorem 1.2 is a restatement of Theorem 1.3 when C p,β spaces over domains
with finite volume, so we give the proof of Theorem 1.3 first. Again, we begin with
some lemmas that are essential to our analysis.

Lemma 2.3. Let p, p1, p2, β, β1, β2 and b be the same as in Theorem 1.3. Then

‖(b− bQ) f χQ‖L p(Rn) ≤ |Q|1/p+β/n
‖b‖C p1,β1 (Rn)‖ f ‖M p2,β2 (Rn).

This follows from Hölder’s inequality:

‖(b− bQ) f χQ‖L p(Rn) ≤

(∫
Q
|b− bQ |

p1

)1/p1
(∫

Q
| f |p2

)1/p2

≤ |Q|1/p(1+pβ/n)
‖b‖C p1,β1 (Rn)‖ f ‖M p2,β2 (Rn).

Lemma 2.4. Suppose that Q∗ ⊂ Q and b ∈ C p1,β1(Rn) with 1 < p1 < ∞ and
−n/p1 ≤ β1 < 0. Then the following estimate holds:

(2-2) |bQ∗ − bQ | ≤ C‖b‖C p1,β1 (Rn)|Q∗|
β1/n.

We divide the proof into two cases.

Case 1: Suppose Q∗ ⊂ Q ⊆ 2Q∗. Hölder’s inequality yields

|bQ∗ − bQ | ≤
1
|Q∗|

∫
Q∗
|b− bQ | +

1
|Q|

∫
Q
|b− bQ |

≤ C
1
|Q|

∫
Q
|b− bQ | ≤ C

(∫
Q
|b− bQ |

p1

)1/p1

|Q|−1/p1

≤ C‖b‖C p1,β1 (Rn)|Q∗|
β1/n.

Case 2: Suppose 2Q∗ ⊂ Q. Choose a sequence of nested cubes

Q∗ =: Q1 ⊂ Q2 ⊂ · · · Q =: Qm+1,

with |Qi+1| = 2n
|Qi | for 1≤ i ≤ m. By the results of Case 1, we have

|bQ∗ − bQ | = |bQ1 − bQ2 + bQ2 − · · ·+ bQm − bQm+1 |

≤

m∑
i=1

|bQi − bQi+1 | ≤ ‖b‖C p1,β1 (Rn)

m∑
i=1

2(i+1)β1 |Q∗|β1/n

≤ C‖b‖C p1,β1 (Rn)|Q∗|
β1/n,

which is (2-2).
The following imbedding theorem for L p spaces over domains with finite volume

is very useful in the analysis of inequality, which you can find in any book about
Sobolev spaces (see [Adams and Fournier 2003], for example).
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Lemma 2.5. Suppose that |�| =
∫
�

1 dx <∞ and 1≤ p ≤ q ≤∞. If f ∈ Lq(�),
then f ∈ L p(�) and

‖ f ‖L p(�) ≤ C |�|1/p−1/q
‖ f ‖Lq (�).

Proof of Theorem 1.3. (1)⇒ (2). For a cube Q = Q(xQ, r)⊂ Rn and y ∈ Q, take
f ∈ M p2,β2(Rn) and set f1 = f χ2Q and f2 = f − f1. After noticing that

Tb f = T(b−bQ) f,

we have(
1

|Q|1+pβ/n

∫
Q
|Tb f − (Tb f )Q |

p
)1/p

=

(
1

|Q|1+pβ/n

∫
Q
|T(b−bQ) f − (T(b−bQ) f )Q |

p
)1/p

≤

(
1

|Q|1+pβ/n

∫
Q
|T(b−bQ) f − (b− bQ) f2(xQ)|

p
)1/p

≤ I + II + III,

where

I :=
(

1
|Q|1+pβ/n

∫
Q
|(b− bQ)T f |p

)1/p

,

II :=
(

1
|Q|1+pβ/n

∫
Q
|T (b− bQ) f1|

p
)1/p

,

III :=
(

1
|Q|1+pβ/n

∫
Q

∣∣(T (b− bQ) f2)(y)− (T (b− bQ) f2)(xQ)
∣∣p
)1/p

.

Hölder’s inequality and Lemma 2.2 imply

I =
1

|Q|1/p+β/n

(∫
Q
|(b− bQ)T f |p

)1/p

≤
1

|Q|1/p+β/n

(∫
Q
|b− bQ |

p1

)1/p1
(∫

Q
|T f |p2

)1/p2

≤ C‖b‖C p1,β1 (Rn)‖T f ‖M p2,β2 (Rn)

≤ C‖b‖C p1,β1 (Rn)‖ f ‖M p2,β2 (Rn).

From Lemma 2.3, it follows that

II ≤
1

|Q|1/p+β/n ‖(b− bQ) f1‖L p ≤ C‖b‖C p1,β1 (Rn)‖ f ‖M p2,β2 (Rn).
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We now turn to the estimate for the term III . From (1-6), it may be concluded that∣∣(T (b− bQ) f2)(y)− T ((b− bQ) f2)(xQ)
∣∣

=

∣∣∣∣∫
Rn
(K (y− z)− K (xQ − z))(b(z)− bQ) f2(z) dz

∣∣∣∣
≤ C

∫
(2Q)c

|y− xQ|

|z− xQ |
n+1 |b(z)− bQ || f (z)| dz

≤ C
∞∑

k=2

∫
2k Q\2k−1 Q

1
2k |2k Q|

(|b(z)− b2k Q | + |bQ − b2k Q |)| f (z)| dz

≤ C
∞∑

k=2

1
2k |2k Q|

∫
2k Q
(|b(z)− b2k Q | + |bQ − b2k Q|)| f (z)| dz,

which yields

III ≤
(

1
|Q|1+pβ/n

∫
Q

∣∣∣∣ ∞∑
k=2

1
2k |2k Q|

∫
2k Q
|b(z)− b2k Q || f (z)| dz

∣∣∣∣p )1/p

+

(
1

|Q|1+pβ/n

∫
Q

∣∣∣∣ ∞∑
k=2

1
2k |2k Q|

∫
2k Q
|bQ − b2k Q || f (z)| dz

∣∣∣∣p )1/p

=: III1+ III2.

With repeated application of Lemma 2.3 and the L p-boundedness of the Hardy–
Littlewood maximal operator M , we can obtain

III1 ≤
1

|Q|1/p+β/n

∥∥∥∥ ∞∑
k=2

1
2k |2k Q|

∫
2k Q
|b(z)− b2k Q || f (z)| dz

∥∥∥∥
L p

≤
1

|Q|1/p+β/n

∞∑
k=2

1
2k

∥∥∥∥ 1
|2k Q|

∫
2k Q
|b(z)− b2k Q || f (z)| dz

∥∥∥∥
L p

≤

∞∑
k=2

1
2k

1
|Q|1/p+β/n

∥∥M(|b− b2k Q || f |)
∥∥

L p

≤

∞∑
k=2

1
2k

1
|Q|1/p+β/n

∥∥|b− b2k Q || f |
∥∥

L p

≤

∞∑
k=2

1
2k(1−n/p−β) ‖b‖C p1,β1 (Rn)‖ f ‖M p2,β2 (Rn)

≤ C‖b‖C p1,β1 (Rn)‖ f ‖M p2,β2 (Rn).
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Applying Lemma 2.4 and Lemma 2.5 to III2, we have

III2 ≤

∞∑
k=2

1
2k

(
1

|Q|1+pβ/n

∫
Q

∣∣∣∣ 1
|2k Q|

∫
2k Q
|bQ − b2k Q || f (z)| dz

∣∣∣∣p

dx
)1/p

≤

∞∑
k=2

1
2k ‖b‖C p1,β1 (Rn)

(
|Q|β1/n

|Q|1+pβ/n

∫
Q

∣∣∣∣ 1
|2k Q|

∫
2k Q
| f (z)| dz

∣∣∣∣p

dx
)1/p

≤

∞∑
k=2

1
2k ‖b‖C p1,β1 (Rn)

1
|Q|1/p+β2/n ‖M(| f |)‖L p

≤

∞∑
k=2

1
2k ‖b‖C p1,β1 (Rn)

1
|Q|1/p+β2/n ‖ f ‖L p

≤

∞∑
k=2

1
2k(1−n/p−β2)

‖b‖C p1,β1‖ f ‖M p2,β2

≤ C‖b‖C p1,β1 (Rn)‖ f ‖M p2,β2 (Rn).

Thus, we have obtained III ≤ C‖b‖C p1,β1 (Rn)‖ f ‖M p2,β2 (Rn). Our proof ends with
the definition of ‖ · ‖C p,β (Rn).

(2)⇒ (1). We first claim that for fixed Q ⊂Rn , b ∈C p1,β1(Q) and f ∈ M p2,β2(Q)
with ‖ f ‖M p2,β2 (Q) = |Q|

−β2/n , we have

(2-3) ‖T m
b f ‖C p,β (Q) ≤ C |Q|β1(m−1)/n

‖ f ‖M p2,β2 (Q) ≤ C |Q|(β1m−β)/n,

where T m
b is the m-th (m ∈ Z+) commutator defined by

T m
b f (x)= p.v.

∫
(b(x)− b(y))m K (x − y) f (y) dy.

We shall prove (2-3) by induction. The case m = 1 is trivial. We now assume that
for any b ∈ C p1,β1(Q), we have

(2-4) ‖T m−1
b f ‖C p,β (Q) ≤ C |Q|β1(m−2)/n

‖ f ‖M p2,β2 (Q) ≤ C |Q|(β1(m−1)−β)/n.

Next, we show the case m. We now observe that∣∣T m
b f (x)

∣∣= ∣∣∣∣∫ (b(x)− b(y))m−1K (x − y) f (y)(b(x)− b(y)) dy
∣∣∣∣

≤

∣∣∣∣∫ (b(x)− b(y))m−1K (x − y) f (y)(b(x)− bQ) dy
∣∣∣∣

+

∣∣∣∣∫ (b(x)− b(y))m−1K (x − y) f (y)(b(y)− bQ) dy
∣∣∣∣

≤ (|b− bQ ||T m−1
b f |)(x)+ |T m−1

b ((b− bQ) f )(x)| =: J1+ J2.
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Equation (2-4) enables us to estimate J1 as

‖J1‖C p,β (Q) ≤ ‖|b− bQ ||T m−1
b f |‖C p,β (Q)

≤ ‖b− bQ‖L∞‖T m−1
b f ‖C p,β (Q)

≤
1
|Q|

∫
Q
|b− bQ | dx |Q|β1(m−2)/n

‖ f ‖M p2,β2(Q)

≤ C |Q|β1(m−1)/n
‖ f ‖M p2,β2 (Q) ≤ C |Q|(β1m−β)/n.

With repeated application of (2-4), we have

‖J2‖C p,β (Q) = ‖T
m−1

b ((b− bQ) f )‖C p,β (Q)

≤ C |Q|β1(m−2)/n
‖(b− bQ) f ‖M p2,β2 (Q)

≤ C |Q|β1(m−2)/n
‖b− bQ‖L∞‖ f ‖M p2,β2 (Q)

≤ C |Q|β1(m−1)/n
‖b‖C p1,β1 (Rn)‖ f ‖M p2,β2 (Q).

≤ C |Q|(β1m−β)/n.

We come back to the proof of (2)⇒ (1). The rest of the proof proceeds similarly
to that of Theorem 1.1. We apply the same argument again with s(x) replaced by
sgn(b(x)− bQ)

p1 to obtain

(2-5)
∫

Q
|b− bQ |

p1 dx ≤ C
∑

an

∫
Q
|T p1

b (gn)| dx .

Combining (2-3) and observing gn ∈ M p2,β2(Q) with the norm ‖gn‖M p2,β2 (Q) =

|Q|−β2/n , we estimate (2-5) as∑
an

∫
Q
|T p1

b (gn)| dx ≤ C |Q|1+β/n
‖T p1

b (gn)‖C p,β (Q)

≤ C |Q|1+p1β1/n+β2/n
‖gn‖M p2,β2 (Q)

≤ C |Q|1+p1β1/n.

and then take the supremum of Q, completing the proof of Theorem 1.3. �

Proof of Theorem 1.2. This proof can be handled in much the same way as that of
Theorem 1.3, using (1-5) and replacing b− bQ by b in the proof of (2-3). �
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THE SIEGEL–WEIL FORMULA FOR UNITARY GROUPS

SHUNSUKE YAMANA

We extend the Siegel–Weil formula for unitary groups of hermitian forms
over a skew field with involution of the second kind.

Introduction

The Siegel–Weil formula is an identity between an Eisenstein series and an integral
of a theta function. After Weil [1965] proved such an identity when both sides
of the identity are absolutely convergent, Kudla and Rallis [1988a; 1988b; 1994]
extended it for symplectic groups beyond the range of absolute convergence. Their
results were extended to almost all classical groups by several authors, of which
we mention the following sample: [Tan 1998; Ichino 2004; 2007; Gan and Takeda
2011; Yamana 2011; 2013; Gan 2000]. In this paper we discuss the last case that
has to be considered in the theory of classical dual pairs over a number field, namely,
unitary groups of hermitian forms over a skew field with involution of the second
kind.

Let E/F be a quadratic extension of number fields and D a division algebra
with center E , of dimension δ2 over E and provided with an antiautomorphism ρ

of order two under which F is the fixed subfield of E . Let A and AE be the rings
of adeles of F and E , respectively. Let W be a left D-vector space of dimension
2n with a nondegenerate skew hermitian form that has a complete polarization, and
V a right D-vector space of dimension m with a nondegenerate hermitian form.
Let G and H be the unitary groups of W and V , respectively.

Let αE denote the standard norm of A×E . A character of A×E is called principal
if it is a complex power of αE . We denote by P the maximal parabolic subgroup
of G that stabilizes a maximal isotropic subspace of W. Note that P has a Levi
decomposition P =MN with M 'GLn(D). For any unitary character χ of A×E /E×

and for any s ∈ C, we consider the representation I (s, χ)= IndG(A)
P(A) χα

s
E induced

from the character m 7→ χ(ν(m))αE(ν(m))s , where ν is the reduced norm viewed
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as a character of the algebraic group GLn(D) and the induction is normalized so
that I (s, χ) is naturally unitarizable when s is pure imaginary. For any holomorphic
section f (s) of I (s, χ), the Eisenstein series

E(g; f (s))=
∑

γ∈P(F)\G(F)

f (s)(γ g)

is absolutely convergent for <s > δn/2 and has a meromorphic continuation to the
whole s-plane. We denote by χ0 the restriction of χ to A×, by ρ(χ) the character
defined by ρ(χ)(x) = χ(xρ) for x ∈ A×E , and by εE/F the quadratic character of
A×/F× associated to the extension E/F . The following theorem was proven in
[Tan 1999] when δ = 1.

Theorem 1. Let f (s) be a holomorphic section of I (s, χ).

(1) If χρ(χ) is not principal, then E(g; f (s)) is entire.

(2) If χ = ρ(χ)−1, then the poles of E(g; f (s)) in <s > − 1
2 are at most simple

and can only occur in the set{
δ(n− j)

2

∣∣∣ j ∈ Z, 0≤ j < n, χ0
= ε

δ j
E/F

}
.

Fix a nontrivial additive character ψ of A/F and a character χV of A×E /E× such
that χ0

V = ε
δm
E/F . The group G(A)× H(A) acts on the Schwartz space S (V n(A))

of V n(A) via the Weil representation ωψ,V,χV
. Let S(V n(A)) be the subspace of

S (V n(A)) consisting of functions that correspond to polynomials in the Fock
model at every archimedean place of F .

The theta function associated to 8 ∈ S(V n(A)) is defined by

2(g, h;8)=
∑

x∈V n(F)

ωψ,V,χV
(g)8(h−1x)

for g ∈ G(A) and h ∈ H(A). By Weil’s criterion [1965], the integral

I (g;8)=
∫

H(F)\H(A)
2(g, h;8) dh

is absolutely convergent for all 8 either if r = 0 or if m − r > n, where r is the
dimension of a maximal totally isotropic subspace of V (F). When m ≤ n and
r > 0, the integral diverges in general, but extends uniquely to a G(A)-intertwining,
H(A)-invariant map on S(V n(A)) in light of the regularization introduced by Kudla
and Rallis [1994].

For 8 ∈ S(V n(A)) we define a section f (s)8 of I (s, χV ) by

f (s)8 (g)= |a(g)|s−s0ωψ,V,χV
(g)8(0),
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where g ∈ G(A), s0 = δ(m−n)/2 and the quantity |a(g)| is defined in the notation
section below.

Theorem 2. If m ≤ n or if m − r > n, then for all 8 ∈ S(V n(A)) the series
E(g; f (s)8 ) is holomorphic at s = s0 and

E(g; f (s)8 )|s=s0 = ~ I (g;8),

where

~ =

{
2 if m ≤ n,
1 if m− r > n.

Theorem 2 was proven in [Weil 1965] if m > 2n, and in [Tan 1998; Ichino 2004;
2007; Yamana 2011] if δ= 1. The proof requires only slight technical modifications
once all of the necessary local facts have been established. The group G(Fv) is
isomorphic to the quasisplit unitary group U (δn, δn) or an inner form of GL2δn(Fv),
depending on whether v remains prime or splits in E . The former case has already
been discussed in [Kudla and Sweet 1997; Ichino 2007; Lee and Zhu 1998], and
the latter case is discussed in Section 1. Coupled with the doubling method, the
Siegel–Weil formula relates the theory of theta liftings to the theory of automorphic
L-functions. We study the doubling zeta integral for inner forms of general linear
groups in the Appendix.

Notation

Let (D, E, F, ρ) be as in the introduction. The restriction of ρ to E , which we
denote also by ρ, is the nontrivial automorphism of E over F . For a matrix x with
entries in D, let x∗ = txρ be the conjugate transpose of x . If x is a square matrix,
then ν(x) and τ(x) stand for its reduced norm and reduced trace to E .

Fix a natural number n and put n′ = δn. Let W= D2n be a left D-vector space
with the skew hermitian form

〈x, y〉 = x J y∗, J =
( 0 1n

−1n 0

)
for x, y ∈W. Let V be a right D-vector space of dimension m equipped with a
nondegenerate hermitian form ( , ). We denote by G (resp. H ) the group of all
D-linear transformations of W (resp. V ) that leave 〈 , 〉 (resp. ( , )) invariant. Put
s0 = δ(m− n)/2.

We write P for the stabilizer in G of the maximal isotropic subspace of W

defined by the vanishing of all but the last n coordinates. Let

Hern = {x ∈Mn(D) | x∗ = x}
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be the F-subvariety of n × n hermitian matrices. The group G has a maximal
parabolic subgroup P = MN given by

M =
{

m(a)=
(

a 0
0 (a−1)∗

) ∣∣∣ a ∈ GLn(D)
}
,

N =
{

n(b)=
(

1n b
0 1n

) ∣∣∣ b ∈ Hern

}
.

Let K be the standard maximal compact subgroup of G(A). For any character χ
of A×E /E×, the representation I (s, χ)= In′(s, χ) is realized on the space of right
K -finite functions f (s) : G(A)→ C satisfying

f (s)
(
m(a)n(b)g

)
= χ(ν(a))αE(ν(a))s+n′/2 f (s)(g)

for all a ∈ GLn(D(A)), b ∈ Hern(A) and g ∈ G(A). We define |a(g)| by writing
g= pk ∈G(A)with p=m(a)n(b)∈ P(A) and k ∈K , and taking |a(g)|=αE(ν(a)).

1. Degenerate principal series representations

For each place v of F , let Fv be the v-completion of F and set Ev = E ⊗F Fv and
Dv = D⊗F Fv. A division algebra D with center E admits an involution of the
second kind if and only if Dv is isomorphic to Mδ(Ev) whenever v remains prime
in E , and Dv is isomorphic to a direct sum of mutually opposite simple algebras
whose centers are Fv whenever v splits in E (see [Scharlau 1985, Theorem 10.2.4]).

In the local setting we will depart slightly from our previous notation. Fix a
place v of F and suppress it from the notation. Thus E is a quadratic étale algebra
over the local field F , D an algebra whose center is E , ρ an involution of D
whose restriction to E is the nontrivial automorphism of E over F , V a free right
D-module of rank m, and ( , ) : V × V → D an F-bilinear map satisfying the
following conditions:

• for a, b ∈ D and x, y ∈ V ,

(x, y)ρ = (y, x), (xa, yb)= aρ(x, y)b;

• (x, V )= 0 implies that x = 0.

Let H be the unitary group of V . Let G = {g ∈ GL2n(D) | g Jg∗ = J }. For any
quasicharacter χ of E×, let I (s, χ) be the analogous local induced representation of
G. By Morita context, it is enough to consider the case where the triple (D, E, ρ)
belongs to the following two types:

• D = E is a quadratic extension of F and ρ generates Gal(E/F);

• D= D⊕ Dop, E = F⊕ F and (x, y)ρ = (y, x), where D is a division algebra
central over F and Dop is its opposite algebra.



THE SIEGEL–WEIL FORMULA FOR UNITARY GROUPS 239

The rank of D as a module over E is a square of a natural number that will be
denoted by δ. Note that n′ = δn remains intact after the change in notation.

We fix a nontrivial additive character ψ of F and a character χV of E× that
satisfies χ0

V = ε
δm
E/F . Then G× H acts on the Schwartz space S (V n) via the Weil

representation ωψ,V,χV
. Note that it depends on the data ψ , ( , ) and χV (compare

[Kudla 1994]). When F is a p-adic field, put S(V n) =S (V n). When F = R or
C, let g be the complexified Lie algebra of G and S(V n) the subspace of S (V n)

that corresponds to the space of polynomials in the Fock model of ωψ,V,χV
. In the

archimedean case we only consider admissible representations of the pair (g, K ),
although we will allow ourselves to speak of a representation of the group G. We
write R(V, χV )= Rn′(V, χV ) for the image of the intertwining map

S(V n)→ I (s0, χV ), 8 7→ f (s0)
8 (g)= ωψ,V,χV

(g)8(0).

We extend f (s0)
8 to the standard section f (s)8 of I (s, χV ).

We discuss the case E = F ⊕ F . Put

e1 = (1, 0), e2 = (0, 1), V1 = V e1, V2 = V e2.

We regard V1 as a right D-module and V2 as both a right Dop-module and a
left D-module. Since (Vi , Vi ) = 0 for i = 1, 2, the spaces V1 and V2 are paired
nondegenerately against each other by ( , ), and so an antiisomorphism

 : End(V1, D)→ End(V2, Dop)

is defined by

(ax, y)= (x,  (a)y), a ∈ End(V1, D), x ∈ V1, y ∈ V2.

We obtain

H =
{
(a,  (a)−1) ∈ GL(V1, D)×GL(V2, Dop)

∣∣ a ∈ GL(V1, D)
}
.

Thus projection onto the first or second factor induces an isomorphism of H onto
GL(V1, D) or GL(V2, Dop), respectively. For any nonnegative integer j we write
G ′j = GL j (D). Observe that

G = {(g, J−1 tg−1 J )| g ∈ G ′2n}.

Through projection onto the first factor, we identify H with G ′m , G with G ′2n , and
P = MN with

M =
{(

a 0
0 d

) ∣∣∣ a, d ∈ GLn(D)
}
, N =

{(
1n b
0 1n

) ∣∣∣ b ∈Mn(D)
}
.

We write ν = ν j for the reduced norm of M j (D) and τ for the reduced trace of
M j (D). Let αF (x)= |x |F denote the normalized absolute value of x ∈ F×. When
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we write χ = (χ1, χ2), the representation I (s, χ) is translated to

I (s, χ)= Ind
G ′2n
P

(
(χ1α

s
F ) ◦ νn � (χ2α

s
F )
−1
◦ νn

)
.

If E = F ⊕ F , then since χV is of the form (µ,µ−1), we may assume that
χV = 1 by twisting, and we write I (s)= I (s, 1) and R(V )= R(V, 1). The Weil
representation ω j,k of the dual pair (G ′j ,G ′k) can be taken to be the action on
S (Mk, j (D)) given by

ω j,k(a, b)φ(x)= αF (ν j (a))δk/2αF (νk(b))−δ j/2φ(b−1xa)

for a ∈ G ′j and b ∈ G ′k . Note that the integral

(φ, φ′)=

∫
Mk, j (D)

φ(u)φ′(u) du, φ, φ′ ∈S (Mk, j (D))

defines a G ′j × G ′k invariant positive definite hermitian form on ω j,k . The two
models of the Weil representation ω2n,m ' ωψ,V,1 are related by the partial Fourier
transform

(1-1) Fφ(x, y)=
∫

Mm,n(D)
φ((x, z))ψ(−τ(z ty)) dz

for x ∈Mm,n(D) and y ∈Mm,n(Dop). In the p-adic case we write O for the maximal
compact subring of D and put Kn = GLn(O ). In the archimedean case we set

Kn = {g ∈ G ′n |
tḡg = 1n},

denoting the conjugate transpose of x ∈Mn(D) by tx̄ , where ·̄ denotes the complex
conjugate or the quaternion conjugate. We denote by f (s)0 a unique section of I (s)
that is identically 1 on K2n .

Lemma 1.1. If E = F ⊕ F , then R(V ) contains f (s0)
0 .

Proof. In the p-adic case, we let φ j,k be the characteristic functions of M j,k(O ). In
the archimedean case we let

φ j,k(x)= e−πTrF/R(τ (
tx̄ x)),

assuming that ψ( · )= e2π
√
−1TrF/R( · ). Put 8= Fφ2n,m . Then f (s0)

8 is nonzero and
right invariant under K2n . �

The local intertwining operator is defined analogously by

M(s, χ) f (s)(g)=
∫

Hern(F)
f (s)(Jn(b)g) db.

We define holomorphic sections and standard sections similarly. We write χ0 for
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the restriction of χ to F×. Put

a(s, χ)= an′(s, χ)=
n′∏

j=1

L
(
2s− j + 1, χ0

· ε
n′+ j
E/F

)
,

b(s, χ)= bn′(s, χ)=
n′∏

j=1

L
(
2s+ j, χ0

· ε
n′+ j
E/F

)
.

A normalized intertwining operator M∗(s, χ) is defined by setting

M∗(s, χ)= a(s, χ)−1 M(s, χ).

Lemma 1.2. The operator M∗(s, χ) is entire.

Proof. When E/F is a quadratic extension of p-adic fields, Lemma 1.2 is proven
in Proposition 3.2 of [Kudla and Sweet 1997]. The proof is completely analogous
when E/F = C/R. Note that Proposition 3A.6 of the same work applies also to
this case by a global consideration, namely, by applying (24) of [Lapid and Rallis
2005] with base field Q and S = {∞}.

We suppose that E = F ⊕ F . For φ ∈S (Mn(D)) we define a section f (s)φ of
I (s, χ) by requiring that supp( f (s)φ )⊂ PJ N and f (s)φ (g)= φ(b) if g = Jn(b) for
b∈Hern(F). As explained in [Piatetski-Shapiro and Rallis 1987b; Kudla and Sweet
1997], all we have to do is to show that the ratio a(s, χ)−1 M(s, χ) f (s)φ (J ) is entire.
One can easily observe that

M(s, χ) f (s)φ (J )= Z G J
(

2s−
n′

2
, φ, χ0

◦ νn

)
,

where the right-hand side is the zeta integral studied in [Weil 1974; Godement and
Jacquet 1972] (see the Appendix). Our claim follows at once, as the Godement–
Jacquet L-factor

LG J
(

2s−
n′− 1

2
, χ0
◦ νn

)
divided by the factor a(s, χ) is entire. �

For β ∈Hern(F), let ψβ be the character of N defined by ψβ(n(b))=ψ(τ(βb)).
Notice that τ(βb) ∈ F . The Fourier transform of a Schwartz function f ∈S (N )
is defined by

f̂ (β)=
∫

N
f (u)ψβ(u) du.

For each integer j ≤ n′, we define the subvariety Her j
n of Hern(F) by

Her j
n =

{
β ∈Mn(E)

∣∣ tβρ = β, rankEβ ≤ j
}
,(E 6' F ⊕ F)

Her j
n =

{
(β, tβ) ∈Mn(D)⊕Mn(Dop)

∣∣ δ(rankDβ)≤ j
}
.(E = F ⊕ F)
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Definition 1.3. We say that a representation π of G has rank at most j if f ∈S (N )
acts by zero on π whenever f̂ vanishes on Her j

n . We say that π is of rank j if in
addition j is a multiple of δ and π does not have rank less than j .

For any H -module π , we write πH for the maximal quotient of π on which H
acts trivially. Let Hr be a split hermitian space of dimension 2r , that is, Hr has a
D-basis consisting of 2r elements ei , fi such that

(ei , e j )= ( fi , f j )= 0, (ei , f j )= δi j .

Proposition 1.4. Assume that m ≤ n. Let U = V ⊕Hn−m .

(1) R(V, χV ) is irreducible and unitarizable.

(2) R(V, χV ) is isomorphic to S(V n)H .

(3) If E/F is a quadratic extension of p-adic fields, then R(V, χV ) is of rank m.

(4) R(U, χV ) has a unique irreducible quotient that is isomorphic to R(V, χV ).

(5) M∗(−s0, χV ) maps R(U, χV ) onto R(V, χV ).

(6) b(s, χV )M
∗(s, χV ) f (s)8 is holomorphic at s = s0 for every 8 ∈ S(V n).

Proof. When D = E , these results are known (see [Li 1989; Mœglin et al. 1987;
Kudla and Sweet 1997; Lee and Zhu 1998; Yamana 2011]). We may suppose that
E = F ⊕ F and δ > 1.

For 0≤ i ≤ k, let Pk
i = Mk

i N k
i be the maximal parabolic subgroup of G ′k given

by

Pk
i =

{(
a b
0 d

)
∈ G ′k

∣∣∣ a ∈ G ′k−i , b ∈Mk−i,i (D), d ∈ G ′i

}
,

P̄k
i its opposite parabolic subgroup, and ri the representation of G ′i ×G ′i on S (G ′i )

given by

ri (g1, g2)φ(g)= φ(g−1
2 gg1), (φ ∈S (G ′i ), g, g1, g2 ∈ G ′i ).

In the archimedean case the representation I (s) is studied extensively in [Lee 2007;
Sahi 1995; Zhang 1995]. From their results we know the module structure of I (s0)

and the set of K -types of each of its irreducible constituents, which combined with
the technique explained in [Kudla and Rallis 1990a] prove (1), (2). We consider the
nonarchimedean case. By Lemma 3.III.2 of [Mœglin et al. 1987], the representation
ω2n,m has a filtration

0⊂ Sm ⊂ · · · ⊂ S1 ⊂ S0 = ω2n,m

with successive quotients

Si/Si+1 ' Ind
G ′2n×G ′m
P2n

i ×P̄m
i
µi ,
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where µi is the representation of P2n
i × P̄m

i on S (G ′i ) given by

µi (p, p′)φ = αF
(
ν(a)m−iν(a′)i−2nν(d)m−i+2nν(d ′)i−m−2n)δ/2ri (d, d ′)φ,

where

p =
(

a b
0 d

)
∈ P2n

i , p′ =
(

a′ 0
c′ d ′

)
∈ P̄m

i , φ ∈S (G ′i ).

Let 1 j denote the trivial representation of G ′j . For 0 ≤ i < m and an admissible
representation π of G ′2n , the Frobenius reciprocity gives

HomG ′2n×G ′m

(
Si/Si+1, π ⊗1m

)
' HomM2n

i ×Mm
i

(
(π∨)N 2n

i
⊗ δ

1/2
Pm

i
, µ∨i

)
,

where δPm
i

is the modulus function on Pm
i and (π∨)N 2n

i
is the normalized Jacquet

module of π∨ associated to P2n
i . Since the quasicharacters of G ′m−i do not match,

the space above is zero. Thus (Si/Si+1)G ′m = 0, so that the natural map (Sm)G ′m →

(ω2n,m)G ′m is surjective. If χ is a quasicharacter of G ′m and if a distribution T on
S (G ′m) transforms according to χ under the action of e×G ′m , that is,

T (rm(e, h) f )= χ(ν(h))T ( f )

for all h ∈ G ′m , then there is a constant c ∈ C such that

T ( f )= c
∫

G ′m

f (h)χ(ν(h)) dh, f ∈S (G ′m)

(see Lemma 3.II.3 of [Mœglin et al. 1987]). It follows that

(Sm)G ′m ' Ind
G ′2n
P2n

m
(12n−m ⊗ 1m).

Since Ind
G ′2n
P2n

m
(12n−m ⊗1m) is irreducible as a representation of G ′2n induced from a

unitary representation [Sécherre 2009], we have

(ωψ,V,1)H ' Ind
G ′2n
P2n

m
(12n−m ⊗1m).

Thus the map from (ωψ,V,1)H to R(V ) is injective. This proves (1), (2).
In the p-adic case, Theorem 5.1 of [Mínguez 2009] tells us that I (s0) has a

unique irreducible subrepresentation, which is R(V ), and hence I (−s0) has a unique
irreducible quotient. We refer to [Lee 2007] for the archimedean analogue. From
Lemma 1.1 we can infer that f (−s0)

0 generates I (−s0). It follows that I (−s0) =

R(U ). The proof of (4) is complete.
To prove (5), (6), it suffices to check that b(s)M∗(s) f (s)0 (resp. M∗(s) f (s)0 ) are

holomorphic and nonzero at s = s0 (resp. s = −s0) in light of [Kudla and Rallis
1988a, Proposition 4.9]. Let φ0=φn,n ∈ S(Mn(D)) be as in the proof of Lemma 1.1.
Define φ1 ∈ S(Mn,2n(D)) by φ1(x, y)= φ0(x)φ0(y). The sections F(s)φ1

and F(s)
φ̂1

are
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defined in the Appendix. Since F(s)φ1
is right K -invariant, so is F(s)

φ̂1
by Lemma A.1.

From Propositions 10.7 and 10.8 of [Weil 1974], we know

F(s)φ1
= F(s)φ1

(e) · f (s)0 = Z G J
(

2s+
n′

2
, φ0, 1

)
· f (s)0 = f (s)0

n∏
j=1

ξ(2s+ δ j)

up to multiplication by exponential factors, where ξ(s)= ζ(s) in the p-adic case,
and ξ(s)= Γ (s) in the archimedean case. Observe that

F(−s)
φ̂1
= Z G J

(
−2s+

n′

2
, φ̂0, 1

)
· f (s)0

= (−1)n(δ−1)γ G J
(

2s−
n′− 1

2
,1n, ψ

)
Z G J

(
2s−

n′

2
, φ0, 1

)
· f (s)0 .

Substituting these into the equality in Lemma A.1, we get

(1-2) M(s) f (s)0 = f (−s)
0

n∏
j=1

ξ(2s− δ j + δ)
ξ(2s+ δ j)

.

Now we can easily conclude our proof. �

2. Proof of Theorem 1

Back to the global setup, we write A for the space of automorphic forms on G(A).
For β ∈ Hern(F) and A ∈A , let

Aβ(g)=
∫

Hern(F)\Hern(A)

A(n(b)g)ψ(−τ(βb)) db, g ∈ G(A)

denote the β-th Fourier coefficient of A. The following lemma can be proven in
exactly the same way as in [Kudla and Rallis 1990b; Tan 1999].

Lemma 2.1. Let f (s) be a holomorphic section of I (s, χ) and β ∈ Hern(F) with
ν(β) 6= 0.

(1) b(s, χ)Eβ(g; f (s)) is holomorphic in <s >−1
2 .

(2) If m ≥ n and β is represented by V (F), then Eβ(g; f (s)8 ) can be made nonzero
at s = s0 for a suitable choice of 8 ∈ S(V n(A)).

(3) If χρ(χ) is not principal, then E(g; f (s)) is entire.

(4) If χ = ρ(χ)−1, then the poles of E(g; f (s)) in <s > − 1
2 are at most simple

and can only occur in the set{n′− j
2

∣∣∣ j ∈ Z, 0≤ j < n′, χ0
= ε

j
E/F

}
.

(5) If χ0
= εn′+1

E/F , then E(g; f (s))|s=0 is identically zero.
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Definition 2.2. For each integer l ≤ n, we say that A ∈A has rank δl if Aβ = 0
when rankDβ > l, but Aβ 6= 0 for some β of rank l. When π is a representation of
G(A) realized on a subspace of A , we say that π has rank at most δl if all functions
in π have rank at most δl.

We call A singular if it has rank less than δn. The following lemma can be
proven in the same way as in the proof of [Howe 1981, Lemma 2.4].

Lemma 2.3. Let π be a subrepresentation of A . For every integer l ≤ n the
following conditions are equivalent:

• π has rank at most δl;

• for every place v, G(Fv) acts on π by a representation of rank at most δl;

• for at least one place v, G(Fv) acts on π by a representation of rank at most δl.

In particular, if G(Fv) acts on π by a representation of rank at most j , then G(Fv)
acts on π by a representation of rank at most δ`, where `= [ j/δ].

For s ′ ∈ C with <s ′ >− 1
2 , the residue Ress=s′E(g; f (s)) depends only on f (s

′),
and f (s

′)
7→ Ress=s′E(g; f (s)) gives a G(A) intertwining map

A−1(s ′) : I (s ′, χ)→A .

Assume that χ = ρ(χ)−1, assume that j is an integer between 0 and n′, assume
that χ0

= ε
j
E/F , and assume that j is not divisible by δ. Let s ′ = (n′− j)/2. To

complete the proof of Theorem 1, it remains to prove that A−1(s ′) is zero. Fix a
finite inert place v of F . By Theorem 1.2 of [Kudla and Sweet 1997], Iv(s ′, χv)
has a unique irreducible submodule R and

Iv(s ′, χv)/R '
⊕

V0

R(V0, χv),

where V0 runs over all equivalence classes of hermitian spaces over Ev of dimension
j . Since the image of A−1(s ′) lies in the space of singular automorphic forms in
view of Lemma 2.1(1) and since R is nonsingular, the map A−1(s ′) factors through
the quotient

⊕
V0

R(V0, χv) at v. Proposition 1.4(3) shows that G(Fv) acts on the
image of A−1(s ′) by a representation of rank at most j . Put `= [ j/δ]. Lemma 2.3
shows that G(Fv) acts on the image of A−1(s ′) by a representation of rank at most
δ`. Since δ` < j , Proposition 1.4(3) forces A−1(s ′) to be zero.

3. Proof of Theorem 2

Lemma 3.1. If m = n or if m−r > n, then for all8 ∈ S(V n(A)) and β ∈Hern(F)
with ν(β) 6= 0,

Eβ(g; f (s)8 )|s=s0 = ~ Iβ(g;8).
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Proof. The proof can be carried out by the same technique as in that of [Ichino
2004, Proposition 6.2]. We omit the details. �

First we prove Theorem 2 in the case m−r > n. Ichino [2007] proved the special
case of this result for δ = 1 (compare [Kudla and Rallis 1988b; Yamana 2013]).
Many of the results there apply word for word in our general case.

If m > 2n, then E(g; f (s0)
8 ) converges absolutely and the stated identity was

proven by Weil [1965]. We may suppose that m≤2n. Fix80
=
⊗

v 8
0
v ∈ S(V n(A)).

By Theorem 10.6.2 of [Scharlau 1985], there is an inert place w of F such that
the Witt index rw of Vw satisfies rw < δ(r + 1), where Vw stands for the hermitian
space over Ew corresponding to V (Fw). Note that

δm− rw > δn.

We consider the G(Fw)-intertwining map

A−1,w : S(V n′
w )→A , 8w 7→ A−1(s0)( f (s0)

8 ),

where 8 =8w ⊗
(⊗

v 6=w8
0
v

)
. The invariant distribution theorem [Mœglin et al.

1987; Lee and Zhu 1998] asserts that A−1,w factors through the quotient R(Vw, χVw).
Lemma 2.1(1) shows that A−1,w(8w) is singular for every 8w ∈ S(V n′

w ). If w is
finite, then δm = 2rw+2 and δn= rw+1, and hence R(Vw, χVw) is irreducible and
nonsingular by [Kudla and Sweet 1997, Theorem 1.2], so that A−1,w must be zero. If
w is real and∇ is the element of the universal enveloping algebra of the complexified
Lie algebra of G(Fw) defined by (2.1) of [Ichino 2007], then ∇A−1,w(8w) = 0.
Since Proposition 2.2 of [Ichino 2007] asserts that ∇ f (s0)

8w
generates the submodule

R(Vw, χVw) for a suitable choice of8w, the map A−1,w must be zero. Consequently,
E(g; f (s)8 ) is holomorphic at s = s0 for every 8 ∈ S(V n(A)).

Next we consider the Kw-intertwining map

Aw : S(V n′
w )→A , 8w 7→ E(g; f (s)8 )|s=s0 − I (g;8),

where 8=8w⊗
(⊗

v 6=w8
0
v

)
. The image of Aw lies in the space of singular

automorphic forms by Lemma 3.1. We write Rw for the subspace of A spanned
by residues Ress=s0 E(g; f (s)), where f (s) is a holomorphic section of I (s, χV ) of
the form

f (s) = f (s)w ⊗
(⊗
v 6=w

f (s)
80
v

)
, f (s)w ∈ Iw(s, χVw).

Then Aw induces a G(Fw)-intertwining map R(Vw, χVw)→A /Rw. The remaining
part of the proof continues as in Section 3 of [Ichino 2007]. �

Theorem 2 is demonstrated in [Yamana 2011], provided that δ = 1 and m ≤ n.
Since the proof in our general case can be done by the same technique, we shall
omit most of the details. We define the functions a(s, χ) and b(s, χ) by taking the



THE SIEGEL–WEIL FORMULA FOR UNITARY GROUPS 247

complete Hecke L-functions in place of the local abelian L-factors in the definition
of av(s, χv) and bv(s, χv). We define a normalized global intertwining operator by

M◦(s, χ)=
b(s, χ)
a(s, χ)

M(s, χ),

which is holomorphic in <s >− 1
2 by Lemma 1.2 and (1-2).

Let C= {Wv} be a collection of local hermitian spaces of dimension m over Dv

such that Wv is isometric to V (Fv) for almost all v. We form a restricted tensor
product 5(C, χV )=

⊗
′

v Rn′(Wv, χVv ), which we can regard as a subrepresentation
of I (s0, χV ). The proof of the following result is completely analogous to that of
[Kudla and Rallis 1994, Theorem 3.1].

Proposition 3.2. Assume that m ≤ n. Then

dim HomG(A)(5(C, χV ),A )≤ 1.

If there is no global hermitian space with Wv as its completions, then

dim HomG(A)(5(C, χV ),A )= 0.

Next we are going to prove the special case of Theorem 2 in which m = n.
Let C= {V (Fv)}. Since Proposition 1.4(2) shows that the two intertwining maps
8 7→ E(g; f (s)8 )|s=0 and 8 7→ I (g;8) define elements of the space

HomG(A)(5(C, χV ),A ),

they must be proportional by Proposition 3.2. From Lemmas 2.1(2) and 3.1, they
are nonvanishing, and the constant of proportionality is determined to be 2. �

We now suppose that m < n. Let C′ be a collection of local hermitian spaces of
dimension 2n−m obtained by adding a split space of suitable dimension to C. By
Proposition 1.4(4) and (5), 5(C′, χV ) has a unique irreducible quotient 5(C, χV ),
and M◦(−s0, χV ) induces a nonzero intertwining map 5(C′, χV )→ 5(C, χV ).
The same reasoning as in Section 4 of [Yamana 2011] implies the following result:

Proposition 3.3. Suppose that m < n. Let f (s) be a standard section of I (s, χV )

such that f (s0) ∈5(C, χV ). Put h(−s)
= M◦(s, χV ) f (s).

(1) E(g; f (s)) is holomorphic at s = s0.

(2) h(s) is holomorphic at s =−s0, h(−s0) ∈5(C′, χV ), and

Ress=−s0 E(g; h(s))=−Ress=s0

[
b(s, χV )

a(s, χV )

]
E(g; f (s))

∣∣
s=s0

.

Lemma 3.4. If m < n, then the image of the map A−1(−s0) lies in the space of
square integrable automorphic forms on G(A).
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Proof. We use [Kudla and Sweet 1997, Proposition 6.2] and follow closely the
guideline of the proof of [Kudla and Rallis 1994, Proposition 4.6]. �

Proposition 3.5. If m < n, then the restriction of A−1(−s0) to 5(C′, χV ) is zero
unless C is the set of localizations of a global space, in which case it defines a
nonzero intertwining map 5(C, χV )→A .

Proof. The image of A−1(−s0) is completely reducible in view of Lemma 3.4.
Thus the restriction of A−1(−s0) to 5(C′, χV ) must factor through the unique
irreducible quotient 5(C, χV ). Proposition 3.2 shows that 5(C, χV ) makes no
contribution unless C comes from a global space. It remains to check that A−1(−s0)

is nonzero on 5(V, χV ). From Proposition 3.3(2) this amounts to proving that the
holomorphic value E(g; f (s)8 )|s=s0 is nonzero for a good choice of 8 ∈ S(V n(A)).

Let β0 ∈ Herm(F) with ν(β0) 6= 0. Put

β =

(
0 0
0 β0

)
∈ Hern(F), G0 =




1n−m

a b
1n−m

c d

 ∈ G

 .
Define80∈ S(V m(A)) by80(y)=8((0, y)) for y ∈V m(A). The nonvanishing can
be proven by considering the β-th Fourier coefficient of E(g; f (s)8 ) as in Section 6 of
[Yamana 2011] (compare Theorem 4.9 of [Kudla and Rallis 1994]). The exponents
of the n − m + 1 terms in this Fourier coefficient are distinct at s = s0, so that
there can be no cancellations among them. The first term is just the β0-th Fourier
coefficient of the central value of the Eisenstein series on G0(A) attached to the
standard section f (s)80

. Lemma 2.1(2) now completes our proof. �

Corollary 3.6. Suppose that m ≤ n. Let f (s) be a standard section of I (s, χV ) such
that f (s0) ∈5(C, χV ). If C cannot be the set of localizations of any global space,
then E(g; f (s))|s=s0 is identically zero.

Proof. Propositions 3.2, 3.3(2) and 3.5 prove this corollary. �

The regularized Siegel–Weil formula can be deduced from Propositions 3.2
and 3.5.

Theorem 3.7. Assume that m < n. Then there is a nonzero constant c0 such that if
holomorphic sections f (s) of I (s, χV ) and 8 ∈ S(V n(A)) satisfy the relation

M◦(−s0, χV ) f (−s0) = f (s0)
8 ,

then we have

Ress=−s0 E(g; f (s))= c0 I (g;8).
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Finally, we prove Theorem 2 when m < n. Applying Proposition 3.3(2) and
Theorem 3.7 to h(−s)

= M◦(s, χV ) f (s)8 , we see that

E(g; f (s)8 )|s=s0 = cI (g;8),

where c is independent of 8. One can prove that c = 2 in exactly the same manner
as in Section 6 of [Yamana 2011]. �

Appendix. Zeta integrals for GLn(D)

Let F be a local field of characteristic zero and D a division algebra central and of
dimension δ2 over F . We begin by reviewing the Godement–Jacquet construction
of the local factors of representations of G ′n = GLn(D). The Fourier transform
φ̂ ∈S (Mba(D)) of φ ∈S (Mab(D)) is defined by

φ̂(x)=
∫

Mab(D)
φ(y)ψ(τ(xy)) dy, x ∈Mba(D),

where the Haar measure dy is so chosen that∫
Mab(D)

φ̂( ty) dy = φ(0).

In the archimedean case S(Mab(D)) is the subspace of S (Mab(D)) as defined
on p. 115 of [Godement and Jacquet 1972], and in the p-adic case S(Mab(D))=
S (Mab(D)).

Let π be an irreducible admissible representation of G ′n . We write π∨ for its
admissible dual and denote the standard pairing on π∨ � π by 〈 , 〉. For s ∈ C,
φ ∈S (Mn(D)), ξ ∈ π and ξ∨ ∈ π∨ we set

Z G J (s, φ, ξ � ξ∨)=
∫

G ′n

〈π(g)ξ, ξ∨〉φ(g)|ν(g)|s+n′/2
F dg.

This integral converges in some half-plane and extends to a meromorphic function
on the whole s-plane satisfying

Z G J (−s, φ̂, ξ∨� ξ)= (−1)n(δ−1)γ G J (s+ 1
2 , π, ψ

)
Z G J (s, φ, ξ � ξ∨).

Fix a pair χ = (χ1, χ2) of quasicharacters of F×. Recall χ0
= χ1χ2. We attach

a section s 7→ F
(s,χ)
φ to each φ ∈S (Mn,2n(D)) by setting

F
(s,χ)
φ (g)= χ1(ν(g))|ν(g)|

s+n′/2
F

∫
G ′n

φ((0, t)g)χ0(ν(t))|ν(t)|2s+n′
F dt.

This integral converges absolutely for sufficiently large<s. Observe that if φ belongs
to S(Mn,2n(D)), then F

(s,χ)
φ ∈ I (s, χ) (compare (1-1)). For ϕ ∈S (M2n,n(D)) we
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define a section F
(s,χ)
ϕ of I (s, χ) to be

χ2(ν(g))−1
|ν(g)|−s−n′/2

F

∫
G ′n

ϕ
(

g−1
( t

0

))
χ0(ν(t))|ν(t)|2s+n′

F dt.

Lemma A.1. For each φ ∈ S(Mn,2n(D)),

M(s, χ)F(s,χ)φ =
(−1)n(δ−1)χ1(−1)n

′

γ G J
(

2s− n′−1
2

, χ0 ◦ νn, ψ
) F(−s,ρ(χ)−1)

φ̂
.

Proof. The case n = δ = 1 is discussed in Lemma 14.7.1 of [Jacquet 1972]. The
proof is substantially the same. For g ∈ G ′2n we put

9g(t)=
∫

Mn(D)
φ((t, x)g) dx

for t ∈Mn(D). Then

M(s, χ)F(s,χ)φ (g)

=

∫
Mn(D)

F
(s,χ)
φ

((
0 1n

1n 0

)(
1n x
0 1n

)
g
)

dx

= χ1
(
(−1)n

′

ν(g)
)
|ν(g)|s+n′/2

F

×

∫
Mn(D)

∫
G ′n

φ

((
0, t
)( 0 1n

1n x

)
g
)
χ0(ν(t))|ν(t)|2s+n′

F dt dx

= χ1
(
(−1)n

′

ν(g)
)
|ν(g)|s+n′/2

F

∫
Mn(D)

∫
G ′n

φ
(
(t, x)g

)
χ0(ν(t))|ν(t)|2s

F dt dx

= χ1(−1)n
′

χ1
(
ν(g)

)
|ν(g)|s+n′/2

F Z G J
(

2s−
n′

2
, 9g, χ

0
◦ νn

)
.

Since 9̂g(t)= |ν(g)|−n′
F φ̂

(
g−1

( t
0

))
,

χ1
(
ν(g)

)
|ν(g)|s+n′/2

F Z G J
(n′

2
− 2s, 9̂g, (χ

0
◦ νn)

−1
)
= F

(−s,ρ(χ)−1)

φ̂
.

Lemma A.1 follows from the functional equation of Z G J (s, φ, χ0
◦ νn). �

Fix A ∈ GLn(D). For a section f (s) of I (s, χ), the integral

lA( f (s))=
∫

Mn(D)
f (s)

((
1n 0
x 1n

))
ψ(τ(Ax)) dx

converges absolutely for <s� 0. In the p-adic case, Karel [1979] has proven that
lA( f (s)) admits an entire analytic continuation to the whole s-plane and satisfies a
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functional equation

lA ◦M(s, χ)= χ0(ν(A))−1
|ν(A)|−2s

F c(s, χ, ψ)lA

for some meromorphic function c(s, χ, ψ). The factor c(s, χ, ψ) is independent of
the choice of A. Analogous results are proven in the archimedean case in [Wallach
1988]. The normalization M†(s, χ) of M(s, χ) is defined so that

lA ◦M†(s, χ)= χ2(−1)n
′

χ0(ν(A))−1
|ν(A)|−2s

F lA.

Lemma A.2. For each 8 ∈ S(Mn,2n(D)),

M†(s, χ)F(s,χ)8 = χ2(−1)n
′

F
(−s,ρ(χ)−1)

8̂
.

Proof. It is enough to show that

lA
(
F
(−s,ρ(χ)−1)

8̂

)
= χ0(ν(A))−1

|ν(A)|−2s
F lA

(
F
(s,χ)
8

)
.

Take φ1, φ2 ∈ S(GLn(D)) and define 8 ∈ S(Mn,2n(D)) by 8(x, y)= φ̂1(x)φ2(y).
Then

lA
(
F
(s,χ)
8

)
=

∫
Mn(D)

F
(s,χ)
8

((
1n 0
x 1n

))
ψ(τ(Ax)) dx

=

∫
Mn(D)

∫
GLn(D)

8

((
0, t
)(1n 0

x 1n

))
χ0(ν(t))|ν(t)|2s+n′

F dtψ
(
τ(Ax)

)
dx

=

∫
GLn(D)

φ1(−At−1)φ2(t)χ0(ν(t))|ν(t)|2s
F dt.

Similarly, lA
(
F
(−s,ρ(χ)−1)

8̂

)
is equal to∫

Mn(D)

∫
GLn(D)

φ1(−t)φ̂2(−xt)χ0(ν(t))−1
|ν(t)|−2s+n′

F ψ(τ(Ax)) dt dx

=

∫
GLn(D)

φ1(−t)φ2(t−1 A)χ0(ν(t))−1
|ν(t)|−2s

F dt

= χ0(ν(A))−1
|ν(A)|−2s

F lA(F
(s,χ)
8 ).

Since both lA
(
F
(s,χ)
8

)
and lA

(
F
(−s,ρ(χ)−1)

8̂

)
are not identically zero for a suitable

choice of φ1 and φ2, the proof is complete. �

The embedding i of G ′n ×G ′n into G ′2n is given by

(g1, g2) 7→ w1

(
g1 0
0 g2

)
w−1

1 , w1 =

(
2−1
· 1n −2−1

· 1n

1n 1n

)
.
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Let π be an irreducible admissible representation of G ′n . For ξ ∈ π , ξ∨ ∈ π∨ and a
section f (s) of I (s, χ), we define the zeta integral by

Z(ξ � ξ∨, f (s))=
∫

G ′n

〈π(g)ξ, ξ∨〉 f (s)(i(g, e)) dg,

following [Piatetski-Shapiro and Rallis 1987a; Lapid and Rallis 2005]. This integral
converges absolutely for <s� 0 and extends to a meromorphic function in s that
satisfies the functional equation

Z
(
ξ � ξ∨,M†(s, χ) f (s)

)
= π(−1)γ

(
s+ 1

2 , π ×χ,ψ
)
Z(ξ � ξ∨, f (s)).

Lapid and Rallis [2005] demonstrated the special case of the following result for
δ = 1 in a different manner. It was pointed out by Wee Teck Gan [2012] that there
is a typo in [Lapid and Rallis 2005, (25)].

Proposition A.3. For any irreducible admissible representation π of G ′n and any
pair χ = (χ1, χ2) of quasicharacters of F×,

γ (s, π ×χ,ψ)= γ G J (s, π ⊗χ1, ψ)γ
G J (s, π∨⊗χ2, ψ).

Proof. Let F
(s,χ)
8 be the translate of F(s,χ)8 by the element w1 ∈ G ′2n . Then

Z
(
ξ � ξ∨,F

(s,χ)
8

)
=

∫
G ′n

〈π(g)ξ, ξ∨〉χ1(ν(g))|ν(g)|
s+n′/2
F

×

∫
G ′n

8

(
(0, t)w1

(
g 0
0 1n

))
χ0(ν(t))|ν(t)|2s+n′

F dt dg

=

∫
G ′n×G ′n

〈
(π ⊗χ1)(g)ξ, (π∨⊗χ2)(t)ξ∨

〉
|ν(gt)|s+n′/2

F 8(g, t) dg dt.

If 8(x, y) is of the form φ1(x)φ2(y), then the last integral is equal to〈
Z G J (s, π ⊗χ1, φ1)ξ, Z G J (s, π∨⊗χ2, φ2)ξ

∨
〉
.

Piatetski-Shapiro and Rallis [1987a] employ this relation to calculate the unramified
local zeta integrals.

We can see by Lemma A.2 that

Z
(
ξ � ξ∨,M†(s, χ)F(s,χ)

8

)
= χ2(−1)n

′

∫
G ′n×G ′n

φ̂1(g)φ̂2(t)

× |ν(gt)|−s+n′/2
F

〈
(π ⊗χ1)(g−1)ξ, (π∨⊗χ2)(−t−1)ξ∨

〉
dg dt.

The stated relation follows upon combining these with the definitions of the gamma
factors. �
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Let χ = 1. Put 1s(g)= f (s−n′/2)
0

(
w1

(
g

1n

))
for g ∈ G ′n . Note that

1s(k1gk2)= f (s−n′/2)
0

(
w1

(
k1gk2

1n

))
= f (s−n′/2)

0

(
i(k1, k1)w1

(
g

1n

)(
k2

k−1
1

))
=1s(g)

for k1, k2 ∈ Kn and g ∈ G ′n . An explicit formula for this function is obtained in
[Piatetski-Shapiro and Rallis 1987a, Proposition 6.4] in the case of symplectic or
split even orthogonal groups. One can deduce from their argument a formula of the
same type for the unit groups of simple algebras.

Lemma A.4. (1) If F is a p-adic field and g = k1dk2 with elements k1, k2 ∈ Kn

and d = diag[$ a1, . . . ,$ an ], where $ is a generator of the maximal ideal
of O, and we put q = |ν($)|−1

F , then

1s(g)= q−s
∑n

i=1 |ai |.

(2) Assume that F = R or C. Put t = [F : R]. If g = k1dk2 with k1, k2 ∈ Kn and
d = diag[d1, . . . , dn] with positive real numbers di , then

1s(g)= 2nδts
n∏

i=1

(d−1
i + di )

−δts .

Lemma A.5. If <s > δ(n− 1), then 1s belongs to L1(G ′n).

Proof. Put σ =<s. We consider the p-adic case. Proposition 1.5.2 of [Casselman
1995] gives a positive constant c such that∫

G ′n

|1s(g)| dg ≤ c
∑

a1≥a2≥···≥an

q−σ
∑n

i=1 |ai |

n∏
j=1

qδ(n+1−2 j)a j

≤ c
n∏

j=1

∑
a j∈Z

q−σ |a j |+δ(n+1−2 j)a j

= c
n∏

j=1

(
1

1− qδ(n+1−2 j)−σ +
qδ(2 j−n−1)−σ

1− qδ(2 j−n−1)−σ

)
.

The archimedean case can be proven in the same way. �

Lemma A.6. If σ > 0, then the function z 7→1σ (zg) is integrable over the center
Z of G ′n for any g ∈ G ′n . Moreover, there exists a positive constant Aσ depending
only on σ such that, for every g ∈ G ′n ,∫

Z
1σ (zg) dz ≤ Aσ .
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Proof. In the p-adic case,∫
Z
1σ (zg) dz =

∑
j∈Z

q−σ
∑n

i=1 |ai+δ j |
≤

∑
j∈Z

q−σ | j | =
1+ q−σ

1− q−σ
.

The proof for the archimedean case is completely analogous. �

Recall that π is called square integrable if it admits a unitary central character
and its matrix coefficients are square integrable modulo the center. For (s1, s2) ∈ C,
we write I (s1, s2)= I (0, (αs1

F , α
s2
F )).

Proposition A.7. If π is square integrable, <s1,<s2 > −δ/2 and f ∈ I (s1, s2),
then the integral defining Z(ξ � ξ∨, f ) is absolutely convergent.

Proof. Put σ = min{<s1,<s2}. Note that (αF ◦ ν2n)
s′
· f (s)0 ∈ I (s + s ′, s − s ′).

By Lemma A.4, we can majorize | f ((g, e))| by c f (σ )0 ((g, e)) for some positive
constant c. Our task is to check that for any σ >−δ/2,∫

G ′n

∣∣〈π(g)ξ, ξ∨〉∣∣1σ+n′/2(g) dg

is finite. Take a constant σ ′ so that 0< σ ′ < σ + δ/2. The square of this integral is
less than or equal to the product of the integrals∫

G ′n

12σ+n′−2σ ′(zg) dg

and ∫
G ′n

∣∣〈π(g)ξ, ξ∨〉∣∣212σ ′(g) dg =
∫

Z\G ′n

∣∣〈π(ġ)ξ, ξ∨〉∣∣2 ∫
Z
12σ ′(zġ) dz dġ

=A2σ ′

∫
Z\G ′n

∣∣〈π(ġ)ξ, ξ∨〉∣∣2 dġ,

both of which are finite, the first by Lemma A.5 and the second by Lemma A.6. �
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