THE SIEGEL–WEIL FORMULA FOR UNITARY GROUPS

SHUNSUKE YAMANA

We extend the Siegel–Weil formula for unitary groups of hermitian forms over a skew field with involution of the second kind.

Introduction

The Siegel–Weil formula is an identity between an Eisenstein series and an integral of a theta function. After Weil [1965] proved such an identity when both sides of the identity are absolutely convergent, Kudla and Rallis [1988a; 1988b; 1994] extended it for symplectic groups beyond the range of absolute convergence. Their results were extended to almost all classical groups by several authors, of which we mention the following sample: [Tan 1998; Ichino 2004; 2007; Gan and Takeda 2011; Yamana 2011; 2013; Gan 2000]. In this paper we discuss the last case that has to be considered in the theory of classical dual pairs over a number field, namely, unitary groups of hermitian forms over a skew field with involution of the second kind.

Let E/F be a quadratic extension of number fields and D a division algebra with center E, of dimension δ^2 over E and provided with an antiautomorphism ρ of order two under which F is the fixed subfield of E. Let \mathbb{A} and \mathbb{A}_E be the rings of adeles of F and E, respectively. Let \mathcal{W} be a left D-vector space of dimension $2n$ with a nondegenerate skew hermitian form that has a complete polarization, and V a right D-vector space of dimension m with a nondegenerate hermitian form. Let G and H be the unitary groups of \mathcal{W} and V, respectively.

Let α_E denote the standard norm of \mathbb{A}_E^\times. A character of \mathbb{A}_E^\times is called principal if it is a complex power of α_E. We denote by P the maximal parabolic subgroup of G that stabilizes a maximal isotropic subspace of \mathcal{W}. Note that P has a Levi decomposition $P = MN$ with $M \simeq \text{GL}_n(D)$. For any unitary character χ of $\mathbb{A}_E^\times/E_E^\times$ and for any $s \in \mathbb{C}$, we consider the representation $I(s, \chi) = \text{Ind}_{P(\mathbb{A})}^G(\chi \alpha_E^s)$ induced from the character $m \mapsto \chi(v(m))\alpha_E(v(m))^s$, where v is the reduced norm viewed...
as a character of the algebraic group $GL_n(D)$ and the induction is normalized so that $I(s, \chi)$ is naturally unitarizable when s is pure imaginary. For any holomorphic section $f^{(s)}$ of $I(s, \chi)$, the Eisenstein series

$$E(g; f^{(s)}) = \sum_{\gamma \in P(F) \backslash G(F)} f^{(s)}(\gamma g)$$

is absolutely convergent for $\Re s > \delta n/2$ and has a meromorphic continuation to the whole s-plane. We denote by χ^0 the restriction of χ to \mathbb{A}^\times, by $\rho(\chi)$ the character defined by $\rho(\chi)(x) = \chi(x^0)$ for $x \in \mathbb{A}_E^\times$, and by $\epsilon_{E/F}$ the quadratic character of $\mathbb{A}_E^\times/F^\times$ associated to the extension E/F. The following theorem was proven in [Tan 1999] when $\delta = 1$.

Theorem 1. Let $f^{(s)}$ be a holomorphic section of $I(s, \chi)$.

1. If $\chi \rho(\chi)$ is not principal, then $E(g; f^{(s)})$ is entire.
2. If $\chi = \rho(\chi)^{-1}$, then the poles of $E(g; f^{(s)})$ in $\Re s > -\frac{1}{2}$ are at most simple and can only occur in the set

$$\left\{ \frac{\delta(n - j)}{2} \mid j \in \mathbb{Z}, 0 \leq j < n, \chi^0 = \epsilon_{E/F}^{\delta j} \right\}.$$

Fix a nontrivial additive character ψ of \mathbb{A}/F and a character χ_V of $\mathbb{A}^\times \times E^\times$ such that $\chi_V^0 = \epsilon_{E/F}^m$. The group $G(\mathbb{A}) \times H(\mathbb{A})$ acts on the Schwartz space $\mathcal{S}(V^n(\mathbb{A}))$ of $V^n(\mathbb{A})$ via the Weil representation ω_{ψ, V, χ_V}. Let $S(V^n(\mathbb{A}))$ be the subspace of $\mathcal{S}(V^n(\mathbb{A}))$ consisting of functions that correspond to polynomials in the Fock model at every archimedean place of F.

The theta function associated to $\Phi \in S(V^n(\mathbb{A}))$ is defined by

$$\Theta(g, h; \Phi) = \sum_{x \in V^n(F)} \omega_{\psi, V, \chi_V}(g) \Phi(h^{-1}x)$$

for $g \in G(\mathbb{A})$ and $h \in H(\mathbb{A})$. By Weil’s criterion [1965], the integral

$$I(g; \Phi) = \int_{H(F) \backslash H(\mathbb{A})} \Theta(g, h; \Phi) \, dh$$

is absolutely convergent for all Φ either if $r = 0$ or if $m - r > n$, where r is the dimension of a maximal totally isotropic subspace of $V(F)$. When $m \leq n$ and $r > 0$, the integral diverges in general, but extends uniquely to a $G(\mathbb{A})$-intertwining, $H(\mathbb{A})$-invariant map on $S(V^n(\mathbb{A}))$ in light of the regularization introduced by Kudla and Rallis [1994].

For $\Phi \in S(V^n(\mathbb{A}))$ we define a section $f^{(s)}_\Phi$ of $I(s, \chi_V)$ by

$$f^{(s)}_\Phi(g) = |a(g)|^{s-s_0} \omega_{\psi, V, \chi_V}(g) \Phi(0),$$
where \(g \in G(\mathbb{A}) \), \(s_0 = \delta(m - n)/2 \) and the quantity \(|a(g)| \) is defined in the notation section below.

Theorem 2. If \(m \leq n \) or if \(m - r > n \), then for all \(\Phi \in S(V^n(\mathbb{A})) \) the series \(E(g; f_{\Phi}^{(s)}) \) is holomorphic at \(s = s_0 \) and

\[
E(g; f_{\Phi}^{(s)})|_{s=s_0} = \chi I(g; \Phi),
\]

where

\[
\chi = \begin{cases}
2 & \text{if } m \leq n, \\
1 & \text{if } m - r > n.
\end{cases}
\]

Theorem 2 was proven in [Weil 1965] if \(m > 2n \), and in [Tan 1998; Ichino 2004; 2007; Yamana 2011] if \(\delta = 1 \). The proof requires only slight technical modifications once all of the necessary local facts have been established. The group \(G(F_v) \) is isomorphic to the quasisplit unitary group \(U(\delta n, \delta n) \) or an inner form of \(GL_{2\delta n}(F_v) \), depending on whether \(v \) remains prime or splits in \(E \). The former case has already been discussed in [Kudla and Sweet 1997; Ichino 2007; Lee and Zhu 1998], and the latter case is discussed in Section 1. Coupled with the doubling method, the Siegel–Weil formula relates the theory of theta liftings to the theory of automorphic \(L \)-functions. We study the doubling zeta integral for inner forms of general linear groups in the Appendix.

Notation

Let \((D, E, F, \rho)\) be as in the introduction. The restriction of \(\rho \) to \(E \), which we denote also by \(\rho \), is the nontrivial automorphism of \(E \) over \(F \). For a matrix \(x \) with entries in \(D \), let \(x^* = {}^t x^\rho \) be the conjugate transpose of \(x \). If \(x \) is a square matrix, then \(\nu(x) \) and \(\tau(x) \) stand for its reduced norm and reduced trace to \(E \).

Fix a natural number \(n \) and put \(n' = \delta n \). Let \(\mathcal{W} = D^{2n} \) be a left \(D \)-vector space with the skew hermitian form

\[
\langle x, y \rangle = x J y^*, \quad J = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}
\]

for \(x, y \in \mathcal{W} \). Let \(V \) be a right \(D \)-vector space of dimension \(m \) equipped with a nondegenerate hermitian form \((\ , \) \). We denote by \(G \) (resp. \(H \)) the group of all \(D \)-linear transformations of \(\mathcal{W} \) (resp. \(V \)) that leave \((\ , \) \) (resp. \((\ , \) \)) invariant. Put \(s_0 = \delta(m - n)/2 \).

We write \(P \) for the stabilizer in \(G \) of the maximal isotropic subspace of \(\mathcal{W} \) defined by the vanishing of all but the last \(n \) coordinates. Let

\[
\text{Her}_n = \{ x \in M_n(D) \mid x^* = x \}
\]
be the F-subvariety of $n \times n$ hermitian matrices. The group G has a maximal parabolic subgroup $P = MN$ given by

$$M = \left\{ m(a) = \begin{pmatrix} a & 0 \\ 0 & (a^{-1})^* \end{pmatrix} \mid a \in \text{GL}_n(D) \right\},$$

$$N = \left\{ n(b) = \begin{pmatrix} 1_n & b \\ 0 & 1_n \end{pmatrix} \mid b \in \text{Her}_n \right\}.$$

Let K be the standard maximal compact subgroup of $G(\mathbb{A})$. For any character χ of $\mathbb{A}_F^\times / E^\times$, the representation $I(s, \chi) = I_n(s, \chi)$ is realized on the space of right K-finite functions $f^{(s)} : G(\mathbb{A}) \to \mathbb{C}$ satisfying

$$f^{(s)}(m(a)n(b)g) = \chi(v(a))\alpha_E(v(a))^{s+n'/2}f^{(s)}(g)$$

for all $a \in \text{GL}_n(D(\mathbb{A}))$, $b \in \text{Her}_n(\mathbb{A})$ and $g \in G(\mathbb{A})$. We define $|a(g)|$ by writing $g = pk \in G(\mathbb{A})$ with $p = m(a)n(b) \in P(\mathbb{A})$ and $k \in K$, and taking $|a(g)| = \alpha_E(v(a))$.

1. Degenerate principal series representations

For each place v of F, let F_v be the v-completion of F and set $E_v = E \otimes_F F_v$ and $D_v = D \otimes_F F_v$. A division algebra D with center E admits an involution of the second kind if and only if D_v is isomorphic to $M_b(E_v)$ whenever v remains prime in E, and D_v is isomorphic to a direct sum of mutually opposite simple algebras whose centers are F_v whenever v splits in E (see [Scharlau 1985, Theorem 10.2.4]).

In the local setting we will depart slightly from our previous notation. Fix a place v of F and suppress it from the notation. Thus E is a quadratic étale algebra over the local field F, D an algebra whose center is E, ρ an involution of D whose restriction to E is the nontrivial automorphism of E over F, V a free right D-module of rank m, and $(\ , \): V \times V \to D$ an F-bilinear map satisfying the following conditions:

- for $a, b \in D$ and $x, y \in V$,

$$ (x, y)^\rho = (y, x), \quad (xa, yb) = a^\rho(x, y)b; $$

- $(x, V) = 0$ implies that $x = 0$.

Let H be the unitary group of V. Let $G = \{ g \in \text{GL}_{2n}(D) \mid gJg^* = J \}$. For any quasicharacter χ of E^\times, let $I(s, \chi)$ be the analogous local induced representation of G. By Morita context, it is enough to consider the case where the triple (D, E, ρ) belongs to the following two types:

- $D = E$ is a quadratic extension of F and ρ generates $\text{Gal}(E/F)$;

- $D = D \oplus D^{\text{op}}$, $E = F \oplus F$ and $(x, y)^\rho = (y, x)$, where D is a division algebra central over F and D^{op} is its opposite algebra.
The rank of D as a module over E is a square of a natural number that will be denoted by δ. Note that $n' = \delta n$ remains intact after the change in notation.

We fix a nontrivial additive character ψ of F and a character χ_V of E^\times that satisfies $\chi_V^0 = e^{\delta m}$. Then $G \times H$ acts on the Schwartz space $\mathcal{S}(V^n)$ via the Weil representation ω_{ψ,V,χ_V}. Note that it depends on the data ψ, (\cdot, \cdot) and χ_V (compare [Kudla 1994]). When F is a p-adic field, put $S(V^n) = \mathcal{S}(V^n)$. When $F = \mathbb{R}$ or \mathbb{C}, let g be the complexified Lie algebra of G and $S(V^n)$ the subspace of $\mathcal{S}(V^n)$ that corresponds to the space of polynomials in the Fock model of ω_{ψ,V,χ_V}. In the archimedean case we only consider admissible representations of the pair (g, K), although we will allow ourselves to speak of a representation of the group G. We write $R(V, \chi_V) = R_{n'}(V, \chi_V)$ for the image of the intertwining map

$$S(V^n) \rightarrow I(s_0, \chi_V), \quad \Phi \mapsto f_{\Phi}^{(s_0)}(g) = \omega_{\psi,V,\chi_V}(g)\Phi(0).$$

We extend $f_{\Phi}^{(s_0)}$ to the standard section $f_{\Phi}^{(s)}$ of $I(s, \chi_V)$.

We discuss the case $E = F \oplus F$. Put

$$e_1 = (1, 0), \quad e_2 = (0, 1), \quad V_1 = V e_1, \quad V_2 = V e_2.$$

We regard V_1 as a right D-module and V_2 as both a right D_{op}-module and a left D-module. Since $(V_i, V_i) = 0$ for $i = 1, 2$, the spaces V_1 and V_2 are paired nondegenerately against each other by (\cdot, \cdot), and so an antiisomorphism

$$j : \text{End}(V_1, D) \rightarrow \text{End}(V_2, D_{\text{op}})$$

is defined by

$$(ax, y) = (x, j(a)y), \quad a \in \text{End}(V_1, D), \ x \in V_1, \ y \in V_2.$$

We obtain

$$H = \{(a, j(a)^{-1}) \in \text{GL}(V_1, D) \times \text{GL}(V_2, D_{\text{op}}) \mid a \in \text{GL}(V_1, D)\}.$$

Thus projection onto the first or second factor induces an isomorphism of H onto $\text{GL}(V_1, D)$ or $\text{GL}(V_2, D_{\text{op}})$, respectively. For any nonnegative integer j we write $G'_j = \text{GL}_j(D)$. Observe that

$$G = \{(g, J^{-1} g^{-1} J) \mid g \in G'_{2n}\}.$$

Through projection onto the first factor, we identify H with G'_m, G with G'_{2n}, and $P = MN$ with

$$M = \left\{ \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \mid a, d \in \text{GL}_n(D) \right\}, \quad N = \left\{ \begin{pmatrix} 1_n & b \\ 0 & 1_n \end{pmatrix} \mid b \in \text{M}_n(D) \right\}. $$
We write $\nu = v_j$ for the reduced norm of $M_j(D)$ and τ for the reduced trace of $M_j(D)$. Let $\alpha_F(x) = |x|_F$ denote the normalized absolute value of $x \in F^\times$. When we write $\chi = (\chi_1, \chi_2)$, the representation $I(s, \chi)$ is translated to

$$I(s, \chi) = \text{Ind}^{G_{2n}^2}_{\mathbf{P}}((\chi_1\alpha_F^s) \circ v_n \boxtimes (\chi_2\alpha_F^s)^{-1} \circ v_n).$$

If $E = F \oplus F$, then since χ_V is of the form (μ, μ^{-1}), we may assume that $\chi_V = 1$ by twisting, and we write $I(s) = I(s, 1)$ and $R(V) = R(V, 1)$. The Weil representation $\omega_{j,k}$ of the dual pair (G_j', G_k') can be taken to be the action on $\mathcal{S}(M_{k,j}(D))$ given by

$$\omega_{j,k}(a, b)\phi(x) = \alpha_F(v_j(a))^{s/k/2} \alpha_F(v_k(b))^{-s/k/2} \phi(b^{-1}xa)$$

for $a \in G_j'$ and $b \in G_k'$. Note that the integral

$$(\phi, \phi') = \int_{M_{k,j}(D)} \phi(u)\overline{\phi'(u)} \, du, \quad \phi, \phi' \in \mathcal{S}(M_{k,j}(D))$$

defines a $G_j' \times G_k'$ invariant positive definite hermitian form on $\omega_{j,k}$. The two models of the Weil representation $\omega_{2n,m} \simeq \omega_{\psi, V, 1}$ are related by the partial Fourier transform

$$(1-1) \quad \mathcal{F}\phi(x, y) = \int_{M_{m,n}(D)} \phi((x, z))\psi(-\tau(z^t y)) \, dz$$

for $x \in M_{m,n}(D)$ and $y \in M_{m,n}(D^{op})$. In the p-adic case we write \mathcal{O} for the maximal compact subring of D and put $K_n = \text{GL}_n(\mathcal{O})$. In the archimedean case we set

$$K_n = \{ g \in G_n' \mid {}^t\overline{g}g = 1_n \},$$

denoting the conjugate transpose of $x \in M_n(D)$ by ${}^t\overline{x}$, where $\overline{\cdot}$ denotes the complex conjugate or the quaternion conjugate. We denote by $f_0^{(s)}$ a unique section of $I(s)$ that is identically 1 on K_{2n}.

Lemma 1.1. If $E = F \oplus F$, then $R(V)$ contains $f_0^{(s_0)}$.

Proof. In the p-adic case, we let $\phi_{j,k}$ be the characteristic functions of $M_{j,k}(\mathcal{O})$. In the archimedean case we let

$$\phi_{j,k}(x) = e^{-\pi \text{Tr}_{F/\mathbb{R}}(\tau({}^t\overline{x}x))},$$

assuming that $\psi(\cdot) = e^{2\pi \sqrt{-1} \text{Tr}_{F/\mathbb{R}}(\cdot)}$. Put $\Phi = \mathcal{F}\phi_{2n,m}$. Then $f_{\Phi}^{(s_0)}$ is nonzero and right invariant under K_{2n}.

The local intertwining operator is defined analogously by

$$M(s, \chi) f^{(s)}(g) = \int_{\text{Her}_n(F)} f^{(s)}(Jn(b)g) \, db.$$
We define holomorphic sections and standard sections similarly. We write χ^0 for the restriction of χ to F^\times. Put

$$a(s, \chi) = a_n'(s, \chi) = \prod_{j=1}^{n'} L(2s - j + 1, \chi^0 \cdot \epsilon_{E/F}^{n' + j}),$$

$$b(s, \chi) = b_n'(s, \chi) = \prod_{j=1}^{n'} L(2s + j, \chi^0 \cdot \epsilon_{E/F}^{n' + j}).$$

A normalized intertwining operator $M^*(s, \chi)$ is defined by setting

$$M^*(s, \chi) = a(s, \chi)^{-1} M(s, \chi).$$

Lemma 1.2. The operator $M^*(s, \chi)$ is entire.

Proof. When E/F is a quadratic extension of p-adic fields, Lemma 1.2 is proven in Proposition 3.2 of [Kudla and Sweet 1997]. The proof is completely analogous when $E/F = \mathbb{C}/\mathbb{R}$. Note that Proposition 3A.6 of the same work applies also to this case by a global consideration, namely, by applying (24) of [Lapid and Rallis 2005] with base field \mathbb{Q} and $S = \{\infty\}$.

We suppose that $E = F \oplus F$. For $\phi \in \mathcal{S}(M_n(D))$ we define a section $f^{(s)}_\phi$ of $I(s, \chi)$ by requiring that $\text{supp}(f^{(s)}_\phi) \subset PJN$ and $f^{(s)}_\phi(g) = \phi(b)$ if $g = Jn(b)$ for $b \in \text{Her}_n(F)$. As explained in [Piatetski-Shapiro and Rallis 1987b; Kudla and Sweet 1997], all we have to do is to show that the ratio $a(s, \chi)^{-1} M(s, \chi) f^{(s)}_\phi(J)$ is entire. One can easily observe that

$$M(s, \chi) f^{(s)}_\phi(J) = Z^{GJ}\left(2s - n' - 1, \chi^0 \circ \nu_n\right),$$

where the right-hand side is the zeta integral studied in [Weil 1974; Godement and Jacquet 1972] (see the Appendix). Our claim follows at once, as the Godement–Jacquet L-factor

$$L^{GJ}\left(2s - n' - 1, \chi^0 \circ \nu_n\right)$$

divided by the factor $a(s, \chi)$ is entire. \qed

For $\beta \in \text{Her}_n(F)$, let ψ_β be the character of N defined by $\psi_\beta(n(b)) = \psi(\tau(\beta b))$. Notice that $\tau(\beta b) \in F$. The Fourier transform of a Schwartz function $f \in \mathcal{S}(N)$ is defined by

$$\hat{f}(\beta) = \int_N f(u) \psi_\beta(u) \, du.$$
For each integer \(j \leq n' \), we define the subvariety \(\text{Her}^j_n \) of \(\text{Her}_n(F) \) by
\[
(E \not\cong F \oplus F) \quad \text{Her}^j_n = \{ \beta \in M_n(E) \mid \beta^\rho = \beta, \ \text{rank}_E \beta \leq j \},
\]
\[
(E = F \oplus F) \quad \text{Her}^j_n = \{ (\beta, \beta^\rho) \in M_n(D) \oplus M_n(D^\op) \mid \delta(\text{rank}_D \beta) \leq j \}.
\]

Definition 1.3. We say that a representation \(\pi \) of \(G \) has rank at most \(j \) if \(f \in \mathcal{S}(N) \) acts by zero on \(\pi \) whenever \(\hat{f} \) vanishes on \(\text{Her}^j_n \). We say that \(\pi \) is of rank \(j \) if in addition \(j \) is a multiple of \(\delta \) and \(\pi \) does not have rank less than \(j \).

For any \(H \)-module \(\pi \), we write \(\pi_H \) for the maximal quotient of \(\pi \) on which \(H \) acts trivially. Let \(\mathcal{H}_r \) be a split hermitian space of dimension \(2r \), that is, \(\mathcal{H}_r \) has a \(D \)-basis consisting of \(2r \) elements \(e_i, f_i \) such that
\[
(e_i, e_j) = (f_i, f_j) = 0, \quad (e_i, f_j) = \delta_{ij}.
\]

Proposition 1.4. Assume that \(m \leq n \). Let \(U = V \oplus \mathcal{H}_{n-m} \).

1. \(R(V, \chi_V) \) is irreducible and unitarizable.
2. \(R(V, \chi_V) \) is isomorphic to \(S(V^n)_H \).
3. If \(E/F \) is a quadratic extension of \(p \)-adic fields, then \(R(V, \chi_V) \) is of rank \(m \).
4. \(R(U, \chi_V) \) has a unique irreducible quotient that is isomorphic to \(R(V, \chi_V) \).
5. \(M^*(s_0, \chi_V) \) maps \(R(U, \chi_V) \) onto \(R(V, \chi_V) \).
6. \(b(s, \chi_V)M^*(s, \chi_V)f_\Phi^{(s)} \) is holomorphic at \(s = s_0 \) for every \(\Phi \in S(V^n) \).

Proof. When \(D = E \), these results are known (see [Li 1989; Mœglin et al. 1987; Kudla and Sweet 1997; Lee and Zhu 1998; Yamana 2011]). We may suppose that \(E = F \oplus F \) and \(\delta > 1 \).

For \(0 \leq i \leq k \), let \(P^k_i = M^k_i N^k_i \) be the maximal parabolic subgroup of \(G'_k \) given by
\[
P^k_i = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \in G'_k \mid a \in G'_{k-i}, \ b \in M_{k-i}(D), \ d \in G'_{i} \right\}.
\]
\(\bar{P}^k_i \) its opposite parabolic subgroup, and \(r_i \) the representation of \(G'_i \times G'_i \) on \(\mathcal{S}(G'_i) \) given by
\[
r_i(g_1, g_2)\phi(g) = \phi(g_2^{-1}gg_1), \quad (\phi \in \mathcal{S}(G'_i), \ g, g_1, g_2 \in G'_i).
\]
In the archimedean case the representation \(I(s) \) is studied extensively in [Lee 2007; Sahi 1995; Zhang 1995]. From their results we know the module structure of \(I(s_0) \) and the set of \(K \)-types of each of its irreducible constituents, which combined with the technique explained in [Kudla and Rallis 1990a] prove (1), (2). We consider the nonarchimedean case. By Lemma 3.III.2 of [Mœglin et al. 1987], the representation \(\omega_{2n,m} \) has a filtration
\[
0 \subset S_m \subset \cdots \subset S_1 \subset S_0 = \omega_{2n,m}
\]
with successive quotients
\[S_i / S_{i+1} \simeq \text{Ind}_{P_i^{2n} \times \tilde{P}_i^m}^{G'_i \times G_i} \mu_i, \]
where \(\mu_i \) is the representation of \(P_i^{2n} \times \tilde{P}_i^m \) on \(\mathcal{S}(G'_i) \) given by
\[\mu_i(p, p') \phi = \alpha_F(v(a)^m - v(a')^{-2n} \nu(d)^{m-i+2n} \nu(d')^{i-2n})^{\delta/2} r_i(d, d') \phi, \]
where
\[p = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \in P_i^{2n}, \quad p' = \begin{pmatrix} a' & 0 \\ c' & d' \end{pmatrix} \in \tilde{P}_i^m, \quad \phi \in \mathcal{S}(G'_i). \]

Let \(\mathbb{1}_j \) denote the trivial representation of \(G'_j \). For \(0 \leq i < m \) and an admissible representation \(\pi \) of \(G'_j \), the Frobenius reciprocity gives
\[\text{Hom}_{G'_i \times G_i}^j(S_i / S_{i+1}, \pi \otimes \mathbb{1}_m) \simeq \text{Hom}_{M_i^{2n} \times M_i^m}((\pi^\vee)_{N_i^{2n}} \otimes \delta_{p_i^m}^{1/2}, \mu_i^\vee), \]
where \(\delta_{p_i^m} \) is the modulus function on \(P_i^m \) and \((\pi^\vee)_{N_i^{2n}} \) is the normalized Jacquet module of \(\pi^\vee \) associated to \(P_i^{2n} \). Since the quasicharacters of \(G'_m - i \) do not match, the space above is zero. Thus \((S_i / S_{i+1})_{G'_m} = 0 \), so that the natural map \((S_m)_{G'_m} \rightarrow (\omega_{2n, m})_{G'_m} \) is surjective. If \(\chi \) is a quasicharacter of \(G'_m \) and if a distribution \(T \) on \(\mathcal{S}(G'_m) \) transforms according to \(\chi \) under the action of \(e \times G'_m \), that is,
\[T(r_m(e, h) f) = \chi(v(h)) T(f) \]
for all \(h \in G'_m \), then there is a constant \(c \in \mathbb{C} \) such that
\[T(f) = c \int_{G'_m} f(h) \chi(v(h)) \, dh, \quad f \in \mathcal{S}(G'_m) \]
(see Lemma 3.II.3 of [Mœglin et al. 1987]). It follows that
\[(S_m)_{G'_m} \simeq \text{Ind}_{p_i^{2n}}^{G'_i \times G_i}(\mathbb{1}_{2n-m} \otimes \mathbb{1}_m). \]

Since \(\text{Ind}_{p_i^{2n}}^{G'_i \times G_i}(\mathbb{1}_{2n-m} \otimes \mathbb{1}_m) \) is irreducible as a representation of \(G'_i \) induced from a unitary representation [Sécherre 2009], we have
\[(\omega_{\psi, V, 1})_H \simeq \text{Ind}_{p_i^{2n}}^{G'_i \times G_i}(\mathbb{1}_{2n-m} \otimes \mathbb{1}_m). \]
Thus the map from \((\omega_{\psi, V, 1})_H \) to \(R(V) \) is injective. This proves (1), (2).

In the \(p \)-adic case, Theorem 5.1 of [Mínguez 2009] tells us that \(I(s_0) \) has a unique irreducible subrepresentation, which is \(R(V) \), and hence \(I(-s_0) \) has a unique irreducible quotient. We refer to [Lee 2007] for the archimedean analogue. From Lemma 1.1 we can infer that \(f_0^{(-s_0)} \) generates \(I(-s_0) \). It follows that \(I(-s_0) = R(U) \). The proof of (4) is complete.
To prove (5), (6), it suffices to check that $b(s)M^*(s)f_0^{(s)}$ (resp. $M^*(s)f_0^{(s)}$) are holomorphic and nonzero at $s = s_0$ (resp. $s = -s_0$) in light of [Kudla and Rallis 1988a, Proposition 4.9]. Let $\phi_0 = \phi_{n,n} \in S(M_n(D))$ be as in the proof of Lemma 1.1. Define $\phi_1 \in S(M_{n,2n}(D))$ by $\phi_1(x, y) = \phi_0(x)\phi_0(y)$. The sections $\tilde{\phi}_1^{(s)}$ and $\tilde{\phi}_1^{(-s)}$ are defined in the Appendix. Since $\tilde{\phi}_1^{(s)}$ is right K-invariant, so is $\tilde{\phi}_1^{(-s)}$ by Lemma A.1. From Propositions 10.7 and 10.8 of [Weil 1974], we know

$$\tilde{\phi}_1^{(s)} = \tilde{\phi}_1^{(-s)}(e) \cdot f_0^{(s)} = Z^{GJ}\left(2s + \frac{n'}{2}, \phi_0, 1\right) \cdot f_0^{(s)} = f_0^{(s)} = f_0^{(s)} \prod_{j=1}^{n} \xi(2s + \delta j)$$

up to multiplication by exponential factors, where $\xi(s) = \zeta(s)$ in the p-adic case, and $\xi(s) = \Gamma(s)$ in the archimedean case. Observe that

$$\tilde{\phi}_1^{(-s)} = Z^{GJ}\left(-2s + \frac{n'}{2}, \phi_0, 1\right) \cdot f_0^{(s)}$$

$$= (-1)^n(\delta - 1)\gamma Z^{GJ}\left(2s - \frac{n' - 1}{2}, \pi, \psi\right)Z^{GJ}\left(2s - \frac{n'}{2}, \phi_0, 1\right) \cdot f_0^{(s)}.$$

Substituting these into the equality in Lemma A.1, we get

\[(1-2) \quad M(s)f_0^{(s)} = f_0^{(-s)} \prod_{j=1}^{n} \frac{\xi(2s - \delta j + \delta)}{\xi(2s + \delta j)}.
\]

Now we can easily conclude our proof. □

2. Proof of Theorem 1

Back to the global setup, we write \mathcal{A} for the space of automorphic forms on $G(\mathbb{A})$. For $\beta \in \text{Her}_n(F)$ and $A \in \mathcal{A}$, let

$$A_\beta(g) = \int_{\text{Her}_n(F) \backslash \text{Her}_n(\mathbb{A})} A(n(b)g)\psi(-\tau(\beta b)) \, db, \quad g \in G(\mathbb{A})$$

denote the β-th Fourier coefficient of A. The following lemma can be proven in exactly the same way as in [Kudla and Rallis 1990b; Tan 1999].

Lemma 2.1. Let f be a holomorphic section of $I(s, \chi)$ and $\beta \in \text{Her}_n(F)$ with $v(\beta) \neq 0$.

1. $b(s, \chi)E_\beta(g; f^{(s)})$ is holomorphic in $\Re s > -\frac{1}{2}$.
2. If $m \geq n$ and β is represented by $V(F)$, then $E_\beta(g; f^{(s)}_\phi)$ can be made nonzero at $s = s_0$ for a suitable choice of $\Phi \in S(V^n(\mathbb{A}))$.
3. If $\chi \rho(\chi)$ is not principal, then $E(g; f^{(s)})$ is entire.
(4) If $\chi = \rho(\chi)^{-1}$, then the poles of $E(g; f^{(s)})$ in $\Re s > -\frac{1}{2}$ are at most simple and can only occur in the set
$$\left\{ \frac{n' - j}{2} \bigg| j \in \mathbb{Z}, \ 0 \leq j < n', \ \chi^0 = \epsilon_{E/F}^j \right\}.$$

(5) If $\chi^0 = \epsilon_{E/F}^{n'+1}$, then $E(g; f^{(s)})|_{s=0}$ is identically zero.

Definition 2.2. For each integer $l \leq n$, we say that $A \in \mathcal{A}$ has rank δl if $A_{\beta} = 0$ when $\text{rank}_{D_{\beta}} \beta > l$, but $A_{\beta} \neq 0$ for some β of rank l. When π is a representation of $G(\mathbb{A})$ realized on a subspace of \mathcal{A}, we say that π has rank at most δl if all functions in π have rank at most δl.

We call A singular if it has rank less than δn. The following lemma can be proven in the same way as in the proof of [Howe 1981, Lemma 2.4].

Lemma 2.3. Let π be a subrepresentation of \mathcal{A}. For every integer $l \leq n$ the following conditions are equivalent:

- π has rank at most δl;
- for every place v, $G(F_v)$ acts on π by a representation of rank at most δl;
- for at least one place v, $G(F_v)$ acts on π by a representation of rank at most δl.

In particular, if $G(F_v)$ acts on π by a representation of rank at most j, then $G(F_v)$ acts on π by a representation of rank at most $\delta \ell$, where $\ell = [j/\delta]$.

For $s' \in \mathbb{C}$ with $\Re s' > -\frac{1}{2}$, the residue $\text{Res}_{s=s'} E(g; f^{(s)})$ depends only on $f^{(s')}$, and $f^{(s')} \mapsto \text{Res}_{s=s'} E(g; f^{(s)})$ gives a $G(\mathbb{A})$ intertwining map
$$A_{-1}(s') : I(s', \chi) \to \mathcal{A}.$$

Assume that $\chi = \rho(\chi)^{-1}$, assume that j is an integer between 0 and n', assume that $\chi^0 = \epsilon_{E/F}^j$, and assume that j is not divisible by δ. Let $s' = (n' - j)/2$. To complete the proof of Theorem 1, it remains to prove that $A_{-1}(s')$ is zero. Fix a finite inert place v of F. By Theorem 1.2 of [Kudla and Sweet 1997], $I_v(s', \chi_v)$ has a unique irreducible submodule R and
$$I_v(s', \chi_v)/R \simeq \bigoplus_{V_0} R(V_0, \chi_v),$$

where V_0 runs over all equivalence classes of hermitian spaces over E_v of dimension j. Since the image of $A_{-1}(s')$ lies in the space of singular automorphic forms in view of Lemma 2.1(1) and since R is nonsingular, the map $A_{-1}(s')$ factors through the quotient $\bigoplus_{V_0} R(V_0, \chi_v)$ at v. Proposition 1.4(3) shows that $G(F_v)$ acts on the image of $A_{-1}(s')$ by a representation of rank at most j. Put $\ell = [j/\delta]$. Lemma 2.3 shows that $G(F_v)$ acts on the image of $A_{-1}(s')$ by a representation of rank at most $\delta \ell$. Since $\delta \ell < j$, Proposition 1.4(3) forces $A_{-1}(s')$ to be zero.
3. Proof of Theorem 2

Lemma 3.1. If $m = n$ or if $m - r > n$, then for all $\Phi \in S(V^n(\mathbb{A}))$ and $\beta \in \text{Her}_n(F)$ with $v(\beta) \neq 0$,

$$E_\beta(g; f^{(s)}_{\Phi^1})|_{s=s_0} = \kappa I_\beta(g; \Phi).$$

Proof. The proof can be carried out by the same technique as in that of [Ichino 2004, Proposition 6.2]. We omit the details. \qed

First we prove Theorem 2 in the case $m - r > n$. Ichino [2007] proved the special case of this result for $\delta = 1$ (compare [Kudla and Rallis 1988b; Yamana 2013]). Many of the results there apply word for word in our general case.

If $m > 2n$, then $E(g; f^{(s_0)}_{\Phi^0})$ converges absolutely and the stated identity was proven by Weil [1965]. We may suppose that $m \leq 2n$. Fix $\Phi^0 = \bigotimes_v \Phi^0_v \in S(V^n(\mathbb{A}))$. By Theorem 10.6.2 of [Scharlau 1985], there is an inert place w of F such that the Witt index r_w of V_w satisfies $r_w < \delta(r + 1)$, where V_w stands for the hermitian space over E_w corresponding to $V(F_w)$. Note that

$$\delta m - r_w > \delta n.$$

We consider the $G(F_w)$-intertwining map

$$A_{-1,w} : S(V^n_w) \to \mathcal{A}, \quad \Phi_w \mapsto A_{-1}(s_0)(f^{(s_0)}_{\Phi^0}),$$

where $\Phi = \Phi_w \otimes \left(\bigotimes_{v \neq w} \Phi^0_v \right)$. The invariant distribution theorem [Mœglin et al. 1987; Lee and Zhu 1998] asserts that $A_{-1,w}$ factors through the quotient $R(V_w, \chi_{V_w})$.

Lemma 2.1(1) shows that $A_{-1,w}(\Phi_w)$ is singular for every $\Phi_w \in S(V^n_w)$. If w is finite, then $\delta m = 2r_w + 2$ and $\delta n = r_w + 1$, and hence $R(V_w, \chi_{V_w})$ is irreducible and nonsingular by [Kudla and Sweet 1997, Theorem 1.2], so that $A_{-1,w}$ must be zero. If w is real and ∇ is the element of the universal enveloping algebra of the complexified Lie algebra of $G(F_w)$ defined by (2.1) of [Ichino 2007], then $\nabla A_{-1,w}(\Phi_w) = 0$. Since Proposition 2.2 of [Ichino 2007] asserts that $\nabla f^{(s_0)}_{\Phi_w}$ generates the submodule $R(V_w, \chi_{V_w})$ for a suitable choice of Φ_w, the map $A_{-1,w}$ must be zero. Consequently, $E(g; f^{(s)}_{\Phi^1})$ is holomorphic at $s = s_0$ for every $\Phi \in S(V^n(\mathbb{A}))$.

Next we consider the K_w-intertwining map

$$A_w : S(V^n_w) \to \mathcal{A}, \quad \Phi_w \mapsto E(g; f^{(s)}_{\Phi^1})|_{s=s_0} - I(g; \Phi),$$

where $\Phi = \Phi_w \otimes \left(\bigotimes_{v \neq w} \Phi^0_v \right)$. The image of A_w lies in the space of singular automorphic forms by Lemma 3.1. We write \mathcal{R}_w for the subspace of \mathcal{A} spanned by residues $\text{Res}_{s=s_0} E(g; f^{(s)}_{\Phi^1})$, where $f^{(s)}_{\Phi^1}$ is a holomorphic section of $I(s, \chi_{V_w})$ of the form

$$f^{(s)} = f^{(s)}_w \otimes \left(\bigotimes_{v \neq w} f^{(s)}_{\Phi^0_v} \right), \quad f^{(s)}_w \in I_w(s, \chi_{V_w}).$$
Then A_w induces a $G(F_w)$-intertwining map $R(V_{w}, \chi_{v_w}) \rightarrow \mathcal{A}/\mathcal{R}_w$. The remaining part of the proof continues as in Section 3 of [Ichino 2007]. □

Theorem 2 is demonstrated in [Yamana 2011], provided that $\delta = 1$ and $m \leq n$. Since the proof in our general case can be done by the same technique, we shall omit most of the details. We define the functions $a(s, \chi)$ and $b(s, \chi)$ by taking the complete Hecke L-functions in place of the local abelian L-factors in the definition of $a_v(s, \chi_v)$ and $b_v(s, \chi_v)$. We define a normalized global intertwining operator by

$$M^o(s, \chi) = \frac{b(s, \chi)}{a(s, \chi)} M(s, \chi),$$

which is holomorphic in $\Re s > -\frac{1}{2}$ by Lemma 1.2 and (1-2).

Let $\mathcal{C} = \{W_v\}$ be a collection of local hermitian spaces of dimension m over D_v such that W_v is isometric to $V(F_v)$ for almost all v. We form a restricted tensor product $\Pi(\mathcal{C}, \chi_V) = \bigotimes'_v R_n'(W_v, \chi_{v_e})$, which we can regard as a subrepresentation of $I(s_0, \chi_V)$. The proof of the following result is completely analogous to that of [Kudla and Rallis 1994, Theorem 3.1].

Proposition 3.2. Assume that $m \leq n$. Then

$$\dim \text{Hom}_{G(\mathbb{A})}(\Pi(\mathcal{C}, \chi_V), \mathcal{A}) \leq 1.$$

If there is no global hermitian space with W_v as its completions, then

$$\dim \text{Hom}_{G(\mathbb{A})}(\Pi(\mathcal{C}, \chi_V), \mathcal{A}) = 0.$$

Next we are going to prove the special case of Theorem 2 in which $m = n$. Let $\mathcal{C} = \{V(F_v)\}$. Since Proposition 1.4(2) shows that the two intertwining maps $\Phi \mapsto E(g; f_\Phi^{(s)})|_{s=0}$ and $\Phi \mapsto I(g; \Phi)$ define elements of the space

$$\text{Hom}_{G(\mathbb{A})}(\Pi(\mathcal{C}, \chi_V), \mathcal{A}),$$

they must be proportional by Proposition 3.2. From Lemmas 2.1(2) and 3.1, they are nonvanishing, and the constant of proportionality is determined to be 2. □

We now suppose that $m < n$. Let \mathcal{C}' be a collection of local hermitian spaces of dimension $2n - m$ obtained by adding a split space of suitable dimension to \mathcal{C}. By Proposition 1.4(4) and (5), $\Pi(\mathcal{C}', \chi_V)$ has a unique irreducible quotient $\Pi(\mathcal{C}, \chi_V)$, and $M^o(-s_0, \chi_V)$ induces a nonzero intertwining map $\Pi(\mathcal{C}', \chi_V) \rightarrow \Pi(\mathcal{C}, \chi_V)$. The same reasoning as in Section 4 of [Yamana 2011] implies the following result:

Proposition 3.3. Suppose that $m < n$. Let $f^{(s)}$ be a standard section of $I(s, \chi_V)$ such that $f^{(s_0)} \in \Pi(\mathcal{C}, \chi_V)$. Put $h^{(-s)} = M^o(s, \chi_V)f^{(s)}$.

1. $E(g; f^{(s)})$ is holomorphic at $s = s_0$.
(2) $h(s)$ is holomorphic at $s = -s_0$, $h(-s_0) \in \Pi(\mathcal{C}', \chi_V)$, and

$$\text{Res}_{s=-s_0} E(g; h(s)) = -\text{Res}_{s=s_0} \left[\frac{b(s, \chi_V)}{a(s, \chi_V)} \right] E(g; f^{(s)})|_{s=s_0}.$$

Lemma 3.4. If $m < n$, then the image of the map $A^{-1}(-s_0)$ lies in the space of square integrable automorphic forms on $G(\mathbb{A})$.

Proof. We use [Kudla and Sweet 1997, Proposition 6.2] and follow closely the guideline of the proof of [Kudla and Rallis 1994, Proposition 4.6].

Proposition 3.5. If $m < n$, then the restriction of $A^{-1}(-s_0)$ to $\Pi(\mathcal{C}', \chi_V)$ is zero unless \mathcal{C} is the set of localizations of a global space, in which case it defines a nonzero intertwining map $\Pi(\mathcal{C}, \chi_V) \to \mathcal{A}$.

Proof. The image of $A^{-1}(-s_0)$ is completely reducible in view of Lemma 3.4. Thus the restriction of $A^{-1}(-s_0)$ to $\Pi(\mathcal{C}', \chi_V)$ must factor through the unique irreducible quotient $\Pi(\mathcal{C}, \chi_V)$. Proposition 3.2 shows that $\Pi(\mathcal{C}, \chi_V)$ makes no contribution unless \mathcal{C} comes from a global space. It remains to check that $A^{-1}(-s_0)$ is nonzero on $\Pi(V, \chi_V)$. From Proposition 3.3(2) this amounts to proving that the holomorphic value $E(g; f^{(s)}(s))|_{s=s_0}$ is nonzero for a good choice of $\Phi \in S(V^n(\mathbb{A}))$.

Let $\beta_0 \in \text{Her}_m(F)$ with $\nu(\beta_0) \neq 0$. Put

$$\beta = \begin{pmatrix} 0 & 0 \\ 0 & \beta_0 \end{pmatrix} \in \text{Her}_n(F), \quad G_0 = \left\{ \begin{pmatrix} 1_{n-m} & b \\ a & 1_{n-m} \\ c & d \end{pmatrix} \in G \right\}.$$

Define $\Phi_0 \in S(V^n(\mathbb{A}))$ by $\Phi_0(y) = \Phi((0, y))$ for $y \in V^n(\mathbb{A})$. The nonvanishing can be proven by considering the β-th Fourier coefficient of $E(g; f^{(s)}(s))$ as in Section 6 of [Yamana 2011] (compare Theorem 4.9 of [Kudla and Rallis 1994]). The exponents of the $n - m + 1$ terms in this Fourier coefficient are distinct at $s = s_0$, so that there can be no cancellations among them. The first term is just the β_0-th Fourier coefficient of the central value of the Eisenstein series on $G_0(\mathbb{A})$ attached to the standard section $f^{(s)}(s)$. Lemma 2.1(2) now completes our proof.

Corollary 3.6. Suppose that $m \leq n$. Let $f^{(s)}$ be a standard section of $I(s, \chi_V)$ such that $f^{(s_0)} \in \Pi(\mathcal{C}, \chi_V)$. If \mathcal{C} cannot be the set of localizations of any global space, then $E(g; f^{(s)}(s))|_{s=s_0}$ is identically zero.

Proof. Propositions 3.2, 3.3(2) and 3.5 prove this corollary.

The regularized Siegel–Weil formula can be deduced from Propositions 3.2 and 3.5.
Theorem 3.7. Assume that $m < n$. Then there is a nonzero constant c_0 such that if holomorphic sections $f^{(s)}$ of $I(s, \chi_V)$ and $\Phi \in S(V^n(\mathbb{A}))$ satisfy the relation

$$M^0(-s_0, \chi_V) f^{(-s_0)} = f^{(s_0)}_\Phi,$$

then we have

$$\text{Res}_{s=-s_0} E(g; f^{(s)}) = c_0 I(g; \Phi).$$

Finally, we prove Theorem 2 when $m < n$. Applying Proposition 3.3(2) and Theorem 3.7 to $h^{(-s)} = M^0(s, \chi_V) f^{(s)}_\Phi$, we see that

$$E(g; f^{(s)}_\Phi)|_{s=s_0} = c I(g; \Phi),$$

where c is independent of Φ. One can prove that $c = 2$ in exactly the same manner as in Section 6 of [Yamana 2011]. □

Appendix. Zeta integrals for $\text{GL}_n(D)$

Let F be a local field of characteristic zero and D a division algebra central and of dimension δ^2 over F. We begin by reviewing the Godement–Jacquet construction of the local factors of representations of $G'_n = \text{GL}_n(D)$. The Fourier transform $\hat{\phi} \in \mathcal{S}(M_{ba}(D))$ of $\phi \in \mathcal{S}(M_{ab}(D))$ is defined by

$$\hat{\phi}(x) = \int_{M_{ab}(D)} \phi(y) \psi(\tau(xy)) \, dy, \quad x \in M_{ba}(D),$$

where the Haar measure dy is so chosen that

$$\int_{M_{ab}(D)} \hat{\phi}(y) \, dy = \phi(0).$$

In the archimedean case $S(M_{ab}(D))$ is the subspace of $\mathcal{S}(M_{ab}(D))$ as defined on p. 115 of [Godement and Jacquet 1972], and in the p-adic case $S(M_{ab}(D)) = \mathcal{S}(M_{ab}(D))$.

Let π be an irreducible admissible representation of G'_n. We write π^\vee for its admissible dual and denote the standard pairing on $\pi^\vee \otimes \pi$ by $\langle \cdot, \cdot \rangle$. For $s \in \mathbb{C}$, $\phi \in \mathcal{S}(M_n(D))$, $\xi \in \pi$ and $\xi^\vee \in \pi^\vee$ we set

$$Z_{GJ}^{GJ}(s, \phi, \xi \otimes \xi^\vee) = \int_{G'_n} \langle \pi(g)\xi, \xi^\vee \rangle \phi(g) |v(g)|_F^{s+n'/2} \, dg.$$

This integral converges in some half-plane and extends to a meromorphic function on the whole s-plane satisfying

$$Z_{GJ}^{GJ}(-s, \hat{\phi}, \xi^\vee \otimes \xi) = (-1)^{n(\delta-1)} \gamma^{GJ}(s + \frac{1}{2}, \pi, \psi) Z_{GJ}^{GJ}(s, \phi, \xi \otimes \xi^\vee).$$
Fix a pair \(\chi = (\chi_1, \chi_2) \) of quasicharacters of \(F^\times \). Recall \(\chi^0 = \chi_1\chi_2 \). We attach a section \(s \mapsto \tilde{\delta}^{(s, \chi)}_\phi \) to each \(\phi \in \mathcal{S}(M_{n, 2n}(D)) \) by setting
\[
\tilde{\delta}^{(s, \chi)}_\phi(g) = \chi_1(v(g))|v(g)|^{s+n'/2} \int_{G_n'} \phi((0, t)g) \chi^0(v(t))|v(t)|^{2s+n'} dt.
\]
This integral converges absolutely for sufficiently large \(\Re{s} \). Observe that if \(\phi \) belongs to \(S(M_{n, 2n}(D)) \), then \(\tilde{\delta}^{(s, \chi)}_\phi \in I(s, \chi) \) (compare (1-1)). For \(\varphi \in \mathcal{S}(M_{2n,n}(D)) \) we define a section \(\tilde{\delta}^{(s, \chi)}_\psi \) of \(I(s, \chi) \) to be
\[
\chi_2(v(g))^{-1}|v(g)|^{-s-n'/2} \int_{G_n'} \varphi\left(g^{-1}\begin{pmatrix} t \\ 0 \end{pmatrix}\right) \chi^0(v(t))|v(t)|^{2s+n'} dt.
\]

Lemma A.1. For each \(\phi \in S(M_{n, 2n}(D)) \),
\[
M(s, \chi) \tilde{\delta}^{(s, \chi)}_\phi = \frac{(-1)^{n(\delta-1)} \chi_1(-1)^{n'}}{
u GJ\left(2s-n'-1, \frac{n'}{2}, \chi^0 \circ \nu_n, \psi\right)} \tilde{\delta}^{(-s, \rho(\chi)^{-1})}_\phi.
\]

Proof. The case \(n = \delta = 1 \) is discussed in Lemma 14.7.1 of [Jacquet 1972]. The proof is substantially the same. For \(g \in G_{2n}' \) we put
\[
\Psi_g(t) = \int_{M_n(D)} \phi((t, x)g) \, dx
\]
for \(t \in M_n(D) \). Then
\[
M(s, \chi) \tilde{\delta}^{(s, \chi)}_\phi(g)
\]
\[
= \int_{M_n(D)} \tilde{\delta}^{(s, \chi)}_\phi\left(g \begin{pmatrix} 0 \; 1_n \\ 1_n \; 0 \end{pmatrix} \begin{pmatrix} 1_n & x \\ 0 & 1_n \end{pmatrix} \right) \, dx
\]
\[
= \chi_1((-1)^{n'}v(g))|v(g)|^{s+n'/2} \int_{M_n(D)} \int_{G_n'} \phi((0, t)g) \chi^0(v(t))|v(t)|^{2s+n'} dt \, dx
\]
\[
= \chi_1((-1)^{n'}v(g))|v(g)|^{s+n'/2} \int_{M_n(D)} \int_{G_n'} \phi((t, x)g) \chi^0(v(t))|v(t)|^{2s} dt \, dx
\]
\[
= \chi_1((-1)^{n'}v(g))|v(g)|^{s+n'/2} Z^{GJ}\left(2s-n', \Psi_g, \chi^0 \circ \nu_n\right).
\]
Since \(\Psi_g(t) = |v(g)|^{-n'} \hat{\phi}\left(g^{-1}\begin{pmatrix} t \\ 0 \end{pmatrix}\right) \),
\[
\chi_1(v(g))|v(g)|^{s+n'/2} Z^{GJ}\left(\frac{n'}{2} - 2s, \Psi_g, (\chi^0 \circ \nu_n)^{-1}\right) = \tilde{\delta}^{(-s, \rho(\chi)^{-1})}_\phi.
\]

Lemma A.1 follows from the functional equation of \(Z^{GJ}(s, \phi, \chi^0 \circ \nu_n) \). \(\square \)
Fix $A \in \text{GL}_n(D)$. For a section $f^{(s)}$ of $I(s, \chi)$, the integral
\[l_A(f^{(s)}) = \int_{M_n(D)} f^{(s)} \left(\begin{pmatrix} 1_n & 0 \\ x & 1_n \end{pmatrix} \right) \psi(\tau(Ax)) \, dx \]
converges absolutely for $\Re s \gg 0$. In the p-adic case, Karel [1979] has proven that $l_A(f^{(s)})$ admits an entire analytic continuation to the whole s-plane and satisfies a functional equation
\[l_A \circ M(s, \chi) = \chi^0(v(A))^{-1} |v(A)|_F^{-2s} c(s, \chi, \psi) l_A \]
for some meromorphic function $c(s, \chi, \psi)$. The factor $c(s, \chi, \psi)$ is independent of the choice of A. Analogous results are proven in the archimedean case in [Wallach 1988]. The normalization $M^\dagger(s, \chi)$ of $M(s, \chi)$ is defined so that
\[l_A \circ M^\dagger(s, \chi) = \chi_2(-1)^n \chi^0(v(A))^{-1} |v(A)|_F^{-2s} l_A. \]

Lemma A.2. For each $\Phi \in S(M_{n,2n}(D))$,
\[M^\dagger(s, \chi) \hat{\delta}^{(s,\chi)}_\Phi = \chi_2(-1)^n \hat{\delta}^{(-s,\rho(\chi)^{-1})}_\Phi. \]

Proof. It is enough to show that
\[l_A \left(\hat{\delta}^{(-s,\rho(\chi)^{-1})}_\Phi \right) = \chi^0(v(A))^{-1} |v(A)|_F^{-2s} l_A \left(\hat{\delta}^{(s,\chi)}_\Phi \right). \]

Take $\phi_1, \phi_2 \in S(\text{GL}_n(D))$ and define $\Phi \in S(M_{n,2n}(D))$ by $\Phi(x, y) = \hat{\phi}_1(x)\phi_2(y)$. Then
\[l_A \left(\hat{\delta}^{(s,\chi)}_\Phi \right) = \int_{M_n(D)} \hat{\delta}^{(s,\chi)}_\Phi \left(\begin{pmatrix} 1_n & 0 \\ x & 1_n \end{pmatrix} \right) \psi(\tau(Ax)) \, dx \]
\[= \int_{M_n(D)} \int_{\text{GL}_n(D)} \Phi \left(\begin{pmatrix} 0, t \\ (0, t) \begin{pmatrix} 1_n & 0 \\ x & 1_n \end{pmatrix} \end{pmatrix} \right) \chi^0(v(t)) |v(t)|_F^{2s+n'} \, dt \psi(\tau(Ax)) \, dx \]
\[= \int_{\text{GL}_n(D)} \phi_1(-At^{-1}) \phi_2(t) \chi^0(v(t)) |v(t)|_F^{2s} \, dt. \]

Similarly, $l_A \left(\hat{\delta}^{(-s,\rho(\chi)^{-1})}_\Phi \right)$ is equal to
\[\int_{M_n(D)} \int_{\text{GL}_n(D)} \phi_1(-t) \phi_2(-xt) \chi^0(v(t))^{-1} |v(t)|_F^{-2s+n'} \psi(\tau(Ax)) \, dt \, dx \]
\[= \int_{\text{GL}_n(D)} \phi_1(-t) \phi_2(t^{-1}A) \chi^0(v(t))^{-1} |v(t)|_F^{-2s} \, dt \]
\[= \chi^0(v(A))^{-1} |v(A)|_F^{-2s} l_A \left(\hat{\delta}^{(s,\chi)}_\Phi \right). \]

Since both $l_A \left(\hat{\delta}^{(s,\chi)}_\Phi \right)$ and $l_A \left(\hat{\delta}^{(-s,\rho(\chi)^{-1})}_\Phi \right)$ are not identically zero for a suitable choice of ϕ_1 and ϕ_2, the proof is complete. \qed
The embedding i of $G'_n \times G'_n$ into G'_{2n} is given by

$$(g_1, g_2) \mapsto w_1 \begin{pmatrix} g_1 & 0 \\ 0 & g_2 \end{pmatrix} w_1^{-1}, \quad w_1 = \begin{pmatrix} 2^{-1} \cdot 1_n & -2^{-1} \cdot 1_n \\ 1_n & 1_n \end{pmatrix}.$$

Let π be an irreducible admissible representation of G'_n. For $\xi \in \pi$, $\xi^\vee \in \pi^\vee$ and a section $f^{(s)}$ of $I(s, \chi)$, we define the zeta integral by

$$Z(\xi \boxtimes \xi^\vee, f^{(s)}) = \int_{G'_n} (\pi(g)\xi, \xi^\vee) f^{(s)}(i(g, e)) \, dg,$$

following [Piatetski-Shapiro and Rallis 1987a; Lapid and Rallis 2005]. This integral converges absolutely for $\Re s \gg 0$ and extends to a meromorphic function in s that satisfies the functional equation

$$Z(\xi \boxtimes \xi^\vee, M^\dagger(s, \chi) f^{(s)}) = \pi(-1)^{\gamma(s + \frac{1}{2}, \pi \times \chi, \psi)} Z(\xi \boxtimes \xi^\vee, f^{(s)}).$$

Lapid and Rallis [2005] demonstrated the special case of the following result for $\delta = 1$ in a different manner. It was pointed out by Wee Teck Gan [2012] that there is a typo in [Lapid and Rallis 2005, (25)].

Proposition A.3. For any irreducible admissible representation π of G'_n and any pair $\chi = (\chi_1, \chi_2)$ of quasicharacters of F^\times,

$$\gamma(s, \pi \times \chi, \psi) = \gamma^{GJ}(s, \pi \otimes \chi_1, \psi) \gamma^{GJ}(s, \pi^\vee \otimes \chi_2, \psi).$$

Proof. Let $\mathcal{F}^{(s, \chi)}_\Phi$ be the translate of $\mathcal{F}^{(s, \chi)}_\Phi$ by the element $w_1 \in G'_{2n}$. Then

$$Z(\xi \boxtimes \xi^\vee, \mathcal{F}^{(s, \chi)}_\Phi)$$

$$= \int_{G'_n} (\pi(g)\xi, \xi^\vee) \chi_1(v(g)) |v(g)|_F^{s+n'/2}$$

$$\times \int_{G'_n} \Phi \begin{pmatrix} (0, t) w_1 \begin{pmatrix} g & 0 \\ 0 & 1_n \end{pmatrix} \end{pmatrix} \chi_0(v(t)) |v(t)|_F^{2s+n'} \, dt \, dg$$

$$= \int_{G'_n \times G'_n} (\pi \otimes \chi_1)(g)\xi, (\pi^\vee \otimes \chi_2)(t)\xi^\vee) |v(gt)|_F^{s+n'/2} \Phi(g, t) \, dg \, dt.$$

If $\Phi(x, y)$ is of the form $\phi_1(x)\phi_2(y)$, then the last integral is equal to

$$\{Z^{GJ}(s, \pi \otimes \chi_1, \phi_1)\xi, Z^{GJ}(s, \pi^\vee \otimes \chi_2, \phi_2)\xi^\vee \}.$$

Piatetski-Shapiro and Rallis [1987a] employ this relation to calculate the unramified local zeta integrals.
We can see by Lemma A.2 that

\[
Z(\xi \boxtimes \xi^\vee, M^+(s, \chi) \hat{\Phi}(s, \chi)) = \chi_2(-1)^{n'} \int_{G'_n} \hat{\phi}_1(g) \hat{\phi}_2(t) \times |\nu(gt)|_F^{-s+n'/2}((\pi \otimes \chi_1)(g^{-1})\xi, (\pi^\vee \otimes \chi_2)(-t^{-1})\xi^\vee) \, dg \, dt.
\]

The stated relation follows upon combining these with the definitions of the gamma factors. \(\square\)

Let \(\chi = 1\). Put \(\Delta_s(g) = f_0(s-n'/2) \left(w_1 \left(\begin{pmatrix} g & \mathbf{1}_n \end{pmatrix} \right) \right) \) for \(g \in G'_n\). Note that

\[
\Delta_s(k_1 g k_2) = f_0(s-n'/2) \left(w_1 \left(\begin{pmatrix} k_1 g k_2 & \mathbf{1}_n \end{pmatrix} \right) \right) = f_0(s-n'/2) \left(i(k_1, k_1) w_1 \left(\begin{pmatrix} g & \mathbf{1}_n \end{pmatrix} \begin{pmatrix} k_2 & \mathbf{1}_n \end{pmatrix}^{-1} \right) \right) = \Delta_s(g)
\]

for \(k_1, k_2 \in K_n\) and \(g \in G'_n\). An explicit formula for this function is obtained in [Piatetski-Shapiro and Rallis 1987a, Proposition 6.4] in the case of symplectic or split even orthogonal groups. One can deduce from their argument a formula of the same type for the unit groups of simple algebras.

Lemma A.4. (1) If \(F\) is a \(p\)-adic field and \(g = k_1 d k_2\) with elements \(k_1, k_2 \in K_n\) and \(d = \text{diag}[\sigma^{a_1}, \ldots, \sigma^{a_n}]\), where \(\sigma\) is a generator of the maximal ideal of \(\mathbb{O}\), and we put \(q = |\nu(\sigma)|_F^{-1}\), then

\[
\Delta_s(g) = q^{-s} \sum_{i=1}^n |a_i|.
\]

(2) Assume that \(F = \mathbb{R}\) or \(\mathbb{C}\). Put \(t = [F : \mathbb{R}]\). If \(g = k_1 d k_2\) with \(k_1, k_2 \in K_n\) and \(d = \text{diag}[d_1, \ldots, d_n]\) with positive real numbers \(d_i\), then

\[
\Delta_s(g) = 2^{n \delta ts} \prod_{i=1}^n (d_i^{-1} + d_i)^{-\delta ts}.
\]

Lemma A.5. If \(\Re s > \delta(n - 1)\), then \(\Delta_s\) belongs to \(L^1(G'_n)\).
Proof. Put $\sigma = \Re s$. We consider the p-adic case. Proposition 1.5.2 of [Casselman 1995] gives a positive constant c such that

$$
\int_{G'_n} |\Delta_s(g)| \, dg \leq c \sum_{a_1 \geq a_2 \geq \cdots \geq a_n} q^{-\sigma \sum_{i=1}^n |a_i|} \prod_{j=1}^n q^{\delta(n+1-2j)a_j}
$$

$$
\leq c \prod_{j=1}^n \sum_{a_j \in \mathbb{Z}} q^{-\sigma |a_j| + \delta(n+1-2j)a_j}
$$

$$
= c \prod_{j=1}^n \left(\frac{1}{1 - q^{\delta(n+1-2j) - \sigma}} + \frac{q^{\delta(2j-n-1) - \sigma}}{1 - q^{\delta(2j-n-1) - \sigma}} \right).
$$

The archimedean case can be proven in the same way. \qed

Lemma A.6. If $\sigma > 0$, then the function $z \mapsto \Delta_\sigma(zg)$ is integrable over the center Z of G'_n for any $g \in G'_n$. Moreover, there exists a positive constant A_σ depending only on σ such that, for every $g \in G'_n$,

$$
\int_Z \Delta_\sigma(zg) \, dz \leq A_\sigma.
$$

Proof. In the p-adic case,

$$
\int_Z \Delta_\sigma(zg) \, dz = \sum_{j \in \mathbb{Z}} q^{-\sigma \sum_{i=1}^n |a_i| + \delta j} \leq \sum_{j \in \mathbb{Z}} q^{-\sigma |j|} = \frac{1 + q^{-\sigma}}{1 - q^{-\sigma}}.
$$

The proof for the archimedean case is completely analogous. \qed

Recall that π is called square integrable if it admits a unitary central character and its matrix coefficients are square integrable modulo the center. For $(s_1, s_2) \in \mathbb{C}$, we write $I(s_1, s_2) = I(0, (\alpha^{s_1}_F, \alpha^{s_2}_F))$.

Proposition A.7. If π is square integrable, $\Re s_1, \Re s_2 > -\delta/2$ and $f \in I(s_1, s_2)$, then the integral defining $Z(\xi \boxtimes \xi^\vee, f)$ is absolutely convergent.

Proof. Put $\sigma = \min\{\Re s_1, \Re s_2\}$. Note that $(\alpha_F \circ v_{2n})^{s'} \cdot f_0^{(s)} \in I(s + s', s' - s)$. By Lemma A.4, we can majorize $|f((g, e))|$ by $c f_0^{(\sigma)}((g, e))$ for some positive constant c. Our task is to check that for any $\sigma > -\delta/2$,

$$
\int_{G'_n} |\langle \pi(g)\xi, \xi^\vee \rangle| \Delta_{\sigma+n'/2}(g) \, dg
$$

is finite. Take a constant σ' so that $0 < \sigma' < \sigma + \delta/2$. The square of this integral is less than or equal to the product of the integrals

$$
\int_{G'_n} \Delta_{2\sigma+n'-2\sigma'}(zg) \, dg
$$

$$
\leq \frac{1 + q^{-\sigma}}{1 - q^{-\sigma}}.
$$
\[
\int_{G'_n} \left| \langle \pi(g) \xi, \xi' \rangle \right|^2 \Delta_{2\sigma'}(g) \, dg = \int_{Z \backslash G'_n} \left| \langle \pi(\hat{g}) \hat{\xi}, \hat{\xi}' \rangle \right|^2 \int_{Z} \Delta_{2\sigma'}(z \hat{g}) \, dz \, d\hat{g}
\]
both of which are finite, the first by Lemma A.5 and the second by Lemma A.6. □

Acknowledgements

We would like to thank the National University of Singapore, where this paper was partly written.

References

V. Sécherre, “Proof of the Tadić conjecture (U0) on the unitary dual of $\text{GL}_m(D)$”, J. Reine Angew. Math. 266 (2009), 187–203. MR 2009k:22027 Zbl 1170.22009

Received March 12, 2012.

SHUNSUKE YAMANA
FACULTY OF MATHEMATICS
KYUSHU UNIVERSITY
744, NISHI-KU
MOTOOKA 819-0395
JAPAN
yamana@math.kyushu-u.ac.jp
On the center of fusion categories
ALAIN BRUGUIÈRES and ALEXIS VIRELIZIER

Connected quandles associated with pointed abelian groups
W. EDWIN CLARK, MOHAMED ELHAMDADI, XIANG-DONG HOU,
MASAHICO SAITO and TIMOTHY YEATMAN

Entropy and lowest eigenvalue on evolving manifolds
HONGXIN GUO, ROBERT PHILIPOWSKI and ANTON THALMAIER

Poles of certain residual Eisenstein series of classical groups
DIHUA JIANG, BAIYING LIU and LEI ZHANG

Harmonic maps on domains with piecewise Lipschitz continuous metrics
HAIGANG LI and CHANGYOU WANG

q-hypergeometric double sums as mock theta functions
JEREMY LOVEJOY and ROBERT OSBURN

Monic representations and Gorenstein-projective modules
XIU-HUA LUO and PU ZHANG

Helicoidal flat surfaces in hyperbolic 3-space
ANTONIO MARTÍNEZ, JOÃO PAULO DOS SANTOS and KETI TENENBLAT

On a Galois connection between the subfield lattice and the
multiplicative subgroup lattice
JOHN K. MCVey

Some characterizations of Campanato spaces via commutators on Morrey spaces
SHAOGUANG SHI and SHANZHEN LU

The Siegel–Weil formula for unitary groups
SHUNSUKE YAMANA