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ON THE CENTER OF FUSION CATEGORIES

ALAIN BRUGUIERES AND ALEXIS VIRELIZIER

Miiger proved in 2003 that the center of a spherical fusion category € of
nonzero dimension over an algebraically closed field is a modular fusion
category whose dimension is the square of that of ¢. We generalize this the-
orem to a pivotal fusion category % over an arbitrary commutative ring Kk,
without any condition on the dimension of the category. (In this gener-
alized setting, modularity is understood as 2-modularity in the sense of
Lyubashenko.) Our proof is based on an explicit description of the Hopf
algebra structure of the coend of the center of 6. Moreover we show that
the dimension of ¢ is invertible in Kk if and only if any object of the center
of €6 is a retract of a “free” half-braiding. As a consequence, if Kk is a field,
then the center of € is semisimple (as an abelian category) if and only if
the dimension of ¢ is nonzero. If in addition K is algebraically closed, then
this condition implies that the center is a fusion category, so that we recover
Miiger’s result.
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Introduction

Given a monoidal category %, Joyal and Street [1991], Drinfeld (unpublished),
and Majid [1991] defined a braided category %#(%), called the center of €, whose
objects are half-braidings of 6. Miiger [2003] showed that the center (%) of a
spherical fusion category € of nonzero dimension over an algebraically closed
field k is a modular fusion category, and that the dimension of %#(%) is the square of
that of 6. Miiger’s proof of this remarkable result relies on algebraic constructions
due to Ocneanu (such as the “tube” algebra) and involves the construction of a

MSC2010: 18D10, 16T0S, 18C20.
Keywords: categorical center, fusion categories, Hopf monads, modularity.
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weak monoidal Morita equivalence between #(%€) and € ® €°P. The modularity
of the center is of special interest in three-dimensional quantum topology, since
spherical fusion categories and modular categories are respectively the algebraic
input for the construction of the Turaev—Viro/Barrett—Westbury invariant and of the
Reshetikhin—Turaev invariant. Indeed it has been shown recently in [Turaev and
Virelizier 2010] (see also [Balsam 2010]) that, under the hypotheses of Miiger’s
theorem, the Barrett—Westbury generalization of the Turaev—Viro invariant for 6 is
equal to the Reshetikhin—Turaev invariant for %(6).

In this paper, we generalize Miiger’s theorem to pivotal fusion categories over
an arbitrary commutative ring. More precisely, given a pivotal fusion category €
over a commutative ring K, we prove the following:

(i) the center %#(6) of € is always modular (but not necessarily semisimple) and
has dimension dim(%)?;

(ii) the scalar dim(%) is invertible in K if and only if every half braiding is a retract
of a so-called free half braiding;

(iii) if K is a field, then %(%6) is abelian semisimple if and only if dim(€) # 0;
(iv) if kis an algebraically closed field, then % () is fusion if and only if dim () #0.

Our proof is different from that of Miiger. It relies on the principle that if a braided
category 9B has a coend, then all the relevant information about & is encoded in its
coend, which is a universal Hopf algebra sitting in % and endowed with a canonical
Hopf algebra pairing. For instance, modularity means that the canonical pairing is
nondegenerate, and the dimension of & is that of its coend. In particular we do not
need to introduce an auxiliary category.

The center %(6) of a pivotal fusion category ‘€ always has a coend. We provide
a complete and explicit description of the Hopf algebra structure of this coend,
which enables us to exhibit an integral for the coend and an “inverse” to the pairing.
Our proofs are based on a “handleslide” property for pivotal fusion categories.

A general description of the coend of the center of a rigid category 6, together
with its structural morphisms, was given in [Bruguieres and Virelizier 2012]. It is an
application of the theory of Hopf monads, and in particular, of the notion of double
of a Hopf monad, which generalizes the Drinfeld double of a Hopf algebra. It is
based on the fact that %(6) is the category of modules over a certain quasitriangular
Hopf monad Z on € (generalizing the braided equivalence ¥(mody) >~ modpx)
between the center of the category of modules over a finite-dimensional Hopf
algebra H and the category of modules over the Drinfeld double D(H) of H).
It turns out that, when € is a fusion category, we can make this description very
explicit and in particular, we can depict the structural morphisms of the coend by
means of a graphical formalism for fusion categories.
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Part of the results of this paper were announced (without proofs) in [Bruguieres
and Virelizier 2008], where they were used to define and compute a 3-manifolds
invariant of Reshetikhin—Turaev type associated with the center of ‘€, even when
the dimension of ‘€ is not invertible.

Organization of the text. In Section 1, we recall definitions, notations and basic
results concerning pivotal and fusion categories over a commutative ring. A graph-
ical formalism for representing morphisms in fusion categories is provided. In
Section 2, we state the main results of this paper, that is, the description of the
coend of the center of a pivotal fusion category and its structural morphisms, the
modularity of the center of such a category, its dimension, and a semisimplicity
criterion. Section 3 is devoted to coends, Hopf algebras in braided categories, and
modular categories. Section 4 contains the proofs of the main results.

1. Pivotal and fusion categories

Monoidal categories are assumed to be strict. This does not lead to any loss of
generality, since, in view of Mac Lane’s coherence theorem for monoidal categories
(see [Mac Lane 1998]), all definitions and statements remain valid for nonstrict
monoidal categories after insertion of the suitable canonical isomorphisms.

1A. Rigid categories. Let € = (6, ®, 1) be a monoidal category. A left dual of
an object X of € is an object VX of € together with morphisms evy : "X ® X — 1
and coevy : 1 - X ® VX such that

(idy ® evy)(coevy ®idy) =idy and (evy ®idvy)(idvy ® coevy) =idvy.

Similarly a right dual of X is an object X with morphisms éVy : X ® X — 1 and
coevy : 1 — XV ® X such that

(évy ®idyx)(idy ®C€€Vx) =idy and (@(dyv® &X)(C,(.)\é/VX ®idyv) =idyv.

The left and right duals of an object, if they exist, are unique up to an isomorphism
(preserving the (co)evaluation morphisms).

A monoidal category € is rigid (or autonomous) if every object of € admits a
left and a right dual. The choice of left and right duals for each object of a rigid €
defines a left dual functor ¥? : €°° — % and a right dual functor ?¥ : 6°P — @,
where €°P is the opposite category to € with opposite monoidal structure. The
left and right dual functors are strong monoidal. Note that the actual choice of left
and right duals is innocuous in the sense that different choices of left (respectively,
right) duals define canonically monoidally isomorphic left (respectively, right) dual
functors.

There are canonical natural monoidal isomorphisms Y(XV)~ X ~ (VX)V, but
in general the left and right dual functors are not monoidally isomorphic.
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1B. Pivotal categories. A rigid category 6 is pivotal (or sovereign) if it is endowed
with a monoidal isomorphism between the left and the right dual functors. We may
assume that this isomorphism is the identity without loss of generality. In other
words, for each object X of €, we have a dual object X* and four morphisms

evy : X*®X =1, coevy:1l— X®X*,
vy X®X*— 1, coevy:1l— X*"® X,

such that (X*, evy, coevy) is a left dual for X, (X*, évy, Coevy) is a right dual
for X, and the induced left and right dual functors coincide as monoidal functors.
In particular, the dual f*:Y* — X* of any morphism f: X — Y in € is

f* = (evy ®idy«)(idy+ ® f ®idy~)(idy+ ® coevy)
= (idx+ ® évy)(idx: ® f ®idy+)(coevy ® idy+).

In what follows, for a pivotal category ¢, we will suppress the duality constraints
1*=1and X*®Y* = (Y ® X)*. For example, we will write (f ® g)* =g* ® f*
for morphisms f, g in €.

1C. Traces and dimensions. For an endomorphism f of an object X of a pivotal
category ¢, one defines the left and right traces tr;( f), tr,(f) € Endg(1) by

tr(f) =evx(idys ® f)coevy and tr,(f) = evx(f ®idy+)coevy.

They satisty tr;(gh) = try(hg) and tr,.(gh) =tr, (hg) for any morphisms g: X — Y
and h: Y — X in 6. Also we have tr;(f) = tr, (f*) = tr;(f**) for any endomor-
phism f in €. If

(D a®idy =idy ® @ for all « € End¢(1) and X in 6,

then try, tr, are ®-multiplicative; that is, tr;(f ® g) =tr;(f) try(g) and tr, (f ® g) =
tr, (f) tr(g) for all endomorphisms f, g in 6.

The left and the right dimensions of an object X of € are defined by dim;(X) =
tr;(idx) and dim,(X) = tr,(idx). Isomorphic objects have the same dimensions,
dim; (X) = dim, (X*) = dim; (X**), and dim; (1) = dim, (1) = id;. If € satisfies (1),
then left and right dimensions are ®@-multiplicative: dim;(X®Y) =dim;(X) dim;(Y)
and dim, (X ® Y) = dim, (X) dim,(Y) for any X, Y in €.

1D. Penrose graphical calculus. We represent morphisms in a category % by
plane diagrams to be read from the bottom to the top. In a pivotal category €, the
diagrams are made of oriented arcs colored by objects of 6 and of boxes colored
by morphisms of €. The arcs connect the boxes and have no mutual intersections
or self-intersections. The identity idyx of an object X of €, a morphism f : X — Y,
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and the composition of two morphisms f : X — Y and g : Y — Z are represented

respectively as
y
idxz{', f=, gf=71vY.
The monoidal product of two morphisms f : X — Y and g : U — V is represented

by juxtaposition:
Y yv
feg=[r] |¢]-
X YU

If an arc colored by X is oriented upwards, then the corresponding object in the
source/target of morphisms is X*. For example, idx+« and a morphism f : X*®Y —
U ® V*® W may be depicted as

U4V yw
idx*=+=+ and f=[ 7 ].
X X*

X YY

The duality morphisms are depicted as follows:

evxsz, coevX=VX, &szx, c’&EvX=VX.

The dual of a morphism f : X — Y and the traces of a morphism g : X — X can
be depicted as follows:

X X
= fﬁf - Jgﬂ wa o= {1, ww =[]}
Y Y

In a pivotal category, the morphisms represented by the diagrams are invariant under
isotopies of the diagrams in the plane keeping fixed the bottom and top endpoints.

1E. Spherical categories. A spherical category is a pivotal category whose left
and right traces are equal; i.e., tr;(g) = tr,(g) for every endomorphism g of an
object. Then tr;(g) and tr,(g) are denoted tr(g) and called the trace of g. Similarly,
the left and right dimensions of an object X are denoted dim(X) and called the
dimension of X.

Note that sphericity can be interpreted in graphical terms: it means that the
morphisms represented by closed diagrams are invariant under isotopies of diagrams
in the 2-sphere S? = R? U {00}, i.e., are preserved under isotopies pushing arcs of
the diagrams across oc.
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1F. Additive categories. Let K be a commutative ring. A K-additive category is a
category where Hom-sets are K-modules, the composition of morphisms is K-bilinear,
and any finite family of objects has a direct sum. In particular, such a category has
a zero object.

An object X of a k-additive category 6 is scalar if the map k — End¢(X),
o — «idy is bijective.

A K-additive monoidal category is a monoidal category which is k-additive in
such a way that the monoidal product is K-bilinear. Note that a k-additive monoidal
category whose unit object 1 is scalar satisfies (1) and so its traces try, tr, are K-linear
and ®-multiplicative.

1G. Fusion categories. A fusion category over a commutative ring K is a k-addi-
tive rigid category 4 such that

(a) each object of € is a finite direct sum of scalar objects;

(b) for any nonisomorphic scalar objects i, j of €, we have Homg (i, j) = 0;
(c) the set of isomorphism classes of scalar objects of € is finite;

(d) the unit object 1 is scalar.

Let % be a fusion category. The Hom spaces in % are free k-modules of finite
rank. We identify End¢ (1) with Kk via the canonical isomorphism. Given a scalar
object i of 6, the i-isotypical component X of an object X is the largest direct
factor of X isomorphic to a direct sum of copies of i. The actual number of copies
of i is

V; (X) = rankx Home (i, X) = rankx Home (X, 7).
An i-decomposition of X is an explicit direct sum decomposition of X ) into copies
of i, that is, a family (py : X — i, gy : i = X)gea of pairs of morphisms in € such
that

(@) poqp =38qpid; forall «, B € A,
(b) the set A has v; (X) elements,

where 8, g is the Kronecker symbol.

A representative set of scalar objects of € is a set I of scalar objects such that
1 € I and every scalar object of 6 is isomorphic to exactly one element of /.

Note that if Kk is a field, a fusion category over K is abelian and semisimple.
Recall that an abelian category is semisimple if its objects are direct sums of simple'
objects.

A pivotal fusion category is spherical (see Section 1E) if and only if the left and
right dimension of any of its scalar objects coincide.

TAn object of an abelian category is simple if it is nonzero and has no other subobject than the
zero object and itself.
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1H. Graphical calculus in pivotal fusion categories. Let € be a pivotal fusion
category. Let X be an object of € and i be a scalar object of €. Then the tensor

> Do ®k gu € Home (X, i) @ Home (i, X),
acA

where (py, go)aca 1 an i-decomposition of X, does not depend on the choice of
the i-decomposition (py, g¢)aca 0f X. Consequently, a sum of the type

........

where (py, ga)aca 1S an i-decomposition of an object X and the gray area does not
involve o, represents a morphism in € which is independent of the choice of the
i-decomposition. We depict it as

@)

where the two curvilinear boxes should be shaded with the same color. If several
such pairs of boxes appear in a picture, they must have different colors. We will
also depict
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Note also that tensor products of objects may be depicted as bunches of strands.
For example,

i i X*erezx X Y AZ
= and =
X*rez* X Y XZ i i

where the equality sign means that the pictures represent the same morphism of 6.

11. Braided and ribbon categories. A braiding in a monoidal category % is a
natural isomorphism 7 ={rxy : X®Y — Y ® X}x ves such that

Tx,yez = (1dy @ tx,7)(tx,y ®idz) and txgy,z = (Tx,z ®idy)(idy ® Ty,7)

for all X, Y, Z objects of 6. These conditions imply that 7x 1 = 11 x = idx.
A monoidal category endowed with a braiding is said to be braided. The braiding
and its inverse are depicted as

— \ -1 _ /
TX’Y_XAY and TY’X_XxY'

Note that any braided category satisfies the condition (1) of Section 1C.
For any object X of a braided pivotal category %8, the morphism

Ox ZXb = (idxy ® évy)(tx.x ®idx+)(idxy @ coevy) : X — X
is called the rwist. The twist is natural in X and invertible, with inverse
o5 = QLX: (evx ®idy) (idx- ® T3 §) ((0Bvx ®idy) : X — X.

It satisfies Oxgy = (Ox ® Oy) Ty xTx y for all objects X, ¥ of B and 61 =id;.
A ribbon category is a braided pivotal category B whose twist 9 is self-dual; i.e.,
(6x)* = Ox~ for any object X of 9. This is equivalent to the equality

| :c%X'

X

A ribbon category is spherical.

1J. The center of a monoidal category. Let € be a monoidal category. A half
braiding of € is a pair (A, o), where A is an object of € and

oc={ox:AQX > X ®A}xee
is a natural isomorphism such that

3) oxgy = (idy ® oy)(ox ®idy)
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for all X, Y objects of 6. This implies that o1 = id4.

The center of € is the braided category %(€) defined as follows. The objects
of #(%) are half braidings of €. A morphism (A, o) — (A’,0’) in Z(%6) is a
morphism f : A — A’ in € such that (idx ® f)ox = oy (f ®idy) for any object X
of 6. The unit object of %£(€) is 1) = (1, {idx}xe¢) and the monoidal product is

(A,0)® (B, p) = (A® B, (0 ®idp)(ids ® p)).
The braiding 7 in % (%) is defined by
T(A,0),(B,p) =08 : (A, 0)® (B, p) = (B, p) ® (A, 0).

There is a forgetful functor U : %(€) — € assigning to every half braiding (A, o)
the underlying object A and acting in the obvious way on the morphisms. This is a
strict monoidal functor.

If € satisfies (1), then Endg{(c@)(lg(%)) = End¢(1).

If 6 is rigid, then so is % (). If € is pivotal, then so is % () with (A, 0)* =
(A*, o), where

X1 A

a)u(: ox* TATRX > X R AT,

AYX

and ev4 o) = €V, COEV(4 ») = COBVA, EV(4.5) = EV4, COBV(4,5) = COEV4. In that
case the forgetful functor U preserves (left and right) traces of morphisms and
dimensions of objects.

If 6 is a k-additive monoidal category, then so is #(€) and the forgetful functor
is K-linear. If % is an abelian rigid category, then so is %(%), and the forgetful
functor is exact.

If € is a fusion category over the ring K, then %(6) is braided k-additive rigid
category whose monoidal unit is scalar. If in addition K is field, then % is abelian,
and so is %(6).

2. Main results

In this section, we state our main results concerning the center of a pivotal fusion
category. They are proved in Section 4. Let 6 be a pivotal fusion category over
a commutative ring kK and I be a representative set of scalar objects of 6. Recall
from Section 1J that the center #(%6) of € is a braided k-additive pivotal category
whose monoidal unit is scalar.

The coend of a rigid braided category is, if it exists, a Hopf algebra in the category
which coacts universally on the objects (see Section 3C for details). The center
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%#(%) of € has a coend (C, o), where

c=Pirei*eic;
ijel

and the half braiding o = {oy}yeg is given by

(M, y) > M, y)Q(C,0).

The structural morphisms and the canonical pairing of the Hopf algebra (C, o)
can be depicted as follows:

(a) The coproduct A:C - CQ C:

i,j,k,l,;n,ael

(c) The counite : C — 1:

jel

(d) The unitu:1 — C: u=> \'J

iel
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(e) The antipode S: C — C:

In the pictures, the dotted lines represent id; and serve to indicate which direct
factor of C is concerned. Moreover,

6) A=) "dim () * \OJ :@.id) — (C.o)
jel J
is an integral of the Hopf algebra (C, o), which is invariant under the antipode.
By a modular category we mean a braided pivotal category admitting a coend,

and whose canonical pairing is nondegenerate (see Section 3E for details). The
dimension of such a category is the dimension of its coend (see Section 3D).

Theorem 2.1. The center %#(€) of € is modular and has dimension dim(%)2.

The forgetful functor U : #(€) — € has a left adjoint & : ‘€ — %#(€). For an
object X of €,

F(X) = (Z(X), cx ={sx.rlvec) where Z(X)=@EPi*®X®i and

iel
Sx,y = E

ijel

¥ Z(X)®Y = Y ® Z(X).

For a morphism f in €,
F() =D id® f ®id;.
iel
By a free half braiding we mean a half braiding of the form %(X) for some object X
of €.

Theorem 2.2. The dimension of 6 is invertible in K if and only if every half braiding
is a retract of a free half braiding.
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From Section 1J, if K is a field, then %(%6) is abelian.
Corollary 2.3. Assume K is a field.
(a) The center %(6) is semisimple (as an abelian category) if and only if dim(€) #O.
(b) Assume K is algebraically closed. Then %(6) is a fusion category if and only if
dim(6) # 0.
Since the center of a spherical fusion category is ribbon (see, for example, [Turaev
and Virelizier 2010, Lemma 10.1]), we recover Miiger’s theorem:

Corollary 2.4 [Miiger 2003, Theorem 1.2]. If € is a spherical fusion category over
an algebraically closed field and dim(€) # 0, then %(€) is a modular ribbon fusion
category (i.e., #(%€) is modular in the sense of [Turaev 1994]).

Note that by [Etingof et al. 2005], the hypothesis dim(‘€) 7~ 0 of the previous
corollary is automatically fulfilled on a field of characteristic zero.

Example 2.5. Let G be a finite group and K be a commutative ring. The cate-
gory 6¢.k of G-graded free k-modules of finite rank is a spherical fusion category.
The dimension of €¢ k is dim(¢g k) = |G|1k, where |G| is the order of G. By
Theorem 2.1, the center Z(€¢ k) of €¢ k is modular of dimension |G|*1k. When
|G| is not invertible in K, by Theorem 2.2, there exist half braidings of € k which
are not retracts of any free half braiding. If particular, if K is a field of characteristic p
which divides |G|, then %(%¢ k) is not semisimple.

3. Modular categories

In this section, we clarify some notions used in the previous section. More precisely,
in Section 3A, we recall the definition of a Hopf algebra in a braided category and
provide a criterion for the nondegeneracy of a Hopf algebra pairing. In Section 3B,
we recall the definition of a coend. In Section 3C, we describe the Hopf algebra
structure of the coend of a braided rigid category. Sections 3D and 3E are devoted
to the definition of respectively the dimension and the modularity of a braided
category admitting a coend.

3A. Hopf algebras, pairings, and integrals. Let % be a braided category, with
braiding 7. Recall that a bialgebra in %R is an object A of B endowed with four
morphisms m : A ® A — A (the product), u : 1 — A (the unit), A: A > ARQ A
(the coproduct), and ¢ : A — 1 (the counit) such that
mm@idg) =m@Adga ®m), m@ids u) =1ids =m(u ®idy),
(A®ida)A=(1da®A)A, (1da®e)A =ids = (¢®ida)A,
Am = (m ®m)(1dA ®Ta A ®ldA)(A R A),

Au=u®u, em=cQe, ¢cu=idy.
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An antipode for a bialgebra A in % is a morphism S : A — A in & such that
m(S®idg)A =ue=m@{ds ® S)A.

If it exists, an antipode is unique. A Hopf algebra in & is a bialgebra in % which
admits an invertible antipode.
Let A be a Hopf algebra in %B. A Hopf pairing for A is a morphismw: AQA — 1
such that
omidy) =w(ids Q@w®idy)(idge: ® A), w(u®idy) =¢,
w(idg ®@m) =w(ids @w®idx)(A ®ide2), w(ids Qu)=c¢.
These axioms imply that w (S ® id4) = w(idg ® ).
A Hopf pairing w for A is nondegenerate if there exists a morphism Q2:1— AQ A
in & such that

(0 ®idy)(ida @ Q) =idg = (Ids @ W) (L ®idy).

If such is the case, the morphism €2 is unique and called the inverse of w.
A left (respectively, right) integral for A is a morphism A : 1 — A such that

m(idg ® A) = Ae (respectively, m(A ®idy) = A ¢).
A left (respectively, right) cointegral for A is a morphism A : A — 1 such that
(idg ® M)A =u A (respectively, (A ®id4)A =u A).

A (co)integral is two-sided if it is both a left and a right (co)integral.

If A is a left (respectively, right) integral for A, then SA is a right (respectively,
left) integral for A. If A is a left (respectively, right) cointegral for A, then AS is a
right (respectively, left) cointegral for A.

Let @ be a Hopf pairing for A and A : 1 — A be a morphism in %. Assume w is
nondegenerate. Then A is a left integral for A if and only if A =w(ids ® A) is a
right cointegral for A, and A is a right integral for A if and only if A = w (A ®1id4)
is a left cointegral for A.

Lemma 3.1. Ler w be a Hopf pairing for a Hopf algebra A in a braided category R.
Assume there exist morphisms A, A’ : 1 — A in B such that

(@) w(A®idy) and w(ids @ A') are left cointegrals for A;
(b) w(A ® A') is invertible in Endg (1).
Then w is nondegenerate, with inverse
Q=w(ARA) " (S®ids @ w)(ids ® AA ®ids) AN,

and A and A’ are right integrals for A.
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Proof. Sete = (S®ids Q w)(ids @ AAR®ida)AA :1— A® A. Let us depict the
product m, coproduct A, antipode S of A, and the morphisms w, A, A’ as follows:

m=A, A=Y, S=®, o=, A=4, A'=4.

Then (idg ® w)(e ®ids) = w(A ® A")id, since

04594

We use the product/coproduct axioms of a Hopf pairing in the first and fourth
equalities, the unit axiom and the fact that w (A ® id,4) is a left cointegral in the
second equality, the compatibility of m and A and the axiom of the antipode in
the third equality, and finally the fact that w(idq4 ® A’) is a left cointegral and the
unit/counit axiom of a Hopf pairing in the last equality. Similarly one shows that
(w®idy)(ds ®e) = w(A® A’)ids. Thus Q = w(A ® A’)"! e is an inverse of w.

Finally, since w is nondegenerate and w (A®A) and w (AQ A’) are left cointegrals,
we conclude that A and A’ are right integrals. ([l

3B. Coends. Let € and 9 be categories. A dinatural transformation from a functor
F : 9% x 9% — € to an object A of € is a family of morphisms in €

d={dy:F(Y,Y) > Alyey
such that for every morphism f : X — Y in %, we have
dxF(f, idx) = dyF(idy, f) . F(Y, X) — A.

The composition of such a d with a morphism ¢ : A — B in € is the dinatural
transformation ¢ od = {¢podx : F(Y,Y) — Blyeg from F to B. A coend of F
is a pair (C, p) consisting in an object C of € and a dinatural transformation p
from F to C satisfying the following universality condition: every dinatural trans-
formation d from F to an object of € is the composition of p with a morphism in ¢
uniquely determined by d. If F has a coend (C, p), then it is unique (up to unique

Ye%

isomorphism). One writes C = f F (Y, Y). For more on coends, see [Mac Lane

1998].

Remark 3.2. Let F : 9°P x 9% — 46 be a k-linear functor, where € is a k-additive cat-
egory and 9 is a fusion category (over K). Then F has a coend. More precisely, pick
a (finite) representative set / of simple objects of & and set C = €, _; F (i, ). Let
p={py:F(Y,Y)— Cl}yeg be defined by py =), F(qy, py), where (p§, g§)a is
any [-partition of Y. Then (C, p) is a coend of F and each dinatural transformation
d from F to any object A of € is the composition of p with ,; d; : C — A.
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3C. The coend of a braided rigid category. Let % be braided rigid category. The

coend
YeRB
C:/ YRY,

if it exists, is called the coend of B.

Assume B has a coend C and denote by iy : YY ® Y — C the corresponding
universal dinatural transformation. The universal coaction of C on the objects of B
is the natural transformation § defined by

Yy C
(7 b6y =(dy Qiy)(coevy ®idy) : Y — Y ® C, depicted as éy = V

Y
According to [Majid 1995], C is a Hopf algebra in . Its coproduct A, product m,
counit &, unit u, and antipode S with inverse S~! are characterized by the following
equalities, where X, Y € %:

XY C

S0 g e
e

Yy C
Furthermore, the morphism w : C ® C — 1 defined by

X Y
J

A

X Y X Y

is a Hopf pairing for C, called the canonical pairing. Moreover this pairing satisfies
the following self-duality condition: wtc c(S ® S) = w.

3D. The dimension of a braided pivotal category. Let B be a braided pivotal
category admitting a coend C.

Lemma 3.3. The left and right dimensions of C coincide.
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Proof. Let v = {ux}xeg be the natural transformation defined by
vy = be X — X.

Then v is natural monoidal isomorphism; that is, vxgy = vx ® vy and v; =
id1, which implies that vyx* = U;,f. The full subcategory By of B made of the
objects X of B satisfying tx = idx is a ribbon category. Let us prove that the
coend C of % belongs to %By. Denote by i = {ix : X* ® X — C}xecg the universal
dinatural transformation associated with C. For any object X of ‘6, by naturality
and monoidality of v and dinaturality of i, the following holds:

vcix = ixVx+ex) =ix(Uxs @ ux) = ix(Vyvx ®idy) =ix.

So ve =1id¢; that is, C belongs to By. Hence the left and right dimensions of C
coincide, since % is a ribbon category. ([

We define the dimension of B as dim(B) = dim;(C) = dim, (C).

This definition agrees with the standard definition of the dimension of a pivotal
fusion category. Indeed, any pivotal fusion category 6 (over the ring k) admits a
coend C =P, i* ®1i, where [ is a (finite) representative set of scalar objects of
6, and so

dimy (C) = dim,(C) = ) _ dim; (i*) dim (i) = Y _ dim, (i) dim; (i).
iel iel
3E. Modular categories. By a modular category, we mean a braided rigid category
which admits a coend whose canonical pairing is nondegenerate. Note that when %

is ribbon, this definition coincides with that of a 2-modular category given in
[Lyubashenko 1995].

Remark 3.4. Let B be a braided pivotal fusion category over K. Let I be a
representative set of the scalar objects of ®. Recall that C = €, _; i* ® i is the
coend of B. For i, j € I, set

S,"j = (evi ®&f])(1d,* ® Tj,iti,j ® idj*)(cf)‘e’vi ®CO€V]') € k

The matrix § = [S; ;i jer, called the S-matrix of %, is invertible if and only if the
canonical pairing of C is nondegenerate. In particular a modular category in the
sense of [Turaev 1994] is a ribbon fusion category which is modular in the above
sense.

4. Proofs

The statements of Section 2 derive directly from the theory of Hopf monads,
introduced in [Bruguieres and Virelizier 2007] and developed in [Bruguieres and
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Virelizier 2012; Bruguicres et al. 2011]. Hopf monads generalize Hopf algebras
in the setting of general monoidal categories. In Section 4A, we recall some basic
definitions concerning Hopf monads. In Section 4B, we give a Hopf monadic
description of the center #(%€) of a fusion category €, from which is derived the
explicit description of the coend of #(%€). In Section 4C, we prove a “handleslide”
property for pivotal fusion categories. In Section 4D, we use the explicit description
of the coend of %(6) to prove Theorem 2.1 and prove that the morphism A of (6)
is an integral invariant under the antipode. Sections 4E and 4F are devoted to the
proofs of Theorem 2.2 and Corollary 2.3, respectively.

4A. Hopf monads and their modules. Let € be a category. A monad on € is a
monoid in the category of endofunctors of 6, that is, a triple (7', i, ) consisting
of a functor T : € — % and two natural transformations

w={ux :T*X) - T(X)}xee and n={nx:X — T(X)}lxee,

called the product and the unit of T, such that, for any object X of €,

wxT (ux) =pxprxy and puxnrx =idrx) = uxT (nx).

Given a monad T = (T, i, n) on 6, a T-module in 6 is a pair (M, r) where M
is an object of 6 and r : T (M) — M is a morphism in € such that r T (r) = ruy
and rny =idy. A morphism from a 7-module (M, r) to a T-module (N, s) is a
morphism f : M — N in € such that fr = sT (f). This defines the category 6T
of T-modules in € with composition induced by that in €. We define a forgetful
functor Uy : €7 — € by Ur (M, r) =M and Ur(f) = f. The forgetful functor Uz
has a left adjoint F7 : ¢ — %7, called the free module functor, defined by Fr(X) =
(T(X), ux) and Fr(f) =T (f). Note that if € is k-additive and T is k-linear (that
is, T induces k-linear maps on Hom spaces), then the category €7 is k-additive
and the functors Ur and Fr are K-linear.

Let %€ be a monoidal category. A bimonad on 6 is a monoid in the category
of comonoidal endofunctors of €. In other words, a bimonad on ‘6 is a monad
(T, i, n) on € such that the functor T : € — % and the natural transformations
and 7n are comonoidal; that is, T comes equipped with a natural transformation
L={L(X,Y): T(X®Y)—=>T(X)®T(Y)}x.yee and a morphism 7p: T (1) - 1
such that

(idro @ (Y, ) Tr(X, Y ® Z) = (Tr(X, Y) ®idr2) (X Y, Z);
(idro) ® To) T>(X, 1) =id7x) = (To @ idr(x)) T2 (1, X);
DX, Y)pxey = (ux @ uy) (T(X), TYNT (T2(X, Y));
(X, Y)nxey =nx @ny.
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For any bimonad T on %, the category of T-modules 67 has a monoidal structure
with unit object (1, Tp) and with tensor product

(M, r)®(N,s)=(MQN, (r®s) Tr(M, N)).

Note that the forgetful functor Uz : €7 — % is strict monoidal.
Given a bimonad (7', w, n) on € and objects X, Y € €, one defines the left fusion
operator

Hyy = (T(X)@un)TX, T(1): TX@T(Y)) = T(X) @ T(¥)
and the right fusion operator
Hyy=(px®@TYNL(TX),Y): T(T(X)®Y) > T(X)®T(Y).

A Hopf monad on % is a bimonad on € whose left and right fusion operators are
isomorphisms for all objects X, Y of 6. When € is a rigid category, a bimonad T
on ¢ is a Hopf monad if and only if the category 67 is rigid. The structure of a
rigid category in 67 can then be encoded in terms of natural transformations

st = sk :TOT(X) = YX)xee and 5" ={s% : T(T(X)") = X"}xeq,
called the left and right antipodes. They are computed from the fusion operators:

= (ToT (evr () (Hig ) )" ® "nx) (id7vr(x)) ® coevrx));

S

s = (0 ® ToT (&7x)) (Hy 1(x)) ") (€08Vr(x) ®idr(r(x)v))-

The left and right duals of any 7T-module (M, r) are then defined by
(M, r)= ("M, sy T(r) and (M,r) =M",s,Tw")).

A quasitriangular Hopf monad on € is a Hopf monad 7' on € equipped with an
R-matrix, that is, a natural transformation

R={Rxy: XQY —>TX)QT(X)}x ves

satisfying appropriate axioms which ensure that the natural transformation t =
{T,r), (N9} m.r), (v 5)eer defined by

TM,r),(N,s) = @Ry N : (M, r)®(N,s)— (N,s)@(M,r)

form a braiding in the category €7 of T-modules.
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4B. The coend of the center of a fusion category. Let € be a pivotal fusion cat-
egory (over the ring k), with a representative set of scalar objects 7. For each
object X of 6, by Remark 3.2, the k-linear functor €°°? x € — 4, defined by
U, V) U*® X ®V, has a coend

Z(X) :@i*@)X@i,
iel
with dinatural transformation px = {px.v}ye¢ given by
i i
pxy = Y'QX®Y > Z(X).
The correspondence X +— Z(X) extends to a functor Z : € — 6. By Theorem 6.4

and Section 9.2 of [Bruguieres and Virelizier 2012], Z is a quasitriangular Hopf
monad on €, with structural morphisms as follows (the dotted lines represent id1 ):

(X Y)=) \\\?J//:Z(mezm@zm,
el i\X v(i
Zo=Y " MN\i:z@) -1,

iel
k k
nx =) X 1 Z2(X) > Z(X),
i,j.kel . . . .
J t l J

Ny = l XS X=U'®X®Llo Z(X),

X
A X
sk=sk=>_ L Z(Z(X)*) — X*,
i,jelj i i J
Yy | L i
Rxy = X®Y = Z(Y)® Z(X).
iel X Y

In particular, the category €% of Z-modules is a braided pivotal category. By
[Bruguieres and Virelizier 2012, Theorem 6.5], the functor

®Z > %(e)
8) ®:1 M,r) = (M,0) where ay:Z
f e f iel
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is an isomorphism of braided pivotal categories. Note that this isomorphism is a
“fusion” version of the braided isomorphism #(mody) >~ modpy) between the
center of the category of modules over a finite-dimensional Hopf algebra H and the
category of modules over the Drinfeld double D(H) of H. Now by [Bruguieres
and Virelizier 2012, Section 6.3], the coend of €% is (C, o), where

c=Pi*ej*®i®; and a= )

ijel i,jk,lnel

Thus (C, 0) =®(C, a) is the coend of %(6), with universal dinatural transformation
{Po-1m,y)}m.y)exe). Using the description of @ and the definition of the
universal coaction given in (7), we obtain that the half braiding o is given by (4) and
that the universal coaction of (C, o) is given by (5). Finally, recall from Section 3C
that (C, «) is a Hopf algebra in 6% endowed with a canonical Hopf algebra pairing.
By [Bruguieres and Virelizier 2012, Section 9.3], the structural morphisms of (C, &)
are those given on pages 10 and 11, items (a)—(f). These structural morphisms are
also those of (C, o), since ® is the identity on morphisms.

4C. Slope and handleslide in pivotal fusion categories. Let € be a pivotal fusion
category. Recall that the left and right dimensions of a scalar object of € are
invertible. The slope of a scalar object i is the invertible scalar sl(i) defined by

dim; (i)

1O = Fm )

The slope of an object X of € is the morphism SLy : X — X defined as

SLx = Y _ sl(ia) qu Pa-

€A

where (py : X — iy, g : iqe = X)aea is a decomposition of X as a sum of scalar
objects, that is, a family of pairs of morphisms such that i, is scalar for every o € A,
Paqp=208apid;, foralle, B € A,andidxy =), gu Po- The morphism SLy does
not depend on the choice of the decomposition of X into scalar objects. Note that
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SLx is invertible with inverse
SLy' = "sl(ia) ™" gapa-
€A

The family SL = {SLy : X — X}xc¢ is a monoidal natural automorphism of the
identity functor 1¢ of €, called the slope operator of 6. In particular

SLyf = fSLxy and SLxgy =SLx ®SLy

for all objects X, Y of € and all morphism f : X — Y. The slope operator relates
the left and right traces: for any endomorphism f of an object of 6,

©)) tr;(f) = tr,(f SLx).
Note that € is spherical if and only its slope operator is the identity.

Lemma 4.1. Let I be a representative set of scalar objects of 6.

X

(a) For any object X of 6, Z IV = yx.
jel

(b) Fori, jeland X, Y objects of €,

~ dim, (i)
= dim, (j)

( F

provided there are no j-colored strands in the gray area.
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(d) Foralli, jel,

4 N\ 4 N\
| ; 81] E : U
' ;, , T dim@ | m ,

\\ J . J
4 N\ 4 N\
s SRS sy |0 b U s
| eel N Y
\\ J \\ J

Proof. Part (a) follows directly from the definitions. We prove (b). Let (py, 9o )aca
be an i-decomposition of X* ® j ® Y*. For «, 8 € A, set

. . ‘i] X i+ Y
P, —dlmr(J) 0. — e
o = dim, (i) Ga s a = Pa , wp =
Xy L‘

Y

X

X

We need to prove that (P, Qu)ueca is a j-decomposition of X®i®Y. Let o, 8 € A.
Since (SLx)* = SL; and using (9), we obtain

tr, (P, t SL.1) . tr, .
Py = TPyl fupSLED )
dim, (j) dim, (i) dim, (i)
t t tr,- (8, id;
_ I‘r.(CIozp.ﬂ) id; = rr.(p,aq.a) id; = rr(. .} i) id; = 8 5id,.
dim, (i) dim, (i) dim, (i) '
We conclude using that card(A) =, (X* @ j@Y") =1;(X®iQY).
Part (c) reflects the canonical isomorphisms

Home(X ® Y, i) = (P Home (X, /) @ Home(j ® Y. i)
jel
= (P Homy (X ® j, i) @ Hom (Y, j),
jel
and part (d) is a direct consequence of the duality axioms. (|
4D. Proof of Theorem 2.1 and of the integrality of A. Recall that (%) is a

braided pivotal category which has a coend (C, o) with C =D, ;, i* ® j*®i® .
Therefore its dimension is well-defined and
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dim%(%€) = dim,; (C, o) = dim;(C) = diml( Z *®j Qi ®j)

i,jel

= Z dimy (i) dimy (j*) dimy (i) dimy ()

ijel
= (Z dim, (/) dimy (i)) (Z dim, () dim;( j)) = dim(6)?.
iel jel

Let us prove that the canonical pairing of the coend (C, o) is nondegenerate.
Define the morphism A : C — 1 as follows and recall the definition of the morphism
A:1— C of (6):

=3 dimG) (TN : and A=) dim,(j)  \CJ.
’ ’ J

iel jel

Firstly, A is a morphism in (%) from 1) = (1, 1d) to (C, o). Indeed, using the
description of the half braiding o given in (4), we obtain that for any object Y of €,

oy(A®idy) = Y dim,(j)
Jj.k.tnel

dim, (€)
= > by Lemma 4.1(b)
. sl(n)
7 ne

= Z dim, (£) by Lemma 4.1(a)
. sl(n)

B Z dim, (¢)
B sl(n)

lnel

=) dim,(¢)

t,nel

by Lemma 4.1(d)

=idy ® A by Lemma 4.1(a).
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Secondly, A and A satisfy w(id¢ ® A) = A = w(A ® id¢). Indeed, using the
description of the canonical pairing w given in item (f) on page 11, we obtain

w(ide ® A) = Z dim, (€)
ijeel

=Y dim,(0)

ilel i
i i

dim,(¢) i
_ by L 4.1(d
Z dimy (0) M i by Lemma 4.1(d)
ilel
dim, (¢) " O o
= ——— Opir [ : i = dim, (i) /7 .= A,
igl dim; (i) m ' zeZI ' m E

and similarly

w(A®ide) = ) dim,())
Jik, el

=3 dim, (j) ;e ﬁ
jokel ke Tk

k
:Z Ok m : by Lemma 4.1(d)

kel

:Z dim, (k) /’\ =

kel

This implies in particular that A is a morphism in Z(€) from (C, o) to 1y ), since @
and A are morphisms in #(€).
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Thirdly, A is a left cointegral for the Hopf algebra (C, o) in Z(%€). Indeed, using
the description of the coproduct A and the unit # —items (a) and (d) on page 10 —
we obtain

(dc@MA= > dim,(k)
i,k,t,nel

= Z dim, (k)

ik, lel

by Lemma 4.1(d)

= Z dim, (k)

ik, lel

= Z dim, (i)

i.k,tel

by Lemma 4.1(b)

= Z dim, (i) l by Lemma 4.1(a)
1

ilel /’\ )

=uAl.

Since (A ® A) =LA =dim, (1) = 1 € k is invertible, we conclude by Lemma 3.1
that w is nondegenerate. Hence % (%) is modular.

Finally, let us prove that A is a two-sided integral of (C, o) which is invariant
under the antipode. The last part of Lemma 3.1 gives that A is a right integral of
(C, o). Using the description of the antipode S of (C, o) in item (e) on page 11,
we obtain

SA= )" dim,(j)

Ji.k,tel

= > dim,())

joktel
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= ) dim,.(¢%) ,
tel A

= ) dim.(0) ° \/J by Lemma 4.1(d)

lel
= A.

&

Hence A is S-invariant. This implies in particular that A, being a right integral, is
also a left integral. Hence A is an S-invariant (two-sided) integral.

4E. Proof of Theorem 2.2. Consider the Hopf monad Z of Section 4B. Recall
from [Bruguieres and Virelizier 2007] that the monad Z is said to be semisimple if
any Z-module is a Z-linear retract of a free Z-module, that is, of (Z(X), ux) for
some object X of €. Since the isomorphism ® : 6% — %(%) defined in (8) sends
the free Z-module (Z(X), ux) to the free half braiding ®(Z(X), ux) = #(X),
we need to prove that dim(€) is invertible if and only if Z is semisimple. Now
Theorem 6.5 of [Bruguieres and Virelizier 2007] provides an analogue of Maschke’s
semisimplicity criterion for Hopf monads: the Hopf monad Z is semisimple if and
only if there exists a morphism « : 1 — Z(1) in € such that

(10) ure=aZg and Zyo =1.

Leta:1— Z(1) =P, i* ®i be a morphism in €. Since ¢ is a fusion category,
o decomposes uniquely as o = ), o; coev; where «; € K. From the structural
morphisms of the Hopf monad Z (page 19), we obtain

aZy= Z ol Uk
J.kel mj

and

mz@ =Y a ool

L irer dim, (i)

Thus, by duality, « Zg = 1 Z () if and only if

in End<g<@ k®j*).

j.kel i,j.kel k,jel
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Now, for j, k € I, by using Lemma 4.1(b),

dim, (k)
o ——— =
- dim, (i)

(11) aidigjr =) o

iel

In particular, if «Zy = @1 Z(«), then for any i € I, setting k =1 and j =i* we
obtain o; = 1 dim, (7). Conversely, if o; = a1 dim, (i) for all i € I, then (11) holds
by Lemma 4.1(a), and so «Zy = nu1Z(«). In conclusion, «Zy = pn1Z(a) if and
only if @ = a1k, where

K = Z dim, (i) coev; : 1 — Z(1).
iel

In that case,

Zoo =1 Zok = Y dim, (i) Zocoev; = a1 Y _ dim, (i) dim; (i) = org dim(6).
iel iel
Hence there exists « satisfying (10) if and only if dim(%) is invertible in K. This
concludes the proof of Theorem 2.2. (|

4F. Proof of Corollary 2.3. Let s be an abelian category. If & is semisimple (see
Section 2), then every object of s is projective’. The converse is true if in addition
we assume that all objects of s have finite length?.

Assume K is a field and let € be a pivotal fusion category over k. Then € is
abelian semisimple and its objects have finite length. The center %#(€) of € is then
an abelian category and the forgetful functor U : %(4€) — € is K-linear, faithful,
and exact. This implies that all objects of %(€) have finite length and the Hom
spaces in #(6) are finite-dimensional. As a result, (%) is semisimple if and only
if all of its objects are projective.

ZAn object P of o is projective if the functor Homy (P, —) : s — Ab is exact, where Ab is the
category of abelian groups.

3An object A of o has finite length if there exists a finite sequence of subobjects A = Xo 2 X1 2
-++ 2 Xy = 0 such that each quotient X; /X; 1 is simple.
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We identify %(%) with the category €# of Z-modules via the isomorphism (8).
Recall from the proof of Theorem 2.2 (see the beginning of Section 4E) that the
monad Z is semisimple if and only if dim(%6) is invertible in K. The following
lemma relates the notions of semisimplicity for monads and for categories.

Lemma 4.2. Let € be an abelian category and T be a right exact monad on €, so
that €T is abelian and the forgetful functor Uy : €T — € is exact.
(a) If all the T-modules are projective, then T is semisimple.
(b) If T is semisimple and all the objects of € are projective, then all the T -modules
are projective.
(c) If the objects of € have finite length, then the same holds in 6" . If in addition
€ has finitely many isomorphy classes of simple objects, then so does €T .

Proof. Let us prove assertion (a). Denote by Fr : ¢ — % the free module functor
(see Section 4A). Let (M, r) be a T-module. The action r defines an epimorphism
Fr(M) — (M,r) in €. In particular, if (M, r) is projective, it is a retract of
Fr(M). Therefore if all the T-modules are projective, the monad 7 is semisimple.

Let us prove assertion (b). Note that if X is a projective object of €, then F7(X)
is a projective T-module. Indeed,

HOl’n(@T(FT(X), 7) >~ HOmtg(X, UT)

by adjunction, and Home (X, Ur) is an exact functor when X is projective. In
particular, if all objects are projective in 6 then all free 7-modules are projective. If
in addition 7 is semisimple, then any 7-module, being a retract of a free 7-module,
is projective.

Finally, let us prove assertion (c). The first part results from the fact that U7 is
faithful exact. Now if S is a simple object of €7 and ¥ is a simple subobject of
U7 (S), then by adjunction the inclusion X C Uy (S) defines a nonzero morphism
Fr(X¥) — S, which is an epimorphism because S is simple. This proves the second
part of assertion (c), because under the assumptions made there are finitely many
possibilities for X, and each Fr(X) has finitely many simple quotients. U

Assertion (a) of Corollary 2.3 results immediately from the first two assertions
of Lemma 4.2.

Let us prove assertion (b). A fusion category over a field is semisimple. Now
assume K is algebraically closed. By assertion (a), we need to show that if %(€) is
semisimple, then it is a fusion category. Assume %(6) is semisimple. Since € is
fusion, by the third assertion of Lemma 4.2, the category %#(6) has finitely many
classes of simple objects and its objects have finite length. So each object of (%)
is a finite direct sum of simple objects. Since the unit object of %(6) is scalar and
any simple object S of %(%) is scalar (because End(S) is a finite extension of K),
we obtain that %#(6) is a fusion category. This proves Corollary 2.3. (]
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CONNECTED QUANDLES ASSOCIATED
WITH POINTED ABELIAN GROUPS

W. EDWIN CLARK, MOHAMED ELHAMDADI, XIANG-DONG HOU,
MASAHICO SAITO AND TIMOTHY YEATMAN

A quandle is a self-distributive algebraic structure that appears in quasi-
group and knot theories. For each abelian group A and ¢ € A, we define a
quandle G(A, ¢) on Z3 x A. These quandles are generalizations of a class of
nonmedial Latin quandles defined by V. M. Galkin, so we call them Galkin
quandles. Each G(A, ¢) is connected but not Latin unless A has odd or-
der. G(A, c) is nonmedial unless 34 = 0. We classify their isomorphism
classes in terms of pointed abelian groups and study their various proper-
ties. A family of symmetric connected quandles is constructed from Galkin
quandles, and some aspects of knot colorings by Galkin quandles are also
discussed.

1. Introduction

Sets with certain self-distributive operations called quandles have been studied
since the 1940s in various areas. They have been studied, for example, as an
algebraic system for symmetries [Takasaki 1943], as quasigroups [Galkin 1988],
and in relation to modules [Nelson 2003]. The fundamental quandle was defined
in a manner similar to the fundamental group [Joyce 1982; Matveev 1982], which
made quandles an important tool in knot theory. Algebraic homology theories for
quandles were defined [Carter et al. 2003b; Fenn et al. 1995] and developed and
investigated ([Litherland and Nelson 2003; Mochizuki 2011; Niebrzydowski and
Przytycki 2009; 2011; Nosaka 2011], for example), and extensions of quandles by
cocycles have been studied [Andruskiewitsch and Grana 2003; Carter et al. 2003a;
Eisermann 2007b] and applied to various properties of knots and knotted surfaces
(see [Carter et al. 2004] and references therein).

Before algebraic theories of extensions were developed, Galkin [1988] defined a
family of quandles that are extensions of the 3-element connected quandle R3, and
we call them Galkin quandles. Even though the definition of Galkin quandles is a

M. S. was supported in part by NSF grant DMS 0900671.
MSC2010: 5TM25.

Keywords: quandles, pointed abelian groups, knot colorings.
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special case of a cocycle extension described in [Andruskiewitsch and Grafia 2003],
they have curious properties such as the explicit and simple defining formula, close
connections to dihedral quandles, and the fact that they appear in the list of small
connected quandles.

In this paper, we generalize Galkin’s definition and define a family of quandles
that are extensions of Rj3, characterize their isomorphism classes, and study their
properties. The definition is given in Section 3 after a brief review of necessary
materials in Section 2. Isomorphism classes are characterized by pointed abelian
groups in Section 4. Various algebraic properties of Galkin quandles are investigated
in Section 5, and their knot colorings are studied in Section 6.

2. Preliminaries

In this section we briefly review some definitions and examples of quandles. More
details can be found, for example, in [Andruskiewitsch and Grafia 2003; Carter
et al. 2004; Fenn et al. 1995].

A quandle X is a set with a binary operation (a, b) + a * b satisfying the
following conditions.

(1)  (Idempotency) Foranya € X,a*xa =a.

(2)  (Invertibility) For any b, c € X,
there is a unique @ € X such thata xb =c.

(3)  (Right self-distributivity)  For any a, b, ¢ € X,
we have (axb)xc= (axc)*x(bx*xc).

A quandle homomorphism between two quandles X, Y isamap f : X — Y such

that f(x*xxy)= f(x)*y f(y), where xx and %y denote the quandle operations of X

and Y, respectively. A quandle isomorphism is a bijective quandle homomorphism,

and two quandles are isomorphic if there is a quandle isomorphism between them.
Typical examples of quandles include the following.

» Any nonempty set X with the operation x x y = x for any x, y € X is a quandle
called the trivial quandle.

e A group X = G with the operation of n-fold conjugation, a xb =b""ab", is a
quandle.

o Let n be a positive integer. For a, b € Z,, (integers modulo n), define
axb=2b—a (modn).

Then * defines a quandle structure called the dihedral quandle R,. This set
can be identified with the set of reflections of a regular n-gon with conjugation
as the quandle operation.



CONNECTED QUANDLES ASSOCIATED WITH POINTED ABELIAN GROUPS 33

e Any Z[T, T—']-module M is a quandle withaxb=Ta+(1—-T)bfora,be M.
This is called an Alexander quandle. An Alexander quandle is also regarded
as a pair (M, T), where M is an abelian group and 7' € Aut(M).

Let X be a quandle. The right translation R, : X — X by a € X is defined by
Ra(x) =x*a for x € X. Similarly, the left translation ¥, is defined by &£, (x) = a*x.
Then R, is a permutation of X by Axiom (2). The subgroup of Sym(X) generated
by the permutations R, a € X, is called the inner automorphism group of X and
is denoted by Inn(X). We list some definitions of commonly known properties of
quandles below.

» A quandle is connected if Inn(X) acts transitively on X.

o A Latin quandle is a quandle such that for each a € X, the left translation £,
is a bijection. That is, the multiplication table of the quandle is a Latin square.

o A quandle is faithful if the mapping a — R, is an injection from X to Inn(X).

o A quandle X is involutory, or a kei, if the right translations are involutions:
R2 =id forall a € X.

o The operation * on X defined by a * b = Q{;l (a) is a quandle operation, and
(X, %) is called the dual quandle of (X, ). If (X, %) is isomorphic to (X, *),
then (X, %) is called self-dual.

o A quandle X is medial if (axb)*x(cxd) = (axc)*(bxd) foralla, b, c,d € X.
It is also called abelian. It is known and easily seen that every Alexander
quandle is medial.

A coloring of an oriented knot diagram by a quandle X is a map € : { — X from
the set of arcs o of the diagram to X such that the image of the map satisfies the
relation depicted in Figure 1 at each crossing. More details can be found in [Carter
et al. 2004; Eisermann 2007a], for example. A coloring that assigns the same
element of X for all the arcs is called trivial, and otherwise nontrivial. The number
of colorings of a knot diagram by a finite quandle is known to be independent of the
choice of a diagram, and hence is a knot invariant. A coloring by a dihedral quandle
R, for a positive integer n > 1 is called an n-coloring. If a knot is nontrivially
colored by a dihedral quandle R, for a positive integer n > 1, then it is called
n-colorable. In Figure 2, a nontrivial 3-coloring of the trefoil knot (3 in a common
notation in a knot table [Cha and Livingston 2011]) is indicated. This is presented

y
X X%y

Figure 1. A coloring rule at a crossing.
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Figure 2. Trefoil as the closure of 013.

in a closed braid form. Each crossing corresponds to a standard generator o of the
2-strand braid group, and 013 represents three crossings together as in the figure.
The dotted line indicates the closure; see [Rolfsen 1976] for more details of braids.

The fundamental quandle is defined in a manner similar to the fundamental group
[Joyce 1982; Matveev 1982]. A presentation of a quandle is defined in a manner
similar to groups as well, and a presentation of the fundamental quandle is obtained
from a knot diagram (see, for example, [Fenn and Rourke 1992]), by assigning
generators to arcs of a knot diagram, and relations corresponding to crossings.
The set of colorings of a knot diagram K by a quandle X is then in one-to-one
correspondence with the set of quandle homomorphisms from the fundamental
quandle of K to X.

3. Definition and notation for Galkin quandles

Let A be an abelian group, also regarded naturally as a Z-module. Let u : 73 — Z,
7 : Z3 — A be functions. These functions i and 7 need not be homomorphisms.
Define a binary operation on Z3 x A by

(x,a)*(y,b):(2y—x,—a+u(x—y)b+r(x—y)), x,yeZ3, a,beA.

Proposition 3.1. For any abelian group A, the operation * defines a quandle
structure on 73 X A if u(0) =2, u(1) = u(2) = —1, and t(0) =0.

Galkin [1988, p. 950] gave this definition for A =Z,. The proposition generalizes
his result to any abelian group A. For the proof, we examine the axioms.

Lemma 3.2. (A) The operation is idempotent — that is, it satisfies Axiom (1) —if
and only if (u(0) —2)a =0 foranya € A, and 7(0) = 0.

(B) The operation as a right action is invertible — that is, it satisfies Axiom (2).

Proof. Direct calculations. ([l
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Lemma 3.3. The operation * on Z3 X A is right self-distributive — that is, it satisfies
Axiom (3) —if and only if ., T satisfy the following conditions for any X,Y € Z3
and b, c € A:

) 1(=X)b = pu(X)b,
5 (LX +Y) + (X = Y))e = (X)u))e,
6) T(X+Y)+7¥Y-X)=1t(X)+1(—X)+uX)r(Y).

Proof. Right self-distributivity, that is,

((x, @)% (y, b)) % (z,0) = ((x,a) * (z,¢)) * ((y, b) * (z, ¢))

for x,y,z€ Zsz and a, b, c € A, is satisfied if and only if

w(x —y)b=pu(y —x)b,
Ry —x —z)c=(—px —2)+uly —x)uly —2)c,
—Tx—y)+TtQRy—x—7)=—1t(x—2)+u(y—x)t(y —2) +t(y —x).

This is seen by equating the coefficients of b and ¢ and the constant term. For the
equivalence of the first equation with (4), set X = x — y. For the equivalence of
the second with (5), set X =y —x and Y = z — y. For the equivalence of the last
with (6),set X =y—xand Y =y —z. [l

Proof of Proposition 3.1. Assume the conditions stated. By Lemma 3.2, Axioms (1)
and (2) are satisfied under the specifications w(0) = 2, u(1) = u(2) = —1, and
7(0) =0.

If X =0o0r Y =0, then (5) (together with (4)) becomes a tautology. If X —Y =0
or X +Y =0, then (5) reduces to x(2X) +2 = u(X)?, which is satisfied by the
above specifications. For R3, if X +Y # 0 and X — Y # 0, then either X =0 or
Y = 0. Hence (5) is satisfied. For (6), it is checked similarly, for the two cases
[X=0orY=0]and [X—Y =0o0or X+Y =0]. [l

Definition 3.4. Let A be an abelian group. The quandle defined by * on Z3 x A by
Proposition 3.1,
(X,a)*(y,b) = (2)7_X, _a+/’L(x _}’)b'f‘T(X_Y))» X,y EZ?M (l,b € A’

with ©(0) =2, u(1) = u(2) = —1, and 7(0) =0, is called the Galkin quandle and
denoted by G(A, 7).

Since 7 is specified by the values 7(1) = ¢ and 7(2) = ¢, where c1, c» € A, we
also denote it by G(A, cy, ¢2).

Example 3.5. The Galkin quandle G(Z», 0, 1) is Z3 x Z, as a set with the quandle
operation defined as above with ©(0) =2, u(1) =n(2) =—-1,t(0) =7(1) =0, and
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7(2)=1. Thus, (0, 1)*(1,0) =2, =14+ u(2)04+7(2)) =(2,0) and (2, 0)x(1, 1) =
0,04+ uM)14+7(1)) = (0, 1), for example.
Lemma 3.6. For any abelian group A and c1, ¢y € A, the quandles G(A, c1, ¢2)
and G(A, 0, ¢c; — c1) are isomorphic.
Proof. Letc=cy—cj. Define n: G(A, c1, c2) > G(A, 0, ¢), asamap on Z3 X A, by
n(x,a)=(x,a+p(x)) where B(0)=pF(1)=0and (2) = —c;. This  is a bijection,
and we show that it is a quandle homomorphism. We compute n((x, a) * (y, b))
and n(x,a)xn(y,b) forx,y e Zzand a, b € A.

Ifx=y,then u(x—y)=2and t(x—y) =0 for both G(A, ¢y, ¢;) and G(A, 0, ¢),
so that

n((x, a)* (x, b)) =n(x,2b—a) = (x,2b—a+ B(x)),

n(x,a)*n(x,b) = (x,a+B(x)) * (x, b+ B(x) = (x,2(b+B(x)) — (a+B(x)))
=(x,2b—a+ B(x)),
as desired.

Ifx —y=1¢€7Zs,then u(x —y) =—1for both G(A, ¢y, ¢c2) and G(A, 0, ¢) and
T(x —y)=c; for G(A, c1, ) but t(x —y) =0 for G(A, 0, ¢), so that

n((x,a)*(y,b)) =nQy—x,—a—b+c)) =Qy—x,—a—b+ci+pQ2y—x)),

nx,a)xn(y,b) = (x,a+Bx))*(y,b+B(y))
=(2y—x, —=(a+Bx) = (b+B())).
The two expressions are equal if and only if 8(x)+ 8(y) + B2y —x) = —c1, which
is true since x #% y implies that exactly one of x, y, 2y — x is 2 € Z3.
If x —y=2eZ3,then u(x —y) = —1 for both G(A, ¢, ¢z) and G(A, 0, ¢) and
T(x—y)=cyfor G(A,ci,cp) but t(x —y) =cr —c; =c for G(A, 0, ¢), so that

n((x,a)*(y, b)) =nQ2y—x,—a—b+c)=Q2y—x,—a—b+c2+p2y—x)),

n(x,a)*n(y, b) = (x,a+Bx))* (v, b+ L))
=(Q2y—x,—@+Bx)—b+B()+c2—c1)
=(Q2y—x,—a—b—Bx)—BY) +(c2—c1)),

and again these are equal for the same reason as above. U

Notation. Since, by Lemma 3.6, any Galkin quandle is isomorphic to G(A, 0, ¢)
for an abelian group A and ¢ € A, we denote G(A, 0, ¢) by G(A, ¢) for short.

Any finite abelian group is a product Z,, x - - - X Z,, , where the positive integers
njsatisfy nj|n;y for j=1,..., k—1. In this case, any element ¢ € A is written in
a vector form [cy, ..., c], where ¢; € Z,,j. Then the corresponding Galkin quandle
is denoted by G(A, [cy, . . ., ck]).
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Remark 3.7. We note that the definition of Galkin quandles induces a functor. Let
Aby denote the category of pointed abelian groups; its objects are pairs (A, ¢),
where A is an abelian group and ¢ € A, and its morphisms f : (A, c) — (B, d)
are group homomorphisms f : A — B such that f(c) =d. Let Q be the category
of quandles consisting of quandles as objects and quandle homomorphisms as
morphisms. _

Then the correspondence (A, ¢) s G (A, c¢) defines a functor & : Aby — Q. It
is easy to verify that if a morphism f : (A, ¢) — (B, d) is given, then the mapping
F(f)(x,a)=(x, f(a)) with (x,a) € G(A, c) =73 x A is a homomorphism from
G(A,c) to G(B, d) and satisfies F(gf) = F(g)F(f) and F(id(a,¢)) =1dG(A.c)-

Remark 3.8. A reader will wonder to what extent Definition 3.4 of a Galkin quandle
can be generalized. We tried several generalizations. For example, if one attempts
to replace 3 by an arbitrary prime p in Definition 3.4, then Lemma 3.3 still holds.
In this case for p > 3, we prove in Lemma 5.14 that (x) =2 for all x € Z,,, and
computer experiments indicate that one almost always obtains a quandle if and
only if T = 0, in which case the quandle obtained is simply a product of dihedral
quandles. We have also attempted to replace —x + 2y by the Alexander quandle
operation tx + (1 — ¢)y in both the left and right coordinates, but have neither been
successful in finding interesting new quandles, nor been able to prove that no such
generalizations exist. We note that if a generalization for p > 3 exists, then any
such quandles will be less dense than Galkin quandles, since multiples of 3 are
more numerous than multiples of p when p > 3.

4. Isomorphism classes

In this section we classify isomorphism classes of Galkin quandles.

Lemma 4.1. Let A be an abelian group, and let h : A — A’ be a group isomorphism.
Then Galkin quandles G(A, t) and G(A’, ht) are isomorphic as quandles.

Proof. Define f : G(A, 1) — G(A’, ht), as a map from Z3 x A to Z3 x A,
by f(x,a) = (x, h(a)). This f is a bijection, and we show that it is a quandle
homomorphism by computing f((x, a)*(y, b)) and f(x,a)* f(y,b) forx,y € Z3
anda, b € A:
f(x,a)*(y, D)= fQ2y—x,—a+pulx—y)b+t(x—y))
=2y —x, h(—a+pnx — )b+1(x —y))),
fx,a)* f(y,b) = (x, h(a)) * (y, h(D))
= (2y — x. —h(@) + £(x — )h(b) +ht(x ).
The equality f((x,a)*(y, b)) = f(x,a) * f(y, b) follows from the facts that 4 is
a group homomorphism and w(x — y) is an integer. (]
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Lemma 4.2. Let ¢, d, n be positive integers. If gcd(c,n) = d, then G(Z,, c) is
isomorphic to G(Z,, d).

Proof. If A = Z,, then Aut(A) = Z} = units of Z,, and the divisors of n are
representatives of the orbits of Z; acting on Z,,. g

Thus we may choose the divisors of n for the values of ¢ for representing
isomorphism classes of G(Z,,, ¢).

Corollary 4.3. If A is a vector space (elementary p-group), then there are exactly
two isomorphism classes of Galkin quandles G(A, 7).

Proof. If A is a vector space containing nonzero vectors ¢; and ¢y, then there is a
nonsingular linear transformation 4 of A such that i(c;) = ¢;. That G(A, 0) is not
isomorphic to G(A, ¢) if ¢ # 0 follows from Lemma 4.5. O

For distinguishing isomorphism classes, cycle structures of the right action are
useful, and we use the following lemmas.

Lemma 4.4. For any abelian group A, the Galkin quandle G(A, t) is connected.
Proof. Recall that the operation is defined by the formula

(x,a)*(y,b) = (2y —x, —a+ pn(x — y)b+1(x —y)),

with w(0) =2, u(1) = u(2) = —1, and 7(0) = 0. If x # y, then (x, a) * (y, b) =
Q2y—x,—a—b+c;)=(z,c),wherei=1or2and x,y € Z3 and a, b € A. Note
that {x, y, 2y —x} = Z3 if x # y. In particular, for any (x, a) and (z, c) with x # z,
there is (y, b) such that (x, a) x (y, b) = (z, ¢).

For any (x, a;) and (x, ap) where x € Z3z and ay, a; € A, take (z, ¢) € Z3 x A such
that z # x. Then there are (y, by), (¥, b2) such that x #y # z and (x, a;)*(y, b;) =
(z,¢) and (z, ¢) * (y, b2) = (x, a2). Hence G (A, 1) is connected. ]

Lemma 4.5. The cycle structure of a right translation in G(A, t), where 1(0) =
(1) =0 and t(2) = c, consists of 1-cycles, 2-cycles, and 2k-cycles, where k is the
order of c in the group A.

Since isomorphic quandles have the same cycle structure of right translations,
G(A,c)and G(A, ¢ for c, ¢’ € A are not isomorphic unless the orders of ¢ and ¢’
coincide.

Proof. Let 1(0) =0, t(1) =0, and 7(2) = c. Then by Lemma 4.4, the cycle
structure of each column is the same as the cycle structure of the right translation
by (0, 0), that is, of the permutation f(x,a) = (x, a) * (0,0) = (—x, —a + t(x)).

We show that this permutation has cycles of length only 1, 2 and twice the order
of ¢ in A. Since f(0,a) = (0, —a) fora € A, a # 0, we have (0, a) = (0, a), so
that (0, a) generates a 2-cycle, or a 1-cycle if 2a = 0. Now from f (1, a) = (2, —a)
and f(2,a) = (1, —a +c) for a € A, by induction it is easy to see that for k > 0,
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f*(,a)=(,a+kc)and X2, a) = (2, a—kc). Inthe case of (1, a), a # 0, the
cycle closes when a 4+ kc = a in A. The smallest k for which this holds is the order
of ¢, in which case the cycle is of length 2k. A cycle beginning at (2, a) similarly
has this same length. U

Proposition 4.6. Let n be a positive integer. Let A =17, and c;, c; € Z, fori =1,2.
Two Galkin quandles G(A, c1, ¢2) and G(A, ¢}, ¢}) are isomorphic if and only if
ged(cr — ¢z, n) = ged(e] — ¢, n).

Proof. If gcd(ci —c2, n) = ged(c| — ¢}, n), then they are isomorphic by Lemmas 3.6
and 4.2. The cycle structures are different if ged(c; — ¢, n) # ged(c] — ¢}, n) by
Lemma 4.5, and hence they are not isomorphic. U

Remark 4.7. The cycle structure is not sufficient for noncyclic groups A. For
example, let A =75 x Z4. Then G(A, [1, 0]) and G(A, [0, 2]) have the same cycle
structure for right translations, with cycle lengths {2, 2,4, 4, 4,4} in a multiset
notation, yet they are known not to be isomorphic. (In the notation of Example 4.12
below, G(A, [1,0]) = C[24,29] and G(A, [0, 2]) = C[24, 31].) We note that there
is no automorphism of A carrying [1, 0] to [0, 2].

More generally, the isomorphism classes of Galkin quandles are characterized as
follows.

Theorem 4.8. Suppose A, A’ are finite abelian groups. Two Galkin quandles
G(A, 1) and G(A’, ') are isomorphic if and only if there exists a group isomor-
phism h : A — A’ such that ht = 1.

One implication in the proof of Theorem 4.8 is Lemma 4.1. For the other, first
we prove the following two lemmas. We will use a well known description of the

automorphisms of a finite abelian group, which can be found in [Hillar and Rhea
2007; Ranum 1907].

Lemma 4.9. Let A be a finite abelian p-group and let f : pA — pA be an
automorphism. Then f can be extended to an automorphism of A.

Proof. Let A = Z';ll X oo X Z';’;. Then

px2 px2 X2
) I ) =p) i | || eZpxxzy
DXk PXk Xk
where
P Pa3 Py
pP3 P33 Psi
3) P = ) ) ,
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Pij € My, xn; (Z7), det P;; =0 (mod p). Entries of the vectors are elements of finite

groups as specified, and entries of the block matrices are integers. Define g: A — A
by

X1 X1 X1
g i =[I P] " , x:2 GZZII XZ’;ZZX---XZ';’;.
Xk Xk x.k
Then g € Aut(A) and g|,a = f. ([

Lemma 4.10. Let A be a finite abelian p-group and let a,b € A\ pA. If there
exists an automorphism f : pA — pA such that f(pa) = pb, then there exists an
automorphism g : A — A such that g(a) = b.

Proof. Let A = Z';ll X+ X Z’;)kk and let f be defined by (7) and (8). Write

aq bl
a=|: |, b= S ai,biEZ;’i.

1

an b,

Since f(pa) = pb, we have

az by
plP - =0,
a, b,
that is,
a by 129
© Plil=|i|=| : |+ aeZy 2=is<k
a bn P ek
az by
Case 1. Assume that | : | € pA. Thenby (9), [ : | € pA.Soa; #0and b; #0.
an by
Then we have
pea Q>
: = : ai
Pl P Ok

for some Q; € My, xp, (Z) with 2 <i < k. Also, there exists P11 € M, xn, (Z) such
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that det P;; # 0 (mod p) and Pjja; = b;. Let g € Aut(A) be defined by

X1 P 0 X1
X2 4% x2 n
g - E P 9’ xl € pi .
Xk —p ok X
Then g(a) = b.
ap
Case 2. Assume that | : | ¢ pA. Then there exists 2 < s < k such that a, ¢ pZ’;;.
Qan
Then we have
&) 0))
= ds
P2 P20,

for some Q; € My, xn, (Z) with 2 <i <k. Put

0---0 Q» 0---0

0--- 0 pF20,0--- 0

where the (i, j) block is of size n; x n; and Q5 is in the (1, s5) block. Then

k=2
ak P TCk

Also, there exist U € My, x (ny+-..4+n)(£) such that

az
U L= by —a.
ag
Now define g € Aut(A) by
X1 X1
X2 1 U X2 .
§ : :|:0 P—pQ] I xiGZr;’i.
Xk Xk

Then g(a) = b. O
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Proof of Theorem 4.8. We assume that |3A’| < |3A]. Since G(A’, ¢’) is connected,
there exists an isomorphism ¢ : G(A, ¢) — G(A’, ¢/) such that ¢ (0, 0) = (0, 0).
Write

¢(x,a) = (x(x,a), B(x,a)), (x,a)eZ3xA.

Define ¢ : Z3 — Z by
1 ifx=2,

tor) = {0 if x £2,

so that for (x, a), (y, b) € Z3 x A, the operation on G(A, ¢) is written by
(x,a)* (y,b) = (=x =y, —a+p(x = y)b+1(x — y)c).

Then ¢ ((x, a) * (y, b)) = ¢ (x, a) x ¢ (y, b) is equivalent to

(10)  a(—x—y,—a+px—y)b+t(x—y)c)=—alx,a)—aly,b),

(1) B(—x—y, —a+pux—yb+1i(x—y)c)
=—B(x,a)+ p(a(x,a) —a(y, b)) B(y, b) +t(a(x, a) —a(y, b))c.

Claim 1. The map «(0, -) : A — Z3 is a homomorphism.
Proof. Setting x =y =0 in (10), we have

(12) a(0, —a +2b) = —a(0, a) — (0, b).
Setting b = 0 in (12), we have

(13) a0, —a) = —a(0, a).

By the symmetry of the right-hand side of (12), we also have
(14) o0, —a+2b) =a(0, —b+2a), a,beA.
Now we have

a2(0,a+b)=a(0,a—b+2b)
=a(0,—b+2(b—a)) (by (14))

=a(0,b—2a)
=—a(0, =b) —a(0, —a) (by (12))
=a(0,a)+a(0,b) (by (13)). O

Claim 2. There exists u € 75 such that

(15) a(x,a)=a(0,a)+ux, (x,a)eZzxA.
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Proof. Setting x =1 and y = 0 in (10), we have

(16) a(—1,—a—>b)=—a(l,a) —a(0,b).
Setting b = 0 in (16) gives

17) a(—1, —a) =—a(l, a).

Letting a = 0 in (16) and using (17), we get

(18) a(l, ) =a0,b) +a(1,0), beA.
Equations (16) and (13) also imply that

(19) a(—1,-b)=a(0, —b) —a(1,0), beA.
Let u = (1, 0). Then

a(x,a)=a(0,a)+ux, (x,a)eZ3xA. O
Claim 3. «(0,¢c) =0.
Proof. Substituting (15) in (10), we get
(20) a(0, —a+pu(x —y)b+1t(x — y)c) = —a(0,a) — (0, b).
Setting x — y = 2, we have (0, ¢) = 0. O

The rest of the proof of Theorem 4.8 is divided into two cases according to
whether u is zero or nonzero in (15).

Case A. Assume u = 0 in (15).
We have a(x, a) = a(0, a) for all (x,a) € Z3 x A. We write a(a) for «(0, a).
Then (11) becomes
Q1) B(—x—y, —a+px —y)b+1(x —y))
=—B(x,a) + p(a(@—b))B(y,b) +t(ala—b))c.
Step A-1. We claim that ¢ = 0.
Equation 21) withx =1, y =0, a = b =0 yields
B(—1,0) =—p(1,0),

and withx = —1, y=0,a = b =0, it yields

B, c)=—-B(=1,0).

Thus B(1,c¢) = B(1,0). Since a(1,c) =0 =«(1,0), we have ¢(1,c) = ¢(1,0).
Thus ¢ = 0.

Step A-2. We claim that ¢’ = 0.
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The homomorphism « : A — Z3 must be onto. (Otherwise ¢ is not onto.) Choose
d € A such that a(d) = —1. Equation (21) withx =y =0,a =d, b =0 gives

B0, —d)=—p(0,d)+ ¢,
and withx =y =0,a = —d, b =0, it gives
B(0,d) = —B(0, —d).

Therefore ¢’ = 0.

Step A-3. Now (21) becomes

22)  B(—x—y, —a+plx —y)b) = —B(x,a) + p(ala — b)) B(y, b).
Setting y = 0 and b = 0 in (22), we have

(23) B(=x, —a) =—B(x, a).

Step A-4. We claim that 8(0, -) : 3A — A’ is a one-to-one homomorphism.
Note that 3A C kerwa. Leta,b € 3A,and x = —1, y =1 in (22). We have

(24) pO, —a—b)=—p(=1,a)+26(1,b).
Setting b = 0 and a = 0, respectively, in (24) and using (23), we have

(25) B0, —a) =—=p(=1,a) +26(1,0) = (1, —a) +28(1, 0),
(26) B0, =b) =—-B(—1,0)+2B(1,b) = B(1,0) +2B(1, b).

Setting a = b =0 in (24), we have
27) 38(1,0) =0.
Combining (24)—(27), we have
B0, —a —b) = (0, —a) + B(0, —b).
If @ € 3A such that (0, a) =0, then ¢ (0, a) = (0, 0), so a = 0. Thus
BO,-):3A— A’

is one-to-one.
Step A-5. We claim that (0, 3b) € 3A’ for all b € A.
Let x =y=0and a = —b in (22). We have
B(0,3b) =—B(0, =b) + 11(a(~2b)) (0, b)
= B(0.5) + u(@(B)B(0. b)
=0 (mod 34") (since p(a (b)) = —1 (mod 3)).
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Step A-6. Now B(0,-):3A — 3A’ is a one-to-one homomorphism. It is therefore
an isomorphism, since |[3A’| < |3A]|. Since |A| = |A’|, we have A = A’. We are
done in Case A.

Case B. Assume u % 0 in (15).

By the proofs of Lemma 4.5 above and Proposition 5.11 below, the map (x/, a’) —
(—x',a’ — t(—x")c) is an isomorphism from G(A’, ¢’) to G(A’, —¢). Thus we
may assume u = 1 in (15). We have a(x, a) = @ (0, a) + x for all (x, a) € Z3 x A.
Step B-1. We claim that (0, -) : ker«(0, -) — A’ is a one-to-one homomorphism.

In(11)leta, b e kera(0,-) and x = —1, y = 1. We have

(28) B0, —a—b)=—p(=1,a) - B(1, b).
Equation (28) with a = —b yields

(29) p(=1,—-b) =—pB(1,b).

So

(30) B0, —a—b) =B(1, —a) — B(1, D).

Letting » = 0 and a = 0 in (30), respectively, we have

B0, —a) = (1, —a) — B(1, 0),
B0, =b) = B(1,0) — B(1, D).
Thus
B, —a) + B0, —=b) = B(1, —a) — B(1, D)
=B, —a—b)  (by (30)).

If a € kera(0, -) such that 8(0, a) = 0, then ¢ (0, a) = (0, 0), so a = 0. Hence
B0, -) :kera(0,-) — A’ is one-to-one.

Step B-2. We claim that 8(0, 3a) € 3A’ for all a € A.
Setting x =y =01in (11), we have

(31 B0, —a+2b) =—p(0,a) + u(a(0,a — b)) B0, b) +t(«(0, a — b))’
= —B(0,a) — (0, b) +1(«(0,a — b))c" (mod 3A").
By (31),
B(0,3a) = B(0, —a +2(2a)) = —B(0, a) — B(0, 2a) + t ((0, —a))c’ (mod 3A")
and
B(0,2a) = B(0,0+2a) = —B(0,a) +t (a0, —a))c’ (mod 3A").
Thus B(0, 3a) =0 (mod 34").
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Step B-3. By the argument in Step A-6, 8(0, -) : 3A — 3A’ is an isomorphism and
A=A
Step B-4. We claim that 8(0, ¢c) = ¢’.

Equation (11) withx =1, y = —1, a = b = 0 yields

B0, ¢) =—B(1,0)—B(=1,0)+¢
=c  (by (29)).

Step B-5. Now we complete the proof in Case B. Write A = A ® Ay and A’ =
A} @ A, where neither |A{| nor |A/| is a multiple of 3, and |A,| and |A}| are
powers of 3. Write ¢c = ¢+ ¢, where c; € Ay, c3 € Ap. Thenc; € A} Ckera(0, -),
so ¢p =c —cy €kera(0, ). Since B(0, -) : kera(0, -) — A’ is a homomorphism,
we have

=B, c1)+B(0,c) =} + ¢,

where ¢ = (0, ¢1) € A} and ¢}, = B(0, c2) € AS. By Step B-3, (0, -) : A; — A
is an isomorphism. So it suffices to show that there is an isomorphism f : A — A},
such that f(c2) = c}.

First assume ¢, € 3A4;. Then ¢} € 3A). By Lemma 4.9, the isomorphism
B(0,-):3A — 3A’ can be extended to an isomorphism f : A, — A/, and we are
done.

Now assume that c; € A, \ 3A,. We claim that ¢; € A} \ 3A). Assume to the
contrary that ¢, € 3A}. By Step B-3, there exists d € A such that (0, 3d) = ¢} =
B(0, c2). By Step B-1, ¢p = 3d, which is a contradiction.

Note that 8(0, -) : 342 — 3A), is an isomorphism and

B(0,3c2) =3B(0,c2) (by Step B-1)

=3c}.
By Lemma 4.10, there exists an isomorphism f : A — AJ such that f(c2) =c}. O

Remark 4.11. The numbers of isomorphism classes of order 3n, from n = 1 to
n = 100, are as follows: 1, 2, 2,5, 2,4, 2, 10, 5, 4, 2, 10, 2, 4, 4, 20, 2, 10, 2, 10, 4,
4,2,20,5,4,10,10,2,8,2,36,4,4,4,25,2,4,4, 20, 2,8, 2,10, 10, 4, 2, 40, 5,
10, 4, 10, 2, 20, 4, 20, 4, 4, 2, 20, 2, 4, 10, 65, 4, 8, 2,10, 4, 8, 2, 50, 2, 4, 10, 10, 4,
8,2,40,20,4,2,20,4,4,4,20,2,20,4, 10,4, 4,4, 72,2, 10, 10, 25.

In [Clark and Hou 2013] it is shown that the number N (n) of isomorphism
classes of Galkin quandles of order » is multiplicative, that is, if gcd(n, m) =1,
then N(nm) = N(n)N(m), so it suffices to find N(g") for all prime powers g”".
Clark and Hou established that

N(g" = Y pm)pn—m),

0<m<n
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where p(m) is the number of partitions of the integer m. In particular, N(g") is
independent of the prime g. The sequence n — N(g") appears in the On-Line
Encyclopedia of Integer Sequences [Sloane 2011] as sequence A000712.

Example 4.12. In [Vendramin 2011], connected quandles are listed up to order 35.
For a positive integer n > 1, let g(n) be the number of isomorphism classes of
connected quandles of order n. For a positive integer n > 1, if g(n) # 0, then we
denote by C|n, i] the i-th quandle of order n in their list (1 <n <35,i=1, ..., g(n)).
We note that g(n) =0 for n = 2, 14, 22, 26, and 34 (for 1 < n < 35). The quandle
Cln, i]is denoted by Q, ; in [Vendramin 2012] (and they are left-distributive in that
work, so the matrix of C[n, i] is the transpose of the matrix of O, ;). Isomorphism
classes of Galkin quandles are identified with those in their list in Table 1.

The 4-digit numbers to the right of each row in Table 1 indicate the numbers of
knots that are colored nontrivially by these Galkin quandles, out of total 2977 knots
in the table [Cha and Livingston 2011] with 12 crossings or less. See Section 6 for
more on this.

5. Properties of Galkin quandles

In this section, we investigate various properties of Galkin quandles.

Lemma 5.1. The Galkin quandle G (A, t) is Latin if and only if | A| is odd.

Proof. To show that it is Latin if n is odd, first note that R3 is Latin. Suppose that
(x,a)*(y,b) = (x,a)*(y', b’). Then we have the equations

(32) —x+2y=—x+2y,

(33) —a+pu(x—yb+t(x—y)=—a+ux—y) +r@x—y.

From (32) it follows that y =y’, and it follows from (33) that p(x —y)b = u(x —y)b'.
Now since | A| is odd, the left module action of 2 on A is invertible, and hence b =5'.

If |A] is even, there is a nonzero element b of order 2, and hence (0, 0) % (0, b) =
(0, 0) % (0, 0), so the quandle is not Latin. O

Lemma 5.2. Any Galkin quandle is faithful.

Proof. We show that if (x, a) * (v, b) = (x, a) * (', ') holds for all (x, a), then

(v,b) = (y',b'). We have y = y’ immediately. From the second factor
—a+pux=yb+tx—y)=—a+px—yb +r(x—y),

we have u(x — y)b = u(x — y)b’ for any x. Pick x such that x # y; then we have

uw(x —y)=—1,and hence b =b'. O

Lemma 5.3. If A’ is a subgroup of A and ¢’ isin A’, then G(A’, ¢') is a subquandle
of G(A, ).

Proof. Immediate. ([l
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Lemma 5.4. Any Galkin quandle G(A, t) consists of three disjoint subquandles
{x} x A for x € Z3, and each is a product of dihedral quandles.

Proof. Immediate. O

We note the following somewhat curious quandles from Lemma 5.4: For a
positive integer k, G (ZX, [0, ..., 0]) is a connected quandle that is a disjoint union
of three trivial subquandles of order 2*.

Lemma 5.5. The Galkin quandle G(A, t) has R3 as a subquandle if and only if
T = 0 or 3 divides |A]|.

Proof. If A is any group and t = 0, then (x, 0) x (y,0) = (2y — x, 0) for any
X,y € Z3, so that Z3 x {0} is a subquandle isomorphic to R3. If 3 divides |A]|,
then A has a subgroup B isomorphic to Z3. In the subquandle {0} x B, we have
(0, a)*(0, b) = (0, —a+2b) fora, b € B, so that {0} x B is a subquandle isomorphic
to Rj.

nol:algon nc(i:liﬁgln N.C. no?alt%on nGo?;Egln N.C.
C[ 6, 1] G(Z,,[0]) 1084 | C[24,28] G(Zs, [4]) 1084
C[ 6, 2] G(Z,,[1]) 1084 | C[24,29] G(Zyx24,[1,0],[1,2]) 1084
C[ 9, 2] G(Zs,[0]) 1084 | C[24,30] G(Z, x 74,10, 0]) 1084
C[ 9, 6] G(Zs,[1]) 1084 | C[24,31] G(Zy x 24,10, 2]) 1084
C[12, 5] G(Z4,12]) 1084 | C[24,32] G(Zsg,[1]) 1051
C[12, 6] G(Z4,[0]) 1084 | C[24,33] G(Z,x724,10,1],[1,1]) 1051
cl12, 7] G(Z4,[1]) 1051 | C[24,38] G(Z, x2Z,%x7Z,,[0,0,1]) 1084
C[12, 8] G(Zyx7Z,,[0,0]) 1084 | C[24,39] G(Zyx 72, x7,,[0,0,0]) 1084
Cl12, 91 G(Z,x7Z,,[1,0]) 1084 | C[27, 2] G(Z5x 75,10, 0]) 1084
C[15, 5] G(Zs,[1]) 1440 | C[27,12] G(Zy, 3] 1084
C[15, 6] G(Zs,[0]) 1512 | C[27,13] G(Zy, [0]) 1084
C[18, 11 G(Z,x75,10,0]) 1084 | C[27,23] G(Z5x 73,[1,0]) 1084
C[18, 4] G(Z,xZ3,[1,0]) 1084 | C[27,55] G(Zy,[1]) 1084
C[18, 51 G(ZyxZ;5,[1,1]) 1084 | C[30,12] G(Z,x 75,[0,1]) 1440
C[18, 8] G(Z,xZ5,[0,1]) 1084 | C[30,13] G(Z,x Z5,10,0]) 1512
Cc[21, 7] G(Z4,[1]) 1339 | C[30,14] G(Zyx7Zs,[1,1)]) 1440
C[21, 8] G(Z7,[0]) 1386 | C[30,15] G(Z,x 75,[1,0]) 1512
C[24,26] G(Zs, [2]) 1071 | C[33,10] G(Z11, 0D 1260
C[24,27] G(Zs, [0]) 1084 | C[33,11] G(Zy1, (1)) 1220

Table 1. Galkin quandles in the Rig table [Vendramin 2011]. The
columns headed N.C. show the number of knots with at most 12
crossings that can be nontrivially colored by the quandle.
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Conversely, let S={(x, a), (v, b), (z, d)} be a subquandle of G(A, c) isomorphic
to R3. Note that the quandle operation of R3 is commutative, and the product of
any two distinct elements is equal to the third. We examine two cases.

Case 1. x = y = z. In this case we have

(x,a)*(x,b) =(x, —a+2b) = (x,d),

(x,b)*(x,a) =(x,—b+2a)=(x,d).
Hence we have —a +2b = —b + 2a, so that 3(a — b) = 0. If there are no elements
of order 3 in A, then we have a — b =0, and so b = a. This is a contradiction to

the fact that S contains 3 elements, so there is an element of order 3 in A; hence 3
divides |A].

Case 2. x, y and z are all distinct (if two are distinct then all three are). In this case

consider S = {(0, a), (1, b), (2,d)}. Now we have
2,d)yx0,a)=(01,—-d—a+c)=(1,b),
©0,a)x2,d)=(01,—a—-d)=(1,b).

Hence we have —d —a + ¢ = —a — d, so that ¢ =0, and we have T = 0. O

Lemma 5.6. The Galkin quandle G(A, t) is left-distributive if and only if 3A = 0,
that is, every element of A has order 3.

Proof. Lett(1) =c1,t(2) =c¢p. Leta=(0,0), b= (0, «) and ¢ = (1, 0) for o € A.
Then we geta*x(bxc) =1, —cy+cy) and (axb)x (a*xc) = (1, —2a —cp +¢y).
If these are equal, then 3o = O for any o € A.

Conversely, suppose that every element of A has order 3. Then we have p(x)a =
2a for any x € Z3, a € A. Then one computes

(34) (x,a)x[(y, b)*(z, )] = (x % (y*2), —a+b+c—1(y—2) +T(x —y*2)),

(35) [(x,a)*(y,b)]*[(x,a)*(z,c)]

= ((x*y)*(x*z), —a+b+c—t(x—y)—1(x —z)+1:(x>l<y—x>x<z)).
If all x, y,z are distinct,then x —y=1lorx—y=2,andx*xy =2z, xxz =1,
yxz=x.Ifx—y=1,thenz=x+1and y —z=1, x —z =2, and one computes
that 34) = (—x+y+z,—a+b+c—cy) = (35). If x —y =2, then one computes
B4)=(—x+y+z, —a+b+c—cy) = (35). The other cases for x, y, z are checked
similarly. U
Proposition 5.7. The Galkin quandle G(A, t) is Alexander if and only if 3A = 0.

Proof. If G(A, ) is Alexander then it is left-distributive, and hence Lemma 5.6 im-
plies 3A = 0. Conversely, suppose 3A =0. Then A = Zé‘ for some positive integer k,
and is an elementary 3-group. By Corollary 4.3, there are two isomorphism classes,
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G(Z%,10,...,0]) and G(Z%, [0, ...,0,1]). The quandle G(Z3, 1) = C[9, 6] is
isomorphic to Z3[t]/(t + 1) by a direct comparison. Hence the two classes are

isomorphic to the Alexander quandles R’3‘ and R§_2 x Z3[t]/(t + 1)?, respectively.
O

Proposition 5.8. The Galkin quandle G(A, c) is medial if and only if 3A = 0.

Proof. We have seen that if 3A =0, then G(A, ¢) is Alexander and hence is medial.
Suppose 3b # 0 for some b € A. Then consider the products

X =((0,0)%(1,b)) % ((1,0) % (0,0)) = (—1,b— (1)),
Y =((0,0) % (1,0)) * ((1, 5) x (0, 0)) = (=1, =t (1) — 2b).
Since 3b # 0, we have X # Y and so G(A, ¢) is not medial. O

Remark 5.9. The fact that the same condition appeared in Lemma 5.6 and Propo-
sitions 5.7 and 5.8 is explained as follows. Alexander quandles are left-distributive
and medial. It is easy to check that, for a finite Alexander quandle (M, T') with
T € Aut(M),

(M, T) is connected <= (1—T) is an automorphism of M <= (M, T) is Latin.

It was also proved by Toyoda [1941] that a Latin quandle is Alexander if and only if
it is medial. As noted by Galkin, G (Zs, 0) and G(Zs, 1) are the smallest nonmedial
Latin quandles and hence the smallest non-Alexander Latin quandles.

We note that medial quandles are left-distributive (by idempotency). We show in
Theorem 5.10 that any left-distributive connected quandle is Latin. This implies,
by Toyoda’s theorem, that every medial connected quandle is Alexander and Latin.
The smallest Latin quandles that are not left-distributive are the Galkin quandles of
order 15.

It is known that the smallest left-distributive Latin quandle that is not Alexander
is of order 81. This is due to V. D. Belousov. See, for example, [Pflugfelder 1990;
Galkin 1988, Section 5].

Theorem 5.10. Every finite left-distributive connected quandle is Latin.

Proof. Let (X, %) be a finite, connected, and left-distributive quandle. For each
aceX,let X,={ax*xx:xeX}.

Step 1. We claim that | X,| = |X,| for all @, b € X. For any a, y € X, we have
Xl = [Xaxyl = |[{((@xx) %y 1 x € X} = [{(@y) % (1 5) 1 x € X} = [ Xany .

Since X is connected, we have | X,| = |X,| forall a, b € X.

Step 2. Fixa € X. If | X,| = |X]|, by Step 1, X;, = X for all b € X and we are
done. So assume | X,| < |X|. Clearly, (X,, *) is a left-distributive quandle. Since
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(X, %) is connected and x — a*x is an onto homomorphism from (X, %) to (X, *),
(X4, %) is also connected. Using induction, we may assume that (X, *) is Latin.

Step 3. For each y € Y, we claim that X, = X,. In fact,
Xa*y D (G*Y)*Xa

= X, (since X, is Latin).

Since | X 44y| = | X4|, we must have Xy = X,.
Step 4. Since (X, %) is connected, by Step 3, X, = X, for all b € X. Thus
X = Upex X» = X4, which is a contradiction. O

Proposition 5.11. Any Galkin quandle is self-dual, that is, isomorphic to its dual.
Proof. The dual quandle structure of G(A, 1) = G(A, c1, ¢p) is written by
(x,a) % (y,b) = (x x y, —a+u(y —x)b+1(y —x))

for (x, a), (y,b) € G(A, 7). Note that u(x —y) = u(y —x) and t(y —x) = c_;
if t(x —y) =c¢; forany x, y € X and i € Z3. Hence its dual is G(A, ¢p, c¢1). The

isomorphism is f : Z3 x A — Z3 x A, defined by f(x,a) = (—x, a). [l
Corollary 5.12. A Galkin quandle G (A, c1, ¢p) is involutory (kei) if and only if
Cl1=20C € A.

Proof. A quandle is a kei if and only if it is the same as its dual, that is, the identity
map is an isomorphism between the dual quandle and itself. Hence this follows
from Proposition 5.11. U

A good involution [Kamada 2007; Kamada and Oshiro 2010] p on a quandle
(X, %) is an involution p : X — X (a map with p?> =id) such that x % p(y) =x % y
and p(x xy) = p(x) x y for any x, y € X. A quandle with a good involution is
called a symmetric quandle. A kei is a symmetric quandle with p = id (in this case
p is said to be trivial). Symmetric quandles have been used for unoriented knots
and nonorientable surface-knots.

Symmetric quandles with nontrivial good involution have been hard to find. Other
than computer calculations, very few constructions have been known. In [Kamada
2007; Kamada and Oshiro 2010], nontrivial good involutions were defined on
dihedral quandles of even order, which are not connected. Infinitely many symmetric
connected quandles were constructed in [Carter et al. 2010] as extensions of odd
order dihedral quandles: For each odd 2n+1 (n € Z, n > 0), a symmetric connected
quandle of order (2n + 1)22"+! was given that is not a kei. Here we use Galkin
quandles to construct more symmetric quandles.

Proposition 5.13. For any positive integer n, there exists a symmetric connected
quandle of order 6n that is not involutory.
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Proof. We show that if an abelian group A has an element ¢ € A of order 2,
then G(A, ¢) is a symmetric quandle. Note that G(A, ¢) is not involutory by
Corollary 5.12.

Define the map p: Z3 x A — Z3 x Aby p(x,a) =(x,a+c), wherec e Ais a
fixed element of order 2 and x € Z3, a € A. The map p is an involution. It satisfies
the required conditions, as we show below. For x, y € Z3, we have

(x,a)xp(y,b) = (x,a)*(y,b+c)
=2y —x, —a+px—y)b+c)+t(x—y)),
(x,a)%(y, b) = 2y —x, —a+ pu(y —x)b+ 1(y — x)),

where the last equality follows from the proof of Proposition 5.11. If x = y, then
ux—y)=2=pu(y—x)and t(x —y) =0=t(y — x), and the above two terms
are equal. If x # y, then u(x —y) = —1 = u(y — x), and exactly one of t(x — y)
and 7 (y — x) is ¢ and the other is 0, so that the equality holds.

Next we compute

p((x,a)* (y, b)) = p(2y —x, —a+ pu(x — )b+ 1(x — y))
=Q2y—x,—a+px—yb+tx—y) +c),
p(x,a)*(y,b) = (x,a+c)*(y, D)
=2y —x,—a—c+upx—b+rx—y),
and these are equal. (]
For the equations in Lemma 3.3, we have the following for Z,,.

Lemma 5.14. Let p > 3 be a prime and let u : Z,, — Z be a function satisfying
w(0) =2 and

(36) ux+y)+ux—y)=pnx)uly)

foranyx,y € Z,. Then u(x) =2 forall x € Z,,.

S= Z w(x).

xeZ,

Proof. Let

Summing (36) as y runs over Z,, we have 2§ = Su(x). Soif § # 0, we have
wu(x) =2 for all x € Z,. Hence we only need to prove that S # 0.

Assume to the contrary that S =0. Since p(kx)u(x) =pu((k+Dx)+u((k—1)x),
it is easy to see by induction that

(37) 0k =2 3 (5 k=20,

0<i<k
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(Here we also use the fact that u(—x) = wu(x), which follows from the fact that
wx —y)=pux)u(y) — u(x +y) is symmetric in x and y.) In particular,

n =2 3 (PP - i,

0<i<2p

Since erzp w(x) =0, we have

3w =[24()]r

xeZ,

2
Since ju(x) = u(%) — 2, we have u(x) = -2, —1,2,7, ...

Case 1. Assume that there exists 0 # x € Z,, such that u(x) > 7. Then

2+ ()]p =2 newr =7,

xeZ,

which is not possible.

Case 2. Assume that pu(x) € {—2, —1,2} forall x € Z,. Leta; = |=1(i)|. Since

Dok ez, u(x)=0and ), ez, w(x)? = 0, where the second equation follows from
(37), we have

—2a_y—a_1+2a, =0,

—8a_y—a_1+8ay =0.

Soa_y =0, thatis, u(x) = =2 for all x € Z,,. Then

Z uwx)=2p=2 (mod4),

xeZ,

which is a contradiction. O

6. Knot colorings by Galkin quandles

In this section we investigate knot colorings by Galkin quandles. Recall from
Lemma 5.4 that any Galkin quandle G(A, t) consists of three disjoint subquandles
{x} x A for x € Z3, and each is a product of dihedral quandles. Also any Galkin
quandle has R3 as a quotient. Thus we look at relations between colorings by
dihedral quandles and those by Galkin quandles. For a positive integer n, a knot is
called n-colorable if its diagram is colored nontrivially by the dihedral quandle R,,.

First we present the numbers of n-colorable knots (for odd n) with 12 crossings
or less out of 2977 knots in the knot table from [Cha and Livingston 2011], for
comparison with Table 1. These are for dihedral quandles and their products that
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may be of interest and relevant for comparisons.
R3:1084, Rs5:670, R7:479, Ry;:285, Ry5:1512, Ry7:192,
R19 : 159, R21 : 1386, R23 . 128, R29 : 97, R31 . 87, R33 : 1260.

Remark 6.1. We note that many Rig Galkin quandles in Table 1 have the same
number (1084) of nontrivially colorable knots as the number of 3-colorable knots.
We make a few observations on these Galkin quandles.

By Lemma 5.5, a Galkin quandle has Rj3 as a subquandle if 7 =0 or 3 divides |A|,
and among Rig Galkin quandles with the number 1084, 17 of them satisfy this
condition. Hence any 3-colorable knot is nontrivially colored by these Galkin
quandles. The converse is not necessarily true: G(Zs, 0) has T = O but has the
number 1512. See Corollary 6.5 for more on these quandles.

The remaining 7 Rig Galkin quandles with the number 1084 have C[6, 2] as a
subquandle:

C[12,5], C[12,9], C[24, 28], C[24, 29], C[24,31], C[24, 38].

It was conjectured [Carter et al. 2010] that if a knot is 3-colorable, then it is
nontrivially colored by C[6, 2] (R3 in their notation). It is also seen that any
nontrivial coloring by C[6, 2] descends to a nontrivial 3-coloring via the surjection
C[6, 2] — R, so if the conjecture is true, then any knot is nontrivially colored by
these quandles if and only if it is 3-colorable. See also Remarks 6.6 and 6.7.

The determinant of a knot is a well known knot invariant related to n-colorability;
see [Fox 1962; Rolfsen 1976] for example, for the definition.

Proposition 6.2. Let K be a knot with a prime determinant p > 3. Then K is
nontrivially colored by a finite Galkin quandle G (A, t) if and only if p divides |A|.

Proof. By Fox’s theorem [1962], for any prime p, a knot is p-colorable if and only
if its determinant is divisible by p. Let K be a knot with the determinant that is a
prime p > 3. Then K is p-colorable and not 3-colorable.

Let G(A, t) be any Galkin quandle and let € : s{ — G (A, t) be a coloring, where
o is the set of arcs of a knot diagram of K. By the surjection r : G(A, t) — Ra,
the coloring ‘€ induces a coloring r 0 ¢ : d — R3. Since K is not 3-colorable, it is
a trivial coloring, and therefore () C r~1(x) for some x € R3. The subquandle
r~1(x) for any x € Rs is an Alexander quandle {x} x A with the operation

(x,a)*(x,b) = (x,2b—a),

so that it is a product of dihedral quandles {x} x A = R, x --- x Ry, for some
positive integer k and prime powers g;, j =1, ...,k (Lemma 5.4). It is known
that the number of colorings by a product quandle X X - - - x X is the product of
numbers of colorings by X; fori =1, ..., k. Itis also seen that a knot is nontrivially
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colored by R for a prime p if and only if itis p-colorable. Hence K is nontrivially
colored by {x} x A if and only if one of gy, ..., gx is a power of p. U

A 2-bridge knot is a knot that can be put into a position with two maxima and
two minima with respect to some height function in space (see [Rolfsen 1976], for
example, for its definition and properties).

Corollary 6.3. For any positive integer n not divisible by 3 and any finite Galkin
quandle G (A, 1), all 2-bridge knots with the determinant n have the same number
of colorings by G(A, 7).

Proof. Let K be a two-bridge knot with the determinantn = p{"' . .. p'g” (in the prime
decomposition form), where p; #3 fori =1,..., ¢, andlet A=R, x--- X Ry,
be the decomposition for prime powers, as a quandle. By Fox’s theorem [1962], for
aprime p, K is p-colorable if and only if p divides the determinant of K. Hence K
is p;-colorable fori =1, ..., £ and not 3-colorable. By the proof of Proposition 6.2,
the number of colorings by a Galkin quandle G(A, ) of K is determined by the
number of colorings by the dihedral quandles R,; that are factors of A.

The double branched cover M,(K) of the 3-sphere S* along a 2-bridge knot
K is a lens space ([Rolfsen 1976], for example), and its first homology group
H{(M,(K), Z) is cyclic. If the determinant of K is n, then it is isomorphic to Z,
([Lickorish 1997], for example). It is known [Przytycki 1998] that the number of
colorings by Ry, is equal to the order of the group (Z & Hi(M2(K), 7)) ® Z,,,
which is determined by n and g; alone. ([

Example 6.4. Among knots with up to 8§ crossings, the following sets of knots have
the same numbers of colorings by all finite Galkin quandles from Corollary 6.3:
{41, 51} (determinant 5), {52, 71} (7), {62, 72} (11), {63, 73, 81} (13), {75, 82, 83} (17),
{76, 84} (19), {86, 87} (23), {8s, 89} (25), {812, 813} (29). See [Cha and Livingston
2011] for notations of knots in the table. This exhausts such sets of knots up to 8
crossings.

Computer calculations show that the set of knots up to 8 crossings with determi-
nant 9 is {61, 839}, and these have different numbers of colorings by some Galkin
quandles. The determinant was looked up at KnotInfo [Cha and Livingston 2011].

There are two knots (74 and 8,1, up to 8§ crossings) with determinant 15. They can
be distinguished by the numbers of colorings by some Galkin quandles, according
to computer calculations.

Corollary 6.5. Let p be an odd prime. Then a knot K is nontrivially colored by the
Galkin quandle G(Z,, 0) if and only if it is 3 p-colorable.

Proof. Suppose it is 3 p-colorable; then it is nontrivially colored by R3,, which
is isomorphic to R3 X R, so that it is either 3-colorable or p-colorable. If K is
3-colorable, then K is nontrivially colored by G(Z,; 0), since G(Z; 0) has R3 as
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a subquandle by Lemma 5.5. If K is p-colorable, then K is nontrivially colored by
G(Z,; 0), since G(Zp; 0) has {0} x R, as a subquandle by Lemma 5.4.

Suppose that a knot K is nontrivially colored by G(Z,, 0), where p is an odd
prime. If K is 3-colorable, then it is 3 p-colorable, and we are done. By the proof of
Proposition 6.2, if K is not 3-colorable, then K is nontrivially colored by {x} x R,
where x € Z3. Hence K is p-colorable, and so 3 p-colorable. ([

Remark 6.6. According to computer calculations, the following sets of Galkin
quandles (in the numbering of Table 1) have the same numbers of colorings for
all 2977 knots with 12 crossings or less. Thus we conjecture that it is the case for
all knots. If a Galkin quandle does not appear in the list, then it means that it has
different numbers of colorings for some knots, compared to other Galkin quandles.
The numbers of colorings are distinct for distinct sets listed below as well.

{cl6, 11, Cl6, 21}, {C[12, 5], C[12, 6]}, {C[12, 8], C[12, 91},
{C118, 1], C[18, 41}, {C[18, 5], C[18, 8]}, {C[24, 27], C[24, 28]},
{C124,29], C[24, 30], C[24, 311}, {C[24, 38], C[24, 391},

{cI130, 12], C[30, 141}, {C[30, 13], C[30, 15]}.

We wish to acknowledge the use of the programs GAP [2008], Maplel5 (Magma
package) [Maplesoft 2011], and Prover9 and Mace4 [McCune 2009] in our compu-
tations. Computational results are posted at [Clark and Yeatman 2011].

Remark 6.7. In contrast to the preceding remark, if we relax the requirement of
coloring the same number of times, and instead consider two quandles equivalent if
each colors the same knots nontrivially (among these 2977 knots), then we get the
following 4 equivalence classes:
{C[3, 1], C[6,1], C[6,2], C[9,2], C[9,6], C[12,5], C[12,6], C[12,8], C[12,9],
C[18,1],C[18,4], C[18,5], C[18,8], C[24,27], C[24,28], C[24,29], C[24,30],
C[24,31],C[24,38],C[24,39],C[27,2],C[27,12],C[27, 13],C[27,23],C[27,55]},
{C112,7], C[24,32], C[24,33]},
{cl115,5], C[30,12], C[30,14]},
{cl15,6], C[30,13], C[30,15]}.

Thus we conjecture that it is the case for all knots. Of these, the first family with
many elements consists of quandles with C[3, 1], C[6, 1] or C[6, 2] as a subquandle.

Hence, in fact, the conjecture about this family follows from the conjecture about
{C[6, 1], C[6, 2]} in the preceding remark.

Remark 6.8. Also in contrast to Remark 6.6, there exists a virtual knot K (see,
for example, [Kauffman 1999]) such that the numbers of colorings by C[6, 1] and
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C[6, 2] are distinct. A virtual knot K with the following property was given in
[Carter et al. 2010, Remark 4.6]: K is 3-colorable, but does not have a nontrivial
coloring by C[6, 2]. Since C[6, 1] has R3 as a subquandle, this virtual knot K has
a nontrivial coloring by C[6, 1]. Hence the numbers of colorings by C[6, 1] and
C16, 2] are distinct for K. Thus we might conjecture that for any pair of nonisomor-
phic Galkin quandles, there is a virtual knot with different numbers of colorings.

Remark 6.9. For any finite Galkin quandle G(A, t), there is a knot K with a
surjection wo(K) — G(A, t) from the fundamental quandle 7o (K). In fact, a
connected sum of trefoils can be taken as K as follows (see, for example, [Rolfsen
1976] for connected sum).

First we take a set of generators of G(A, t) as follows. Let A =7, x - -- x Z,,,,

where k, ny, ..., ny are positive integers such that n; divides n; 4 fori =1, ..., k.
Let S={(x,¢;) | xe€Z3,i=0,...,k},whereeg=0c€Aande;c A(i=1,...,k)
is an elementary vector [0, ...,0,1,0,...,0] € Z,, x --- x Z,, with a single 1 at

the i-th position. Note that R, is generated by 0,1 as 0«1 =2, 1 %2 =3, and
inductively, i * (i +1) =i +2 fori =0,...,n —2. Since {x} x A is isomorphic to
a product of dihedral quandles for each x € Z3, S generates G(A, 7).

For a 2-string braid 013 whose closure is trefoil (see Figure 2), we note that if
X £y € Z3, then for any a, b € A, the pair of colors (x, a), (v, b) € G(A, 7) at top
arcs extends to the bottom, that is, the bottom arcs receive the same pair. This can
be computed directly.

For the copies of the trefoil, we assign pairs [(0, ep), (x, ¢;)] as colors where
x=1,2andi =0,...k, and take connected sums on the portion of the arcs with
the common color (0, ep). Further we take pairs [(0, ¢;), (1, ep)] for j =1, ...k,
for example, and take connected sums on the arcs with the common color (1, eg),
to obtain a connected sum of trefoils with all elements of S used as colors, as
indicated in Figure 3. Such a coloring gives rise to a quandle homomorphism
mo(K)— G(A, ) whose image contains generators S; hence it defines a surjective
homomorphism.

Acknowledgement

Special thanks to Michael Kinyon for bringing [Galkin 1988] to our attention
and pointing out the construction of nonmedial, Latin quandles on page 950 of
[Galkin 1988] that we call here Galkin quandles G(Z,, c1, ¢2). We are also grateful
to Professor Kinyon for helping us with using Mace4 for colorings of knots by
quandles, and for telling us about Belousov’s work on distributive quasigroups.
Thanks to David Stanovsky for useful discussions on these matters. We are grateful
to James McCarron for his help with the Magma package in Maple 15, especially
with isomorphism testing. We also thank the referees for valuable comments.



58 CLARK, ELHAMDADI, HOU, SAITO AND YEATMAN

Ik @ @ @

(L,eg) (0,e2) (1,ep) (0,¢;) (1,e0) (0,¢e5) (1,e9)

B
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ENTROPY AND LOWEST EIGENVALUE
ON EVOLVING MANIFOLDS

HONGXIN GUO, ROBERT PHILIPOWSKI AND ANTON THALMAIER

We determine the first two derivatives of the classical Boltzmann-Shannon
entropy of the conjugate heat equation on general evolving manifolds. Based
on the second derivative of the Boltzmann-Shannon entropy, we construct
Perelman’s % and W entropy in abstract geometric flows. Monotonicity of
the entropies holds when a technical condition is satisfied.

This condition is satisfied on static Riemannian manifolds with nonneg-
ative Ricci curvature, for Hamilton’s Ricci flow, List’s extended Ricci flow,
Miiller’s Ricci flow coupled with harmonic map flow and Lorentzian mean
curvature flow when the ambient space has nonnegative sectional curvature.

Under the extra assumption that the lowest eigenvalue is differentiable
along time, we derive an explicit formula for the evolution of the lowest
eigenvalue of the Laplace-Beltrami operator with potential in the abstract
setting.

1. Introduction

Geometric flows have been studied extensively. The idea is to evolve metrics in
certain ways usually by heat-type equations to obtain better metrics on manifolds
and thus to gain topological information of the manifolds. It is desirable to derive
evolution equations in a general setting such that the formulas may be applied to
various flows. For instance, very nice general approaches to get monotone quantities
on evolving manifolds have been developed in [Ecker et al. 2008; Miiller 2010].

We briefly introduce notation for an abstract geometric flow. Let M be an n-
dimensional compact manifold. Assume that «(#, y) is a time-dependent symmetric
two-tensor on M, and that g(¢) is a family of one parameter Riemannian metrics
evolving along the flow equation

dg

a
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where T is some fixed positive constant. Let A := g"/«;; be the trace of o with
respect to g(¢).

Classical quantities on static manifolds have nice applications on evolving mani-
folds by certain natural modifications. The Boltzmann—Shannon entropy is such
a quantity for the heat equation. Formally, the conjugate of the heat operator
d/dt — A on space-time is —d/dt — A + A. As Perelman [2002] showed, on
evolving manifolds it is natural to work with the entropy for the conjugate heat
equation. We will derive the first two derivatives of Boltzmann—Shannon entropy
for the conjugate heat equation, and based on that we define Perelman’s % and W
entropy in the framework of abstract geometric flows.

Other classical quantities on static Riemannian manifolds are the eigenvalues of
the Laplace—Beltrami operator A. When the metric evolves, it is natural to include a
potential function. Perelman [2002] shows that the lowest eigenvalue of —A + R /4
is monotone nondecreasing along the Ricci flow. Furthermore by deriving explicit
formula of the derivative, Cao [2007; 2008] shows that the monotonicity holds for
the lowest eigenvalue of —A + ¢R for any ¢ > %; see also [Li 2007].

Reto Miiller [2010] derived formulas for the reduced volume in abstract geometric
flows. His formulation is very general and thus can be applied to different flows.
He shows that the reduced volume is monotone when a technical assumption holds,
which is satisfied for static manifolds with positive Ricci curvature, Hamilton’s
Ricci flow, List’s extended Ricci flow, Miiller’s Ricci flow coupled with harmonic
map flow and Lorentzian mean curvature flow when the ambient manifold has
nonnegative sectional curvature. This allows him to establish new monotonicity
formulas for these flows.

One of our purposes in this paper is to show that the same phenomena as for
reduced volume holds for entropy and eigenvalues.

Notation and main results. Throughout the paper, M will be a compact manifold
without boundary. Along the flow equation (1-1) the Riemannian volume dy of M
evolves by

0
—dy=—-Ad
Y y y
and A satisfies oA 5
o
il 2 ij lJ,
or = 2l et

where ||? = gijgklaikajl. To simplify the notation, we let B;; := da;; /0t and
B = gijﬂij, so that
0A
1-2 — =2|a|*+B.
(1-2) o7 ||
In particular, A = R and B = AR under the Ricci flow.
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For any time-dependent vector field V on M we define
(1-3) Og o (V) :=Rec—a)(V,V)+(VA-2Div(a), V) + %(B — AA),

where Rc is the Ricci tensor and Div the divergence operator: Div(a); = g’j Viaji.
In the rest of this paper we omit the subscripts of ®, (V) and denote it by ® (V).
The quantity ® (V') appears as an error term in our main results. In the expression
of ®(V), the Rc term is caused by the Bochner’s formula. This explains technically
why our results are particularly useful for the Ricci flow and its various modifications.
Miiller [2010] introduced the quantity 9. In our notation his definition reads as

QD(V) = 8[A — AA— 2|a,'j|2 —|—4Vl~a,-jVj - 2VjAVj +2R,'jViVj - 2a,-le~Vj.

Note that & and ® are essentially the same; indeed 2 (V) =20 (—V). Miiller [2010]
further explained that & is the difference between two differential Harnack-type
quantities for the tensor «.
Let u(z, y) be a nonnegative solution to the conjugate heat equation
du(t, y)

(1-4) T=—Au(t,y)+A(t,y)u(t,y), 1€ (0,7), yeM,

where A is the Laplace—Beltrami operator calculated with respect to the evolving
metric g(¢). Note that f y 4(t, y) dy remains constant along the flow, and without
loss of generality we assume this constant to be 1.

The classical Boltzmann—Shannon entropy functional is defined by

(1-5) %m:/Mu(r,y) logu(t, y) dy.

If ®(V) > 0 for all V, we will show that € is convex. Based on this observation
we construct Perelman’s & and W' entropy in abstract geometric flows. We then
derive the explicit evolution equations of the entropies along the conjugate heat
equation, and show that they are monotone if ® > 0. We thus present a unified
formula of various W' entropies established by various authors for different flows
(including the static case); see [Feldman et al. 2005; Li 2007; List 2008; Miiller
2012; Ni 2004b; 2004a; Perelman 2002].

We show indeed that the generalized entropy J; (k > 1), see Definition 4.1
below, is monotone under the additional assumption B — AA > 0, which is satisfied
by all previously mentioned flows. The study of the % entropy leads to a simpler
argument to rule out nontrivial steady breathers.

The eigenvalues and eigenfunctions of the Laplace—Beltrami operator with po-
tential cA where c is a constant, satisfy

(1-6) MO f(t,y) =—=Af(, y)+cAl, y) [, ).
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Let A(¢) be the lowest eigenvalue. We shall determine the derivative of A(7). A
remarkable fact is that the derivative A’(¢) does not depend on the time derivative
of the corresponding eigenfunction; this allows to establish a formula for A'(r)
not requiring knowledge of the eigenfunction evolution. We will prove eigenvalue
monotonicity and apply it to rule out nontrivial steady and expanding breathers in
various flows.

2. The first two derivatives of the Boltzmann—Shannon entropy

Theorem 2.1. Suppose that (M, g(t)) is a solution to the abstract geometric flow
(1-1), and that u(t, y) is a positive solution to the conjugate heat equation (1-4),
normalized by |, w u(t, y)dy = 1. The first two derivatives of €(t) are given by

(2-7) €' 1) :/ (|Vlogul® + A)u dy,
M

(2-8) €’ (t) :/ 2(le — VVlogu|* + ©(V logu))u dy.
M

In particular, if © is nonnegative then €(t) is convex in time.

Proof. Since M is closed we can integrate by parts freely. Direct calculations show
that

%’(t):f (u;logu +u, — Aulogu) dy
M
=/ ((—Au+ Au)logu — Au+ Au— Aulogu) dy
M
=/ (—Aulogu—i—Au)dy:/ (|V10gu|2+A)ua’y,
M M

A(|VIlogu|>+ A)
ot

3
u+(|V10gu|2+A)a—L; — (|Vlogu|2+A)uA) dy

+ (IVI1ogu)® + A)(—Au+ Au) — (|V log u|? —I—A)uA> dy

(2(Vlogu, Viogu) +2<v(—% +4), Vlogu>)u
+Qlal*+ Bu — (|V10gu|2+A)Au> dy

Il
s

/ 2ua(Vlogu, Vlogu) — 2<v<%), w> 4+2(VA, Vu)
M

+ 2ule|® + Bu — A(|V log u|*)u — AAu) dy.

((Za(v logu, Vlogu) +2<V%, Vlog M>+2|Ol|2 + B)“
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Plugging in Alogu = Au/u — |V logu|? and
A(IVIlogu|*) =2|VVlogu|® +2Re(Vlogu, Viogu) +2(Vlogu, V(Alogu)),

we have

€ (1) =/ u(ja*+|VV logul*)+2u(a+Rc)(V logu,V logu)+Bu—3AAu) dy
M

= f 2<u la — VV log u|* + 4u (e, VV log u)
N du(@+Re)(VIogu, Viogu) + (B — AA)yu+2(VA, w>) dy.
By observing that
Div(ua(Vlogu)) = a(Vlogu, Vu) + u Div(x)(V logu) + u(a, VV logu),
and by the divergence theorem, we get
€' (1) = / (Zula — VVlogul® +2u(Re — a)(Vlogu, V log u)
" 4 (B—AA)u+ (2VA —4Div(a), w>> dy,

which is exactly (2-8). O

3. Examples where ® and B — A A are nonnegative

We next list some examples where ® and B — A A are nonnegative. Calculations on
the Ricci flow and extended Ricci flow are carried out in detail. For other examples
we list values of ® and B — A A, and for details we refer to [Miiller 2010]. This
section is organized in the same way as the corresponding section there. Recall that

OV)=Rc—a)(V,V)+(VA-2Div(x), V) + %(B — AA).
Riemannian manifolds. In the case of a static metric we have o« = 0 and hence
(3-9) ®(V)=Rc(V,V), B—-—AA=0.

Thus © is nonnegative if M has nonnegative Ricci curvature.

Hamilton’s Ricci flow. In the case of Ricci flow where @ = Rc, we have A = R.
The evolution equation dR/dt = 2|Rc|> + AR gives

dA
B=— —2|a|*> = AR.
at

Notice that VR = 2 Div(Rc) by the second Bianchi identity; we thus get

(3-10) O(V)=0, B-AA=0.
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List’s extended Ricci flow. Bernhard List [2008] introduced an extended Ricci flow
system, namely

3
(3-11) a—‘fz—chJrzanW@w,

where v is a solution to the heat equation dv/dt = Av and a, a positive constant
depending only on the dimension n of the manifold. It turns out that one can exhibit
List’s flow as a Ricci—-DeTurck flow in one higher dimension. This connection
has been observed by Jun-Fang Li according to [Akbar and Woolgar 2009]. The
extended Ricci flow is interesting by itself since its stationary points are solutions
to the vacuum Einstein equations, and it is desirable to work on this flow directly.

In our notation for the extended Ricci flow, « = Rc — a,dv ® dv and A =
R — a,|Vv|?, which gives

VA =VR—-2a,VVv(Vu,-).
Since Div(dv ® dv)x = g/ V;(V;uViv) = (Av)Viv + g7 VvV, Vi, we have
Diva = DivRe — a, Div(dv ® dv) = 1 VR — a,(AvVv + VVv(Vv, -)).

Thus we find
(3-12) VA —2Div(x) =2a,AvVv.
The evolution equation of « is given by (cf. [List 2008])
80[--
,8,']' = a_tlj = Aoc,'j — R,'pOlpj — ijOlp,' +2Riquapq +2anAvV,-Vjv.

(Note that in our notation R;; = g7 R;,,;, while many authors, including List, write
Rij = —g"¥R;,,;.) Hence we have B = AA +2a,(Av)? and

(3-13) B — AA =2a,(Av)>.
Plugging in our formula for ® we arrive at
O(V) = a,(Vv, V)2 4+ 2a,Av(Vv, V) + a,(Av)* = a,((Vv, V) + Av)?.

Miiller’s Ricci flow coupled with harmonic map flow. The Ricci flow coupled
with an harmonic map flow was introduced in [Miiller 2012] as a generalization of
the extended Ricci flow. Suppose that (N, y) is a further closed static Riemannian
manifold, a(¢) a nonnegative function depending only on time, and ¢(¢): M — N
a family of 1-parameter smooth maps. Then (g(¢), ¢(¢)) is called a solution to
Miiller’s Ricci flow coupled with harmonic map flow with coupling function a(¢),
if it satisfies

- Y
14) {Bg/at 2Rc+2a(t) Vo ® Vo,

do/0t = 140,
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where 7, denotes the tension field of the map ¢ with respect to the evolving
metric g(¢) and Vg ® Vo = ¢*y the pullback of the metric  on N via the map ¢.
Recall that 9(V) =20 (—V); we have, as in [Miiller 2010],

(3-15) B—AA=2alr9]’—d'|Vol>, O(V)=alt0+Vve|’—3a|Ve|’.
Thus both B — AA and ® are nonnegative as long as a(¢) is nonincreasing in time.

Lorentzian mean curvature flow when the ambient space has nonnegative sec-
tional curvature. Let L+ be a Lorentzian manifold, and M (¢) be a family of
space-like hypersurfaces of L. Denote by v the future-oriented time-like unit normal
vector of M, by h;; the second fundamental form, and by H its mean curvature.
Let F (¢, y) be the position function of M in L. The Lorentzian mean curvature
flow is then defined by

oF
(3-16) — = Hv.
at

The induced metric g(z) of M(¢) satisfies 9,g =2Hh;;. We have
317 B—AA=2H?h>+2|VH|> +2H?*Rc(v, v),
O(V)=|VH+h(V, )|*+Rc(Hv+V, Hv+ V) +Rm(V, v, v, V),

where Rc and Rm denote the Ricci and Riemann curvature tensors of L"!. Both
B — AA and O are obviously nonnegative when the sectional curvature of L"+! is
nonnegative.

4. Perelman’s %; functional in abstract geometric flows

We proved the following. If (M, g(¢)) is a solution to the abstract flow equation (1-1)
and u a positive solution to the conjugate heat equation (1-4) then

d
(4-18) Ef (|Vlogu|2+A)udy:/ 2(le — VVlogu|* +©(Vlogu))u dy.
M M

We note that

d 9A u
4-19 — | Audy= —u+A— —A%uld
(“4-19) dt/M nay /M<at”+ ot ”) Y

= / (2lal* + B)u+ A(—Au + Au) — A*u) dy
M

= / 2(leel* + 2(B — AA))udy.
M

Let ¢ := —logu; then

0
(4-20) a—‘f=—A¢+|v¢|2—A,
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with constraint f M e~? dy=1. We rewrite (4-18) in the more familiar form following
Perelman’s notation:

(4-21) i/ (|v¢|2+A)e—¢dy=/ 2(le + V@[> + O(=Ve))e ? dy.
dt Jy M

Definition 4.1. For any ¢ € C*(M) with | M e ?dy =1 and any constant k we
define Perelman’s % -functional for abstract geometric flows by

4-22) Fe(g, §) = / (VoL +kA)e? dy.
M

When k = 1 we simply denote %, by %.
For Perelman’s &;-functional in an abstract geometric flow we have:

Theorem 4.2. If g is a solution of the abstract geometric flow equation (1-1) and ¢
a solution to (4-20) then we have

4

(4-23) =

F, =/ 2<|a+VV¢|2+(k— 1)|a|2+®(—v¢)+’%1(3—AA))
M
e ?dy.

Thus for k > 1, &y is monotone nondecreasing as long as B — AA and © are
nonnegative. Moreover the monotonicity is strict unless

a=0, ¢=constant, B—AA=0.

For k =1 we have

(4-24) i@—/ 2(la +VVg|* +O(=Ve))e®d
dt” Iy Y

In particular, & is monotone nondecreasing when ® > 0, and monotonicity is strict
unless

a+VVp=0, O(-Ve)=0.

Proof. Since

%(g,¢)=/ (IV¢|2+A)e_"’dy+(k—1)f Ae ? dy,
M M

and by (4-21) and (4-19) we immediately get formula (4-23).

Furthermore for £ > 1, the functional & is monotone nondecreasing as long as
B — A A and © are nonnegative. When d/dt%; = 0, each term on the right side of
(4-23) has to be identically zero. In particular we have

a+VVep=0, a=0,

which further implies A¢ = 0 on the closed manifold M, and thus ¢ has to be a
constant. Now ®(—V¢) =0(0) = (B—AA)/2and B— AA=0.
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When k£ = 1 the statement in the theorem is obvious. O

The advantage of F; over ¥ is that when k > 1, extra terms in 9**}6 can tell
more about the manifold M. Li [2007] has studied %y, in the Ricci flow. We state
an analogous application of %; to rule out nontrivial steady breathers in abstract
geometric flows.

Recall that a breather of a geometric flow is a periodic solution changing only
by diffeomorphism and rescaling. A solution (M, g(¢)) is called a breather if there
are a diffeomorphism n: M — M, a positive constant ¢ and times #; < t, such that

(4-25) g()=cn’g(ty), a)=n"a(n).

When ¢ < 1, c =1 or ¢ > 1, the breather is called shrinking, steady or expanding,
respectively.

We now apply monotonicity of ¥, to rule out nontrivial steady breathers of
abstract geometric flows.

Corollary 4.3. Suppose that (M, g(t)) is a steady breather to an abstract geometric
flow (1-1). Suppose that ® > 0and B — AA > 0. Then B— AA =0 and the steady
breather is a-flat, namely a = 0.

Proof. The arguments are standard and follow from Perelman’s proof [2002] of the
no steady breather theorem for the Ricci flow. We follow [Kleiner and Lott 2008]
and only sketch the proof. Define

(4-26) A(t) =inf{@k(g, b): / eldy=1, ¢ C°°(M)}.
M

Since we are on a steady breather we have A(¢;) = A(#,). Let o(r) bea minimizer of
A(2). Solve the conjugate heat equation backwards with end value e~#?>). Denote
the solution by u(#). Let ¢ () = —log u(z) then ¢ (¢) satisfies the constraint

/ e ldy=1,
M

and &, (g(1), ¢ (¢)) is monotone nondecreasing as its derivative is nonnegative when
e~?" is a solution to the conjugate heat equation. Thus we have

(4-27) Mt) < Fi(g(t), d(1) < Fi(g(2), §(12)) = A(12).
Since on a breather A(t;) = A(f), we get
Fr(g(t), ¢(11)) = Fi(g(12), 9 (12)),

and in particular %, (g(t), ¢ (1)) = 0 when ¢ € [#;, t,]. Now we apply Theorem 4.2
to conclude that « =0 and B— AA=0on M when t € [11, 12]. O
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Remark 4.4. From (4-26) we know that A is the lowest eigenvalue of — A+ (k/4)A.
Thus, by Theorem 4.2, under the assumptions that B — AA > 0 and ® > 0, the
lowest eigenvalue of —A 4 (k/4)A is monotone in t when £ > 1. An explicit
formula for the derivative of the lowest eigenvalue will be given in Section 7 under
the assumption that X is differentiable along time.

5. Construction of Perelman’s W entropy

We have noted that Perelman’s Z-functional is the derivative of €, whose stationary
points are steady solitons. The purpose of this section is to construct functionals
corresponding to the shrinking solitons. Our construction is just completing squares
of €” (or ¥ by Perelman’s notation). Monotonicity of W holds in the flows
mentioned in Section 3.

We rewrite the second derivative of €(¢) in order to fit the shrinking soliton
equation simply by completing squares:

€ (1) = / 2(lee — VV logul|* +©(V logu))u dy
M

2
2u
= 2 —VVI — —(A— A1l
/M( ulo ogu 2(T—t)g +T—t( ogu)
2 2w (Vlogu) ) d
- 0
M- TR
2
=/MZ(a—VV10gu—2(T_t)g —I—@(Vlogu))udy
S p—
T—t 2T —1)?"
Hence we have
2
LZ(a—VV]ogu—Z(T_t)g +®(Vlogu))udy

y 2 n
=¢"(t) — _%()+m

L I TR S TN
oty )

Now in terms of
W:=(T—1)€ —¢€— glog(T— ) — %10g(4n) —n,

we have proved that

d 2
(5-28) E“W’:(T—t)/ 2<‘a—VV10gu— g —i—@(Vlogu))udy.
M

1
2(T—-1)
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Following Perelman, we let
T:=T—1, ¢:=—log((4wt)"%u),
and introduce the following definition.
Definition 5.1. For a solution (M, g) to the abstract geometric flow equation (1-1)
and for ¢ € C*(M), let Perelman’s “W-entropy be defined as
(5-29) W(g, ¢, 1) = /M(r(|v¢|2 +A) +¢—n)drt) e dy.

We can rewrite (5-28) in the following way.

Theorem 5.2. Let (M, g) be a solution to the abstract geometric flow equation (1-1).

If ¢ satisfies

0
9 A+ Ve — A+ and /(4m)—"/2e—¢dy:1,
at 2t M

then
d 1 P
—W = 2t o +VVp— —g| +O(—-Vo) |4nrT) e %dy.
dt M 2T

If ® > 0 then W is monotone nondecreasing, and the monotonicity is strict unless
1
a+VVep — 2—g =0, O(-V¢)=0.
T

The monotonicity of W' can be applied to rule out nontrivial shrinking breathers
in abstract flows with ® > 0. The arguments are almost identical to the Ricci flow
case. We omit details.

6. Expander entropy W,

Feldman, Ilmanen, and Ni [2005] established expander entropy W' for Ricci flow,
and there has been a very nice explanation of their motivation in [Feldman et al.
2005]. We attempt to explain formally why W, should be the way as they defined
it. In short, the signs in W and W, are caused by antiderivatives of 1/(t — T)
depending on the situation whether t > T or ¢t < T.

We now carry out the details. Note that + > T on expanders and that

€' (t) = / 2 (Je — VVlogul* + ©(Vlogu))udy
M

2
2u
— | (2ula—vVI o - a—al
/M( u|o ogu-l—z(t_T)g t—T( ogu)
2 u®(Vlogu) ) d
—_— 0
ac—1y2 " gy )y
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2

=/M2(a—VV10gu+mg —l—@(Vlogu))udy
_L%/(t)_—n :
t—T 2(t —T)%’
moreover
1 2
/MZ(a—Vngu-l—ﬁg +®(Vlogu))udy

2 n
— (1) 4+ ——E (1) + ——
()+t—T ()+2(t—T)2
L 4 rye +€+ " logt — T)
=———\ (- — log(t — .
(—Tdi 28

The calculations suggest to define
Wy = (t—T)E +€+ % log(t — T) + % log(47) +n

which is the definition of expander entropy in [Feldman et al. 2005] in the case of
Ricci flow. One has

aw,
P _(t—T)fM2<

This again may be rewritten following [Feldman et al. 2005] in terms of

2

1
—VVI S —
o ogu—i-z(t_T)g

+ 0 (Vlog u))u dy.

o:=t—T, ¢y:=—log((4mo)"*u).

Definition 6.1. For a solution (M, g) to the abstract geometric flow equation (1-1)
and ¢ € C°°(M) one defines Perelman’s entropy for expanders by

(6-30)  Wi(g. 94,0 = / (0 (V4> + A) — ¢y +n)(@dmo) e P dy.
M

Theorem 6.2. Let (M, g) be a solution to the abstract geometric flow equation (1-1).
Assume that ¢ satisfies

A9+ 2 n / —n/2 ,—
O o  Apy IV P—A——" and | @dro) e dy =1.
o7 ¢+ + Vil i1 - (4wo)~""e y

Then

dw
+ =/ 20(
dt M

Furthermore, if © > 0 then W . is monotone nondecreasing, and monotonicity is

2

1
\AY% e —
o+ ¢++2(t_T)g

+ @(—v¢+)> (4wo) e dy.

strict unless

a+VVh,y + 0, O(—Véy)=0.

2i—-1T)" "
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Remark 6.3. The constants :I:(% log(4m) + n) in the definition of W and W', are
for normalization purposes.

7. Evolution equation of the lowest eigenvalue

In this section, assuming that the lowest eigenvalue A(¢) is differentiable along z,
we derive an explicit formula for its derivative in terms of its normalized eigenfunc-
tion. Although monotonicity of &, in Theorem 4.2 is sufficient for our geometric
applications, an explicit formula which holds at points where A is differentiable,
may be of independent interest. Time derivatives of the eigenfunction do not appear
in the formula.

In the literature, for instance [Kleiner and Lott 2008, Section 7], it has been stated
that smooth dependence on time of the lowest eigenvalue and the corresponding
eigenfunction follows from perturbation theory as presented in [Reed and Simon
1978, Chapter XII]. However it is not immediately clear how perturbation theory
is applied to our context, where the operator depends only smoothly, but not
analytically on z.

Lemma 7.1. Assume that M is a closed manifold and let v € C*°(M). Let A be
the lowest eigenvalue of —A + W and f a positive eigenfunction corresponding
to A, sothat \f = —Af +yf. Then

(7-31) / WAfzdyzf 2(IVVlog fI* +Re(Vlog £, Viog f)) fdy.
M M
Proof. We have v f =Lf + Af and

YAFT =20 fAf +2¢|V [

=2(Af+Af)Af+2(kf+Af)|vJ{|2
—serar 9P+ +2 200
—ar a2 20T
We observe that
:
a3 [ vaga= [ (a2 g

2
=/M(—2(Vf,V(Af)>—2<Vf,v('vj:| )>) dy.
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Now we calculate the two terms on the right side of (7-32). For the first term we
have by Bochner’s formula

(7-33) —2UV L, V(Af)) =2|VV P +2Re(V £, V) — AV ).

The second term can be written as

IV fI?
f

(7-34) <Vf, v( )> = (V£,V(f|Vlog /1)
= (Vf,VfIViog fI*+2fVVlog f(Vlog f,-))
= f*|Vlog f|*+2/*VVlog f (Vlog f, Vlog [)
=|VVfP— f?IVViog fI*,
where in the last equality we used that
VVf Vf®Vf VVf
Frr Ty

VViog f = —Vlog f ® Vlog f,

and moreover
IVVfI*= f3VVIiog f + Viog f ® Vlog f|*
= f?IVVlog f|*+2f*VVlog f(Vlog f, Vlog f)+ f*|Vlog f|*.
Plugging (7-33) and (7-34) into (7-32), we get
/ wAfzdyzf (2f%VViog fI* +2Rc(V £, Vf)) dy. a
M M
Let A(¢) be the lowest eigenvalue of —A + cA, where c is a constant; indeed
(7-35) At = inf{/ Vo> +cAp®dy : f P’dy=1, ¢ € C°°(M)}.
M M
Let f(z, -) be the corresponding positive eigenfunction normalized by
[ ravar=1
M
Theorem 7.2. At all times ty when the function t — A(t) is differentiable we have
(7-36)  1'(to)

: de—1
M
In particular, for ¢ = z]T we have

(7-37) A= %/ (|a —2VVlog f|* 4+ ©(2V log f))f2 dy.
M
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Proof. Fix ty € (0, T) where the function ¢ +— A(¢) is differentiable, and let
¢ :(0,T) x M — R be a smooth function such that

(1) [y, 0, »)*dy=1forallt € (0, T), and
(2) ¢(t0,-) = f (10, ).

For instance ¢ () may be chosen as f (f9)«/dy(g(t0))/dy(g(t)), where dy(g(1)) is
the volume form with respect to the metric g(¢). Let

(7-38) W) = /M (IVe(t. P + A, ot ) dy.

Then w(¢) is a smooth function by definition. The trick to work with p(¢) rather
than A () allows to bypass time derivatives of the eigenfunction f (¢, -). Note that
() = A(t) forall t € (0, T), and uu(t9) = A(ty), so that

A (10) = u/(to).
Differentiation of (7-38) gives
W = / (20(Vg, Vo) + 2V, Vo) + cA'9* + 2cApg’ — (VP +cAp?)A) dy
M
= / (20(Vo, Vo) —2¢' Ap +cA'9* +2cApg’ +9(VA, Vo) + ApAg
M
— cAzgoz) dy
_ / (20(Ve, V) + cA'g® + p(VA. V) dy + / 2¢'p — Ag?)dy
M M
=/ (2a(Ve, Vo) +cA'p* + 9(VA, Vo)) dy
M
= / (2a(Ve, Vo) +clal* + B)p* — AAp?) dy
M

:/ (2a(Vo, V) +2cla* 9> +c(B — AA) ¢* + cAAp* — JAAQ?) dy,
M

where in the fourth equality we used that f v op’ — A¢?)dy = 0 (which is due to
the normalization of ¢).
Noting that

Div(pa(Ve, -)) =a(Ve, Vo) + ¢ Div(a) (Vo) + ¢{a, VVe)
=2a(Vg, Vo) + ¢ Div(a) (Vo) + ¢* (e, VV log ¢),

and by the divergence theorem, we have
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(7-39) /M 20(Ve, Vo) dy

= /M 4a(Vo, Vo) —20(Ve, Vo) dy

= /M —2¢ Div(a) (Vo) —2¢*(a, VV log @) —2a(Ve, Vo) dy.
In (7-31) let ¥ = cA, we get
(7-40) /M cAAp*dy = fM 2¢0%|VV log ¢|*> +2Rc(Ve, Vo) dy.
Plugging (7-39) and (7-40) into the equation for u” we obtain

w :/ (—2¢ Div(a) (Vo) — 2¢* (e, VV log @) —2a(V, V) + 2cla|* ¢
" +c(B—AA)@* +2¢*|VV log ¢|* +2Re(Vo, Vo) — 1AAp?) dy
= / ((2|vv log ¢|* — 2(ct, VV log @) + % |ee|* + (2¢ — 1) ae|?) *
" + 2Rec—a)(Vlogey, Vlogep) + (VA —2Div(x), V log go))goz
+e(B - AAG?) dy

:/M(% lo—2VVlogg|*+ (2c—1)|el* +310(2V loggo)—i—(c—%)(B—AA))

-¢*dy,
so that
A (o) = 1/ (19)
:%/M(|oc—2VV10gf|2+(4c—1)|a|2+®(2V10gf)+4C2_1(B—AA)>
- fdy,
as claimed. O

Let us compare Theorem 4.2 with Theorem 7.2, and (4-23) with (7-36). Let
¢ = —2log f; then (7-36) can be rewritten as
1

A = 3 / (la +VVO|? + (4e — Do) + O(=Ve¢) +
M

4c—1
2

(B — AA))e—¢ dy.

Letting k =4c, we see that the two evolution equations are formally proportional. We
note that in (4-23) the exponential e~? is a normalized solution to the conjugate heat
equation, while ¢~#/2 in the preceding integrand is the normalized eigenfunction
of A(t).
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8. Eigenvalue monotonicity in various flows

In this section we list explicit formulas of the eigenvalue evolution in different
flows. The constant c is assumed to be no less than %.

Hamilton’s Ricci flow. In the case of Ricci flow, monotonicity of the lowest eigen-

value of —A +¢R for ¢ > zlt and its applications has been established by Cao [2007;

2008], as mentioned in the introduction. See also [Li 2007]. Plugging
a=Rc, ©=0, B—-—AA=0

into (7-36) we get Cao’s formula [2008] for the Ricci flow:
(8-41) () = / T(IRc—2VVlog f* + (4c — D[Rc|?) f2 dy.
M
This can be applied to show that every steady breather in the Ricci flow is Ricci flat.

List’s extended Ricci flow. We work out the details in the extended Ricci flow.

Corollary 8.1. Assume that (M, g(t)) is a solution to the extended Ricci flow
equation, and that \(t) is the lowest eigenvalue of

(8-42) —A+c(R—a,[VoP),
then we have
x’(t):/MG|Rc—anw®w—2vv1og P+ (2c—1)Re—a,Vo® V|
+ %”((Av —2(Vv, Viog f))? + (4c — 1)(Av)2))f2 dy.
In particular, a steady breather of the extended Ricci flow is trivial in the sense that
Rc=0, v=constant.

Proof. The formula for A'(¢) is a direct plug-in. When (M, g(t)) is a steady breather,
there are times #; < t, such that A(t;) = A(#,) for any ¢ > %. In particular we have
Av = 0 on the closed manifold M, thus v is constant, and moreover M is Ricci flat
by Rc —a,Vv® Vv =0. (]

Miiller’s Ricci flow coupled with harmonic map flow. We already used % to rule
out nontrivial steady breathers. Using eigenvalue monotonicity, one does not need
to solve the conjugate heat equation. The lowest eigenvalue of

—A+c(R—a®)|Vel?)

is nondecreasing along the flow. The conclusions remain the same as in Corollary 4.3.
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Lorentzian mean curvature flow when the ambient space has nonnegative sec-
tional curvature. When M evolves along the Lorentzian mean curvature flow
(3-16), the lowest eigenvalue of

—A—CcH?

is nondecreasing provided sectional curvature of the ambient space is nonnegative.

9. Normalized eigenvalue and no expanding breathers theorem

The eigenvalue of —A + cA is not scale invariant. Suppose that ¢ is invariant under
scaling which is true in all of our examples. If we rescale a Riemannian metric g to
&g by a positive constant &, then

~Agg+cAgg = (= Ay +CAy),

and for the lowest eigenvalue we get A.o = e~ ¢- Thus the (nonnormalized) lowest
eigenvalue only works in the steady case. Following [Perelman 2002] we define
the scale invariant eigenvalue by

(9-43) hg =gV,

where V denotes the volume of M.

In the following for simplicity of calculations we let ¢ = %.
Proposition 9.1. Suppose that (M, g(t)) is a solution to the abstract geometric
flow (1-1) with « being scale invariant. Assume that © is nonnegative. Let \L(t) be

the lowest eigenvalue of —A + A /4. Then whenever A(t) < 0 one has \'(t) > 0.
Proof. Recall that by (7-35) and choosing ¢ (¢, y) = V~1/2 we have

1
At < — | Ady.
() < v /M y
When A(7) < 0 we obtain
_ 2A
A’(t):k’(t)Vz/”+—V”/2‘1/ (—A)dy
n M

812 (1)
)

> Vn/2 ()\./(t) _

Vn/2
>
-2

’

2
(/ (le —2VVlog fI*+©(2Vlog f)) 2 dy — 16’\,1 m)
M

where f is the normalized positive eigenfunction corresponding to A.
We observe that

2
@ —2VV log f|? = ‘a—ZVVlogf—%(A—2A logf)g‘ +2(A=2Alog )%
n
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Recall that f is the normalized eigenfunction and by Holder’s inequality we obtain
(9-44) / (A—2Alog f)*f2dy = / (A—2Alog f)* f*dy / fdy
M M M

2
z(/ (A—2A10gf)f-fdy>
M

2
_ (/ Af2—|—4|Vf|2dy)
M

=161%().
Finally we have A/(¢) > 0. O

If A(¢) <0 we have in fact derived the inequality

(9-45)
_ Vz/” 1 2 5
() > (f <‘oz—2VVlog - (4=2A1log f)g‘ +OQ2V log f)>f dy)
M
V2/n 2
i (/ (A—2A10gf)2f2dy—</ <A—2Alogf>f-fdy) dy).
2n M M

Now we may use (9-45) to rule out nontrivial expanding breathers.

Theorem 9.2. Suppose that (M, g(t)) is a solution to the abstract geometric flow
equation (1-1) with o being scale invariant. Assume that ® is nonnegative. If
(M, g(t)) is an expanding breather for t| < tp, then it has to be a gradient soliton
on (1, 1) in the sense that

4
oa—2VVieg f——g=0
n

where f is the positive normalized eigenfunction corresponding to \(t). Moreover
one has

®@2Vlog f) =0.

Proof. Since A is invariant under diffeomorphism and rescaling, we have A(f;) =
A(t2). Since V(1) < V(1) there must be a time 7y € (1, t») such that V'(ry) > 0.
Hence

1
Alto) < m ‘/MA(I‘O) dy

1 /
=T W) V(1)

<0.
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Proposition 9.1 then implies X(tl) < )_L(to) < 0. Thus, on the whole interval [#1, t2],
the function A(¢) is nonpositive increasing and equals at the end points. This means
that the right side of (9-45) vanishes. In particular, the second line of (9-45) being
zero means that equality holds in Holder’s inequality (9-44). Thus A —2A log f
must be a spatial constant which is 4A(¢) because f is a normalized eigenfunction
corresponding to A(¢). The vanishing of the first line of (9-45) means that

41
a—2VVlog f— —g=0, ©@2Vlog f)=0. O
n
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POLES OF CERTAIN RESIDUAL EISENSTEIN SERIES
OF CLASSICAL GROUPS

DIHUA JIANG, BAIYING LIU AND LEI ZHANG

In memory of Steve Rallis

We study the location of possible poles of a family of residual Eisenstein
series on classical groups. Special types of residues of those Eisenstein series
were used as key ingredients in the automorphic descent constructions of
Ginzburg, Rallis and Soudry and in the refined constructions of Ginzburg,
Jiang and Soudry. We study the conditions for the existence of other possible
poles of those Eisenstein series and determine the possible Arthur parameters
for the residual representations if they exist. Further properties of those
residual representations and their applications to automorphic constructions
will be considered in our future work.

1. Introduction

Automorphic descent constructions of Ginzburg, Rallis and Soudry [Ginzburg et al.
2011] produce the inverse of the Langlands functorial transfers from classical groups
to the general linear groups. More recently, the extensions of those constructions to
produce endoscopy transfers for classical groups were considered in [Ginzburg 2008;
Ginzburg et al. 2012; Jiang 2011; 2012]. The key ingredient in these constructions
is to use certain Fourier coefficients of special types of residues of certain residual
Eisenstein series as kernel functions in the corresponding integral transforms. In
order to explore the possibility of more general constructions, in this paper we start
to consider other possible poles and residues of these and more general residual
Eisenstein series for classical groups.

1A. Classical groups. Let F be a number field and let £ be a quadratic extension
of F whose Galois group is denoted by I'z/r = {1, t}. Denote by A = A the ring
of adeles of F.

The classical groups considered in this paper, denoted by G,,, are the F-quasisplit
unitary groups U, and Uj, 4 of hermitian type, the F-split special orthogonal

The work of Dihua Jiang is supported in part by NSF DMS-1001672.
MSC2010: primary 11F70, 22E50; secondary 22ESS5, 11F72.
Keywords: residual representations, Arthur parameters, Eisenstein series.
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group SO»,; and the symplectic group Sp,,,, and the F-quasisplit even special
orthogonal group SO,,. Define the number field F’ as F if G, is not a unitary
group and as E if it is. Denote by Rz, r(GL,,) the Weil restriction of the GL,, from
F'to F.

We try to follow closely the notation introduced in [Mceglin and Waldspurger
1995]. Since the groups considered in this paper are quasisplit, we fix a standard
Borel subgroup Py = MyNy of G, that is realized in the upper-triangular matrices
in a chosen realization of the classical group in matrices [Ginzburg et al. 2011].
Let Tp be the maximal split torus of the center of M that defines the root system
R(Ty, G,) with the given positive roots R (Ty, G,,) and the set A of simple roots.
Let P = MN be a standard parabolic subgroup of G, (containing Pp) and let T,
be the maximal split torus in the center of M. The set of restricted roots is denoted
by R(Ty, G,). We define R (Ty;, G,) and Ay, accordingly.

Furthermore, we define Xy, = X f,," to be the group of all continuous homomor-
phisms from M (A) into C* that are trivial on M (A)!. Then following page 6 of
[Mceglin and Waldspurger 1995] for the explicit realization of X, define the real
part of X, which is denoted by Re X ;.

1B. Discrete spectrum of GL,p. Let T be an irreducible unitary cuspidal automor-
phic representation of GL, (A). Take the standard parabolic subgroup Q,» = L »U,»
of GL,p, whose Levi subgroup L, is isomorphic to GL;d’ . Then 7 = t®” is an
irreducible unitary cuspidal automorphic representation of L »(A). As in Section
II.1.5 of [Mceglin and Waldspurger 1995], denote by P the X S]“h"” -orbit of the
cuspidal datum (L,», ). For an automorphic function ’

¢r € A(Lap (F)Ugp (A)\GL4H(A))

denote by ¢ g1 = Ad, the element A om ¢, for A € X La» Here the mapping
mg from GL4;,(A) to L s (A)"\L,»(A) is as defined on page 7 of [Mceglin and
Waldspurger 1995] by means of the Langlands decomposition with respect to
0 ,»(A) and the standard maximal compact subgroup of GL,;(A). An Eisenstein
series attached to ¢, &, is defined by

E(pronTOMN(@ = Y Az(yg).

Y€Q b (F)\GLap (F)

It converges absolutely for A in the cone

{[eRe X" | (1, &) > (p, . &) foralla € R¥ (T, GLw)}.

and converges uniformly for g in a compact set and A in a neighborhood of 0 in

GL‘“’ . The general theory of Langlands [1976; Mceglin and Waldspurger 1995]

asserts that it has meromorphic continuation to the whole parameter space X G];“b

a
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and satisfies the standard functional equations in terms of the relevant intertwining
operators.

Take Ap = ((b—1)/2, (b —3)/2,..., (1 —b)/2) € Re X, and define the
iterated residue ‘

AT, b)($:)() = Resy” E(@rgn, T ©1)(g).

It follows from [Mceglin and Waldspurger 1989] that A(z, b)(¢,)(g) is a square-
integrable automorphic function of GL,;(A), or more precisely, that it defines the
GL,»(A)-equivariant homomorphism

A(T,b): A(Lgp(F)Up (A)\GLyp(A)) , — Lo (GLap (F)\GL4p (A))

b
Wy

The image is an irreducible subspace of LﬁiSC(GLab(F )\GLab(A))aﬂ;’ which is
denoted also by €; ), and is usually called the Speh residual representation.
Mceglin and Waldspurger proved that all noncuspidal automorphic representations

occurring in the discrete spectrum of GL,;(A) are of this type.

Theorem 1.1 [Mceglin and Waldspurger 1989]. As b ranges over the divisors of n,
withn = ab and b > 1, and t ranges over the irreducible unitary cuspidal auto-
morphic representations of GL,, with w? = X, the residual representations €z p)
generated by the corresponding residues A(t, b)(¢, ) span the residual spectrum
LfeS(GL,, (F)\GL, (A)),, where x is a unitary central character of GL, (A).

1C. Main results. We consider a family of residual Eisenstein series on G, (A).
For a partition n = r +m, take the standard maximal parabolic subgroup P, = M, N,
of G,, whose Levi subgroup M, is isomorphic to R¢//r(GL,) x G,,. For any
g € Rp/p(GL,), define g = w,g'w, or w,t(g)'w, in the case of unitary groups,
where w; is the antidiagonal symmetric matrix defined inductively by

0 1
Wyr_1 0

and ¢ € 'g/r = {1, ¢}. Then each element g € M, is of type diag{z, A, =1}, with
t € Rpryp(GL,) and h € G,,. Since P, is maximal, the space of characters dej 18
one-dimensional. Using the normalization in [Shahidi 2010], it is identified with C
by s > Ag.

For simplicity, we state here only our results for the case of m > 0, and refer to
Section 5 for the case of m = 0.

Let o be an irreducible generic cuspidal automorphic representation of G, (A).
Write r = ab. Let ¢ € A(Ngp(A)Map (F)\NG1(A)) Ar.b)@o - Following [Langlands
1976; Mceglin and Waldspurger 1995], an Eisenstein series is defined by

El(@acnoe ) =E@rge.)= Y. Lo
yepab(F)\Gn(F)
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It converges absolutely for the real part of s large and has meromorphic continuation
to the whole complex plane C.

The objective of this paper is to determine the location of possible poles (at
Re(s) > 0) of this family of residual Eisenstein series, or more precisely the
normalized Eisenstein series, and basic properties of the corresponding residual
representations. We take the expected normalizing factor B, ¢+ (s) of the Langlands—
Shahidi type, which is given by a product of relevant automorphic L-functions:

(-
bh+1 [b/2] 1b/2]
frra(s)i=L(s+=2— 7 x0) [T ens+1.7.0) [ Lens(o). 707,
=

i=1

where ey, ;(s) ;=25 +b+1—2i, and p and p~ are defined as

Asai if G, = Uy,
Asai®$  if G, =Ujyyg,
(1-2) o sa12® 1 n 2n+1
Sym if G, = SOy;,41,
A? if G,, = Sp,,, or SO,
Asai®$  if G, = Uy,
Asai if G, = Uppy1,
(1_3) ,0_ — ial 1 n 2n+1
A if G, =SO02,41,
Sym? if G, = Sp,,, or SO,,.

For unitary groups, “Asai” is the Asai representation of the L-group of Rg,r(GL,)
and § is the character associated to the quadratic extension E/F via class field
theory. For symplectic or orthogonal groups, Sym? and A% denote the symmetric
and exterior second powers of the standard representation of GL,(C), respectively.
In addition, we have the following identities [Ginzburg et al. 2011, Remark (3),
page 21]:

L(s,tx1t")=L(s,7,0)L(s, T, p"),

where t* =t if F/ = F and t* = t' if F/ = E, where the involution ¢ is the
nontrivial element in the Galois group I'g,F.
We use the function S ; »(s) to normalize the Eisenstein series by

(1-4) ElS (PacbygosS) = Bbr.o () ENy (A by@os )

In order to determine the location of the poles of E*(¢a(r,p)c0, §), We need to
consider four cases:

(1) L(s, t, p) has a pole at s =1, and L(%, T X a) #£0;
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(2) L(s, 7, p) has apole at s =1, and L(%, T X a) =0
(3) L(s,t,p")hasapoleats =1, and L(s,7 xo) hasapoleats =1;
(4) L(s,t,p ) hasapoleats =1, and L(s, T x o) is holomorphic at s = 1.

We define the sets of possible poles according to the four cases:

A b—2 b .

ey —— = 1);
0, — ,2} in Case (1);
0,.... =% —b_z} in Case (2);

X;_ — 2 2
1,0 N _

0,.. ,le, [%1} in Case (3);
A b—3 b—1 .
OT T} in Case (4).

When b =1 or 2, the set bem is empty for Case (2), and when b = 1, the set bem
is empty for Case (4). Note that we omit O in the set X l_:f, o since the normalized

Eisenstein series E*(@a(r.b)@o. §) 18 holomorphic at s = 0 (Corollary 4.3).

Theorem 1.2. Assume that G,, is either the symplectic group or the F-quasisplit
special orthogonal group, and assume that m > 0. Let o be an irreducible generic
cuspidal automorphic representation of G, (A), and let T be an irreducible unitary

self-dual cuspidal automorphic representation of GL, (A). The normalized Eisen-

+

stein series EZé* (DA, )20 $) s holomorphic for Re(s) > 0 except at s =sp € Xb,r,a’

where it has possibly at most simple poles.

This is a consequence of Proposition 4.1, Corollary 4.3, and Theorems 4.5
and 5.2.

The proof uses an induction formula (Proposition 3.2) for the constant term of
E*(¢a(,byao» §) along the standard maximal parabolic subgroup P,. This formula,
which extends a similar one studied in [Jiang 1998], is proved in Section 3, with
the unnormalized version proved in Section 2 (Proposition 2.3); it uses the Arthur
classification [Arthur 2013] for the discrete spectrum of the classical groups. This
yields more explicit information about the residual representations. A special case
of Sp,, was treated in [Brenner 2009]. We note that there are some mistakes in the
arguments used there, and we have corrected them along the way in our discussion.

We remark that the calculations in both Sections 2 and 3 work also for F-
quasisplit unitary groups, and the results there cover the case when G, is either
Uy, or Ugyyr.

In the proof of Theorem 1.2, the case of m > 0 is treated in Section 4 and
the case of m = 0 is briefly discussed in Section 5. This makes the discussion
clearer and the formulas involved easier to present. By using the induction formula
(Proposition 3.2), one reduces the proof to showing that the normalized Eisenstein
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series E*(¢a(r.p)00,5) 1S holomorphic at 0 < Re(s) < %, which is proved in

Corollary 4.3 and Proposition 4.4. The proof of this result uses the result of Arthur
[2013, Corollary 7.3.5] on behavior at s = 0 of the normalized intertwining operators,
and on classification of the discrete spectrum. We thank James Arthur for his careful
explanation of this issue. Since the results in [Arthur 2013] for the case of unitary
groups are now proved in [Mok 2012], the proof of Theorem 1.2 also works for
F-quasisplit unitary groups.

Another issue is to consider the possible poles of the normalized Eisenstein series
EZA* (Pa(r.p)20, ) at Re(s) < 0 by the standard functional equation. This needs
sufficient properties of the involved standard intertwining operator and the local
Plancherel measures in this setting. We will leave this for our future consideration.

There is one more issue in extending Theorem 1.2 to cover the case when o is
tempered, but nongeneric. We need to normalize the intertwining operators involved
in the calculation of the induction formula so that they are holomorphic and nonzero
for Re(s) > 0 at every local place. Following the work of Arthur [2013], one is able
to define these local L-functions at all local places. According to Mceglin [2010],
over p-adic local fields, for the tempered local L-packets, the normalization of these
intertwining operators by the Langlands—Shahidi local factors yields the required
properties of the normalized intertwining operators. It seems that at archimedean
local places, this may need more work, and we decide to consider this technical
issue in the future. Hence we still restrict Theorem 1.2 to the generic case in this
paper, which is enough for the current applications to our work in progress on
constructions of certain types of endoscopy transfers for classical groups [Jiang
2011; 2012].

In Section 4 we prove Theorem 1.2 for the case when m > 0, and in Section 5
we prove Theorem 1.2 for the case when m = 0. In the last section, we will
discuss the conditions for the existence of poles of the normalized Eisenstein series
E*(¢A(r.p)o0, ) at 5o € X lf,r, , and determine the possible Arthur parameters for
these residual representations of G,(A), which are generated by the residues at

S0 € X;fm, respectively, and are square-integrable.

2. An induction formula

In this section, we take G, to be one of the following classical groups: the F-
quasisplit unitary groups Uy, and Uy, 1, the F-split odd special orthogonal group
SO2,+1, the symplectic group Sp,,, and the F-quasisplit even special orthogonal
group SOy,.

Let o be an irreducible cuspidal automorphic representation of G,,(A), without
assuming its genericity. From the Langlands theory of Eisenstein series, the possible
poles of an Eisenstein series are determined by its constant terms. For the residual
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Eisenstein series E)), (¢ (c,p)g0 5). the general formula for constant terms along
parabolic subgroups are given in [Mceglin and Waldspurger 1995, Section II.1.7],
for instance. In this section, we investigate the constant term of E”, (¢ (z,b)o » §)
along the maximal parabolic subgroup P, (as given in Section 1), which leads to an
induction formula. This extends the formula in [Jiang 1998] to this more general
setting. On the way of our calculations, we also correct some technical mistakes
in [Brenner 2009], which treated a special family of residual Eisenstein series of
Sp,, (A).

In the explicit calculation for the induction formula, we may set P for the
standard maximal parabolic subgroup P, of G = G,,. We denote by Q or QZ{’a(b_l)
a parabolic subgroup of GL,;, with Levi subgroup isomorphic to GL, x GL,p—1).

2A. Constant terms of Eisenstein series. Here we calculate the constant term of
E!" (da(,p)@o, §) along the maximal parabolic subgroup P = P,, which is defined
by

Ep,(Pago.$)(8) = / E(¢ago, s)(ng)dn.

Na(F)\Na(A)

Assume that Re(s) is large. After unfolding the Eisenstein series, we obtain

(2-1) Ep,(dago,s)(8)

= Z Z / f A (w™lyn'n" g)dn' dn”,
[NP] J N,

w1 €Py\G/ Py y EMY (F)\M,(F) w(A)

where we define M := wPypw N M, and N} = wPypw NN, and [NY]:=
N (F)\N!(A). Note that the unipotent radical N, can be decomposed as a product
Ny wN}’, where N, ,, satisfies Ny, "N’ = {1} and N, = Ny, wN, = NNy .
For the first summation in (2-1), we consider the generalized Bruhat decompo-
sition P,,\G/P,. As in [Shahidi 2010, Lemma 4.2.1], the representative w~ ! of
the double coset P,,w™! P, is chosen to have the minimal length. Following the
explicit calculations done in [Ginzburg et al. 2011, Chapter 4], it is not hard to
figure out that by the cuspidal support of the Eisenstein series, all terms vanish
except the two double cosets, whose representatives are given by w = Id and

0 0 0L O
Lis-y 0 00 0
w=w=-Dl 0 o 10 o0 |,
0 0 00 Lp
0 £,00 0
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with @ ™! being in the open cell. Here we use (—1)¢ and =+ to make sure that @
belongs to G,,. Define, for w =1d or w,

Ep,($ago:Dw= ) / / s yn'n"g)dn’dn".
y M (F)\M,(F) I INGT Naw ()

Then the constant term is expressed as

(2-2) Ep (prgo,5) = Ep, (Prgo, )1+ Ep, (Pagos $)w-

We will calculate each of these two terms in the following two subsections.

2B. Id-term. Write
1, X Y Z w
Lap—1) VA
nX,Y,Z, W)= 1 Y
Lap-1) X

/ € Nllv
I,
where X', Y' and Z’ are uniquely determined by X, Y and Z. Note that P, N
M\M, = P";ﬁl)\Gn_a. The Id-term of the constant term is

a(

23)  Ep@ase-Ou@= Y f hs (yng)dn,

_ Na
yePITe (FN\Gy—q(F) 1N

where [N,] := N,(F)\N,(A). The integral can be calculated as follows:

/ Ao (yng)dn = / h (nyg)dn
[Nq] [Ng]

:/ / Asp(n'n(X)yg)dn'dX
[Maxa(b—l)] [Natha]
=[ eeargarx.

[Maxa(b—l)]

Here [Z] := Z(F)\Z(A) for Z = N,, Myxa@—1), and Ny, N N, respectively. We
denote by n(X) the element n(X, 0, 0, 0) with X € M,y qp—1).
Let us understand the last integral

(2-4) / d(n(X)g)dX.
[Muxap—1)]

Recall that the Levi subgroup M, is isomorphic to Rg//r(GL4p) X G, We denote
its elements by (x, 1) with x € Rg//r(GLyp) and h € G,,. We fix g € G,(A). Then

the function
x> ¢((x, 1)g)
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is an automorphic function in the space of the residual representation € ;) of
GL,»(Afr). Consider the standard maximal parabolic subgroup
Qa,ab-1) = La,a-1)Ua,ap-1)

of GL,; associated to the partition ab = a 4+ a(b — 1). Then the integral (2-4) is
the constant term of ¢ ((x, 1)g) (as an automorphic form in x) along the maximal
parabolic subgroup Q, (1), which is denoted by ¢g, ,(,_;,-

Let P, 4p—1) be a standard parabolic subgroup of G, whose Levi subgroup
M, qp—1) 1s isomorphic to

RF//FGLa X RF’/FGLa(b—l) X Gm

and whose unipotent radical is N := N, 44—1). We denote by (¢, r, h) the element
diag(t, r, h, 771, 171 in My 41y (A).

Lemma 2.1. The constant term Aspg, ,,_,, belongs to the space

A(Na.a-1(A) My ap—1)(F)\G (A)),l DR b 1) 5 o

F/
Here |- |pr = |det|a,,; and F' is E if G, is unitary, and is F otherwise.

Proof. Let K = I1,K, be the standard choice of maximal compact subgroup of
G, (A) such that the Iwasawa decomposition

G,(A) =P, ap-1H(A)K

holds. It suffices to show that for all k € K, the constant term A;¢g, ,(,_,, ((Z, r, h)k)
belongs to the space of automorphic forms

A(Ma,a(bfl)(F)\Ma,a(bfl)(A))rl R A -1 [ o
where t € GL,(Ag/), r € GLa(b_D(AFf) and h € G,,(A).
By the definition (2-4), we have

D0ty (7, D) = / d(n(X)(t, r, Hk)dX.

[Maxa(b—l)]

Since the function ¢ (m) := m PP ab ¢ (mk), for m € M,,(A), is an automorphic
form in A(Map(F)\Map(A)) Az pyeo Tor all k € K, without loss of generality, we
can assume that

G ((t, 1, h) = Pr Ay (2, 7)) @ Do (h),

where the function ¢y ar.p) € A(GL4H(F')\GL4p(AF))A(r.p) and the function
Pk.oc € A(G(F)\Gp(A))s. Therefore, we obtain

¢Qa,a(b—1) ((tv r, h)k) = (¢k,A(T,b))Qa,a(b,1) ((tv l")) ® ¢k,0 (h)’
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where (dr,A(c.b)) Qg.a—1) 18 the constant term of ¢y (r,») along the parabolic sub-
group Qg ap-1) of GLgp.

By [Jiang and Liu 2012, Lemma 4.1], the constant term (¢x, A(z,b)) 0, o1, DElONES
to the space

A(Uaatp-1)(A) La,a-1)(F)\GLap (Ap). SR g V2 A b1
It follows that the function As¢g, ., (8) belongs to the space

A(Na,a(bfl)(A)Ma,a(b—l)(F)\Gn(A)) s—(b—1)/2

2 O
U

AR QA(T,b—1)| - [

According to Lemma 2.1, we restrict the Id-term Ej;, p. (#ags» $)1a to the sub-
group I, x G,_,(A) of the Levi subgroup GL,(Ar') x Gn «(A) and obtain
(2-5)

Egy pr(@agos )ia((La, ) = Z )‘S¢Q§ba(b_])(diag(1a, yh, 1))
P:(ba l)(F)\ana (F)
= Eor- 1)(’\—I/Z(i;_a¢Q)A(r,b—1>®a, s+ 3)(h),
where | - [ :=||a,, and the restriction iy_,¢o =iy ,$gu 10 Gya(A)isan

automorphic function in the space
AN 1y IS (FNGa-a) s 1y 20
2C. w-term. It is easy to see that
N¢ ={n(0,0,Z,0)| Z € Maxaw-1)}-

We denote by 7(Z) the element n(0, 0, Z, 0). The coset M (F)\M,(F) is isomor-
phic to P,p—1)(F)\G,—q(F). Therefore, we have

Ep (drgo,$)w(8)
- Z f / A (0™ 'y i(Z)ng)dZdn
Na.w(R)

M —
YEPI NGy () e ) T Mazae-v]

= f / hs¢((Z)w ™' nyg)dZdn,
)/EPn(bal)(F)\Gn u(F) Na (U(A) Ma(b 1)><a]

where [Myp—1)xal := Maw—1)xa (F)\Map-1)xa(A), and n(Z) is the element
Lip-1) Z
I,
1 for ZeMa(b—l)xa-
1, 7
Lip—1)
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We denote the inner integration by

(2-6) F(g) = / 6 (n1(2)g)dZ.
[M,

(b—1)xal

Let Qaw—1),a :=Law-1),aUap-1),« be a standard parabolic subgroup of GL,;, whose
unipotent radical U,—1),, embedded into G, consists of all the elements n(Z).
Moreover, the standard parabolic subgroup Pyp—1).¢ = Ma@—1),aNa—1),a of G,
has the property that Ma(b—l),a = La(b—]),a x G,, and Na(b—l),a = a(b—l),aNab-

Lemma 2.2. The function Ay is an automorphic function in the space
A(Naw—1).a(A)Map—1).a(F)\G, (A))‘ PSP A b-DEI [ o
Here | - |p is as defined in Lemma 2.1.

Proof. The proof is similar to the proof of Lemma 2.1. For all £ € K, the function
¢r(m) := m fab p (mk), for m € M, (A), is an automorphic form in the space
A(Mup(F)\Map(A)) Az,p)00- We may assume that

G ((t, 1, 1) = Pr Ay (£, 7)) ® P o (h),
where t € GL,4—1)(Af/), r € GL,(Af/) and h € G, (A). Then

G ((t, 7, 1) = [(Dh, A.0)) 0uiprya (2 7)) @ Br. (W]

By [Jiang and Liu 2012, Lemma 4.1], the constant term (¢x, A(z,5)) Qup_1)., 1S a0
automorphic function in the space

A(Ua(b—l),a(A)La(b—l),a(F)\GLab(AF’))l A De) - (&
This is enough to deduce the lemma. (]

Next, following the notation of [Maeglin and Waldspurger 1995, 11.1.6], we
consider the intertwining operator

(2-7) M@, ) =M, |- A b-1) |- """t 90),

which is defined by
(M. 1.6)@) = [ M@ ng)dn.
Naap—1)NONap—1),a®~ (F)\Ng ap—1)(A)
Now, plug this intertwining operator into the w-term and obtain

Ep,($as0, )ul8) = Yo (M@, )r9)(ve).

yEePIG e (FN\Gy—a(F)
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By [Meeglin and Waldspurger 1995, Proposition II1.1.6], the intertwining operator
M(w, -) maps

A(Na(bfl),a(A)Ma(bfl),a(F)\Gn(A))l IS AGb-1@]- D o

to

A(Na,u(b—l)(A)Ma,a(b—l)(F)\Gn(A))| DD g A (b T)@o

F!

where t* =1t if F'=F, and t* = t' if F’ = E, with ¢ being the nontrivial element in
the Galois group I'g,r. Therefore, the restriction of the w-term E ;’b’ P, (Prgo> o
to the subgroup I, x G, _,(A) of the Levi subgroup GL,(Ar/) x G,,—,(A) is equal
to

(2-8) ENS (i o M@, ), s — 3)(h).

Combining the results of Sections 2B and 2C, we achieve an induction formula of
the constant term.

Proposition 2.3. The constant term E7j;, p (Pa(z.byoo, §) restricted to the subgroup
1, xG,—_,(A) of the Levi subgroup GL,(Ap) X G,_4(A) is expressed as the identity

(2-9) Ej, p,(Page, ) (s, b))
= EZ(;,il)(Ll/z(i:_a%Zh )ab—)@os S + 3) (h)

,ab—1)

+E (MG o M(w, ), s — 5)(h),

which holds for all s with Re(s) large, and then is extended to s € C by meromorphic
continuation. Here

M@, ) =M, |7 *Acb-1 7" r80),
|“|F:=1|"l|a,,and & is defined in (2-6). Note that F' is E if G, is a unitary group,
and is F otherwise.

3. A normalized induction formula

In this section, we keep the assumption on G, as in Section 2 and calculate normaliz-
ing factors for the relevant intertwining operators involved in the functional equation
of Eisenstein series and in the induction formula (2-9). This leads to an induction
formula for normalized Eisenstein series. As we remarked in the introduction of
this paper, we have to assume that o is an irreducible generic cuspidal automorphic
representation of G, (A) if m > 0.
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3A. Normalized Eisenstein series (m > 0). We assume that m > 0, and recall the
definitions of p and p~ in (1-2) and (1-3):

Asai it G, = Uy,

Asai®dé if G, = Uy,

P  sym? i Gy =500,
A? if G, = Sp,, or SOy,
and
Asai®$  if G, = Uy,
L Asai if G, = Uz,
7T A if Gy = SO0 1,

Sym? if G, = Sp,, or SOy,.
It follows [Ginzburg et al. 2011, Remark (3)] that
L(s,txt*)=L(s, 7, p)L(s, T, p"),

where t* =t if F/ = F and t* = t' if F/ = E, where the involution ¢ is the
nontrivial element in the Galois group I'g,r.

In order to normalize the Eisenstein series, we consider the normalization of the
intertwining operator M (o', | - |1 A ® 0)(¢) with

Iab
o = (—1)% I
*1yp

By the general theory of Eisenstein series and intertwining operators [Langlands
1976; Mceglin and Waldspurger 1995, Chapter VI; Shahidi 2010, Theorem 6.1.7],
both E(¢a.pge.s) and M (o', |- I'"A ® o) can be extended to meromorphic
functions of s € C, and the Eisenstein series E (¢ags, §) has the functional equation

(3-D E(pawheo,s) = E(M(@, |- [ AT, b) ®0)(9), —s).
If Re(s) =0, then E(Pa(r,p)00, $) 1s holomorphic.
For any factorizable function ¢ = @), ¢, we write

Mo, |- 1w A®0) (@) = [M(e, |- 15 A, ®0,)(B0).

By [Shahidi 2010, Theorem 6.3.1], for each local place v, define

N'(', |- |5, A(T0, b) ® 03) ()

1
- M ,’ | ATy, b v v)»
r'(o, |- 7 AT, b) ®0y) (.| r A, b ®o ) (@)
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where the local normalizing factor

r/(a)/, |- |§:U’A(Tv’ b) ®Uv)
L(s, A(ty, b) x 0y)
T LGE L Aty b) X 00)e(s, A(zy, b) X 0y, Yy)
L(2s, A(ty, b), p)
“LOs+1, Ao, b), 0)e2s, ATy, b), pr ¥0)
Define r'(o', |- [ AT, b) ® 0) = [, 7/ (o, |- 5 A(T0, D) ® oy). The global
normalized intertwining operator is

N'(@, |- [pa®0) =[[N'(&, |- I}, b) ®0y).
v
For the global (complete) L-functions, we have

2l —b—1
L<s+—,‘c><a),

L(s,A(r,b)xa): >

—.

1

1

-

(-2) L(s, A(t,b),p)=[[LGs+b—2i+1,7,p)

i

1
< [] Ls+b-G+pH+1Lr®7").

1<i<j<b
Hence the quotient of complete L-functions has the property that

L(s, Az, b) x 0)L(2s, A(t, b), p)
L(s+1,A(r,b) xo)L(25+1, A(z, b), p)

is equal to
[b/2] 1b/2] b1
[TL(foit).t0) [TL(frie) + 1.7, p‘)L(s -5 T X 0)
i=1 i=1
/2] b/2] :

1_[ L(eb,,-(s) +1,t, p) l_[ L(eb,,-(s), T, ,0_)L<s + %, T X 0)

i=l i=1
where ey, ;(s) :=2s +b+1—2i, fpi(s) ;=25 —b — 1+ 2i. Define

[b/2] [b/2] b1
op(s) = l_[ L(fb,,-(s), T, p) l_[ L(fb,,-(s) +1,, ,of)L(s - T X 0),

i=1 i=1
[b/2] [b/2]
Bos) =[] Leni®)+1.7.0) [T Llewit) 7. p7)L (s +

i=1 i=1

b+1

,rxa),
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and
[b/2] [b/2] h—1
en() i= [T e(fi(). 7. 0) [Te(foi () + 1.7, p7)e (s = 25— 7 x 0).

i=1 i=1

Finally define the global normalizing factor by
~ o (s)
(3-3) ro, | 5%%AQc)=r(o, | %A(T,h) Q)= —-—
(1T )=l )= Bon)
and the normalized global intertwining operator by
N (@, | 15 A®0)

G Nl ) = e X o)ees. A, b))

Then we have that
1
r(a)’, [-13 ,A®a)

N(@, 1A, b)®0) = M@, |15 A ®0).

Meanwhile, we use B;(s) to normalize the Eisenstein series

(3-5) E S (PameosS) = Bo()EL, (DA byzos S)-

By the functional equation (3-1) of E}, (Pa(z,p)®0, ), the normalized Eisenstein
series E 2,;* (Pa(r.pyo- §) satisfies the functional equation

(3-6) E (@achee ) = Egy (N, |- [ A®0)(9), —s).
In fact,
E*(¢prgo. ) =Bp()E(M(', |- |5 A®0)(9), —s)

=Bp(s) - r(, | | AQO)E(N(@', |- | A®0) (@), —s)
_Bs) - r(o. ] [ A®0)
a By (—s)

Since ap(s) = €p(s)Bp(—s), we have

Bo(s) (e, |- 1A ®0) = Bp(—s).

From this we deduce the functional equation (3-6).
We remark that when b = 1, it is easy to show that for Re(s) > 0, the normalized
global intertwining operator

E*(N(@, |- A ®0) (@), —s).

N(&, | AT, b) Qo)

is holomorphic for all choice of data, and nonzero for some choice of data.
In fact, if b =1 and t ® o is a generic representation, then the normalized local
intertwining operator N («’, -) is holomorphic and nonzero by Theorem 11.1 of
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[Cogdell et al. 2004]. The proof uses the Langlands functorial transfers of o from
G, to the corresponding general linear groups, the Ramanujan type estimate for
cuspidal automorphic forms on general linear groups [Luo et al. 1999], and the
structure of generic unitary dual for classical groups over all local fields [Lapid
et al. 2004]. Hence the result for » = 1 holds for F-quasisplit unitary groups with
the same proof [Cogdell et al. 2011].

However, when b > 1, we are not able to prove the above properties for the
normalized global intertwining operator N («’, - ), so that we are not able to control
the poles at Re(s) < O of the normalized Eisenstein series through the functional
equation (3-6). We will leave this issue for our future consideration.

3B. Normalization of M (w, -) with m > 0. In order to normalize the global in-
tertwining operator

s—1/2 s+(b—1)/2

M(w?')::M(a)v|'|F/ A(‘[vb_l)®||F/ T®0)7

as defined in (2-7), we decompose it into a composition of two intertwining operators

Mo, |- 15 A b -1 [t ®0) = M, ) o M), ),
where
I,
Lip—1)
w] = 1
Lip—1)
I,
and
Lap—1)
I,
wr = (=1 1
+1,
Lyp—1y

More precisely, M (w1, -) and M (w;, - ) are standard intertwining operators of the
following types: M (wy, -) maps from the space

A(Na(b—l),a(A)Ma(b—l),a(F)\Gn(A))| PP A b-D@l [ P go
to the space
A(Na—1).a(A)Myp-1).a(F)\G, (A))| PP A 1)@]- [ e
and M (w1, - ) maps from the space

A(Naw-1).a(A)Myp—1).a(F)\G, (A))‘ PP A@b-Del 7 g
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to the space
A(Na(b—l),a(A)Ma(b—l),a(F)\Gn (A))| . |;f_(b_l)/2f*®| . |';,_,1/2A(r,b—l)®(r'

The standard Langlands—Shahidi normalizing factors for M (w1, -) and M (w,, -)
are given by r (w1, - ) and r(wy, - ), where

L(Zs—l—g—l,A(r,b—l) xr*)
r(a)lv')= b b
L<2s+§, Az, b—1) X t*)8<2s+§— 1, A(t.b—1) % r*)

and r(w», +) is

—1
L(s—{—bT,r xa)L(Zs—l—b—l,t, ,0)

L(s—i—w, T xa)L(Zs—i—b, T, ,o)e(s—l—b;l, T x0)8(2s+b— 1, 7, ,0)'

2 2
We define
M(wy, ) =r(wi, - )N(wi, -),
M(ws, ) =r(w2, - )N (@2, -),
r(, ) =r(wy, - )r(w,-),
and
(3-7) M(w,-)=r(w, )N(w,-).

It follows that
N((,(), '):N(C()l, ')ON(w27 )

Proposition 3.1. Assume that b > 1. For Re(s) > 0, the normalized global inter-
twining operator

N, )=N(o,|-15"*A, b—1)® |- [ V1 ®0)
is holomorphic for all choices of data, and nonzero for some choice of data. For
Re(s) =0, it is holomorphic.

Proof. First we show that the normalized intertwining operators N (w;, - ) fori =1, 2
are holomorphic and nonzero at Re(s) > 0.

Indeed, by Theorem 11.1 in [Cogdell et al. 2004] for orthogonal and symplectic
group cases, N (w», - ) is holomorphic for all choices of data and nonzero for some
choice of data, when Re(s + (b — 1)/2) > 0. For even and odd unitary group cases,
the same result follows from Proposition 9.4 in [Kim and Krishnamurthy 2005] and
Proposition 5 in [Kim and Krishnamurthy 2004].
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For the normalized intertwining operators N (wy, -), it is essentially the inter-
twining operator for general linear groups, which is considered in [Mceglin and
Waldspurger 1989]. We write it as an eulerian product

N(@1, ) =[] No(@r. ),

with t = ), 7,. Since 7, is unitary and generic, we can assume that
Ty = ["St(r1, a1) x | - |St(r2, @) x -+ - x | - | St(z;, @),

1
where —7
supercuspidal representations t; and integers a;, and nonlinked. Write e(t,) =
2inf{1 — [v;|, 1 <i <r} (referring to 1.10 in [Mceglin and Waldspurger 1989]). It

follows that

<V < % for all i and St(t;, a;) are Steinberg representations for some

e(A(ty, b —1)) =e(ty).

By Proposition I.10 in [Mceglin and Waldspurger 1989], N, (w1, -) is holomorphic
and nonzero when Re(s — 3 — (—s — (b — 1)/2)) > —e(t,) at all local places v. In
particular, they are holomorphic and nonzero at Re(s) > 0, and so is the normalized
global intertwining operator N(wy, -). Hence N(w, -) = N(wy, -) o N(w», -) is
holomorphic for all choices of data when Re(s) > 0.

We notice that for Re(s) > 0, N(wy, -) as a GL,p-intertwining operator is an
isomorphism, and hence N (w, - ) = N (w1, - ) o N (w3, -) is nonzero for some choice
of data. U

By substituting the normalized Eisenstein series EZ;)* (PA(r,b)®s, §) in (3-5) and
the normalized intertwining operator N (w, - ) in (3-7) into the induction formula
(2-9) in Proposition 2.3, we obtain

El p ($age. $)((Ia, )

By (s) s . 1
= —IBb l(s n l) a(b—1) ()\-_1/2 (ln_a¢QZ{’a(b71))A(‘E,b*l)@o’ s+ E)(h)
- 2

+ MEZ(ZH_T) ()Ll/z(l':_a o N(a)v : ))(l;’ D %)(h)

Bo-1(s=3)
Using a similar calculation as in (3-2), it is easy to verify that
ﬁb(s) 1 =L(2s—|-1’ T, p(i)bﬁ»l)’
Bo-1(s+73)
L(2s, T, (o)
Bp(s) @, ) = ( P )

Bo-1(s —3) &, (s)
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where

b
&,(s) ::e(s+ T xcr)s(Zs—i—b— 1, T, p)e(Zs—i—E— 1, A(r,b—1) x ‘L'*).

Therefore, for b > 1, we obtain the following normalized induction formula.

Proposition 3.2 (induction formula). Let G,, be the classical groups as defined in
Section 2. Assume that m > 0 and o is an irreducible generic cuspidal automorphic
representation of G, (A). For b > 1, the following formula holds:

(3-8)  Ejyp, ($asor $)((La, h))
_\b+1 _ .

=L(2s+ 1,7, 070 ) ELST (i nin_ob0), s + 3) ()

L(2s, T, p(_)b+l)

&, (s)

El0T (o N(w, ). s — 3) (),

where )Mfl/2(i:_a¢Q) = )L*I/z(i;lk—d¢QZﬁ,(b,1))A(r,b—l)@w'

3C. Normalization for the case of m = 0. In this section, we consider the case
of m = 0. Due to the similarity between the cases of m = 0 and m > 0, we will
just briefly sketch the result here. We continue to use the notation and references
(which will not be mentioned) introduced in previous sections.

Note that when m = 0, G,, = SO,, must be F-split. In this case, we divide the
G, into two types: Type (1), G, = Sp,, and Uz,1, and Type (2), G, = SO2,+1,
SO,,, and U,,.

In order to normalize the Eisenstein series, we consider the intertwining operator
M(o', |- % A) (@) with

Iah
W = (_l)ab 1 ,
+1

where the [ in the middle is the identity matrix of order at most one, that is, it either
is 1 or disappears, depending on the structure of G,.
For any factorizable function ¢ = ), ¢y, we write

M, |- [pA) (@) = HM(w/, | I Av) (o),

and for each local place v, define

N'(@, |- [ AT, ) (o) = r M(@, |- ATy, b)) (o),

(CARPTCD)

where the local normalizing factor r’ (a)’ T ATy, b)) is defined as follows.
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When G, is of Type (1), define

/( / Ky A b ) . L(S, A(Tv, b))
P Il A ) = T A, b)e(s, A, ), )
L(2s, A(ty, b), p)

X ;
L(2s +1, A(ty, b), p)e(2s, A(Ty, D), p, ¥y)
and when G,, is of Type (2), define

L(2s, A(ty, b),
r/(w/,I-I},A(rv,b)): (2s, A(ty, D), p) .
v L(2S+1’A(Tvab)v ;O)S(ZS»A(TU,b)a)O» Wv)

Then we define r’(w’, |- % AT, b)) =11, r’(a)’, |- 15 AT, b)). The global nor-
malized intertwining operator is

N'@, ][ A) = [N, |- [ Az, b)).

We calculate the L-functions as in (3-2) and obtain

L(s, A(z,b)) L(S - %, r)

L(s+1, A(r, b)) L(HE, t)

2
and
[b/2] [b/2]
[TLit)m.o [[LUi)+1,7,07)
L(2s,A(t,b),p) =i i=1
LQ2s+1,A(t,b), p) [b/2

Lb/2] ’
[]Lsit)+1.7.0) []Llesi(s).7.07)
i=1 i=1
where ep, ;(s) :=2s +b+1—-2i, fpi(s) :=2s —b—1+2i.
When G, is of Type (1), define

[b/2] Lb/2] bh—1
)= [T L(oi). 7 0) [T L(i ) + 1.7, 07)L (5 - 5 7).

i=1 i=1

[b/2] [b/2] b+1
Bos) = [T Lleni) + 1.7, p) [T Llenss). 7. 07 L(s + > 7).

i=1 i=1

[b/2] Lb/2] h—1
&)= [T e(foi ). 7p) [T e(frs@ + 1.7 p7)e (s = 5= 7).

i=1 i=1

and then define

N(w/ ||S A)_ Eb(s)N/(w/7|'|S/A)
T (s, AT, b), Y)e2s, AT, b), p, )
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When G, is of Type (2), define

[b/2] [b/2]
ap()= [JLSoi@). 1. 0) [ L) +1.7,p7),

i=l i=1

[b/2] [b/2]

Bo(s) =[] Leevnits)+1.7.0) [ | Lleni(s). 7. p7),
i=1 i=1
[b/2] Lb/2]

()= [[e(foi) 7o) [[e(foi) + 1.7, 07),
i=1 i=1

and then define
(SN (@', |- % A)
e(2s, A(1,b), p, V)

Now we define the normalizing factor by

N, |- ) =

S s ap(s)
e A) = —m—.
ren e ) = g e ®)
Then
1

r(@, |15 AT, b))

N(o, || A(z, b)) = M(', |- Az, b)).

103

Remark 3.3. The terms «;,(s) and B (s) correspond to the terms ay(s) and by (s)
in [Brenner 2009, Section 4.2]. We correct the definition of b, (s) in [Brenner 2009]

here.

We use B (s) to normalize the Eisenstein series

(3-9) EL (@acpy $) = B () ELy(Pace.by» 5)-

Then, similarly to (3-6), we have the functional equation for the normalized Eisen-

stein series:
(3-10) Ey @acpyss) = Ep (N@', |- [ A) (@), —s).
Next, we normalize the intertwining operator as defined in (2-7),
Mo, ) :=M(w, |-} A, b—1) @] [ 7),
by

_ Mo, -)

(3-11) N, ):= N(a), [ |SF_,1/2A(‘L', b—1)Q®]|- |?,_(b_1)/2‘17) r@.)
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with r(w, - ) defined as follows. When G, is of Type (1), define
r, ) =r(o, |- [5"?A@ b-1) @]V )

) L(s+ 250 0)L@s+b— 10, p)L (254 5 — 1, A b= 1) x 7)

2 2
L(s + ’%1, r)L(2s+b, z, p)L(zs n g, At b—1) x r*)
1
x S(S-l—b%l, ‘L'>8(2s+b— 1,1, p)s(Zs—l-g_ 1, A(t.b—1) x T*)’

and when G, is of Type (2), define
r, ) =r(o, |- "a@b-1 |- 0 ")

L2s+b—1,7, ,O)L(2s—|—g— LA@b=1)x7)

L(2s+b,t,p)L(25+ 5, A b—1) x )

1
8(2S+b— 1,1, p)8<2s—|—g— 1, A(r,b—1) x r*)

X

’

where t* =t if F' = F and t* = 7' if F/ = E, with ¢ being the nontrivial element
in the Galois group I'g/F.
The following, corresponding to Proposition 3.1, is also true when m = 0.

Proposition 3.4. For Re(s) > 0 and b > 1, the normalized global intertwining
operator N (w, | - |s ]/ZA('C, b—1)®]- |S+(b ])/21') is holomorphic for all choices
of data, and nonzero for some choice of data.

The proof follows from that of Proposition 3.1, and we omit the details here.

By substituting the normalized Eisenstein series EZI;* (@A(z,b), §) in (3-9) and the
normalized intertwining operator N (w, -) in (3-11) into the induction formula (2-9)
in Proposition 2.3, we obtain

E" p ($as $)((Las b))

/3[7(5) n—a,%
:—ﬂb_l(s+%)Ea(b l)()\' 1/2(ln a¢Qab

Br(s) - r(@,-)
_.l_ e
Bo-1(s —3)

Using a similar calculation as in (3-2), it is easy to verify that

» l))A(rb s+ 1))

Eju0 1 (M o N(@, ), s — ) (h).
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ﬂb(s) (_)b+l
—————=L(2s+1,7, ,
b5+l - FE LA
(_)b+l
B )
Bo—1(s = 3) £,(5)

where &) (s) is defined as follows. When G, is of Type (1), define &, (s) to be the
product

b b—1
8(2S+b— 1,1, p)s<2s+§—1, A(t,b—1) X‘E*>8<S+ 3 ,‘L’);

and when G,, is of Type (2), define
b
() =s(2s+b— L p)e(254+3 — 1 A b= x 7).

Therefore, for b > 1, we obtain the following normalized induction formula, which
is similar to Proposition 3.2.

Proposition 3.5. With notation as defined above, for b > 1, the following formula
holds:

(3-12) EZ[fPa (¢A’ S)((Ia’ h))
b+l _ .

=L(2s+1,7,07 ' )EZ(bTT) (A-1/2G5_a0)s s +5) ()

L(2s,7, pO")

e,(s)

Ej01 (s o N(@, ). s — 3) (),
where )‘71/2(i:—“¢Q) =A-172 (i:—u¢QZf7a<b71))A(r,b—l)'

4. Proof of Theorem 1.2 (m > 0)

We are going to prove Theorem 1.2 for the case where m > 0 using the normalized
induction formula given in Proposition 3.2. From now on, we only consider
symplectic group and F-quasisplit special orthogonal group cases.

4A. Case of b=1. The case of b =1 is the starting step of our proof by induction.
Assume that s € C with Re(s) > 0.
By Equation (3-5), we normalize E (¢:gc, 5) as follows:

ElV*(¢prgo,5) =L(s+ 1,1 x0)L2s+ 1,7, p)E) (¢80, 5).

By [Mceglin and Waldspurger 1995, Proposition II.1.7], the constant term of the
Eisenstein series E/ (¢rg0, s) along a standard parabolic subgroup P’ is always
zero unless P’ = P,. In the case of P/ = P,, we have

EZ,Pa (Pr@0s ) = Ashrgo (g) + M(a)/’ | - |§WT ®0)(As9).
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By Lemma 1.4.10 of [Mceglin and Waldspurger 1995], the Eisenstein series
El(¢:90,5) has a pole at some point so if and only if the constant term of
E} p (¢:c0, s) has a pole at 5o, and hence if and only if the term

M, |- [pT ®0)(hs)

has a pole at sg, since the first term A;¢; g5 (g) 1s holomorphic. By our normalization,
we have

M, |- [pt®0) () =r (@, |- [pT ®)N (@, |- |57 ®0)(4),

and for Re(s) > 0, by [Cogdell et al. 2004, Theorem 11.1], the normalized global
intertwining operator N (', | - |} T ® o) is holomorphic for all choice of data and
nonzero for some choice of data. Thus, it reduces to checking the existence of the
pole at s = so of the global normalizing factor r (', | - %7 ® 0).

Recall from (3-3) that the global normalizing factor r(«', | - %7 ® o) in this

case is
L(s,t xo)L(2s, 1, p)

Lis+1,tx0)L2s+1,1,p)e(s, T x0)e(2s, T, p)

Since both (s, T x o) and €(2s, 7, p) are holomorphic and nonzero, the poles of
the global normalizing factor 7 (', | - [} T ® 0) at s = 59 > 0 with Re(sp) > 0 are
the same as the poles of the quotient

L(s,t xo)L(2s,1,p)
Lis+1,tx0)L2s+1,1,p)

at s = sg > 0 with Re(sg) > 0.

Since o is generic and t is self-dual, by the global Langlands functorial transfer
from G, to a general linear group [Cogdell et al. 2004] and the analytic property of
the complete L-functions of the Rankin—Selberg convolution [Cogdell and Piatetski-
Shapiro 2004; Meeglin and Waldspurger 1989], we deduce that the complete L-
function L(s, T X o) is holomorphic at all s € C except for a possible simple pole
at s =0 or 1, and is nonzero when Re(s) < 0 or Re(s) > 1. Such a pole occurs if
and only if T occurs as an isobaric summand in the image of o under the Langlands
functorial transfer [Cogdell et al. 2004].

On the other hand, by [Grbac 2011], based on the work of Arthur [2013] on the
classification of the discrete spectrum of G, (A), the complete L-function L(s, T, p)
is holomorphic at all s € C except for a possible simple pole at s = 0 or 1, and
is nonzero when Re(s) < 0 or Re(s) > 1. Such a pole occurs if and only if T can
descend to an irreducible generic cuspidal automorphic representation of a classical
group determined by p [Ginzburg et al. 2011].

Hence, when Re(s) > 0, the denominator L(s + 1,7 x o)L(2s + 1, 7, p) is
holomorphic and nonzero, and the numerator L(s, T x o) L(2s, 7, p) is holomorphic
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except for a possible simple pole at s = % or s = 1. This proves the theorem for the
case of b = 1. We summarize the above as the following.

Proposition 4.1 (case b = 1 of Theorem 1.2). Let G, be the symplectic group
or the F-quasisplit special orthogonal group. Let T be an irreducible unitary
cuspidal automorphic representation of GL,(A) and let o be an irreducible generic
cuspidal automorphic representation of G,,(A). The normalized Eisenstein series
El*(¢rq0, §) is holomorphic at Re(s) > 0, except at s = % and s = 1, where it has
possible simple poles. Moreover:

(1) El*(¢r@0, s) has a simple pole at s = % if and only if L(s, T, p) has a pole at
s = l,andL(%,t x o) # 0.

(2) E}*(¢ra0, 5) has a simple pole at s =1 if and only if L(s, T x 0) has a pole
ats = 1.

In particular, E}'*(¢rg0, §) is holomorphic at Re(s) > 0 if T is not self-dual.

Proposition 4.1 includes the case of m = 0, which is proved in [Grbac 2011].

We remark that by the functional equation for the normalized Eisenstein series
(3-6), one deduces the analytic properties at Re(s) < 0, since when b = 1, the
normalized intertwining operator occurring in the functional equation is holomor-
phic for Re(s) > 0 and is a nonzero operator. At Re(s) = 0, it is holomorphic
(Corollary 4.3).

4B. Case of b > 1. This general case of Theorem 1.2 is proved by using the nor-
malized induction formula (Proposition 3.2) and the case of b = 1 (Proposition 4.1).
One technical point is to prove that the normalized Eisenstein series £ Zl;* (Pr20,S)
is holomorphic at s = 0 (Corollary 4.3), which is a consequence of the following.

Proposition 4.2. Let G, be the symplectic group or the F-quasisplit special or-
thogonal group. Assume that o is an irreducible generic (or tempered if nongeneric)
cuspidal automorphic representation of G,,(A). If By(s) has a pole at s = 0, then
the pole at s = 0 of By(s) must be simple and E,, (P, pyoo, S) must vanish at
s =0.

Proof. Note first that by [Arthur 2013], the Langlands—Shahidi normalization works
for intertwining operators with tempered induced data at s = 0. Hence we allow
here that o could be any irreducible tempered cuspidal automorphic representation
if it is not generic.

Assume that 8,(s), as defined in (1-1) or in Section 3A with more detail, has a
pole at s = 0. It implies that when b =1,

Bis)=LR2s+1,7,p)L(s+1,7 x0)
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has a pole at s =0, and when b > 1, the only factor in 8 (s) to have a possible pole
ats =0is L(s, 7, o).

Whenb=1,L(2s+1, 1, p)and L(s+ 1, T x o) both have at most a simple pole
at s = 0, but they cannot happen at the same time, since L(s + 1, T X o) having a
simple pole at s = 0 implies that L(s, 7, p~) has a pole at s = 1. Therefore, B (s)
has at most a simple pole at s = 0. When b > 1, L(s, t, ,poH) has at most a
simple pole at s = 0. So, for b > 1, B(s) also has at most a simple pole at s = 0.
Hence, B, (s) has at most a simple pole at s = 0 for all » > 1. Now the assumption
that B (s) has a pole at s = 0 implies that ord;—o(8,(s)) = 1 for any b > 1, that is,
Bp(s) has a simple pole at s = 0.

By the functional equation (3-1) and the normalized functional equation (3-6),
we have

El (Page,s) =r(@, |- %A ®0)E2b(N(w/, |- IFA Qo) (), —S),
with By(—s)
Br(s)

By the above discussion on the pole at s = 0 of 8,(s), it is clear that

r@, |- pA®o0) =

r@, | [ A®0)|—g = (= 1) H=0B ) = 1,

and hence
(4-1) Ejy(Pago, $)ls=0 = —Ef,(N(@', |15 A ®0)(9), —s)|,_,-
So it suffices to show that the normalized intertwining operator N (', | - |%A ® o)

is an identity map at s = 0. We deduce this fact from the work of Arthur.

Arthur [2013, Corollary 7.3.5] proved that for the tempered or generic represen-
tation that has the Arthur parameter such that ,(s) has a simple pole at s = 0, the
normalized intertwining operator at s = 0 has the identity

M@)o N, A®o) =1d,

where A (") is the A-factor (see for example [Keys and Shahidi 1988, Section 2]),
(") is a canonical map from o’ A(t, b)®0 to A(t, b) Qo defined by Arthur [2013],
and N'(o’, A ® o) is the evaluation at s = 0 of the normalized intertwining operator
from the induced representation I(A ® 0, s) to I(w' A ® o, —s) (the vector-valued
induced representations). The intertwining operator N (&', | - | A ® o) considered
in this paper is a map from the space of automorphic forms
A(Nap(A) My (F)O\G(A))

|1y A0
to the space
A(Nap(A) My (F)\G(A))

|- |;Sw’A®a'
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Note that by the strong multiplicity one theorem for GL, and the definition of
the isotypic component A(Nal7 AYM,p (F )\G(A))‘ 1 A®a” this subspace depends
only on the equivalence class of A, but not on its realization A in the space of
automorphic forms. Therefore, we have the following relation between the two
versions of the normalized intertwining operators at s = 0:

N@, A®Rc)=1(0)oN(, AQo).
Since the global A-factor is trivial (see [Keys and Shahidi 1988, Section 2]), we
have the following identity at s = O:
ElL(N@, | 1%A®0)(¢9),0) = El,(da(.b)z0, 0).

By comparing with the identity (4-1), we obtain that E7, (¢a(z,b)00 - §) Vanishes at
s = 0. This completes the proof. ([

Following from the definition of the normalized Eisenstein series, we have:

Corollary 4.3. Let G, be the symplectic group or the F-quasisplit special orthog-
onal group. Assume that o is an irreducible generic (or tempered if nongeneric)
cuspidal automorphic representation of G, (A). The normalized Eisenstein series
EZA* (Pa(r.p)@0 s §) is holomorphic at the point s = 0.

By using Corollary 4.3 and the normalized induction formula in Proposition 3.2,
we are able to prove Theorem 1.2 for the case of b > 1, that is, to determine the
location of possible poles of the normalized Eisenstein series EZ;)* (A, b)®os S)
for b > 1. To do so, we consider the following four cases:

(1) L(s,t,p)hasapoleats =1, and L(%, T X 0) #£0;

(2) L(s, 7, p) hasapoleats =1,and L(3, 7 x 0) =0;

(3) L(s,t,p")hasapoleats =1, and L(s,7 xo) hasapoleats =1;

(4) L(s,t,p")hasapoleats =1, and L(s, T x o) is holomorphic at s = 1.

We define the sets of possible poles according to the four cases:

A b—2 b .
ey ——, = 1);
o,..., 3 ,2} in Case (1);
0,.... =% —b_z} in Case (2);

X;_ — 2 2

ot A b—1 b+1} . .
o,..., R in Case (3);

A -3 b—1 .
OTT} in Case (4).

When b =1, the set Xffna is equal to the set {%} in Case (1); is empty in Case (2);

is equal to the set {1} in Case (3); and is empty in Case (4). Hence the set Xl":r’ o 18
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the set of possible poles of the normalized Eisenstein series E;,;* (PA.b)0, s) for
b =1 and Re(s) > 0, by Proposition 4.1.

It is clear that when b = 2, the set XZL . 1s also empty in Case (2). Note that we
omit O in the set X ;t, o since the normalized Eisenstein series EZ’b* (Pa.b)®0> S)
is holomorphic at s = 0 (Corollary 4.3).

Here is the case of » > 1 and m > 0 of Theorem 1.2. The proof of this theorem
for Re(s) > % is given by an induction argument, while the proof of this theorem
for 0 < Re(s) < % needs the Arthur classification [2013] of the discrete spectrum,
which is stated here and will be proved in Section 6C.

Proposition 4.4 (case 0 < Re(s) < % of Theorem 1.2). Let G, be the symplectic
group or the F-quasisplit special orthogonal group. Assume that the irreducible
cuspidal automorphic representation o of G,,(A) is generic and the irreducible
unitary cuspidal automorphic representation t of GL,(A) is self-dual. Then
EZZ;*(¢A(I#b)®U’ s) is holomorphic for 0 < Re(s) < %

With Propositions 4.1 and 4.4, Corollary 4.3, and the normalized induction
formula (3-8), we are able to prove the following.

Theorem 4.5 (case b > 1 and m > 0 of Theorem 1.2). Let G, be the symplectic
group or the F-quasisplit special orthogonal group. Assume that the irreducible
cuspidal automorphic representation o of G,,(A) is generic and the irreducible

unitary cuspidal automorphic representation t of GL,(A) is self-dual. Then

+

o> Whereit

EZZ,* (PA(.p)@0 s S) is holomorphic for Re(s) > 0 except at s =59 € X
may have possibly at most simple poles.

Proof. By Corollary 4.3 and Proposition 4.4, E/;* (P (z,p)go» §) is holomorphic at

0 <Re(s) < %, and hence we assume that Re(s) > % in the following discussion.

When b = 1, it is Proposition 4.1. We may assume that b > 1 and use the
normalized induction formula (3-8):

Eyp ($agor ) (Lo, b))
_\b+l _ )

= L(2S + 1, T, IO( ) + )EZ ha—’ik)()\'—l/Z(l::,a(bQ), s+ %)(h)

L(Zs, T, p(_>b+l)

&,(s)

Ey St (s o N(@, - ), s — 3)(h).
When Re(s) > %, the term

b+l _ .
L(2s+1,t, o™ )EZ(;,@T) (A—1)2(r_aP0), s + %)(h)

+

is holomorphic except for possible simple poles at so € X, | _

assumption.

+ %, by the induction
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The term
L(2s, T, p(*)bﬂ)

&, (8)

E it (MpGr_ o N(@, ), s —3)(h)

is holomorphic for Re(s) > 1 except for possible simple poles at X ;r_ Lto — % by the
induction assumption, while at % < Re(s) < 1, it is holomorphic by Proposition 4.4.
Ats = %, _

Ey, 51 (hpGr_y o N(@, ), s —5)(h)

is holomorphic by Corollary 4.3, while the L-function L(2s, t, p(_)b+l) may have
a simple pole according to the classification of four cases on the parity of b, the
type of t, and the type of G, in the Introduction.

Hence E!;" (¢ (z,b)®0» §) is holomorphic for Re(s) > % except for possible simple
poles at 5o € (X;r_l’m + %) U (X;’_lywr - %) with Re(sp) > % It is easy to check
that

le_,r,a = (le_—l,r,(r + %) U [(Xl_:—l,r,a B %)\{0}]

The theorem follows. O

This completes the proof of Theorem 1.2 for the case of m > 0. We conclude
this section with the following remarks.

(1) Theorem 1.2 holds for the F-quasisplit unitary groups if Corollary 4.3 is proven
for the F-quasisplit unitary groups, which is done since Arthur’s work has
been extended to the F-quasisplit unitary groups [Mok 2012]. The extension
of Arthur’s classification of the discrete spectrum for F-quasisplit unitary
groups will also imply that the complete Asai (and twisted Asai) L-functions
are holomorphic in 0 < s < 1 (as in [Grbac 2011] for symplectic or F-split
special orthogonal groups), which is one of the key ingredients in the proof of
Theorem 1.2 for b =1 and m > 0.

(2) Theorem 1.2 is also expected to hold when o is nongeneric, but tempered. The
technical issue is the normalization of the local intertwining operators at all
local places. At p-adic local fields, one can use Mceglin’s work [2008; 2010].
Since her work at archimedean local places is not general enough to cover our
cases, one needs more work, which will be considered in our future work.

(3) The current version of Theorem 1.2 is sufficient for our applications to the
constructions of endoscopy correspondences considered in [Jiang 2011; 2012].

5. Proof of Theorem 1.2 (m = 0)

In this case (m =0), G, is either a symplectic group or an F'-split special orthogonal
group. When b = 1, Theorem 1.2 for m = 0 is given in [Grbac 2011, Theorem 3.1].
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For b > 1, the proof of case m = 0 requires analogous results to Proposition 4.2
and Corollary 4.3, which are stated below. By the definition of S (s) in this case as
in Section 3C, the same proof works here.

Proposition 5.1. Let G,, be a symplectic group or an F-split special orthogonal
group. Assume that b > 1 and m =0. If B, (s) has a pole at s =0, then E, (pA(z,b), §)
vanishes at s = 0. Moreover, the normalized Eisenstein series EZ’b* (Pa(e.b), S) Is
holomorphic at the point s = 0.

To determine the location of possible poles of the normalized Eisenstein series
EZ l’,* (Pa(z.p), ) for b > 1, we consider the following four cases:

(1) L(s, 7, p) has apole at s =1, and L(%, r) # 01if G, is of Type (1);
(2) if G, is of Type (1), then L(s, 7, p) has a pole at s = 1 and L(%, r) =0;

(3) if G, is of Type (1), then L(s, T, p~) has a pole at s =1 and L(s, t) has a
pole at s = 1 (this case occurs only if @ = 1 and 7 is the trivial character of
GL1(A));

(4) L(s,t,p ") hasapoleats =1, and L(s, t) is holomorphic at s =1 if G, is
of Type (1).

Note that in Type (1), G, = Sp,,,, and in Type (2), G,, = SO2,4+1 or SO2,. When
a =1 and t is a quadratic character of GL{(A), [Kudla and Rallis 1990; 1994] treat
the case when G, = Sp,, or SOy,.

Similarly, we define the sets of possible poles according to the four cases:

A b=2 b . ,
o,..., > 2} in Case (1);
0,.. ,b; b;}, in Case (2);
Xpo = b21 b21

, N _ + } ) ‘
o, . Ty T | in Case (3);
A b—3 b—1 .
OTT} in Case (4).

We also omit O because EZ;)* (@A(z,b), s) is holomorphic at s = 0 (Proposition 5.1).
Now the same inductive argument proves Theorem 1.2 for the case of m =0 and
b > 1. We omit the details here.

Theorem 5.2 (case m = 0 of Theorem 1.2). Let G, be a symplectic group or
F-quasisplit orthogonal group. Assume that the irreducible unitary cuspidal auto-
morphic representation T of GL,(A) is self-dual. Then the normalized Eisenstein
series EZI;* (Pa(z,p), 8) is holomorphic for Re(s) > 0 except possibly at most simple
poles at s =sg € XZT.
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6. Residual representations and Arthur parameters

In this section, we assume that G, is either symplectic or orthogonal, since we
will use results from [Arthur 2013]. Based on Theorem 1.2, we will check the
square-integrability for the residues at 5o € X lj +.o Of the normalized Eisenstein series
EZ;* (Pa(r.p)0 - §) (including the case of m = 0) in Section 6A, and write down the
Arthur parameters for those square-integrable residual representations if they are
nonzero in Section 6B. Based on Sections 6A and 6B, we prove Proposition 4.4
using the Arthur classification [2013] of discrete spectrum. Finally, we investigate

the conditions for the nonvanishing of those residual representations.

6A. Square-integrability. We recall that P, = My ,,N,» ,, is the standard par-
abolic subgroup of G, whose Levi subgroup is isomorphic to GLZ;b X Gp,. Simply
denote by Ay := Ay, ~the set of restricted simple roots that can be described as
follows. ”

Let {e; | 1 <i < b} be the natural set of coordinates on Re aj‘uab e If G, is not

trivial, then
Ap={ei—er,er—e3,...,ep_1 —€p, €p}.

If G, is trivial, then A, = Ap, where Ag is the set of simple roots of R(Tp, Gp).

Recall the notation in Section 1.3 of [Mceglin and Waldspurger 1995]. Let ¢
be an automorphic function and let I1o(M, ¢) be the cuspidal support of ¢ along
P = MN. The cuspidal exponent Re(rr) for 7 in I1o(M, ¢) is realized as a vector
in terms of the basis {e; | 1 <i < b}. Denote the cuspidal exponent of ¢ by

e(¢) = {Re() | for all w € y(M, ¢) and for all P = MN}.

Let e(sg, b, T, 0) be the set of cuspidal exponents of the residues of the normalized
Eisenstein series EZ,;* (PA(r,h)®0, §) at s = 5o belonging to the set X ,'f,w.

By the square-integrability criterion [Mceglin and Waldspurger 1995, Lemma
1.4.11], the residues of the Eisenstein series are square-integrable if and only if each

character of cuspidal support can be written in the form

E Xo O,

OlEAM

with coefficients x, € R, x, < 0. Moreover, in our cases the criterion is equivalent
to, for all Zib:] cie; ine(sy, b, 1,0),
J
(6-1) Y ci<0 forall 1<j<b.
i=1
Theorem 6.1 (square-integrability). Let sg € C such that Re(sy) is in (0, (b+1)/2].
Assume that the normalized Eisenstein series EZL* (Paz.p)®0 §) has a simple pole
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at s = sg. Then the residue of EZZJ* (Pa(.by20, S) at so is square-integrable except
at so = (b—1)/2 in Case (3).

Proof. The theorem is proved by induction on b. The key step in the proof is
to determine the cuspidal exponents in e(sg, b, T, o) by applying the induction
formula (3-8), Lemma 2.1, and Lemma 2.2.

First, when b =1, by Section 4A, if the Eisenstein series has a pole at sg > 0, then
the cuspidal exponent of the residue of the Eisenstein series is —so and the residue
is square-integrable. By Proposition 4.1, the Eisenstein series is holomorphic at
Re(s) > 0 except at s = % or s = 1. In these cases, the cuspidal exponent of the
residues of the Eisenstein series is —so = —+ or —1. Then e(so, 1, T, o) satisfies
the condition (6-1) and the residues are square-integrable. Hence, the statement is
true for b = 1.

Next, we assume that the statement holds for b — 1 and show that it is also true
for b by induction.

By the induction formula (3-8), we have to consider the cuspidal exponents of

the two terms
L@+ 1,7 0V ELE (s + )
and
L(s. . p ) ELE (s = b).

If (b —1)/2 < Re(s) < (b + 1)/2, the first term Ej;,"} (-, s+ 3) is holo-
morphic. Since b > 2 and EZZJ* (Pa(r.p)20, $) has a pole at sy, the second term
EZ(_[)“_T)( .S = %) has a pole at so. By Lemma 2.2, the set e(sg, b, T, o) of the
cuspidal exponents equals

b—1
{(—So— ) ,Cl,...,Cb,1>‘(Cl,...,bel)Ee(S()—%,b—l,‘L’,O')}.

By induction, e(so — %, b—1,r1, cr) satisfies the condition (6-1). It follows that
e(so, b, T, 0) also satisfies the condition (6-1). Hence the residue of the Eisenstein
series EZé* (Pa(r.p)20- S) at sp is square-integrable.

Next we consider the points at 0 < Re(s) < (b — 1)/2. By the normalized
induction formula (3-8), Lemma 2.1, and Lemma 2.2, the set of cuspidal exponents
e(so, b, T, 0) is a subset of the union

—1

(6-2) {(so— b ,cl,...,cb_l)|(c1,...,cb_l)ee(so—l—%,b—l,t, a)}

b—1
U{(—so— 5 ,cl,...,cb,1>‘(cl,...,cb,l)Ee(so—%,b—l,f,a)}.

When s = %, the set e(so — %, b—1,1, O’) needs some explanation. If sg = % and
EZ(;“_T) (Pa@b—1@os S — %) in the second term vanishes at s = sg, then the second
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term is holomorphic at s = % Hence we do not need to consider this set of cuspidal
exponents when we only consider the square-integrability for nonzero residues. On
n—a,x*

the other hand, if Ea(b_’l) (gbA(,,b,l)@U, s — %) in the second term does not vanish

at s, by Section 1B, then the cuspidal exponent of EZ(;‘ET)(- ,s— %) atsg is
2—b 4—b b-2

1
€(S0—§,b—1,'[,0'):{(T,T,...,T)}.

When sg = (b — 1)/2 in Case (3), the residue of the first term of the normalized
induction formula is nonzero due to the nonvanishing of the residue of

EZ(;T) (DAa.o-1@osS)

at s = b/2 in Theorem 6.2. Then e(sg, b, T, o) contains the set

b—1
{(So— S ...,Cb—l) | (c1, v ep-) €e(so+ 5. b— 1, r,cr)},
which does not satisfy the condition (6-1), but satisfies Zl]: ¢ <0.

When sg = (b — 1)/2, but not in Case (3), then the first term in the induction
formula, E Z(_b“_ T)( .S+ %), is holomorphic at s = (b — 1) /2. Thus, only the second
term EZ(;‘I_T)( S — %) has a possible pole at s = (b — 1)/2. Then e(so, b, T, o)
equals

b—1
{(—So—T,C1,...,Cb—1)|(01,-..,Cb—l)Ge(so—%,b—l,f,a)},

whose vectors satisfy the square-integrability criterion.

For so < (b — 1)/2, we have s) — 2 < (b —2)/2 and so + 3 < b/2. Since
—so—(b—1)/2 <0and so—(b—1)/2 <0, by induction, each vector in the set (6-2)
satisfies the square-integrability criterion. This completes the proof. ([

6B. Arthur parameters. From Theorem 6.1, the residual representations of G, (A)
generated by the residues of the (normalized) Eisenstein series E Zl;* (Pa@.p)00> S)
at s = so belonging to the set X ;m belong to the discrete spectrum of the space of
automorphic forms on G, (A), except one case when sy = (b — 1)/2 for Case (3).
Denote the residual representation by € a (. »)®s.so-

We will figure out the Arthur parameters for those square-integrable residual rep-
resentations € A (z,p)g0.s, if they are nonzero. Note that the nonvanishing conditions
for those residual representations will be studied in the next subsection. We do this
case by case for sy € Xl':r’g.

We assume o is an irreducible cuspidal automorphic representation of G, (A)
with tempered global Arthur parameter v, [2013].

Case (1): In this case, when m > 0, the irreducible unitary cuspidal automorphic
representation t of GL,(A) has the property that L(s, 7, p) has a simple pole at
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s =1 and L(%, T X 0) # 0, where p is the symmetric square representation of
GL,(C) if G,, = SOy,41, and is the exterior square representation of GL,(C) if G,
is Sp,, or SO»,.

We consider the residual representation € A (¢, p)gq0,5o Of Gn(A) at so=(b—2j)/2
with j =0,1,...,[(b —1)/2]. According to [Arthur 2013], the global Arthur
parameter  attached to the residual representation € (¢ p)go,s, Of G (A) is

(6-3) Y = Yawbesb-2j2 = (1,26 — ) B(z,2)) B,

with j =0, 1,...,[(b—1)/2]. Note that when G, is SOy, 1, T is of orthogonal
type; and when G, is Sp,,, or SOy, T is of symplectic type. Thus YAz p)g0,(b—2)/2
is a global Arthur parameter for G,. When m = 0, we have
(r,2(b—j)H(r,2)) if Gn # Spyy,»

Y = YA@h)®o, (-2 :{ : i i
A(T,b)®0,(b—2j)/2 (-L—,2(b—J))EB(T,2J)EH(lGL1(A)’1) lfGnZSpZn'

Case (2): This case is the same as Case (1), and the only difference is that so =
(b—2j)/2with j =1,2,...,[(b—1)/2]. Hence when m > 0, the global Arthur
parameter V attached to the residual representation € (¢ p)go,s, Of G (A) is

(6-4) Y = Yawbesb-2j2 = (1,206 — ) B(z,2)) B,
with j =1,2,...,[(b—1)/2]; and when m = 0, we have

(r.2(b— j)) B (z,2)) it G, # Spy,,
(t,2(b—j)) B (r,2j))B (gL, 1) if G, =Sp,,.

Case (3): In this case, when m > 0, the irreducible unitary cuspidal automorphic
representation T of GL,(A) has the property that L(s, 7, o) has a simple pole at
s =1 and L(s, T x o) also has a simple pole at s = 1, where p~ is the exterior
square representation of GL,(C) if G, = SO»,+1, and is the symmetric square
representation of GL, (C) if G, is Sp,,, or SO,,,. Following [Arthur 2013], the global
tempered Arthur parameter for the irreducible cuspidal automorphic representation
o is

(6-5) Vo = (z, DEY/,

where v/’ is a global Arthur parameter that is the complement of (z, 1) in v,
We consider the residual representation € (¢, p)g0,5, of G, (A) at

_b+1-2j

2

with j =0,1,...,[b/2]. According to [Arthur 2013], the global Arthur parameter
Y attached to the residual representation €A (r,p)@0,s, 0f Gn(A) is

(6-6) V = Va@beo,b+1-2j)2 = (1,20 +1-2)B (r,2j — 1) B,

Y = VA@ bhoo,(b-2j)/2 = {

S0



POLES OF CERTAIN RESIDUAL EISENSTEIN SERIES OF CLASSICAL GROUPS 117
with j =2,3,...,[b/2]. If j =0, we have

(6-7) ¥ =Yachee s = (020 + DBEY"

Note that when j = 1, the residual representation € Az p)®q,s=(b—1)/2 Of G, (A)
is not square-integrable (Theorem 6.1). Note that when G, is SOy, 41, T is of
symplectic type; and when G, is Sp,, or SOy,, T is of orthogonal type. Hence
YA(e,b)®o,(b—2j)/2 With j =0or j =2,3,...,[b/2] is a global Arthur parameter
for G,,.

When m =0, this case only occurs if @ = 1 and t is the trivial representation of
GL{(A). If j =2,3,...,[b/2], we have

VY = Ya@beo,b+1-2j)2 = (T, 20+ 1=2j) B (7, 2j — ) BH (oL, a), D.
If j = 0, according to the definition of the four cases, G, must be Sp,, and
¥ =Va@bhoo,m+)2 = (T,2n+1).
Case (4): This case is similar to Case (3). The only difference is that
b+1-2j
=

with j = 1,2,...,[b/2]. Hence when m > 0, the global Arthur parameter
attached to the residual representation € A (r,p)®o.s, Of G, (A) is

(6-8) Y =VAa@bhoo,b+1-2j)2 = (T,2b+1—=2j)B (r,2j — 1) By,

with j =1,2,3,...,[b/2], and when m = 0, we have

50

VY = YA(.b)®o,(b+1-2j)/2
_{(r,2b+1—2j)EB(r,2j—1) if G, # Spa,.
(t.2b+1-2/)B(1,2j — DB (lgL,@, 1) if Gy = Spy,.

Note that the residual representation €z p)@o, b—1)/2 0f G, (A) (j = 1) in this case
belongs to the discrete spectrum of G, (A).

6C. Proof of Proposition 4.4. Proposition 4.4 follows from the discussion on
square-integrability in Section 6A and the discussion on the global Arthur param-
eter in Section 6B. In fact, if there is an sy such that 0 < Re(sg) < %, such that
the normalized Eisenstein series EZE;* (@A(r,h)20, §) has a pole at s = 5o, then by
Theorem 6.1, the residue at s = sy must be square-integrable, and hence the residual
representation contributes to the discrete spectrum. On the other hand, by the Arthur
classification [2013] of the discrete spectrum, there is no global Arthur parameter
for G, that parametrizes such a residual representation. Hence the normalized
Eisenstein series EZL* (PA(z.b)20 > §) must be holomorphic at 0 < Re(s) < % This
proves Proposition 4.4.
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6D. Nonvanishing conditions. When b = 1, the nonvanishing of the residues of
the normalized Eisenstein series has been discussed in Proposition 4.1. In the
following, we assume that b > 1.

For s = 59 € X" bt.oo the normalized Eisenstein series EZ,;* (Pa(r.p)oo, $) has a
pole at s = s if one of its constant terms has a pole at s = s9. The normalized
induction formula (3-8) says

E b (Pago, $)((La, 1))
b+l

=L(2s+1,7,p7" )Eaolty (o1 i b0, 5+ 3) ()

L(2s,, ,o(_)bﬂ)

£,(s)

El T (Mg o N, ). s — 5) ().

Hence so has the property that so € (X;_, ., +3) U (X, ., —3) and 5o > 0.
By the discussion of the global Arthur parameters in Section 6B, if both

El,01 (cipain_gbo. s+ 5) ()

and
Eltt (Mo N, ), s — 3)(h)

are nonzero, they cannot be proportional to each other since they have different
Langlands parameters. Hence the problem reduces to verifying the nonvanishing
of either of the two terms. Note that from the definition, both A_j»i;_,¢o and
Ap(y_, o N(w, -))¢ give general sections in the corresponding space, respec-
tively Therefore, the existence of the poles of the normalized Eisenstein series

ab (¢A(r b)®o,S) at § € X+ br.o follows from the existence of the poles of the
normalized Eisenstein series Ea(b_l)(qﬁA(,,b_l)@(,, s)ats e X;r_l’w.

By repeating the argument, this reduces to the case of b being as small as possible.
The discussion will be given for each of the four cases.

Case (1): In this case, the irreducible unitary cuspidal automorphic representation
7 of GL,(A) has the property that L(s, 7, p) has a simple pole at s = 1 and

L(% T xo) #£0,

where p is the symmetric square representation of GL,(C) if G,, = SOy,41, and
the exterior square representation of GL,(C) if G, is Sp,,, or SO»,. In this case,
the smallest possible value of b is b = 1. The existence of the pole at the only value
s = % is treated in the first case in Proposition 4.1.

Case (2): In this case, the irreducible unitary cuspidal automorphic representation
7 of GL,(A) has the property that L(s, 7, p) has a simple pole at s = 1 and

L(z, T xa) 0,
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where p is the symmetric square representation of GL,(C) if G,, = SOy,41, and
the exterior square representation of GL,(C) if G, is Sp,,, or SO»,. In this case,
the smallest possible value of b is b = 3, which leads us to consider the existence
of the pole at s = % The normalized induction formula is

Ey'p (faso- $)((La, )
=LQs+1,1,0)Ey, " (Ao1ppif_odo. 5+ 5)(h)

L(2s, 1, p) g
W E} " (hip(if_, o N(w, - )@, s — 3)(h).

It follows from Theorem 1.2 that the first term

L@2s+ 1,1, p)ES, “*(Ao1ppif_ 0, s+ 1) (h)

is holomorphic at s = 2, since L(2s +1, 7, p) is holomorphic at s = 5 Land s+ 3 ;=1
does not belong to the empty set X + ., in the case of the normalized Eisenstein
series E (k 1200 _oP0, s+ )(h)

The second term

L(2s, 1, p) e
W ES (M, o N(w, - )@, s —3)(h)

has a simple pole at s = % if and only if the normalized Eisenstein series

ES M (Pat2z0:S)

is not identically zero at s = 0.

Case (3): In this case, the irreducible unitary cuspidal automorphic representation
7 of GL,(A) has the property that L(s, 7, p~) has a simple pole at s = 1 and
that L(s, T X o) also has a simple pole at s = 1, where p~ is the exterior square
representation of GL, (C) if G,, = SOy, 41, and the symmetric square representation
of GL,(C) if G, is Sp,,, or SOy,. In this case, the smallest possible value of b is
b = 1. The existence of the pole at the only value s = 1 is treated in the second
case in Proposition 4.1.

Case (4): In this case, the irreducible unitary cuspidal automorphic representation
T of GL,(A) has the property that L(s, 7, p~) has a simple pole at s = 1 and
L(s, T x 0) is holomorphic at s = 1, where p~ is the exterior square representation
of GL,(C) if G, = SOy,+1, and the symmetric square representation of GL,(C) if
G, is Sp,, or SOy,. In this case, the smallest possible value of b is b = 2, which

leads us to consider the existence of the pole at s = % The normalized induction
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formula is

ES'p (age.$) (L 1))
=LQs+ 1,70 ) E; " (1 pii_abs s +3) (1)

L2s,T,07) __ux . B

—— T Eg " (aply_g o N, ). s — 3) (h).

82(3)

It follows from Theorem 1.2 that the first term

LQs+1,7, p ) E) “* (A 1pif_,b0.5+3)

is holomorphic at s = % with the same argument as in Case (2). The second term

L(2s,t,p7)
&5(s)
has a simple pole at s = % if and only if the normalized Eisenstein series
E; " (¢rgo, )

does not vanish identically at s = 0.
The above discussion leads to the following theorem.

El=*(Mya(if_, o N(w, N, s — %)

Theorem 6.2. With the notation above, the following hold.
(1) Assume that L(%, T X 0) £ 0and L(s, T, p) has a simple pole at s = 1. The
normalized Eisenstein series
El S (A pygos S)

has a simple pole at each s € X;7_ _, which is defined in Case (1).

b,t,0°
(2) Assume that L(%, T X a) =0and L(s, T, p) has a simple pole at s = 1. The
normalized Eisenstein series

ElS (Pabygos S)

has a simple pole at each s € le,r,a’ which is defined in Case (2), if and only
if the normalized Eisenstein series

ES " (Pac2z0:S)
is not identically zero at s = Q.

(3) Assume that L(s, 1, p~) and L(s, T X o) have a simple pole at s = 1. The
normalized Eisenstein series

ElS (Pacbygos S)

has a simple pole at each s € X;I’U, which is defined in Case (3).
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(4) Assume that L(s, T, p~) has a simple pole at s = 1 and L(s, T x o) is holo-
morphic at s = 1. The normalized Eisenstein series

El (A bygos S)

has a simple pole at each s € X, _ _, which is defined in Case (4), if and only

b,t,0°
if the normalized Eisenstein series

EZ_LL*(()Z&T@O' ’ S)
does not vanish identically at s = 0.

Remark 6.3. The nonvanishing results may also apply to the case of m = 0 accord-
ingly, but we omit the discussion here. Finally, it is natural to expect that the results
discussed in this section hold for quasisplit unitary groups.
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HARMONIC MAPS ON DOMAINS WITH
PIECEWISE LIPSCHITZ CONTINUOUS METRICS

HAIGANG L1 AND CHANGYOU WANG

We study harmonic maps (2, g) — (N, h), where  C R” is a bounded
domain divided into two pieces, the Riemannian metric g is Lipschitz in
each piece, and (N, h) is a closed Riemannian submanifold of R*. We prove
the partial regularity of stationary harmonic maps, and the global Lips-
chitz and piecewise C!'“-regularity of weakly harmonic maps from (2, g)
to manifolds (N, i) that support convex distance square functions.

1. Introduction

Throughout this paper we assume that Q@ = QT U Q™ UT is a bounded domain of
R" decomposed into two subdomains Q* and Q~ by a C!:!-hypersurface I', and
that g is a piecewise Lipschitz metric on €, satisfying g € C*1(Q") N C%(Q™)
and discontinuous at every x € I'. For example, let 2 = B; C R” be the unit ball,
=B N{x=(x",0) € R"}, and

g0 ifxe B ={x">0}NBy,

() = {kgo ifx € Bl ={x" <0}N By,

where go is the standard metric on R" and k (# 1) is a positive constant. Let
(N, h) — R¥ be an [-dimensional, smooth compact Riemannian manifold without
boundary, isometrically embedded in the Euclidean space R*.

Motivated by the recent studies on elliptic systems arising from composite
materials (see [Li and Nirenberg 2003]) and the periodic homogenization theory in
calculus of variations (see [Avellaneda and Lin 1987] and [Lin and Yan 2003]), we
are interested in the regularity issue of harmonic maps from (€2, g) to (N, h).

In order to describe the problem, let’s recall some notations. Throughout this
paper, we use the Einstein convention for summation. For the metric g = g;; dx’ dx/,
let (g7) = (g,-j)_l, and dv, = /g dx(= ,/det(g;;) dx) be the volume form of g.
For 1 < p < +00, define the Sobolev space

Whr (@, N)={u: Q>R |u(x)eNae. xeQ, E,(u, g) = [, |Vulg dvg < oo},

MSC2010: 35350, S8E20.
Keywords: piecewise continuous metric, harmonic map, regularity.
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.. [du  du
Vul? =¢ (=, 2=
| Mlg § <8x,- an>

where

is the energy density of u with respect to g, and (-, - ) denotes the inner product in
R¥. Denote W'2(2, N) by H (€2, N). Now let’s recall the definition of stationary
harmonic maps.

Definition 1.1. A map u € H'(2, N) is called a (weakly) harmonic map if it is a
critical point of E»( -, g), i.e., if u satisfies

(1-1) Agu~+ Au)(Vu,Vu)g =0 in Q
in the sense of distributions. Here
1 0 .0
A= = ij_ o
¢ Jgox (\/§g 0%, )

is the Laplace—Beltrami operator on (€2, g), A(-)(-, -) is the second fundamental
form of (N, h) < RK, and A(u)(Vu, Vu), = g"/ A(u)(du/dx;, du/dx;).

Definition 1.2. A (weakly) harmonic map u € H'(Q, N) is called a stationary
harmonic map if, in addition, it is a critical point of E,( -, g) with respect to the
following domain variations:

(1-2)

d
-~ / IVu!'|> dvg =0, with u'(x) =u(F,(x)),

where F(t, x) := F;(x) € C'([-38, 8], C1(R, Q)), for some small § > 0, is a family
of diffeomorphisms that satisfies

Fo(x) =x for x € Q,
(1-3) F,(x)=x for (x, 1) € 9Q x [, 8],
F(QF) cQF forte[-8,6].

In particular, F;(I') C I" for 0 <t <.

It is readily seen that any minimizing harmonic map from (€2, g) to (N, h) is a
stationary harmonic map. Definition 1.2 implies that a stationary harmonic map on
(2, g) is a stationary harmonic map on (Q¥, g). Since g € C% 1(Q%), we can see
that u satisfies an energy monotonicity inequality on %. We will show in Section 2
that a stationary harmonic map on (€2, g) also satisfies an energy monotonicity
inequality in I" under the condition (1-4) below.

The first result is concerned with the (partial) Lipschitz and (partial) piecewise
C!-%_regularity of stationary harmonic maps. In this context, we are able to extend
the well-known partial regularity theorem of stationary harmonic maps on domains
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with smooth metrics, due to Hélein [2002], Evans [1991], and Bethuel [1993]. More
precisely:

Theorem 1.1. Let u € H'(Q, N) be a stationary harmonic map on (2, g). Suppose
that g satisfies the following jump condition on I" for n > 3: for any x € ', there
exists a positive constant k(x) # 1 such that

(1-4) lim g(y) =k(x) lim g(y).
yeQt yeQ™
Yy—>x V—>Xx

There exists a closed set ¥ C Q, with H""2(X) = 0, such that u € Lip,..(Q2\ Z, N),
and for some 0 <o < 1,u € Cl’”{((QjL UD)\Z,N)N Cl’“((Q* UD)\ X, N).

loc loc

The jump condition is needed for both energy monotonicity inequalities for u
and the piecewise C!“-regularity of u.

We point out that in dimension n = 2, since the energy monotonicity inequality
automatically holds for H'-maps, Theorem 1.1 holds for any weakly harmonic
map from domains of piecewise C%!-metrics, i.e., any weakly harmonic map
on domains with piecewise Lipschitz continuous metrics satisfying (1-4) is both
Lipschitz continuous and piecewise C'* for some 0 < o < 1.

Weakly harmonic maps from domains with smooth metrics into Riemannian
manifolds may not enjoy partial regularity properties in dimensions n > 3; see
[Riviere 1995]. Here we consider weakly harmonic maps on domains with piece-
wise Lipschitz continuous metrics into a Riemannian manifold (N, &), on which
dlzv( -, p) is convex for p € N. Such Riemannian manifolds N include those with
nonpositive sectional curvatures and geodesic convex balls in Riemannian manifolds.
In particular, we extend the classical regularity theorems on harmonic maps on
domains with smooth metrics, due to [Eells and Sampson 1964] and [Hildebrandt
et al. 1977].

Theorem 1.2. Let g satisfy the conditions of Theorem 1.1. Assume that on the
universal cover (ﬁ , ﬁ) of (N, h),! the square of distance function d?\;( -, p) is convex
forany p € N. Ifu € HY(Q, N) is a weakly harmonic map, then u € Lip;,. (€2, N),
and for some 0 <o < 1, u € Cp¥(QTUT, N)NCLY (R~ UT, N).

The idea for the proof of Theorem 1.1 is motivated in [Evans 1991] and [Bethuel
1993]. However, there are several new technical difficulties:

(i) Establishing an almost energy monotonicity inequality for stationary harmonic
maps in (€2, g). This is achieved by observing that an exact monotonicity
inequality holds at any x € I', see Section 2 below.

'Here the covering map I1: N — N is a Riemannian submersion.
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(i1) Establishing a Hodge decomposition in L? (B, R"), for any 1 < p < 400, on
a ball B = B, (0), equipped with certain piecewise continuous metrics g. More
precisely, we need to show that the solution of

ad v . .
8—x[.<(l,llgj) —lef m B,

v=0 on dB
enjoys a W!-P-estimate: for any 1 < p < +o0,

IVvllzrey < Cll fllLrp)

provided that (a;;) € C(ﬁ) N C(B?) for some § > 0, is uniformly elliptic, but
is discontinuous on d B \ B®, where B® = {x € B :dist(x, 0B) < 8}. This
follows from a recent theorem in [Byun and Wang 2010; Dong and Kim 2010];
see also [Dong and Kim 2011a; 2011b] and Section 3 below.

(iii)) Employing the moving frame method to establish the decay estimate in suitable
Morrey spaces under a smallness condition, analogous to [Ishizuka and Wang
2008]. To obtain Lipschitz and piecewise C!-*-regularity, we compare the har-
monic map system with an elliptic system with piecewise constant coefficients
and perform a hole-filling argument, similar to [Giaquinta and Hildebrandt
1982].

The paper is organized as follows. In Section 2, we derive an almost energy
monotonicity inequality. In Section 3, we show the global W7 (1 < p < 00)
estimate for elliptic systems with certain piecewise continuous coefficients, and a
Hodge decomposition theorem. In Section 4, we adapt the moving frame method of
[Hélein 2002] and [Bethuel 1993] to establish an e-Holder continuity. In Section 5,
we establish both Lipschitz and piecewise C!¢ regularity for Holder continuous
harmonic maps. In Section 6, we consider harmonic maps into manifolds supporting
convex distance square functions and prove Theorem 1.2.

2. Energy monotonicity inequality

This section is devoted to the derivation of energy monotonicity inequalities for
stationary harmonic maps from (€2, g) to (N, h).

Theorem 2.1. Under the same assumptions as in Theorem 1.1, there exist C > 0
and ro > 0, depending only on 2, I', and g, such that if u € WL2(Q, N) is a
stationary harmonic map on (2, g), then for any xo € €2, there holds

(2-1) sz_”/ |Vu|§dug§ec’r2—"/ \Vul} dv,
B;(x0) By (x0)

forall 0 < s <r < min{rg, dist(xg, d€2)}.
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Since g € CO1(Q1), there are C > 0 and ry > 0 such that (2-1) holds for any
xo € QT and 0 < s < r < min{ro, dist(xg, dQT)}; see [Hélein 2002]. In particular,
(2-1) holds for any xo € Q\I'" and 0 < s < r < min{ry, dist(xg, 0€2)}, where
' ={x e Q: dist(x, I') <rg} is the rg-neighborhood of I". To show (2-1) for
xo € ', it suffices to consider the case xg € I.

It follows from the assumption on I'" and g that there exists o > 0 such that
for any xo € I' there exists a C'!-diffeomorphism ® : B; — B, (xg), where
r1 = min{rg, dist(xg, 0€2)}, such that

Do(BY) = Q* N B, (x0),
®o(I'1) =I'N By, (xp), where I'y = {x € By : x, =0}.

Define it(x) = u(®o(x)) and g(x) = ®;(g)(x) for x € By. Then it is readily seen
that g is piecewise C*!, with T as its discontinuity set, and satisfies (1-4) on I';.
(In fact, since

o ID)

0
@(8)ij () = gu (Po(x) 52 (1) (x),
i J

condition (1-4) implies that
lim ®gg(y) = k(Po(x)) lim pg(y)
yeQt yeQ~
y—>Xx y—x
for any x e I'1.) It is also easy to see that, if u : (B,, (xo), g) = (I, h) is a stationary
harmonic map, so u : (By, g) — (N, h).
Thus we may assume that Q = By, that g is a piecewise C*!-metric which
satisfies (1-4) on the set of discontinuity I'y, and that u : (By,g) — (N, h) is a

stationary harmonic map. It suffices to establish (2-1) in By,,. We first derive a
stationarity identity for u.

Proposition 2.2. Let u € WLY2(B, N) be a stationary harmonic map on (B, g).
Then

du B
(2-2) (2g'1<8—” —u>Yik—|Vu|§,div Y)@dx
B

xXr 0x;
0 . ou Ou
[ e (Y

B, 0xk
forallY = (Y', ..., Y"1, Y") € C}(By, R") satisfying

>0 forx" >0,
(2-3) Y'"(x){=0 forx" =0,
<0 forx" <0,

where Y = 8Y*/3x; and divY = Y""_, 8Y' /dx;.
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Proof. Let Y € Cé (B1, R") satisfy (2-3). Then there exists § > 0 such that F;(x) =
x+1tY(x), t €[4, 4], is a family of diffeomorphisms from B to B; satisfying
the condition (1-3). Hence

d
0=—

dt

d

~dr

2
oty [Vu(F ()|, dvg

~ 0(/ |Vu(F, ()|} dvg + /]_|Vu(F,(x))|§dvg).

Set G, = Ft_ , for t € [-4, §]. Direct calculations yield

d
dt

/ IV(u(Fz(x))| dvg

/ Velx +1Y(x) g”(x—i—tY(x))< >
t=0 X1

X (1Y (1)) ki + 1Y) () +1Y)) dx
—/ Vex)g (x) Du ou S Y 48, Y5 dx
= Bli 8 8 8xk9 8)([ ki j 1jL
d i ou Ju
+ / —|  (87(G(x)VE(G(x)IG (X)) —, — ) dx
*df +=0 ax; 3Xj
Ju OJu [ du Ju
= 2 Yyl — gl divy d
/B¢<g <axl ax1> im8 <ax,- ax1> v )f !

ou Ou
ij
/i axk(‘/_g )Y <a ax,>dx’

t=0

~dr

where we have used the equalities

d o
a7 z:oJG'(x) = —divY,
d [
o _ G = -y,
d 14 4
7o (87 (G 0)VE(G () = (fgf)
This completes the proof. (]

Proposition 2.3. Let u € WLY2(B, N) be a stationary harmonic map on (B, g).
There exists C > 0 such that:

(i) For any xo = (x(’), xy) € Bijp \ Ty, there exists 0 < Ry < min{%, Ix(';l} such
that

(2-4) rz_”/ |Vul; dv, < eCRRz_”/ |Vul}dv, if 0<r <R <Ry.
B, (x0) Bgr(x0)
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(ii) For any xo € B2,
(2-5) rz_"/ \Vul} dvg < eCRR2—"/ \Vul;dv, ifO<r <R<jy.
B, (x0) Br(x0)

Proof. (1) By choosing Y € Céx’(BJr, R") or Y € C°(B; , R"), we conclude that
u is a stationary harmonic map on (B, g) and ( B[, g). Hence the monotonicity
inequality (2-4) holds; see [Hélein 2002].

(i1) Step 1. We first consider the case where xg € I';. Without loss of generality, we
can assume that xo = (0/,0). Fore > 0and 0 < r < 3, let Ye(x) = xne(x), where
ne(x) = ne(|x|) € C3°(By) satisfies

2 1 forO<s<r—e
2- <n <1 "< 1< = = -7 = ’
( 6) 0_776_ ’ 775_0’ |77€|_6, 775(5) :0 fOI'SZI".
Then
j , xixj
(2-7) (Yeo); :8ij776(|x|)+77€(|x|)W-

Substituting Y, into the right side of (2-2), and using

2 (vae)
Xk

[, G (EE () ax

<C for a.e.xe B \TIy,

we have

(2-8)

<Cr/ |Vul? dx

< Cr/ |Vu|gdvg.
B,

Substituting (2-7) into the left side of (2-2), we obtain

ou 9
(2-9) <2gu <_” _“> (Yo — |Vu? div Y€)J§dx
B ox; dx

=<2—n>/B |Vu|§ne<|x|>¢§dx—/ L ACONES
J
+/B 24 <8u 8u>xx w1 vz dx.

dx; dxg[ |x|

Define g by
_( / xn) — hmy*)()’ >0 g(y) if x" > O,
limy_o, yr<0g(y) if x" <O.

Then we have

(2-10) lg(x) —g(x)| < C|x| forall x € B;.
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Further, by (1-4) we can assume

= go if x" >0,
gx) = o
kgo if x" <0 (k#1).
Hence we can write
. [ou OJu
B, ax;  Oxp | | V8
where
o ou du \ xkxJ
I =2 olJ d
‘ /Blg <ax, 8x> x| Ne(1x)y/g dx,
. du  du \ xkxJ
II =2 iy _ _l] d
‘ Bl(g )<3x, axk> x| Te(l¥D/g dx.
Since
_,-j<8u ou >xkxj _ |x||8u/ar|2 if x" >0,
ox;  dxe| 1xI | (1/K)Ixllou/or? i x" <0

is nonnegative in B; and 7. (|x|) <0, we have I. <0. For II, by (2-10) we have

(2-12) 1| < Crz/ \Vuly [n.1(1x]) dvg.
B,

Putting these estimates first into (2-11) and then into (2-9), and finally combining
(2-9) and (2-8) with (2-2), we obtain, after taking € to zero,

(2-13) (2—n)/B |Vu|§dvg+r/33 \Vul} JgdH"™!

z—C(r/ |Vu|§dvg+r2/ |Vu|§¢§dH"—1).
B, 3B,

It is not hard to see that (2-13) implies

d
— <eC’r2—"/ |Vul|? dvg> > (),
dr B, §

so that (2-5) holds when x¢ € By >.

Step 2. To show (2-5) in the general case, it suffices to consider xo € By2 \ I'1 such
that

|Br(x9) "B >0 and [Bg(xo)NB;|>0.

For simplicity, assume xo € B, . We consider two cases:
Suppose d(xo, I'1) = |x;| > }LR. Then:
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e IfR>r> }‘R, it is easy to see that

rz_"/ |Vul} dv, < 4”_2R2_”/ |Vul? dv,.
B, (x0) Br (x0)

e If0<r < %R (< d(x0,T'1)), we have Bg/s(xo) C B, so (2-4) implies

2-n 2 cr (R\*™" 2
r / Vul2dv, < e (5) / Vul? dv,
By (x0) B

R/4(xX0)
< eCRR“/ |Vl dv,.
Br(x0)
Suppose instead that d(xo, I'1) = |xg| < %R. Then:

. IfRZrZ}tR,then

rz_"/ |Vul; dvg < 4"—2R2—"/ \Vul; dv,.
B, (x0) Br(x0)

e If0<r < d(xo, ') = |xg] < }LR, then by setting xo = (xol, .. .,xg_l, 0) we
have

By (x0) C Byxz(x0) C Bajx(X0) C Brj2(X0) C Br(x0),

so that (2-5) yields

r2—"/ |Vul} dvg < |x6’|2_”/ |Vul} dvg
By (x0) By (xo)

<22 [ vuldy,

Bz\xg | (%0)

2—n
< 21-2,CR (B) / IVul3 dvg
2 Brya (i)

< eCRRz_”/ Vul? dv,.
Br (x0)

« If d(xo, ) (= |x}]) < r < 1R, then we have

B, (x0) C Bar(x0) C Bgrj2(xo) C Br(x0),



134 HAIGANG LI AND CHANGYOU WANG

so that (2-5) yields

rz_"/ |Vu|§dvg52"—2(2r)2—"/ Vul} dv,
B, (x0) Bor (X0)

2—n
<2k () / Va2 dv,
2 BR2(xo)

§eCRR2_”/ |Vul? dv,.
Bg(x0)

Therefore (2-5) is proved in all cases. [l

3. WlP_estimate for elliptic equations with piecewise continuous coefficients

In this section, we will provide the global W!-7-estimate for elliptic equations with
piecewise continuous coefficients. The proof is a slight modification of that of
[Dong and Kim 2010] (see also [Dong and Kim 2011a; 2011b]) or [Byun and
Wang 2010]. As a corollary, we will establish the Hodge decomposition theorem
(Theorem 3.2) for piecewise continuous metrics g, a crucial ingredient to prove
Theorem 1.1.

For a ball B = B,(0) C R", set B = {x € B : dist(x, dB) < €} for € > 0. Let
(aij(x))1<i,j<n be bounded measurable, uniformly elliptic on B; i.e., there exist
0 <A <A < +00 such that

(3-1) AE? < a,-j(x)gf‘gg <Al¢> ae.xe B forall £ e R".

Theorem 3.1. Assume (a;;) satisfies (3-1), and there exists € > 0 such that (a;;) €
C(ﬁ) N C (B¢) and is discontinuous on dB™ \ B¢. For p € (1, +00), let f €
LP(B,R"). Then there exists a unique weak solution v € Wol’p(B, R™) to

0 (v _dfi
2 <a”8xj)_28 in B,

(3-2) iy 9xi 70X

u=0 on oB,
that satisfies
(3-3) IVullzrgy < C N fllLeca)

for some C > 0 depending only on p and (a;;).

Proof. By (3-1), we see that for any § > 0, there exists R = R(6) > 0 such that
the coefficient function (a;;) satisfies the (8§, R)-vanishing of codimension-one
conditions (2.5) and (2.6) of [Byun and Wang 2010, p. 2562]; see also [Dong and
Kim 2010; 2011a; 2011b]. In fact, we have

lim  max ai;(x', x") —aij (x4, x| ;o ;o =0
P10 xo=(x).xy)eB Jai Y liaa g
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Therefore Theorem 3.1 follows directly from [Byun and Wang 2010, Theorem 2.2,
p. 2653]. U

As an immediate consequence of Theorem 3.1, we have the following Hodge
decomposition on B equipped with certain piecewise continuous metrics g.

Theorem 3.2. Let g be a piecewise continuous metric on B such that g is continuous
on BT and on B® for some § > 0, and is discontinuous on dB* \ B®. Then for any
pe(,400)and F = (Fy,..., F,) € LP(B,R"), there exist G € Wé’p(B) and
H e L?(B, R") such that

(3-4) F=VG+H, div§H<:—Ta—( ‘gUH)) in B.

Further, there exists C = C(p, n, g) > 0 such that
(3-5) IVGllrgy +I1HILrgy < CIIF I Lrsy -
Proof. For 1 <i, j <n,seta;; = /28" on B. Then (a;j) satisfies the conditions

of Theorem 3.1, so that there exists a unique solution G € Wol’p (B) to

0 (208 L (g
(3-6) 0x; <‘/§g 3%) = gy (VEEIE) B,
G=0 on 0B,

and
IVGlios < C |25 Fjl

Set H = F — VG. Then we have
G
div-H_— g (F-——)):O on B,
8 \/_axl ([ J axl

||H||Lp(31/2) = ||F||Lp(31/2) +IVGllLrgy = C I FllLrs) -

LP(B) = c ”F”LP(B) .

and

This completes the proof. (]

4. Holder continuity

In this section, we will prove that any stationary harmonic map on (By, g), with
g€ CO’I(BIjE UT), is Holder continuous provided that || B, |Vu|§, dvy is sufficiently
small. The idea is based on suitable modifications of the original argument in
[Bethuel 1993] (see also [Ishizuka and Wang 2008]), thanks to both the energy
monotonicity inequality and the Hodge decomposition theorem established in the
previous two sections. More precisely:
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Theorem 4.1. There exist g > 0 and ag € (0, 1), depending only on n, g, such
that if the metric g € C%! (BljE UT'y) satisfies the condition (1-4) on I'y, and u €
WUL2(By, N) is a stationary harmonic map satisfying

(4-1) rg—"/ |Vul} dvg < €
Bro(x())

for some xo € Bijp and 0 < ry < zlt’ then u € C*(B,,/2(x0), N), and
(4_2) [M]CO‘U(BrO/Q(Xo)) =< C(r()a EO)-

Proof of Theorem 4.1. The proof is based on suitable modifications of [Bethuel
1993; Ishizuka and Wang 2008]. First, observe that if xo = (x(/), xp) € B*, it
follows from the monotonicity inequality (2-5) that we may assume (4-1) holds
for some 0 < rg < |xg|. Then the ep-regularity theorem in [Bethuel 1993] (see
[Ishizuka and Wang 2008] for domains with C 0-Imetrics) implies that for some
0<ap<1,uecC*(B,n(xp)) and (4-2) holds. Hence it suffices to consider the
case xo = (xé, 0) € 'y 2. By translation and scaling, we may assume xo = (0, 0)
and proceed as follows.

Step 1. Asin [Bethuel 1993; Hélein 2002; Ishizuka and Wang 2008], we assume that
there exists an orthonormal frame on u*TN |p,. For 0 <6 < %, to be determined later,
let {ea}f)l: 1 C W12(Byg, R¥) be a Coulomb gauge orthonormal frame of u*TN |p,,;
that is,

dive((Vea, eg)) =0 in By (I=a,B=<1),

l
Z/ Veq |2 dv, < c/ IVul? dv,.
a=1"Bw

By

(4-3)

For 1 <« <, consider (V ((u —uzg)n) , eq), where uzy = fBze u is the average of
u on By, and n € C;°(B)) satisfies

2
0<n<1; nm=1inBy; n=0outside Byg,4; |Vn|§§.

Define the metric g on Byy by
gx) =n(x)gx) + (1 —nx)go(x), x € By.
Then it is easy to see that
g=gonBy; g=gooutside Bygjs; g€ C(B_zj;) NC (B \ Bgsa).

In particular, g satisfies the conditions of Theorem 3.2. Hence, by Theorem 3.2, for
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1 < p<n/(n—1), there exist ¢, € Wol’p(Bzg) and Y, € LP(Byy) such that

(V((w—u)n), ea) = Voo + Vo, divg(¥y) =0 in By,

4-4)
IVGallLr By 1 WallLry) S IV U—u20)m) e (Bog) S NVUllLr(Bog)-

Since u satisfies the harmonic map equation (1-1), we have
(4-5) div, ((Vu, ey)) = g/ Viu(Vjey, eg)eg in By.
Thus we obtain

(4-6) Aghe = 87 Viu(Vjeq, eg)eg in By.
Decompose ¢, = él) + ¢§,2>, where qbél) solves

(4-7) {Ag &) =0 in By,

' =¢y, ondBy,

and d)éz) solves

(4-8) {Ag 5 =g Viu(Vjeq, eg) eg in By,

éz) =0 on 0By.

Step 2: Estimation of d)él)

E CR", by

. We will need the Morrey space defined, for arbitrary

MPPEY = { £ E >R = s (7 e 17 ] < +oo}.
r (x)CR"?

It is well-known (see [Gilbarg and Trudinger 1983]) that (/5(51) € C*(By) for some
oo € (0, 1), and forany 0 <r <6/2,

4-9) (867 e, ) S 67" /B IVoL|P dx < COP™" /B IVul? dx,
[ 20

and

(4-10) (19)”_"/ IVoD|P < CtP*||Vullyrr,y forall 0 <t <1,
BT0

Step 3: Estimation of %({2)‘ Denote by #' (R") the Hardy space on R"” and BMO(E)
the BMO space on E for any open set E C R". By (4.13) of [Ishizuka and Wang 2008,
p. 435], for p’ = p/(p — 1) > n, there exists h € Wol’pl(Bg), with ||Vh||Lp/(BQ) =1,
such that

1902 |74, =€ [ 1902, V).
0
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Using (4-8), (4-4), and the duality between %' and BMO, we show that
@1 VeP Lo, = / V88 (Viu, (Vieq, ep))(eph) dx

fg (Vieq, eg)Vi(egh)u dx
= CH \/_g V.ea’ e,3>vi (eﬂh) ||%1(Rn [M]BMO(BH)

S IIV887 (Viea. ep)ll L2cay) IV (eph) Il 123y [ BMOBY)

SVu 2By 1 VUl P.r(By) - gn/p—n/2

(Here, to go from the third line to the fourth, we used that & € WO1 P /(Bg) and that
divg(Vey, eg) vanishes in By, so ﬁgij(vjea, eg)Vi(egh) € %! (R™) and

| 88" (Vieas ep) Vilesh) ||y gy =< C |v/88" (Vieas €g) | 125, 1 Vilesm) | 25,
This last factor satisfies
IV(esm) 28,y < IVepllLasy)lnllL=(sy) + VAl Lo, 0" P"/* < COMP2
since the Sobolev embedding implies (because p’ > n) that h € C I=n/ P/(Bg) and
2]l 5,y < COTP

Finally, the estimate [u]pvo(B,) < C||Vullpmr.r(p,) is a consequence of the Poincaré
inequality.)
Putting the estimates of ¢(§ and ¢(2) together, we obtain that, forall0 <7 < 1,

1/p
(4-12) ((rmp—" / |V¢a|”dx) < C(x* +7""Peo) | Vullyrrs))-
B'[9

Step 4: Estimation of v,. Since div;(¥,) =0 on By, we have
/ Wfa@;dvg :/ (lﬁa+V¢a, wa)g dl)g
Bao By
:/ <<v((u_u26)n)’ eOl>7 W()[)gdl)g
Bog

=- (u —uz)n(Vey, o)z dvg
By

S V& 87VieaVrd |l L@ — uzp)nlpuo
S el L2y IV eall L2(B,,) [(u — u20)0]gp10

S./ ”vu “Lz(Bzg) ”Woz ||L2(Bzg) “vu ”M]?,P(Bl),
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where we have used the inequality

[ — u20)nlpmo =< C [ulpmosyy) < C IIVullprr(s,) -
This, combined with Holder’s inequality, implies
I/p
(4-13) (9”_" / Wfotlp) < Ceo [Vullprr(sy) -
By

Step 5: Decay estimation of Vu. Putting (4-12) and (4-13) together, we have that,
for some 0 < g < 1,

1/p
(4-14) ((m)”—” / |Vu|”) < C(eo+ T + "7 | Vil prrr By
Br@

forany0<t<land0<6 < % Now we claim that for some « € (0, 1), we have
(4-15) IVullpgrncs, ) < Cleo+ 7% + 1 7"Pe0) | Vil proo-n (s,

for all 0 < 7 < 1. To show this, let By(y) C B;/4. We divide into three cases:

(@) y € ByyaN B* and s < |y"|. As remarked at the beginning of the proof, for
some 0 < g < 1 we have

1/p ¢ \% 1/p
(o)) (o )
B(y) [y By (y)
s o 1/p
C( m ) ((2|y"|)p_"/ |Vu|1’>
|y"] By (y',0)

T\’ v
<c((%) / VuP ) (since |y < 7/4)
2 B.2(y'.0)

< Cleo+ Tt +1' 7€) Vullmrrs,) (by (4-14)).

IA

(b) y € By/aN B* and s > |y"|. Then B;(y) C Bjyr45(y’, 0) C Bay(y', 0). Hence

I/p 1/p
(sp—"/ |Vu|”) <2v/r-l ((2@?‘”/ |Vu|”)
Bs(¥) Bas (¥,0)

< Cleg+ 7™ +1"7"7¢0) | Vullyrongs,, (by (4-14)).
(¢) y € B;y4NTy, ie., y" =0. Then it follows directly from (4-14) that
1/p
(sp—" / |Vu|P> < Cleg+ T +1'7"7¢0) | Vatll oo s, -
B (y)

Combining (a), (b) and (c) together and taking the supremum over all B;(y) C B4,
we obtain (4-15).
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It is clear that by first choosing t and then € sufficiently small, we can arrange
that

1
IVullpger s, ) < 5 1Vullyger s,y -
/

Iterating this inequality finitely many times yields that there exists o1 € (0, 1) such
that for any x € Bjj4 and 0 <r < 1 it holds

rp_"/ [Vul? dx < CrP*™ IIVuIIf",[p,,,(Bl).
B (x)
This implies u € C*'(B12) by Morrey’s lemma. The proof is now completed. []

5. Lipschitz and piecewise C**-regularity

In this section, we will first establish Lipschitz and piecewise C'*-regularity
for stationary harmonic maps on domains with piecewise C” !-metrics, under a
smallness condition of energy. Then we will prove Theorem 1.1.

Theorem 5.1. There exist g > 0 and By € (0, 1), depending only on n and g,
such that if the metric g € C%! (BlﬂE UT') satisfies the condition (1-4) on I', and
u € WH2(By, N) is a stationary harmonic map on (By, g) satisfying

(5-1) rg—"/ |Vul} dvg < €
Bro(x(J)

for some xo € By and 0 < rg < %, then u € Cl"BO(BrO/z(xo) N BE, N), and
ue CO’I(B,-O/2(XO), N)

Proof. The proof is based on the hole filling argument and the freezing coefficient
method. It is divided into two steps.

Step 1: u € C%(B3y,/4(xg), N) forany O <« < 1. To see this, first recall Theorem 4.1
implies that there exists 0 < ag < % such that u € C*(B7,,/3(x0)) and for any
y € B7r0/8 (xp), it holds

20
(5-2) sz_”/ IVul?dx < C(f) Orz_”/ Vulldx, O<s<r<==2
By (y) r B, (y) 8
and
(5-3) oscg Hu < Cr™, 0<r< %O.

For y € B7,,/8(x0) and 0 <r <ro/8,letv: B.(y) — R¥ solve

{Agv =0 in B,(y),

5-4) v=u on 3B, (y).
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By the maximum principle and (5-3), we then have
OSCB, (y)V < 0SCyB, (y)U < Cr®,

Moreover, since g € CO’I(BIlL U I'y), it follows from [Li and Nirenberg 2003,
Theorem 1.1] that v € C%! (B,/z(y), [R{k) andve CHA (B,/z(y) N B*, [R{k) for any
0<p<l.

Multiplying (1-1) and (5-4) by u — v, subtracting one result from the other and
integrating over B, (y), we obtain

/ |V(M—v)|2dx§/ IVu|2|u—v|§ pn—2+3a0
B (y) B, (y)

This, combined with
/ Vol dx < ClIVUlls, 0"
B, j2(y)
implies

r\2—n
(5) / IVulP dx < C(11V0]3 (g, () 72 +77%) < Cr0.
2 Brya(y)

This, combined with Morrey’s lemma, yields u € C3%/ 2(B7r0 /8(x0)). Repeating
this argument, we can show that u € C%(B5,4(xo)) for any 0 <« < 1, and

(5-5) ¥ / |Vu|*dx < Cr*® forall y € B3y a(xo), 0 <7 < r4—°.
B (y)

Step 2: There exists 0 < Bp < 1 such that u € Cl'ﬂO(B,O/z(xo) N B*, N). There are
two cases to consider:

Case I: xo = (x{, x3) € Bli. We may assume 0 < ro < |xg|, so that B, (xo) C B*.
For B, (x) C By,(xo), let v : B, (x) — RF solve

(5-6) {Agv =0 in B, (x),

v=u on B, (x).

Then by (5-5), for any % <a<l,
(5-7) / IV(u—v)|2dx§C/ \Vul|u — v| dx < C r3e2,
By (x) B, (x)
Also, since g € C*!(B,,(x0)), we have for any 0 < 8 < 1 that v € Cl’ﬂ(Br/z(x))

and

2 s\ 2
(5-8) [V = (Vo)p,Pdx = C(2) Vi = (Vi) g, o2 v,
B,(x) r B, (x)
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for <s <r/2. (Here §, f = I]TI [ f dx.) Note that (5-8) also holds trivially for
r/2 <s <r. Combining (5-7) and (5-8) we obtain, for any 0 < 6 < 1,

2
][ \Vu - (VM)BQ,(x)| dx
By (x)

2(][ |Vu—Vv|2a’x+][ |Vv—(Vv)Bg,(x)|2dx)
B@,(x) Bﬁr(x)

C(GZﬁ ][ |Vu — (Vu)p, ) |2 dx + e—nr3q_2).
B, (x)

A

IA

For (3 —2)/2 < fy < B8, let 0 < 6 < 1 be such that C6;” = 6.7, Then

2
(5-9) Vi~ (V) g, 0| dx <657 ][

|Vu —(Vu) g, (x) |2dx —|—Cr3°‘*2.
Bgyr (x) B, (x)

Iterating (5-9) m-times, m > 1, yields

(5-10) Vit — (V) gy, | dx

By, (x)

= (9(’)”)2ﬁ0 ][ |V“ — (Vu)p,x) |2 dx + C(@(')n,,)Sa—z Z 9({(2/30—(301—2))

B, (x) j=1

< (95")3“2<]i N Vi — (Vi) g, o | dx + Cr3“2>.
(X

This clearly implies that Vu € C3*/2~1(B, (xo)).

Case II: xo = (x(, 0) € I'y. For simplicity, we assume x, = 0. Define g on B; by

lim,yo+g(0', 1) if x € Bf

80 = {lim o g0 1) if x e By

Then we have
(5-11) lg(x) —gx)| <Clx|, xe€B.

Moreover, by suitable dilations and rotations of the coordinate system, (1-4) implies
that there exists a positive constant k = 1 such that

§(x) = (4 (k=1Dxp-(x))go, x € By,
where x BT is the characteristic function of B, .
ForO0<r <ry/2,letv: B.(0) — R¥ solve

{Agv =0 in B,(0),

(5-12)
v=u on 0B, (0).
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Then we have

IVul*dx < C/ |Vu|> < Cr" =22,

OSCB, (0)V < 0SCp, (0)U < Cl’a, /
B, (0)

B, (0)

Multiplying (1-1) and (5-12) by u — v and integrating over B, (0), we obtain

/ IV(u—v)|>dx
B (0)

5/ gY(u—v)i(u—v);J/gdx
B, (0)

< C/ VuPlu —v|dx+/ VB — V35 | [uil | — v); | dx
B, (0) B, (0)

|Vu|2dx+Cr2/ |Vv|2+1/ IV(u —v)|*dx
B (0)

< CoscBr(o)v/
B,(0) 2

B,(0)

SCr"—2+3“+Cr"+°‘+1/ IV(u—v)|*dx.
2 /B,

This implies

(5-13) / IV(u—v)|*dx < Cr"—2+3,
B, (0)

It is well-known that v € C*°(B;(0)) for any 0 < s <r. In fact, (5-12) is equivalent
to:

0 ov
- E— n/Z_ - )— = 1
(5-14) ™ <(1 + (k 1)X31 )8x,~) 0 in B,(0),

we conclude
(i) dv/ox, satisfies the jump property on I'y:

9
lim 0, ) = k"2 Tlim —=(x',x,) forall (x',0) TN B,0).
x40+ 00Xy x, 10~ Xy

ov

(i) V*v e C°(B,(0)) for any multiindex o = (oy, ..., 0¢y—1, 0).
(iii)) Vv € L*°(B(0)) for any 0 < s < r, and

(5-15) ||Vv||%oo(3r/2(0))§(7r2"/B(O)|W|2.

For f : B,(0) — R, set
(5-16) Df= (ﬁ of

axl’”" 3xn,1

of
n/2 _
O+ = D)),
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and denote by (5 fs= st ) D f dx the average of D f over Bs(0). Then, for any
0<pB<l,

~ ~ 28 ~ -
][ |Dv—(Dv)S|2dx §C<£> ][ |Du—(Du)r|2a’x forall 0 <s <r.
By(0) r B,(0)

Combining this with (5-13) yields, for any 0 <6 < 1,

][ | Du — (Dug, | dx < o* ][ |Du — (Du), | dx +co—mr3 2,
By (0) B, (0)

As in case I, iterations of this inequality yield, forany 0 < s <r,

§\ 3a—2

][ ‘5u—(5u)s‘2dx§(f< ) ][ ‘E)u—(ﬁu)r|2dx+Cs3°‘_2.
B, (0) B, (0)

r
This, combined with case I, implies that for any B, (x) C B,,(x9o) and 0 <s <7,

§\ 3a—2

][ ‘Eu_(ﬁu)x,s|2dx§C( ) ][ ‘5u_(5u)x,r‘2dx+cs3a_27
B, (x) By (x)

r

where (5u} x,s denotes the average of Du over B, (x). It is readily seen that the
preceding inequality yields u € Cl3e/2-1 (Bry/2(x0) N Bli) and u € Co’l(BrO 12(x0)).
This completes the proof. (]

Proof of Theorem 1.1 . Define the singular set

E:{er: li_mrz"/ |Vu|2dx262}.
B, (x)

r—0

Then by a covering argument we have H "=2(%) =0; see [Evans and Gariepy 1992].
For any xp € 2\ Z, there exists 0 < ry < dist(xg, d€2) such that

2—n 2 2
ro / [Vu|”dx < €.
By (x)

Hence by Theorems 2.1, 4.1, and 5.1, we have
u € CH(Byn(x0) NQE,N) and  u e C*'(Byy2(x0), N),

for some 0 < o < 1. In particular, we have

hmﬂ”/‘ |Vul?dx =0 forall x € By, 2(x0),
40 B,(x)

so that B, 2(xg) N X = &, i.e., X is closed. This completes the proof. O
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6. Harmonic maps to manifolds supporting convex distance square functions

In this section, we consider weakly harmonic maps u from (€2, g), with g the
piecewise Lipschitz continuous metric as in Theorem 1.1, to (N, /), whose universal
cover (N, h) supports a convex distance square function d]%( -, p) forany p € N.
We will establish both the global Lipschitz continuity and piecewise C!%-regularity
for such harmonic maps u. This can be viewed as a generalization of the well-known
regularity theorem of Eells and Sampson [1964] and Hildebrand, Kaul and Widman
[Hildebrandt et al. 1977].
The crucial step is the following theorem on Holder continuity.

Theorem 6.1. Assume that the metric g is bounded measurable on 2, i.e., there
exist two constants 0 < A < A < 400 such that Al, < g(x) < Al, fora.e. x € 2,
and the universal cover (N h) of (N h) supports a convex distance square function

-, p) forany p € N. Ifu € H'(Q, N) is a weakly harmonic map, then there
exzsts a € (0, 1) such thatu € C*(2, N).

Proof. Here we sketch a proof that is based on modifications of that in [Lin
1997]. Similar ideas have been used by Evans in his celebrated work [1982] and
by Caffarelli [1982] for quasilinear systems under smallness conditions. First, by
lifting u : Q2 — N to a harmonic map it : 2 — N, we may assume (N, h) = (N h)
and dlz\,( , p) is convex on N for any p € N.

We first claim that

(6-1) Agd*(u, p) > 0.
In fact, by the chain rule of harmonic maps (see [Jost 1991]), we have
Agd®(u, p) = Vyud®(u, p)(Agu) + Vyd*(u, p)(Vu, Vu),.

Since Agu L T, N, V,d*(u, p) € T, N, the first term in the right side vanishes. By
the convexity of d%, the second term in the right side satisfies

V2d?(u, p)(Vu, Vu)g > 0.

Since u € H'(2, N), by suitably choosing p € N and applying Poincaré inequality
and Harnack’s inequality, (6-1) implies u € L}, (2, N).

Foraset E C N, letdiam, E denote the diameter of E with respect to the distance
function dy (-, -). For any ball B,(x) C €2, we want to show that u € C*(B,2(x))
for some 0 < o < 1. To do it, set C, := diamy u(B,(x)). We may assume C, > 0
(otherwise, u is constant on B, (x) and we are done). Now we want to show that
there exists 0 < 8o = 8o(N) < 3 such that

(6-2) diam,, u (B, (x)) < 3C..
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Since u,(y) =u(x+ry): B;(0) — N is a harmonic map (B;(0), g,), with g,(y) =
g(x +ry), we may, for simplicity, assume x =0 and r = 2. Forany 0 < € < %,
since u(B1) C N is a bounded set, there exists m = m(¢) > 1 such that u(By) is

covered by m balls B', ..., B™ of radius €C;.

Claim. There exists sufficiently small € > O such that u(B 2) can be covered by at
m

most (m — 1) balls among B',..., B™.

To see this, let x; € By such that B! C By, c,(pi), pi=u(x;),for1 <i <m. Let
1 <m’ < m be the maximum number of points in { pi}iL; such that the distance
between any two of them is at least C1/32. Thus the sets Bc,/16(p;i), for 1 <i <
m’, cover u(By). For convenience, set U; = u~' (B (p;, C1/16)), the notation
BY (x, R) referring to the ball in N with center x and radius R. We will show that
there exists igp € {1, ..., m’} such that

(6-3) 1CT < sup dy (u(x), pi)) < CY,
X€EBy

and

(6-4) H"(U;, N B12) > co,

m/

for some universal constant ¢y > 0. Indeed, since By, C J Ui, we have
i=1
I

m
Z H"(Ui N Biy2) = H"(Bi2).
i=1

Hence there exists ig € {1, ..., m’} such that
1
H"(U; N Biy2) > co:= — H"(B1)2).
m

This implies (6-4). Now (6-3) follows from the triangle inequality.
Next we define

f(x) := sup dy (u(2), pi,) — dy(u(x), pi,), x € By.

Z€By

It is clear that f > 0 in By, and (6-1) implies A, f < 0in B;. By Moser’s Harnack
inequality, we have

infsz][fZC/ sz/ f
Bip B B2 BNy,

> C(supdy (u, piy) — sup dy(u, pi)))H" (B12Uj)
B, BiNU;,

= C (LG 0Py = 63C



HARMONIC MAPS ON DOMAINS WITH PIECEWISE LIPSCHITZ METRICS 147

for some universal constant 6y > 0. This implies

(6-5) sup dy (u(z), piy) — sup dy(u(z), pi,) = 6pCy = (1 —6p)C.

ZEB; Z€B12

Now we argue that the claim follows from (6-5). For, otherwise, we would have
u(B1/2) N Baec,(pj) # D forall 1 < j <m. Let zg € B; be such that

€C1+dnu(zo0), piy) = supdy(u(z), piy)-
B

Since u(B;) C U:": Bsec, (pi), there exists p;, € {p1, ..., pm} such that u(zp) €
Bocc,(piy). Since u(Bi2) N Baec,(piy) # D, there exists z; € By, such that
u(z1) € Bacc,(pi;). Therefore we have dy(u(z1), u(z0)) < 2¢C;. Therefore we
have

sup dn (u(z), piy) — sup dn(u(z), piy) < €Ci+dyu(z0), pi,) —dnW(z1), piy)

Z€B) z€B1p2

<eCy+dnu(zo), u(z1)) < 3eCy.

This contradicts (6-5) if € > 0 is chosen to be sufficiently small.

From this claim, we have either

(i) diamy u(B;2) < %Cl —in which case (6-2) holds with §y = %—or

(i) diamy u(By) > 1C1.
Then we consider v(x) = u(x/2) : Bj — N and conclude:

e v is a harmonic map on (B, g1/2), with the metric g1,2(x) = g(x/2).

« 1Cy < diamy v(By) < C).

e v(B) is covered by at most m—1 balls By, ..., B™=! of radius €C}.

Thus the claim is applicable to v so that u(Bj,4) = v(Bj,2) can be covered by at
most m—2 balls among B!, ..., B"~!.

If diamy v(By)2) < %C 1, we are done. Otherwise, we can repeat the above
argument. It is clear that the process can at most be repeated m times, and the
process will not be stopped at step kg < m unless diamy u(By—x) < %C 1. Thus
(6-2) is proven.

It is readily seen that iteration of (6-2) implies Holder continuity. ]

Proof of Theorem 1.2. First, by Theorem 6.1 and the argument from Section 4, we
can show that for some 0 <« < 1,

/ IVul>dx < Cr"2"2*  forall B,(x) C Q.
B, (x)

Then we can follow the proof of (5-2) to show that u € C®'(Q)NCH*(Q*UT, N).
a
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q-HYPERGEOMETRIC DOUBLE SUMS AS
MOCK THETA FUNCTIONS

JEREMY LOVEJOY AND ROBERT OSBURN

In memory of Basil Gordon

Recently, Bringmann and Kane established two new Bailey pairs and used
them to relate certain ¢-hypergeometric series to real quadratic fields. We
show how these pairs give rise to new mock theta functions in the form of
q-hypergeometric double sums. We also prove an identity between one of
these sums and two classical mock theta functions introduced by Gordon
and McIntosh.

1. Introduction

A Bailey pair relative to a is a pair of sequences (o, B,)n>0 satisfying

n

(1-1) B=) — =

= (Dn—k @@tk

Here we have used the standard g-hypergeometric notation,

n
(1-2) (@ = (@ Q=] [ —ag*™",
k=1
valid for n € N U {00}. The Bailey lemma states that if («,, B,) is a Bailey pair
relative to a, then so is («),, B,), where

n

,_ (D)n(c)nlagq/be)" g = Z (b)r(c)x(aq/be)n—k(aq/be)*

T g batag/n T T ag /b)a(aq/n (@

(1-3) B

Inserting (1-3) into (1-1) with n — oo gives

(aq/b)x(aq/c)oo (b)n(c)nlag/bc)"
1-4 b)n(c)n be)" B, = ns
(4 § I Cn@a b P =) g boree % (ag/b)n(ag /o)

MSC2010: primary 33D15; secondary 05A30, 11F03, 11F37.
Keywords: g-hypergeometric series, mock theta functions, Appell-Lerch series, Hecke-type double
sums.
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valid whenever both sides converge. For more on Bailey pairs, including histori-
cal perspectives and recent advances, see [Andrews 1986b, Chapter 3; 2001], or
[Warnaar 2001].

In a recent study of multiplicative g-series, Bringmann and Kane [2011] estab-
lished two new and interesting Bailey pairs. They showed that (a,, b,) is a Bailey
pair relative to 1, where

n—1
(1_5) ary = (1 _q4n)q2n2—2n Z q—2j2—2j’
j=—n
n
2 52
(1-6) Ay =—(1—g" g™ Y g7,
j=—n

_ (=D"@: gD
(q)Zn—l

and (¢, B,) is a Bailey pair relative to g, where

(1-7) by x(n#0),

1

n—1 n
(1-8) Wy = <q2n2+2n Z q—2j2—2j+q2n2 Z q—ZjZ)’

=4 j=n j=—n

1 2 - _ni2 2 " RYIRY
(1-9) O(2n+1:_1T(an +4n+2 Z q 2j +q2n +2n Z q 2j 2]>’
q j=—n j=—n—1
—1)" : 2
(@)2n+1

These closely resemble Bailey pairs related to seventh order mock theta functions
[Andrews 1986a], but surprisingly no g-series obtained by a direct substitution of
either (1-5)—(1-7) or (1-8)—(1-10) in (1-4) is a genuine mock theta function. For
example, it turns out that substituting (1-5)—(1-7) in (1-4) with b, ¢ — oo yields

—q
(—9)oo
where w(g) is one of the third order mock theta functions. The presence of the
infinite product means that this is not a mock theta function but a mixed mock
modular form.

Recall that mock theta functions are g-series which were introduced by Ramanu-
jan in his last letter to G. H. Hardy on January 12, 1920. Until 2002, it was not
known how these functions fit into the theory of modular forms. Thanks to work of
Zwegers [2002] and Bringmann and Ono [2006; 2010], we now know that each of
Ramanujan’s examples of mock theta functions is the holomorphic part of a weight
% harmonic weak Maass form f(t) (as usual, g := €™ where T = x + iy € H).
Following [Zagier 2009], the holomorphic part of any weight k harmonic weak

w(q)
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Maass form f is called a mock modular form of weight k. If k = % and the image of
f under the operator &, :=2iyX3 /97 is a unary theta function, then the holomorphic
part of f is called a mock theta function. Specializations of the Appell-Lerch series

1 3 (—1)7qg®z

m(x,q,z) .= -
.4, 2) iz q) 1—q~xz

reZ

are perhaps the most well-known and most important class of mock theta functions
[Zagier 2009; Zwegers 2002]. Here x, z € C* := C\ {0} with neither z nor xz an
integral power of ¢, and

J(x,q) == (X)00(q/X)o0(q) oo-

For more on mock theta functions, their remarkable history and modern develop-
ments, see [Ono 2009] and [Zagier 2009].

The goal of this paper is to obtain genuine mock theta functions from the Bailey
pairs of Bringmann and Kane by first moving a step along the Bailey chain. Applying
(1-3) to (ap, by) with (b, ¢) - (—1, co) and to (&, B,) with (b, ¢) = (—q, 00),
we obtain the Bailey pairs recorded in the following two lemmas.

Lemma 1.1. The pair (a), b)) is a Bailey pair relative to 1, where

n’>-n

n—1
2_ h2
aénzz(l_an)qu n Z q 2j 21’

j=—n
n
a§n+1 =21 _q2n+1)q4n2+3n+1 Z q—2j2’
j=—n
I (=Dj(g; g9)1(=1)7g (D)
b = i\q:497)j—1 q )
oo (@n—j(@)2j-1

Lemma 1.2. The pair («),, B),) is a Bailey pair relative to q, where

1 n—1 n
r_ 4n’43n —2j2-2j 4n’4n —2j2
O‘Zn—lT(q 2o AT ) ).
q j=—n j=—n
1 2 2 2
I _ 4n +7n+3 4n +5n+1 —2j°=2j
Xont1 = T 1_ Zq Z g
]——I’l ]——I’l 1

_ 1 i(—qn(q;q)j(—l)f'q(’?')
(=@n = (@n—j(@)2j+1 '
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With our main result, we present four mock theta functions arising from the
Bailey pairs in Lemmas 1.1 and 1.2. Define

Qn,p(x’ Y. q)
1 p—1 p—1
- Zqn(’*(”;1>/2)+(n+p)<r—(n—1)/2)(s+<n+1)/2)+n(”<";”/2)
Jonp@ntp) 120520

—(n— . _ 2
(—x) DRyt D2 S, (=g Y )

x Jj (qp(2n+p)r+p(n+p)/2(_y)n+p/(_x)n’ qp2(2n+p))

. 2
j (qp(2n+p)(r+s)+p(n+p)xpyp, q? (2n+p))

j(qP(2H+P)S+P(n+p)/2(_x)n+p/(_y)n’ qp2(2n+p)) ’

where r :=r*+{(n—1)/2} and s := s* 4+ {(n — 1)/2} with 0 < {«} < 1 denoting
the fractional part of a. Also, Jy, := Jp 3m With Jy . := j(g%, g¢™), and J_a,m =
J(=q“.q™).

Theorem 1.3. The following are mock theta functions:

(=1);(g:4%) -1 (=DIg" ()

1-11) Wi(g):=
(-11) Wilg)= ) (=@n(@Pn—j(@)2j-1

n>j>1

24%632(4°.4°.9)

=4m(—q"7,q*,—1)—4g 7 m(—q.q**,—1) )

(@:0D)n(—=1) (@) -1 (=) Fig(3)
(_q)n(Q)nfj (6])2]',1

(1-12) Walg):= )

n>j>1
2g612(—q*,—4%.9)

J(—=1,9) ’
(@:0Dn(=1) (g% q") 1 (=1 Higm+i*+i
(=422 (g% P n—j (g% gP)2j—1
2¢%6011(—q".—q" ,q*)
Jj(=q.9%
(—9)(g: g ;(—1)T g"+1+(3)
n(@n—j(@)2j+1

=4m(—q.q*, — D+

(1-13) Wi(g):= Y _

n>j>1

=4m(—q,q"*, — 1)+

’

(1-14) Wa(g):= )

n>j>0
03.2(q°% >,
:—2q‘4m(—q5,q48,—1)—2q‘2m(—q“,q48,—1)+3'2~(q—qac])‘

J(q.9”)

It should be noted that the series defining W (g) does not converge. However,
similar to the sixth order mock theta function it (q) [Andrews and Hickerson 1991],
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the sequence of even partial sums and the sequence of odd partial sums both
converge. We define W, (g) as the average of these two values.

To prove Theorem 1.3 we first use the Bailey machinery to express the W’; in
terms of Hecke-type double sums f, , .(x, ¥, q), where

(1-15) Sabex,y,q) = Z Sg(r)(—1)’“x’ysq”6)+b’”0(3).
sg(r)=sg(s)

Here x, y € C* and sg(r) := 1 for r > 0 and sg(r) := —1 for r < 0. Then we apply
recent results of Hickerson and Mortenson [2012] to express the Hecke-type double
sums as Appell-Lerch series m(x, g, z) (up to the addition of weakly holomorphic
modular forms).

We highlight one connection to classical mock theta functions. Namely, we ex-
press the multisum (1-12) in terms of the “eighth order” mock theta functions S;(q)
and T1(q), defined by (see [Gordon and McIntosh 2000])

nn+2)_ . 42 nn+1)_ 2. ,2
q g q27Q)n and TI(Q)3=Zq ( g,q)n.
(—q~; q*)n (=4 q7)n+1

n>0

Si(q) =Yy

n>0

Corollary 1.4. We have the identity

Walq) =2qTi(q) —qS1(q).

Similar identities involving mock theta functions and multisums were given in
[Andrews 2007, Section 13], and more could be deduced from [Bringmann et al.
2010, Theorem 2.4].

The paper proceeds as follows. Some background material on Hecke-type double
sums and Appell-Lerch series is collected in Section 2, and Theorem 1.3 and
Corollary 1.4 are established in Section 3.

2. Preliminaries

We recall some relevant preliminaries. The most important is a result which allows
us to convert from the Hecke-type double sums (1-15) to Appell-Lerch series.
Define

(2-1) gapc(x,y,q,z21,20)

a—1 _yv\a
:Z(_y)tqc(é)] (qbtx’ qa)m(_qa(szrl)—c(“er])—t(bz—ac) (—y) qa(bz—ac)’ ZO)

—~ (—x)b’

c—1 ¢
t . (D c+1 A—X . v
+y (—0'q“Dj(g"y, q‘)m<—q‘( )=l )_t(bz_“‘)—z_y;b N Zl)-
t=0
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Following Hickerson and Mortenson, we use the term “generic” to mean that
the parameters do not cause poles in the Appell-Lerch series or in the quotients of
theta functions.

Theorem 2.1 [Hickerson and Mortenson 2012, Theorem 0.3]. Let n and p be
positive integers with (n, p) = 1. For generic x, y € C*,

fn,n+p,n(X, v,q)= gn,n+p,n(x9 v,q,—1,-1) +9n,p(X, v, q).

We shall also require certain facts about j(x, g), m(x, q, z) and f,p.(x,y,q).
From the definition of j(x, g), we have

(2-2) J@"x, ) =(=1"q"Dx"j(x,q)
where n € Z and
(2-3) Jje ) =jlg/x,q) =—xj(x"", q).

Next, some relevant properties of the sum m(x, g, z) are given in the following
(see (2.2b) of Proposition 2.1 and Theorem 2.3 in [Hickerson and Mortenson 2012]).

Proposition 2.2. For generic x, z, zg € C*, we have

(2-4) m(x,q,2)=x"'m(x"",q,z7"),

2077 j(z/20,9)J (x220, q)

2-5 s o = > 1 1 1 j i .
(2-5) m(x,q,z) =m(x,q ZO)+](ZO’q)](z,q)](xzo,q)](xz,Q)

Finally, two important transformation properties of f,  .(x, y, g) are given in
the following (see Propositions 5.1 and 5.2 in [Hickerson and Mortenson 2012]).

Proposition 2.3. For x, y € C*, we have

(2-6) fap.c(x,y,9)
=fa,b,c(_-x2q s y 6] »q ) xfabc( X 6] 2q6+2b’q4)

~fabe(=X2q° T =20 g+ x9q" fa o (—x2 T, =y g7 T g b,

a+b+c ) ”e
Q-7) fabe(x,y,q) =— Fabe @t /x, 4> [y, @).

3. Proof of Theorem 1.3

Proof of Theorem 1.3. Recall that the goal is to express each double sum g-series
in terms of Appell-Lerch series. For (1-11), apply Lemma 1.1 and let b, ¢ — 0o in
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(1-4) to obtain

Wilg) =Y q" bj(q) = () Y 4",
o0 n=0

n>0

(q) (Zq4n azn(q)+zq4ﬂ +4n+1 /n+1(q))

n>0 n>0

(Zan —n Z q72] -2j Zan +n Z q72]272]

n>0 Jj=—n n>0 Jj=—n
n n
8n2+7n+2 —2;2 8n2+9n+3 —2j2
-4 doa =) a 2a)
n>0 j=—n n>0 j=—n

After replacing n with —n in the second sum and n with —n — 1 in the fourth sum,

weletn=(r+s+1)/2, j = ( —s—1)/2 in the first two sums and n = (r +5)/2,
Jj = (r —s)/2 in the latter two sums to find

2 3.0 7 39,7
Wi(g) = () (< Z - Z >q2r+5rs+2r+2s+2s

r,s>0 r,s<0
r#s (mod 2)  r#s (mod 2)

_( Z _ Z )q2r+5rs+r+s2+s)

r,s>0 r,s<0
r=s (mod 2) r=s (mod 2)

— (q) <( Z Z >q2r +5rs5+5 r+3s2+ s>

r,s>0  rs<0

2g°
=— f.534°, 4%, ).
(Q)oo

By Theorem 2.1, (2-1), (2-2) and (2-3), we have

£.53@°.4°.9)
=—2¢7"2j(q.¢>)m(—=q",¢®, -1 +2¢77j(q.¢>)m(—q.¢** .~ 1) +632(¢°.¢° . q)

and so

2 29 5’ 5’
Wiq) = 4m(—g"7, g%, —1) —dgSm(—q, g%, —1) — L5247 0)
j.q°)
For (1-12), apply Lemma 1.1 and let b = —, /g and ¢ = ,/q in (1-4) to get

Walg) = 3 (17 (g: 4Pbl () = ~ L= oo > (=1a)(q)

2% D)
= 2% 4700 15
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(@3 4%)oo ( , ) )
= R ) (q) - Aon+1 (Q)
2(¢% ¢V oo ; 2 %

n>0

(q q )00 (Z 4n’—n Z q—2] -2j _ Zq4n +n Z q—2]2—2]

(2 2y
(q q) n>0 Jj=—n n>0 Jj=—n
n n
4n’+3n+1 —2j% 4n’+5n+2 —2j2
+24 2.0 =) 2.0 ):
n=>0 j=—n n>0 j=—n

As before, we proceed with

Walq) = ((C]2 1 ))oo <( Z — Z )qzr +3rs+3r+ds2H3s+1

r,s>0 r,s<0
r#s (mod 2)  rss (mod 2)

+ ( Z _ Z )qér2+3rs+gr+és2+;s+l>

r,s>0 r,s<0
r=s (mod 2) r=s (mod 2)

(R B

r,s>0  rs<0

q(q 49 oo

)
(q, ) fl 61,9)

By Theorem 2.1, (2-1) and (2-2), we have
fiz1(=¢* —q* q) =2¢7" j(=1,9)m(=q, q%, —1) + 61 2(—¢*, —¢*, 9)
and so

2961 2(—q% —4*. q)
Jj(—=1,9)

Wa(q) = 4m(—q, ¢% —1) +

For (1-13), apply Lemma 1.1 and let b = g, ¢ — oo and ¢ — ¢? in (1-4) to get

Ws(q) = Y (=1 (@ 4P)ng" B (a?) = (" “ )°° S Y e

n>0 n>0

(4 9% 2 2
— —OO Zq4n aén(qZ)_Zq4n +4n+1aén+1(q2)

2. 42
G%: 9% s e
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—1 n—1
2(q; qz) o A2 A 2 42 4
— = 0 ZqIZn 2n Z q 4j5—4j _quln +2n Z q 4j°—4j

2
(q 4 )oo n>0 j=—n n>0 j=—n

+Zq12n2+10n+3 i q—4jz_zq12n2+14n+5 i q—4j2)_

n>0 j=—n n>0 j=—n
So,

W3(Q) ?(Z 4 ;oo (< Z — Z >q2r2+8rs+5r+2s2+5s+3

r,s>0 r,s<0
r#s (mod 2)  r#s (mod 2)

+ ( Z _ Z )q2r2+8rs+5r+2s2+5s+3)

r,s>0 r,s<0
r=s (mod 2) r=s (mod 2)

2(‘1 q )oo (( Z Z) 2r2+8rs+5r+2s2+5s+3)

2.2y
(q q )oo r,s>0 rs<0
24°(q: 4% oo 7 7 4
=—f1,2,1(—q ,—q',q97).
(4% 4%

By Theorem 2.1, (2-1), (2-2) and (2-3), we have
fizi(=q", =47, ¢ =272 j(~q. q¢Hm(=q,¢"*, 1) +01.1(—¢", —¢", ¢*

and so

24°01.1(=q", =47, q")
i(=q.9%

Finally, for (1-14), apply Lemma 1.2 and let b, ¢ — oo in (1-4) to get

2 1 — 2
Wal) =Y a" @) = =L 3 gl g

Wi(q) =4m(—q,q"%, —1)+

peers @oo =5
(I-q) 2
= ( ) Zq4n +2na2n(q)+z 4n? +6Vl+2a2n+l(q)
4)oo n>0 n>0
2 _2i2_
(Zan +5n Z q 2j2-2j +Zq8n +3n Z g
n>0 j=—n n>0 j=-n
2 " 2 2 & 2
_Zqiin +13n+5 Z q—2] _ qun +11n+3 Z q—2] —2]>.
n>0 j=—n n>0 j=—n—1

After replacing n with —n — 1 in the third and fourth sums, we letn = (r +s+1)/2,
j = (@ —s—1)/2 in the first and fourth sums and n = (r +s)/2, j = (r —s)/2 in
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the second and third sums to get

1 30 13,32, 13
0W4(q) — (q) (( Z _ Z )qzr +5rs+7r+§s +7S+5
00

r,s>0 r,s<0
rs#s (mod 2)  rss (mod 2)

+ ( Z o Z )qgr2+5rs+§r+§s2+gs>

r,s>0 r,s<0
r=s (mod 2) r=s (mod 2)

1
= (qT(Zfo&ss(—qzs, —4%, 9"
°° 9 9 4 1 25 25 4
+ f353(—=q". —q .4 +q" f353(=¢7, —q7, q"))

.53, 47, q),

- (@)oo

where in the last step we have used (2-6) and (2-7). By Theorem 2.1, (2-1), (2-2),
(2-3) and (2-4), we have

53> 4. @)
=-2¢"%(q. ¢ )m(—=q", % —1)=2¢%j(q. ¢*)m(—=q", ¢* —D+632(¢°. ¢°. 9)

and so

9 37 3’

Walg) = —2g~*m(—g%, ¢, —1) = 2g 2m(—q", ¢, —1)4 B2 1 0)

J(4q,q%)
Proof of Corollary 1.4. Equations (4.36) and (4.38) of [Hickerson and Mortenson
2012] state that

1 8 ‘73’8‘]22,8 -1 8 6
Silg) =—2q "m(—q,q°, -+ 72 T\(g)=q m(—q,9",9°).
1,8

By (1-12), (2-3) and (2-5), the claim is equivalent to the identity

J3sd3s  29612(=¢%. —¢* @) —2j(q% ¢*Hj(=¢% ¢%)
VA J(=1,9) Jq%q®j(=1,4%j(—4q7, 4%’
We have verified this identity using a MAPLE program [Garvan 2010]. ]
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MONIC REPRESENTATIONS AND
GORENSTEIN-PROJECTIVE MODULES

X1U-HuA LUO AND PU ZHANG

Dedicated to the memory of Hua Feng

Given a finite-dimensional algebra A over a field k, and a finite acyclic
quiver Q,let A = A®; k Q, where k Q is the path algebra of Q over k. Then
the category A-mod of A-modules is equivalent to the category Rep(Q, A)
of representations of Q over A. This yields the notion of monic representa-
tions of O over A. We denote the full subcategory of Rep(Q, A) consisting
of monic representations of Q over A by Mon(Q, A). It is proved that
Mon(Q, A) has Auslander—Reiten sequences.

The main result of this paper explicitly describes the Gorenstein-projec-
tive A-modules via the monic representations plus an extra condition. As a
corollary, we prove the equivalence of three conditions: A is self-injective;
Gorenstein-projective A-modules are exactly the monic representations of
Q over A; Mon(Q, A) is a Frobenius category.

1. Introduction

Let A be an Artin algebra, and A-mod the category of finitely generated left
A-modules. A complete A-projective resolution is an exact sequence of finitely
generated projective A-modules

0
pr= ...plptpl, .

such that Hom4 (P, A) is also exact. A module M € A-mod is Gorenstein-projective
if there exists a complete A-projective resolution P* such that M = Kerd®. Let
P(A) be the full subcategory of A-mod of projective modules, and GP(A) the full
subcategory of A-mod of Gorenstein-projective modules. Then

P(A) CGP(A) C+A = (X € A-mod | Ext/ (X, A) =0 for all i > 1}.
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It is clear that GP(A) = A-mod if and only if A is self-injective. If A is of
finite global dimension, GP(A) = P(A) (but the converse is not true); and if
A is a Gorenstein algebra (that is, inj.dim 4 A < 0o and inj.dim A4 < 00), then
GP(A) =LA (but the converse is not true); see, for example, [Enochs and Jenda
2000, Corollary 11.5.3]. This class of modules enjoys more stable properties than
the usual projective modules (see [Auslander and Bridger 1969], where it was
called a module of G-dimension zero); it becomes a main ingredient in the relative
homological algebra [Enochs and Jenda 1995; 2000] and in the representation theory
of algebras (see [Auslander and Reiten 1991a; 1991b; Beligiannis 2005; Gao and
Zhang 2010; Iyama et al. 2011], for example), and plays a central role in the Tate
cohomology of algebras (see [Avramov and Martsinkovsky 2002; Buchweitz 1987],
for example). An important feature is that GP(A) is a Frobenius category with
relative projective-injective objects being projective A-modules, and hence the stable
category GP(A) of GP(A) modulo P(A) is a triangulated category. By [Buchweitz
1987; Happel 1991], the singularity category of a Gorenstein algebra A is triangle
equivalent to GP(A). Thus explicitly constructing all the Gorenstein-projective
modules is a fundamental problem, and is useful to all of these applications.

On the other hand, the submodule category has been extensively studied by
C. M. Ringel and M. Schmidmeier [2006; 2008a; 2008b]; see also [Simson 2007].
By [Kussin et al. 2012] it is also related to the singularity category; see also [Chen
2011]. It turns out that the category of the Gorenstein-projective modules is closely
related to the submodule category (see [Li and Zhang 2010; Xiong and Zhang
2012]), or, in general, to the monomorphism category [Zhang 2011]. The present
paper explores such a relation in a more general set-up.

Given a finite-dimensional algebra A over a field &, and a finite acyclic quiver Q
(here “acyclic” means that Q has no oriented cycles), let

A=AQikQ,

where k Q is the path algebra of Q over k. We call A the path algebra of a finite quiver
Q over A. Asinthe case of A=k, A-mod is equivalent to the category Rep(Q, A) of
representations of Q over A. This interpretation permits us to introduce the so-called
monic representations of Q over A. See Definition 2.2. Let Mon(Q, A) be the full
subcategory of Rep(Q, A) consisting of monic representations of Q over A. Then
Mon(Q, A) is a resolving, functorially finite subcategory of Rep(Q, A), and hence
has Auslander—Reiten sequences (see Theorem 3.1). The main result of this paper,
Theorem 5.1, explicitly describes all the Gorenstein-projective A-modules, via the
monic representations of O over A plus an extra condition. We emphasize that here
A is not necessarily Gorenstein. By our main result, if we know all the Gorenstein-
projective A-modules, we know all the Gorenstein-projective A-modules, and, in
this way, we give an inductive construction of the Gorenstein-projective modules.
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The proof of Theorem 5.1 use induction on | Q| and a description of the Gorenstein-
projective modules over the triangular extension of two algebras via a bimodule
which is projective in both sides (Theorem 4.1). As a corollary, we see that A is
self-injective if and only if GP(A) = Mon(Q, A), and if and only if Mon(Q, A)
is a Frobenius category (Corollary 6.1). As another corollary, if Q has an arrow,
P(A) =Mon(Q, A) if and only if A is hereditary (Corollary 6.3).

2. Monic representations of a quiver over an algebra

Throughout this section k is a field, Q a finite quiver, and A a finite-dimensional
k-algebra. We consider the path algebra AQ of Q over A, describe its module
category, and introduce the concept of monic representations of Q over A. In
Subsections 2A-2D, Q is not assumed to be acyclic if not otherwise stated.

2A. Given a finite quiver

Q = (Qo, Q1.5.¢),

let P be the set of paths of Q. We write the conjunction of paths from right to left. If
p=o;---ay € Pwitha; € Q1,1 >1,and e(e;) =s(a;41) for 1 <i <[—1, we call
[ the length of p and denote it by /(p), and define the starting vertex s(p) = s(ay)
and the ending vertex e(p) = e(oy). We denote a vertex i by e;, and regard it as
a path of length 0, with s(e;) =i = e(e;). Let kQ be the path algebra of Q over
k. It is well-known that the category k O-mod of finite-dimensional £ Q-modules
is equivalent to the category Rep(Q, k) of finite-dimensional representations of Q
over k; see, for example, [Ringel 1984, p. 44].

2B. Let A = AQ be the free left A-module with basis P. An element of AQ is
written as a finite sum ) _ pep dpp, Where a, € A and a, = 0 for all but finitely
many p. Then A is a k-algebra, with multiplication bilinearly given by

(app)(byq) = (apby)(pq),

where a,b, is the product in A, and pgq is the product in k Q. We have isomorphisms
A=AQkQ=kQ ®; A of k-algebras, and we call A = AQ the path algebra of
0O over A.

For example, if 0 = e — - - - — e, the algebra A is given by the upper triangular
matrix algebra of A: :

AA--- AA
0A--- AA
Tay=|: i
00 A A
00 0 A
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In general, if Q is acyclic and Qg is labeled as 1, ..., n in such a way that j > i
whenever there is an arrow « : j — i in Oy, then
k k™M fmaoL.. ke
0 k kM3 ... M2
. mp3
@-1) 7 ,
00 0 - &k

nxn
where m j; is the number of paths from j to i and k""" is the direct sum of m j;
copies of k, and hence

A A2 AM3L ... ATl

0 A A™R2 ... AMn2

. mp3
S
0 O o --- A

nxn

2C. By definition, a representation X of Q over A is a datum

X=(Xi5X(¥7i € Q()’aE Ql)?

where X; is an A-module for each i € Q¢ and X, : X)) = Xe@) 1S an A-map
for each o € Q. It is a finite-dimensional representation if each X; is finite-
dimensional. We call X; the i-th branch of X. A morphism f from representation
X to representation Y is a datum (f;, i € Qp), where f; : X; — Y; is an A-map for
each i € Qy, such that, for each arrow « : j — 1, the diagram

(2-3) jx

commutes. We call f; the i-th branch of f. If p=«a;---a; € P with o; € Q1,
[>1,and e(;) =s(aj41) for 1 <i <I—1, we put X, to be the A-map X, - - - X,
Denote by Rep(Q, A) the category of finite-dimensional representations of Q over A.
A morphism f = (fi,i € Qp) in Rep(Q, A) is a monomorphism (epimorphism,
isomorphism) if and only if f; is injective (surjective, an isomorphism) for each
i € Q().
Lemma 2.1. Let A be the path algebra of Q over A. Then we have an equivalence
A-mod = Rep(Q, A) of categories.

We omit the proof of Lemma 2.1, which is similar to the case of A = k; see
[Auslander et al. 1995, Theorem 1.5, p. 57; Ringel 1984, p. 44]. Throughout this

paper we will identify a A-module with a representation of Q over A. Under this
identification, a A-module X is a representation (X;, X4, i € Qp, ¢ € Q1) of O
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over A, where X; = (le;) X, 1 is the identity of A, and the A-action on X; is given
by a(le;)x = (le;)(ae;)x forall x € X and a € A; and X : X5) = Xe(o) 1S the
A-map given by the left action by 1o € A. On the other hand, a representation
(Xi, Xo,i € Qo,a € Q1) of O over A is a A-module X = @ier X;, with the
A-action on X given by

0 if s(p) #1i,

(ap)(xi) = | ax; if p=e,

aX,(x;) € Xepy ifs(p)=iandl(p)>1,
foralla € A, p e P, x; € X;. Let f : X — Y be a morphism in Rep(Q, A).
Then Ker f and Coker f can be explicitly written out. For example, Coker f =
(Coker f;, Ya,i € Qo, o € Q1), where, for each arrow o : j — i,

I?a : Coker f; — Coker f;
is the A-map induced by Y ; see (2-3). A sequence of morphisms
0—x Ly -5z 50
in Rep(Q, A) is exact if and only if each
0— X; i>Y,-i>Z,-—>O

is exact in A-mod, for i € Q.
In the following, if Qg is labeled as 1, ..., n, we also write a representation X
of Q over A as

X
Xn/ (Xq. acy)
and a morphism in Rep(Q, A) as
h
I

2D. The following is a central notion of this paper.

Definition 2.2. A representation X = (X;, X,,i € Qp, ¢ € Q1) of Q over Aisa
monic representation, or a monic A-module, if, for each i € Qy, the A-map

(Xa) OlEQl.: @ Xs(oz) - Xi

e(a)=i @0,
e(a)=i

is injective, or, equivalently, if the following two conditions are satisfied.
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(m1) For each o € O, the map X, : Xs(«) = Xe(o) 1S injective.
(m2) For each i € Qy, there holds Y 4ep, Im Xy = P wecp, Im X,.

e(a)=i e(a)=i
Denote by Mon(Q, A) the full subcategory of Rep(Q, A) consisting of monic
representations of Q over A. We call Mon(Q, A) the monomorphism category of
A over Q.
If Q is a quiver in which, for any vertex i, there is at most one arrow ending at i,
condition (m2) vanishes. For example, if Q = e — e, then Mon(Q, A) is called
the submodule category of A in [Ringel and Schmidmeier 2006; 2008a]. If

O=e— .- >0,
n 1

Mon(Q, A) is called the filtered chain category of A in [Arnold 2000; Simson
2007].

2E. Let Q be a finite acyclic quiver, A a finite-dimensional algebra, and A =
A ®k kQ. Throughout this paper, we label the vertices of Q as 1,2,...,n, in
such a way that if there is an arrow from j to i, then j > i. Denote by P (i) the
indecomposable projective k Q-module at i € Qg. It is clear that P (i) € Mon(Q, k);
it follows that M ®; P (i) € Mon(Q, A) for M € A-mod. Thus we have the functors

— Q¢ P(i) : A-mod — Mon(Q, A), —;:Rep(Q, A) > A-mod
(by taking the i-th branch).
We also need the adjoint pair (— ®x P (i), —;).

Lemma 2.3. For each object X = (X;, Xq,1 € Qo, @ € Q1) € A-mod and each
A-module M, we have isomorphisms of abelian groups, which are natural in both
positions

(2-4) Hom (M ® P (i), X) = Homy (M, X;)
foralli € Q.

Proof. For f = (fj, j € Qo) € Homy (M ®; P(i), X), we have f; € Homy (M, X;).
Since M Qi P(i) = (M Qi ejkQe;,idy Qa, j € Qp, a € Qy), it follows from the
commutative diagram (2-3) that

0 if there are no paths from i to j,
@5 fi= { > ’

m @y p+> X, fi(m) if there is a path p fromi to j.
By (2-5) we see that f — f; gives an injective map
Homp (M ®; 