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ON A GALOIS CONNECTION
BETWEEN THE SUBFIELD LATTICE

AND THE MULTIPLICATIVE SUBGROUP LATTICE

JOHN K. MCVEY

Given finite fields F < E , we present a collection of subgroups C � E�

and establish, to each C , a Galois connection between the intermediate field
lattice EDfL jF �L�Eg and C ’s subgroup lattice. Our main result is that,
in all but an extremely limited and completely determined family, the closed
subset of E is E itself, establishing a natural bijection between E and the
lattice fL\C jL 2 Eg. As an application, we use this bijection to calculate
the set of degrees for the complex-valued irreducible representations of the
split extension C Ì Gal.E=F /.

1. Introduction

In §3 of [McVey 2004], generalizing results in §5 of [Riedl 1999], we worked
towards (among other things) a better understanding of the groups C ÌGal.E=F /
for finite fields F <E, where C <E� is the subgroup of order jE� W F�j. While
working to generalize those results further, we discovered a Galois connection
which itself is worthy of further study. This paper’s intent is to record the Galois
connection as well as the research that motivated its initial study. The primary
assertion of the Main Theorem is that, but for a completely determined and rather
limited family, the intermediate field lattice ED fL j F �L�Eg is itself one of
the two closed subsets in the Galois connection, thereby determining a canonical
bijection between E and the other closed set fL\C jL 2 Eg. As to the motivating
research, we use this bijection to calculate the degrees of the irreducible complex
representations of the aforementioned split extension C ÌGal.E=F /, showing
every integer allowed by Itô’s theorem is a degree.

2. Towards the Galois connection

Our focus in this paper is on monotone Galois connections. To avoid confusion
between monotone and antitone connections, we define the term and present the
basic relevant results. Two monotone nondecreasing functions f W A! B and
g W B! A on partially ordered sets .A;�/ and .B;�/ form a monotone Galois
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connection if
f .a/� b () a� g.b/

over all a 2 A and b 2 B. The function f is the lower adjoint and g is the
upper adjoint. The closed sets A0 and B0 of A and B respectively are defined by
A0 D g.B/ and B0 D f .A/, and satisfy

A0 D fa 2A j g ıf .a/D ag D g ıf .A/;

B0 D fb 2B j f ıg.b/D bg D f ıg.B/:

The functions f and g are inverse bijections between the sets A0 and B0.
Turning now specifically to our setting of finite fields F < E, label by � the

set of primes which divide jF�j D jF j � 1. The collection of groups to which the
Galois connection applies consists of all subgroups C �E� for which the index
jE� W C j is a �-number (thus naturally generalizing results in [Riedl 1999] where
hypotheses guaranteed jE� W C j D jF�j). Fixing a group C , the upper adjoint is
very easy to describe; it is the function “intersect with C ”.

As to the lower adjoint, define the F -closure yX of a subset X � E to be the
smallest subfield of E which contains X [F . In other words, yX is the intersection
of all fields L satisfying X [F � L � E. It should be obvious that F -closure
actually is a closure operator (i.e.,

yX �X and yyX D yX

over all subsets X �E), and that a Galois automorphism � 2Gal.E=F / centralizes
X if and only if it centralizes yX . The partially ordered sets in our Galois connection
are the lattices

(1) ED fL j F �L�E is a fieldg and CD fD jD � C is a groupg;

ordered by inclusion. The functions X 7! X \ C and X 7! yX are obviously
monotone. Given D 2C and L 2E, and noting that L\C DL�\C 2C, we have

yD �L () D �L () D �L\C;

showing that y� is a lower adjoint while . � /\C is an upper adjoint. Therefore, as
A0 D g.B/, the closed subset of C is C0 D fL\C jL 2 Eg.

We are now ready to state the Main Theorem. All but the last two sentences
were proven in the above discussion. Those last two sentences are the true content
of the theorem, and their proof is at the end of this section.

Main Theorem. Let F <E be finite fields and label by � the set of primes dividing
jF j�1. Let C be a subgroup of E� whose index jE� W C j is a �-number. Given the
partially ordered sets defined by (1), the functions y� W C! E and . � /\C W E! C
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are respectively the lower and upper adjoints of a monotone Galois connection, and
thus provide inverse bijections between the closed subsets C0 � C and E0 � E. The
closed subset C0 of C is the lattice C0 D fL\C j L 2 Eg. If jF j is a Mersenne
prime, jE W F j is even, and 4 does not divide jC j, then the closed subset E0 of E is
the set E0 D E n fKg where jK W F j D 2. Otherwise, ED E0.

Our argument for the as yet unproven portion of the Main Theorem relies
fundamentally on number theory. We ask the reader to recall Zsigmondy’s prime
theorem, as it is the foundation for what follows.

Theorem 1 [Zsigmondy 1892]. Let a; b; n be positive integers and assume a; b are
coprime and not both 1. Then, an� bn has a prime divisor which does not divide
ak � bk for integers 0< k < n, except when either

nD 6 and fa; bg D f1; 2g or nD 2 and aC b is a 2-power.

Aside from specifying fa; bg as fq; 1g with q a prime-power, the main point
behind Corollary 2 is that the order of the quantifiers changed (from ‘9 prime 8 k’
in Zsigmondy’s theorem to ‘8 k 9 prime’ in the corollary).

Corollary 2. Let n> 1 be an integer and q a power of a prime. For each integer k

with 0< k < n, there is a prime which divides qn� 1 and not qk � 1, except when
q is a Mersenne prime and nD 2. Conversely, when q is a Mersenne prime, every
prime dividing q2� 1 divides q� 1.

Proof. As stated previously, Zsigmondy’s theorem provides a universal prime (over
all k) unless we are in one of the exceptional cases. First, assume nD 6 and q D 2,
in which case qn�1D 26�1D 63D 32 �7. It suffices to check that 3 divides none
of 1D 21� 1, 7D 23� 1, and 31D 25� 1, and that 7 divides neither 3D 22� 1

nor 15D 24� 1.
In the other exceptional case, nD 2 and qC 1 is a 2-power. However, Catalan’s

conjecture (proven in [Mihăilescu 2004]) says that the integer equation xa�yb D 1

with a; b > 1 only has the solution 32 � 23. Because qC 1 is a 2-power already,
q itself must be prime, hence a Mersenne prime.

As to the converse, when q is a Mersenne prime, the only prime dividing qC 1

is 2, which necessarily divides .qC 1/� 2D q � 1. As q2 � 1D .qC 1/.q � 1/,
the result follows. �

We now leave number theory and move to algebra proper. Our first algebraic
goal is a lemma which shows how the number theory embedded in the previous
corollary can be applied to finite fields.

Lemma 3. Let F �K �L�E be finite fields. For the set � of prime divisors of
jF�j, let C be a subgroup of E� whose index is a �-number. If the prime p divides
jL�j and not jK�j, then p divides jL\C WK\C j.
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Proof. The following picture provides insight into this proof.
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That p does not divide jK�j implies p does not divide jF�j D q� 1. Since

jL� WL\C j D jL�C W C j divides jE� W C j;

which is a �-number and thus coprime to p, necessarily p divides jL\C j. As p

does not divide jK�j, it also does not divide jK\C j. �

Theorem 4. Let q be a prime-power, e > 1 an integer, and � the set of primes
dividing q � 1. Label F D Fq and E D Fqe , and let C be a subgroup of E�

whose index jE� W C j is a �-number. Then, for all fields F �L�E, the equality
LD 1L\C holds, except when the following conditions are all satisfied.

(1) q is a Mersenne prime.

(2) e is even.

(3) LD Fq2 .

(4) 4 does not divide jC j.

When these simultaneously hold, L\C D F \C , so 1L\C D F <L.

Proof. Fix the field L. Obviously, the set L\C is a subset both of 1L\C and of C .
Therefore,

L\C � 1L\C \C � yL\C DL\C;

and we have equality throughout. Applying (the contrapositive of) Lemma 3 to
K D 1L\C , the equality K \C D L\C shows that every prime dividing jL�j
divides jK�j. Labelling jL�j D qn� 1 and jK�j D qk � 1, either k D n (and we
are done) or we are in the exceptional case of Corollary 2.

Henceforth, assume nD 2 and q is a Mersenne prime. As e is a multiple of n, it
is even. Write q D 2p � 1. Consequently,

� jF�j D q� 1D 2.2p�1� 1/, which has 2-part exactly 2, while

� jL�j D q2� 1D 2pjF�j, which has 2-part 2pC1.

In particular, the 20-part of jL�j is exactly the 20-part of jF�j.
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We now split the argument as to whether or not 4 divides jC j. If 4 divides jC j,
then because 4 also divides jL�j, it divides jL\C j. However, 4 does not divide
jF�j, so L\C 6�F�. Accordingly, F < 1L\C �L, and F D Fq being a maximal
subfield of LD Fq2 shows LD 1L\C .

When 4 does not divide jC j, the 2-part of jL\C j divides jF�j. Generally, the
20-part of jL\C j divides jL�j20 D jF�j20 . It follows that jL\C j divides jF�j.
Since E� is cyclic, this shows L\C � F�, so L\C D F \C . �

With the above result in place, we use that B0 D f ıg.B/ to conclude

E0 D f
1L\C jL 2 Eg:

Meanwhile, the F -closure 1L\C equals L but for the one exception Fq2 when q is
Mersenne, e is even, and 4 fails to divide jC j. This finishes the proof of the Main
Theorem.

3. Application to degrees

Our concluding section presents the computations for the character degree set of the
split extension C ÌGal.E=F / when ED E0. We emphasize once more that this
result was the principal impetus for our study of this Galois connection. All standard
notations and conventions regarding character theory are taken from [Isaacs 1976].
The following generalizes Theorem 3.2 in [McVey 2004], and the proof here is
fundamentally the same as is presented there, the main modification being the use
of Theorem 4.

Theorem 5. Fix a prime-power q and an exponent 1 < e 2 Z, and label by F

the field Fq , by E the field Fqe , and by � the set of primes dividing q � 1. Let
� D Gal.E=F /, and fix C �E� under the assumption jE� W C j is a �-number. If
q is Mersenne and e is even, assume 4 divides jC j. Then, � normalizes C and

cd.C� /D fn j n divides eg:

Proof. Because E� is cyclic, every subgroup is characteristic. In particular, C is
fixed (setwise) under every field automorphism of E, so � normalizes C . As C

is cyclic, Irr.C / contains only linear characters and forms a cyclic group under
multiplication. Let � 2 Irr.C / be a generator, noting � is both faithful and a
homomorphism. In summary, �.d1/ D �.d2/ implies d1 D d2, �m.d/ D �.dm/,
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and �� .d� /D �.d/ for all d; d1; d2 2 C , m 2 Z, and � 2 � . Recalling C C C� is
abelian, Itô’s theorem says every degree in cd.C� / divides jC� W C j D j� j D e.

Conversely, fix a divisor n of e, and we will demonstrate an irreducible character
of C� whose degree is n. Let � be a generator of � , and label ˚ Dh�ni, observing
that j� W ˚ jDn. Let L be the fixed field for �n in the (usual) Galois correspondence
for E over F . Hence, ˚ D Gal.E=L/ and �n fixes the subgroup L\C of C . For
some generator c 2 C , let L\C D hcmi.

We claim the stabilizer of �m in � is ˚ . Given the claim, the stabilizer of �m

in C� is C˚ , and �m extends to a character ' 2 Irr.C˚/ through for example
Corollary 11.22 in [Isaacs 1976]. Also, ' induces irreducibly to C� by Clifford
correspondence. Therefore,

nD j� W ˚ j D jC� W C˚ j D jC� W C˚ j'.1/D 'C� .1/ 2 cd.C� /:

As n was an arbitrary divisor of e, we will have shown the result.
Given � 2 � and recalling � is faithful, the equalities

.�m/� .d/D �m.d��1

/D �
�
.d��1

/m
�
D �

�
.dm/�

�1�
and

�m.d/D �.dm/

imply that � centralizes �m (the left ends are equal) if and only if ��1 centralizes
dm for every d 2 C (the right ends are equal). The latter happens exactly when
��1 centralizes hcmi DL\C , which occurs if and only if ��1 centralizes 1L\C .
As LD 1L\C (Theorem 4), this is equivalent to ��1 2 Gal.E=L/D ˚ . �

In closing, we would be remiss in not mentioning an application of Theorem 5
to a remark made in [Lewis 2001]. For the subsequent, we use the notation of
[Lewis 2001]. In the paragraph preceding Lemma 3.4, Dr. Lewis made the comment
that “. . . every divisor of m occurs in cd.G=V /”, but that particular conclusion was
superfluous to Lemma 3.4, so it went unproven. Reading through the first two and
a half paragraphs of that proof, V can be viewed as the additive group of the field
Fqm , K=Z acts on Fqm by multiplication as if it were a subgroup of F�qm , and the
quotient H=K behaves as a Galois group. Lastly, the hypotheses to Example 2.4
imply m is coprime to .qm � 1/=.q � 1/. Hence, our result applies to the group
H=Z, and Lewis’ claim about the degrees is an immediate corollary of Theorem 5
and the relations G=V ŠH and cd.H /D cd.H=Z/.
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