Vol. 264, No. 2, 2013

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 316: 1  2
Vol. 315: 1  2
Vol. 314: 1  2
Vol. 313: 1  2
Vol. 312: 1  2
Vol. 311: 1  2
Vol. 310: 1  2
Vol. 309: 1  2
Online Archive
Volume:
Issue:
     
The Journal
Subscriptions
Editorial Board
Officers
Contacts
 
Submission Guidelines
Submission Form
Policies for Authors
 
ISSN: 1945-5844 (e-only)
ISSN: 0030-8730 (print)
Special Issues
Author Index
To Appear
 
Other MSP Journals
Twisted K-theory for the orbifold [∕G]

Mario Velásquez, Edward Becerra and Hermes Martinez

Vol. 264 (2013), No. 2, 471–490
Abstract

The main result of this paper establishes an explicit ring isomorphism between the twisted orbifold K-theory ωKorb([∕G]) and R(Dω(G)) for any element ω Z3(G;S1). We also study the relation between the twisted orbifold K-theories α Korb(𝒳) and α Korb(𝒴) of the orbifolds 𝒳 = [∕G] and 𝒴 = [∕G], where G and Gare different finite groups, and α Z3(G;S1) and α′∈ Z3(G;S1) are different twistings. We prove that if Gis an extraspecial group with prime number p as an index and order pn (for some fixed n ), under a suitable hypothesis over the twisting αwe can obtain a twisting α on the group (p)n such that there exists an isomorphism between the twisted K-theories α Korb([∕G]) and αKorb([(p)n]).

Keywords
inverse transgression map, twisted double Drinfeld, twisted K-theory
Mathematical Subject Classification 2010
Primary: 19L47, 19L50
Secondary: 20J06, 20C25
Milestones
Received: 16 May 2012
Revised: 28 November 2012
Accepted: 14 January 2013
Published: 28 July 2013
Authors
Mario Velásquez
Universidad de los Andes
Departamento de Matemáticas
Carrera 1 No 18A–12 edificio H
Bogotá
Colombia
Edward Becerra
Department of Mathematics
Universidad Nacional de Colombia
Carrera 30 Calle 45, Ciudad Universitaria
Bogotá
Colombia
Hermes Martinez
Escuela de Matemáticas
Universidad Sergio Arboleda
Calle 74 No. 14–14
Bogotá
Colombia