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We recall and partially improve four versions of smooth, nonabelian gerbes:
Čech cocycles, classifying maps, bundle gerbes, and principal 2-bundles. We
prove that all four versions are equivalent, and so establish new relations
between interesting recent developments. Prominent partial results that we
prove are a bijection between the continuous and smooth nonabelian coho-
mology, and an explicit equivalence between bundle gerbes and principal
2-bundles as 2-stacks.
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1. Introduction

Let G be a Lie group and M be a smooth manifold. There are (among others) the
following four ways to say what a smooth G-bundle over M is:

(1) Čech 1-cocycles: an open cover {Ui } of M , and for each nonempty intersection
Ui ∩U j a smooth map gi j :Ui ∩U j → G satisfying the cocycle condition

gi j · g jk = gik .

(2) Classifying maps: a continuous map

f : M→BG

to the classifying space BG of the group G.

(3) Bundle 0-gerbes: a surjective submersion π : Y → M and a smooth map
g : Y ×M Y → G satisfying

π∗12g ·π∗23g = π∗13g,

where πi j : Y ×M Y ×M Y → Y ×M Y denotes the projection to the i-th and
j-th factors.

(4) Principal bundles: a surjective submersion π : P→ M with a smooth action
of G on P that preserves π , such that the map

P ×G→ P ×M P : (p, g) 7→ (p, p.g)

is a diffeomorphism.

It is well-known that these four versions of smooth G-bundles are all equivalent.
Indeed, (1) forms the smooth G-valued Čech cohomology in degree one, whereas
(2) is known to be equivalent to continuous G-valued Čech cohomology, which in
turn coincides with smooth G-valued Čech cohomology. Further, (3) and (4) form
equivalent categories, and isomorphism classes of the objects (3) are in bijection
with equivalence classes of the cocycles (1).

In this article we provide an analogous picture for smooth 0-gerbes, where 0
is a strict Lie 2-group. In particular, 0 can be the automorphism 2-group of an
ordinary Lie group G, in which case the term “nonabelian G-gerbe” is commonly
used. We compare the following four versions:

Version I: Smooth, nonabelian Čech 0-cocycles (Definition 3.6). These form
the classical, smooth groupoid-valued cohomology Ȟ1(M, 0) in the sense of
Giraud [1971] and Breen [1990, Chapter 4; 1994].

Version II: Classifying maps (Definition 4.4). These are continuous maps f :
M →B|0| to the classifying space of the geometric realization of 0; such
maps have been introduced and studied in [Baez and Stevenson 2009].
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Version III: 0-bundle gerbes (Definition 5.1.1). These have been developed
by Aschieri, Cantini and Jurčo [Aschieri et al. 2005] as a generalization of
the abelian bundle gerbes of Murray [1996]. Here we present an equivalent
definition by applying a higher categorical version [Nikolaus and Schweigert
2011] of Grothendieck’s stackification construction to the monoidal pre-2-stack
of principal 0-bundles.

Version IV: Principal 0-2-bundles (Definition 6.1.5). These have been introduced
in [Bartels 2006]; their total spaces are Lie groupoids on which the Lie 2-group
0 acts in a certain way. Compared to Bartels’ definition, ours uses a stricter
and easier notion of such an action.

We prove that all four versions are equivalent, and follow the same line of arguments
as in the case of G-bundles outlined above:

• Baez and Stevenson have shown that homotopy classes of classifying maps of
Version II are in bijection with the continuous groupoid-valued Čech cohomol-
ogy Ȟ1

c(M, 0). We prove (Proposition 4.1) that the inclusion of smooth into
continuous Čech 0-cocycles induces a bijection

Ȟ1
c(M, 0)∼= Ȟ1(M, 0).

These two results establish the equivalence between our Versions I and II
(Theorem 4.6).

• 0-bundle gerbes and principal 0-2-bundles over M form bicategories. We
prove (Theorem 7.0.1) that these bicategories are equivalent, and so establish
the equivalence between Versions III and IV. Our proof provides explicit
2-functors in both directions.

• We prove the equivalence between Versions I and III by showing that nonabelian
0-bundle gerbes are classified by the nonabelian cohomology group Ȟ1(M, 0)
(Theorem 5.3.2).

The first aim of this paper is to simplify and clarify the notion of a nonabelian
gerbe. This concerns the notion of a 0-bundle gerbe (Version III), for which we
give a new, conceptually clear, and manifestly 2-categorical definition. It also
concerns the notion of a principal 2-bundle (Version IV), for which we provide a
new definition that is carefully balanced between generality and simplicity.

The second aim of this paper is to make it possible to compare and transfer
available results between the various versions. Indeed, none of the three equivalences
above is available in the existing literature. As an example why such equivalences
can be useful, we use Theorem 7.0.1 — the equivalence between 0-bundle gerbes
and principal 0-2-bundles — in order to carry two facts about 0-bundle gerbes over
to principal 0-2-bundles. We prove:
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(1) Principal 0-2-bundles form a 2-stack over smooth manifolds (Theorem 6.2.1).
This is a new and evidently important result, since it explains precisely in
which way one can glue 2-bundles from local patches.

(2) If 0 and � are weakly equivalent Lie 2-groups, the 2-stacks of principal 0-
2-bundles and principal �-2-bundles are equivalent (Theorem 6.2.3). This
is another new result that generalizes the well-known fact that principal G-
bundles and principal H -bundles form equivalent stacks, whenever G and H
are isomorphic Lie groups.

The two facts about 0-bundle gerbes (Theorems 5.1.5 and 5.2.2) on which these re-
sults are based are proved in an outmost abstract way: the first is a mere consequence
of the definition of 0-bundle gerbes that we give, namely via a 2-stackification
procedure for principal 0-bundles. The second follows from the fact that principal
0-bundles and principal �-bundles form equivalent monoidal pre-2-stacks, which
we deduce as a corollary of their description by anafunctors.

The present paper is part of a larger program. In a forthcoming paper, we address
the discussion of nonabelian lifting problems, in particular string structures. In a
second forthcoming paper we will present the picture of four equivalent versions in
a setting with connections, based on the results of the present paper. Our motivation
is to understand the role of 2-bundles with connections in higher gauge theories,
where they serve as “B-fields”. Here, two (nonabelian) 2-groups are especially
important, namely the string group [Baez et al. 2007] and the Jandl group [Nikolaus
and Schweigert 2011]. More precisely, string-2-bundles appear in supersymmetric
sigma models that describe fermionic string theories [Bunke 2011], while Jandl-2-
bundles appear in unoriented sigma models that describe, e.g., bosonic type-I string
theories [Schreiber et al. 2007].

This paper is organized as follows. In Section 2 we recall and summarize the
theory of principal groupoid bundles and their description by anafunctors. The rest
of the paper is based on this theory. In Sections 3–6 we introduce our four versions of
smooth 0-gerbes, and establish all but one equivalence. The remaining equivalence,
the one between bundle gerbes and principal 2-bundles, is discussed in Section 7.

2. Preliminaries

There is no claim of originality in this section. Our sources are [Lerman 2010;
Metzler 2003; Heinloth 2005; Moerdijk and Mrčun 2003]. A slightly different but
equivalent approach is developed in [Murray et al. 2012].

2.1. Lie groupoids and groupoid actions on manifolds. We assume that the reader
is familiar with the notions of Lie groupoids, smooth functors and smooth natural
transformations. In this paper, the following examples of Lie groupoids appear:
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Example 2.1.1. (a) Every smooth manifold M defines a Lie groupoid, denoted
by Mdis, whose objects and morphisms are M , and all of whose structure maps
are identities.

(b) Every Lie group G defines a Lie groupoid denoted by BG, with one ob-
ject, with G as its smooth manifold of morphisms, and with the composition
g2 ◦ g1 := g2g1.

(c) Suppose X is a smooth manifold and ρ : H × X→ X is a smooth left action
of a Lie group H on X . Then, a Lie groupoid X//H is defined with objects X
and morphisms H × X , and with

s(h, x) := x , t (h, x) := ρ(h, x) and idx := (1, x).

The composition is

(h2, x2) ◦ (h1, x1) := (h2h1, x1),

where x2 = ρ(h1, x1). The Lie groupoid X//H is called the action groupoid
of the action of H on X .

(d) Let t : H → G be a homomorphism of Lie groups. Then,

ρ : H ×G→ G : (h, g) 7→ (t (h)g)

defines a smooth left action of H on G. Thus, we have a Lie groupoid G//H .

(e) To every Lie groupoid 0 one can associate an opposite Lie groupoid 0op which
has the source and the target map exchanged.

We say that a right action of a Lie groupoid 0 on a smooth manifold M is a pair
(α, ρ) consisting of smooth maps α : M→ 00 and ρ : M α×t 01→ M such that

ρ(ρ(x, g), h)= ρ(x, g ◦ h), ρ(x, idα(x))= x and α(ρ(x, g))= s(g)

for all possible g, h ∈ 01, p ∈ 00 and x ∈ M . The map α is called anchor. Later
on we will replace the letter ρ for the action by the symbol ◦ that denotes the
composition of the groupoid. A left action of 0 on M is a right action of the
opposite Lie groupoid 0op. A smooth map f : M→ M ′ between 0-spaces with
actions (α, ρ) and (α′, ρ ′) is called 0-equivariant if

α′ ◦ f = α and f (ρ(x, g))= ρ ′( f (x), g).

Example 2.1.2. (1) Let 0 be a Lie groupoid. Then, 0 acts on the right on its
morphisms 01 by α := s and ρ := ◦ . It acts on the left on its morphisms by
α := t and ρ := ◦ .
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(2) Let G be a Lie group. Then, a right/left action of the Lie groupoid BG (see
Example 2.1.1(b)) on M is the same as an ordinary smooth right/left action
of G on M .

(3) Let X be a smooth manifold. A right/left action of Xdis (see Example 2.1.1(a))
on M is the same as a smooth map α : M→ X .

2.2. Principal groupoid bundles. We give the definition of a principal bundle in
exactly the same way as we are going to define principal 2-bundles in Section 6.

Definition 2.2.1. Let M be a smooth manifold, and let 0 be a Lie groupoid.

(1) A principal 0-bundle over M is a smooth manifold P with a surjective sub-
mersion π : P→ M and a right 0-action (α, ρ) that respects the projection π ,
such that

τ : P α×t 01→ P ×M P : (p, g) 7→ (p, ρ(p, g))

is a diffeomorphism.

(2) Let P1 and P2 be principal 0-bundles over M . A morphism ϕ : P1→ P2 is a
0-equivariant smooth map that respects the projections to M .

Principal 0-bundles over M form a category Bun0(M). In fact, this category is
a groupoid; i.e., all morphisms between principal 0-bundles are invertible. There
is an evident notion of a pullback f ∗P of a principal 0-bundle P over M along a
smooth map f : X→ M , and similarly, morphisms between principal 0-bundles
pull back. These define a functor

f ∗ : Bun0(M)→ Bun0(X).

These functors make principal 0-bundles a prestack over smooth manifolds. One
can easily show that this prestack is a stack (for the Grothendieck topology of
surjective submersions).

Example 2.2.2 (ordinary principal bundles). For G a Lie group, we have an equality
of categories

BunBG(M)= BunG(M);

i.e., Definition 2.2.1 reduces consistently to the definition of an ordinary principal
G-bundle.

Example 2.2.3 (trivial principal groupoid bundles). For M a smooth manifold and
f : M→ 00 a smooth map, P := M f×t 01 and π(m, g) := m define a surjective
submersion, and α(m, g) := s(g) and ρ((m, g), h) := (m, g◦h) define a right action
of 0 on P that preserves the fibers. The map τ we have to look at has the inverse

τ−1
: P ×M P→ P π×t 01 : ((m, g1), (m, g2)) 7→ ((m, g1), g−1

1 ◦ g2),
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which is smooth. Thus we have defined a principal 0-bundle, which we denote
by I f and which we call the trivial bundle for the map f . Any bundle that is
isomorphic to a trivial bundle is called trivializable.

Example 2.2.4 (discrete structure groupoids). For X a smooth manifold, we have
an equivalence of categories

BunXdis
(M)∼= C∞(M, X)dis.

Indeed, for a given principal Xdis-bundle P one observes that the anchor α : P→ X
descends along the bundle projection to a smooth map f : M → X , and that
isomorphic bundles determine the same map. Conversely, one associates to a
smooth map f : M→ X the trivial principal Xdis-bundle I f over M .

Example 2.2.5 (exact sequences). Let

(2.2-1) 1 // H
t // G

p // K // 1

be an exact sequence of Lie groups, and let 0 := G//H be the action groupoid asso-
ciated to the Lie group homomorphism t : H→G as explained in Example 2.1.1(d).
In this situation, p : G→ K is a surjective submersion, and

α : G→ 00 : g 7→ g and ρ : G α×t 01→ G : (g, (h, g′)) 7→ g′

define a smooth right action of 0 on G that preserves p. The inverse of the map τ
is

τ−1
: G×K G→ G α×t 01 : (g1, g2) 7→

(
g1, (t−1(g1g−1

2 ), g2)
)
,

which is smooth because t is an embedding. Thus, G is a principal 0-bundle over K .

Next we provide some elementary statements about trivial principal 0-bundles.

Lemma 2.2.6. A principal 0-bundle over M is trivializable if and only if it has a
smooth section.

Proof. A trivial bundle I f has the section

s f : M→ I f : x 7→ (x, id f (x)),

and so any trivializable bundle has a section. Conversely, suppose a principal
0-bundle P has a smooth section s : M→ P . Then, with f := α ◦ s,

ϕ : I f → P : (m, g) 7→ ρ(s(m), g)

is an isomorphism. �

The following consequence shows that principal 0-bundles of Definition 2.2.1
are locally trivializable in the usual sense.
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Corollary 2.2.7. Let P be a principal 0-bundle over M. Then, every point x ∈ M
has an open neighborhood U over which P has a trivialization: a smooth map
f :U → 00 and a morphism ϕ : I f → P|U .

Proof. One can choose U such that the surjective submersion π : U → P has a
smooth section. Then, Lemma 2.2.6 applies to the restriction P|U . �

We determine the Hom-set Hom(I f1, I f2) between trivial principal 0-bundles
defined by smooth maps f1, f2 : M → 00. To a bundle morphism ϕ : I f1 → I f2

one associates the smooth function g : M→ 01 which is uniquely defined by the
condition

(ϕ ◦ s f1)(x)= s f2(x) ◦ g(x)

for all x ∈ M . It is straightforward to see that:

Lemma 2.2.8. The above construction defines a bijection

Hom(I f1, I f2)→ {g ∈ C∞(M, 01) | s ◦ g = f1 and t ◦ g = f2},

under which identity morphisms correspond to constant maps and the composition
of bundle morphisms corresponds to the pointwise composition of functions.

Finally, we consider the case of principal bundles for action groupoids.

Lemma 2.2.9. Let X//H be a smooth action groupoid. The category BunX//H (M)
is equivalent to a category with:

• Objects: principal H-bundles PH over M together with a smooth, H-antiequi-
variant map f : PH → X ; i.e., f (p · h)= h−1 f (p).

• Morphisms: bundle morphisms ϕH : PH→ P ′H that respect the maps f and f ′.

Proof. For a principal X//H -bundle (P, α, ρ) we set PH := P with the given
projection to M . The action of H on PH is defined by

p ? h := ρ
(

p, (h, h−1
·α(p))

)
.

This action is smooth, and it follows from the axioms of the principal bundle P
that it is principal. The map f : PH → X is the anchor α. The remaining steps are
straightforward and left as an exercise. �

2.3. Anafunctors. An anafunctor is a generalization of a smooth functor between
Lie groupoids, similar to a Morita equivalence, and also known as a Hilsum–
Skandalis morphism. The idea goes back to [Bénabou 1973]; also see [Johnstone
1977]. The references for the following definitions are [Lerman 2010; Metzler
2003].

Definition 2.3.1. Let X and Y be Lie groupoids.
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(1) An anafunctor F : X → Y is a smooth manifold F , a left action (αl, ρl) of X
on F , and a right action (αr , ρr ) of Y on F such that the actions commute and
αl : F→ X0 is a principal Y-bundle over X0.

(2) A transformation between anafunctors f : F⇒ F ′ is a smooth map f : F→ F ′

which is X -equivariant, Y-equivariant, and satisfies α′l ◦ f =αl and α′r ◦ f =αr .

The smooth manifold F of an anafunctor is called its total space. Notice that
the condition that the two actions on F commute implies that each respects the
anchor of the other. For fixed Lie groupoids X and Y , anafunctors F : X → Y
and transformations form a category Ana∞(X ,Y). Since transformations are
in particular morphisms between principal Y-bundles, every transformation is
invertible so that Ana∞(X ,Y) is in fact a groupoid.

Example 2.3.2 (anafunctors from ordinary functors). Given a smooth functor
φ :X→Y , we obtain an anafunctor in the following way. We set F :=X0 φ×tY1 with
anchors αl : F→X0 and αr : F→Y0 defined by αl(x, g) := x and αr (x, g) := s(g),
and actions

ρl : X1 s×αl F→ F and ρr : F αr×t Y1→ F

defined by ρl( f, (x, g)) := (t ( f ), φ( f ) ◦ g) and ρr ((x, g), f ) := (x, g ◦ f ). In the
same way, a smooth natural transformation η : φ ⇒ φ′ defines a transformation
fη : F ⇒ F ′ by fη(x, g) := (x, η(x) ◦ g). Conversely, one can show that an
anafunctor comes from a smooth functor, if its principal 0-bundle has a smooth
section.

Example 2.3.3 (anafunctors with discrete source). For M a smooth manifold and 0
a Lie groupoid, we have an equality of categories

Bun0(M)=Ana∞(Mdis, 0).

Further, trivial principal 0-bundles correspond to smooth functors. In particular,
with Example 2.2.2 we have:

(a) For G a Lie group and M a smooth manifold, an anafunctor F : Mdis→ BG
is the same as an ordinary principal G-bundle over M .

(b) For M and X smooth manifolds, an anafunctor F : Mdis→ Xdis is the same as
a smooth map.

Example 2.3.4 (anafunctors with discrete target). For 0 a Lie groupoid and M a
smooth manifold, we have an equivalence of categories

C∞(00,M)0dis
∼=Ana∞(0,Mdis)

where C∞(00,M)0 denotes the set of smooth maps f :00→M such that f ◦s= f ◦t
as maps 01→M . The equivalence is induced by regarding a map f ∈C∞(00,M)0
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as a smooth functor f : 0→ Mdis, which in turn induces an anafunctor. Conversely,
an anafunctor F :0→Mdis is in particular an Mdis-bundle over 00, which is nothing
but a smooth function f : 00 → M by Example 2.2.4. The additional 0-action
assures the 0-invariance of f .

Example 2.3.5 (anafunctors between one-object Lie groupoids). Let G and H
be Lie groups, and let BG and BH be the associated one-object Lie groupoids
(Example 2.1.1(b)). Then, there is an equivalence of categories

Hom(G, H)//H ∼=Ana∞(BG,BH),

where the action of H on Hom(G, H) is by pointwise conjugation. The functor
which establishes this equivalence sends a smooth group homomorphism α :G→ H
to the evident smooth functor Fα : BG→ BH and converts this into an anafunctor
(Example 2.3.2). A morphism h : α1→ α2 is sent to the natural transformation
ηh : Fα1 → Fα2 whose component at the single object is the morphism h ∈ H . In
order to see that this is essentially surjective, it suffices to notice that the principal
H -bundle of any smooth anafunctor F : BG→ BH has a section. The proof that
the functor is full and faithful is straightforward.

For the following definition, we suppose X , Y and Z are Lie groupoids, and
F : X → Y and G : Y→ Z are anafunctors given by F = (F, αl, ρl, αr , ρr ) and
G = (G, βl, τl, βr , τr ).

Definition 2.3.6. The composition G ◦ F : X → Z is the anafunctor defined in the
following way:

(1) Its total space is
E := (F αr×βl G) /∼

where ( f, τl(h, g)) ∼ (ρr ( f, h), g) for all h ∈ Y1 with αr ( f ) = t (h) and
βl(g)= s(h).

(2) The anchors are ( f, g) 7→ αl( f ) and ( f, g) 7→ βr (g).

(3) The actions X1 s×α E→ E and E β×t Z1→ E are given, respectively, by

(γ, ( f, g)) 7→ (ρl(γ, f ), g) and (( f, g), γ ) 7→ ( f, τr (g, γ )).

Remark 2.3.7. Lie groupoids, anafunctors and transformations form a bicategory.
This bicategory is equivalent to the bicategory of differentiable stacks (also known
as geometric stacks) [Pronk 1996].

In this article, anafunctors serve two purposes. The first is that one can use con-
veniently the composition of anafunctors to define extensions of principal groupoid
bundles:
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Definition 2.3.8. If P : Mdis→ 0 is a principal 0-bundle over M , and 3 : 0→�

is an anafunctor, then the principal �-bundle

3P :=3 ◦ P : Mdis→�

is called the extension of P along 3.

Unwinding this definition, the principal �-bundle 3P has the total space

(2.3-1) 3P = (P α×αl 3) /∼

where (p, ρl(γ, λ))∼ (ρ(p, γ ), λ) for all p∈ P , λ∈3 and γ ∈01 with α(p)= t (γ )
and αl(λ) = s(γ ). Here α is the anchor and ρ is the action of P , and 3 =
(3, αl, αr , ρl, ρr ). The bundle projection is (p, λ) 7→ π(p), where π is the bundle
projection of P , the anchor is (p, λ) 7→ αr (λ), and the action is

(p, λ) ◦ω = (p, ρr (λ, ω)).

Extensions of bundles are accompanied by extensions of bundle morphisms. If
ϕ : P1→ P2 is a morphism between 0-bundles, a morphism 3ϕ :3P1→3P2 is
defined by 3ϕ(p1, λ) := (ϕ(p1), λ) in terms of (2.3-1). Summarizing, we have:

Lemma 2.3.9. Let M be a smooth manifold and3 :0→� be an anafunctor. Then,
extension along 3 is a functor

3 : Bun0(M)→ Bun�(M).

Moreover, it commutes with pullbacks and so extends to a morphism between stacks.

Next we suppose that t : H → G is a Lie group homomorphism, and G//H
is the associated action groupoid of Example 2.1.1(d). We look at the functor
2 : G//H→ BH which is defined by 2(h, g) := h. Combining Lemma 2.2.9 with
the extension along 2, we obtain:

Lemma 2.3.10. The category BunG//H (M) of principal G//H-bundles over a
smooth manifold M is equivalent to a category with:

• Objects: principal H-bundles PH over M together with a section of 2(PH ).

• Morphisms: morphisms ϕ of H-bundles so that 2(ϕ) preserves the sections.

The second motivation for introducing anafunctors is that they provide the
inverses to certain smooth functors which are not necessarily equivalences of
categories.

Definition 2.3.11. A smooth functor or anafunctor F : X → Y is called a weak
equivalence, if there exists an anafunctor G : Y→X together with transformations
G ◦ F ∼= idX and F ◦G ∼= idY .
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We have the following immediate consequence for the stack morphisms of
Lemma 2.3.9.

Corollary 2.3.12. Let 3 : 0→ � be a weak equivalence between Lie groupoids.
Then, extension of principal bundles along 3 is an equivalence 3 : Bun0(M)→
Bun�(M) of categories. Moreover, these define an equivalence between the stacks
Bun0(−) and Bun�(−).

Concerning the claimed generalization of invertibility, we have the following well-
known theorem; see [Lerman 2010, Lemma 3.34; Metzler 2003, Proposition 60].

Theorem 2.3.13. A smooth functor F :X → Y is a weak equivalence if and only if
the following two conditions are satisfied:

(a) It is smoothly essentially surjective: the map

s ◦ pr2 : X0 F0×t Y1→ Y0

is a surjective submersion.

(b) It is smoothly fully faithful: the diagram

X1
F //

s×t

��

Y1

s×t

��
X0×X0 F×F

// Y0×Y0

is a pullback diagram.

Remark 2.3.14. One can show that any smooth functor F : X → Y that is a weak
equivalence actually has a canonical inverse anafunctor.

2.4. Lie 2-groups and crossed modules. A (strict) Lie 2-group is a Lie groupoid 0
whose objects and morphisms are Lie groups, and all of whose structure maps are
Lie group homomorphisms. One can conveniently bundle the multiplications and
the inversions into smooth functors

m : 0×0→ 0 and i : 0→ 0.

Example 2.4.1. For A an abelian Lie group, we have that the Lie groupoid BA
from Example 2.1.1(b) is a Lie 2-group. The condition that A is abelian is necessary.

Example 2.4.2. Let t : H→G be a homomorphism of Lie groups, and let G//H be
the corresponding Lie groupoid from Example 2.1.1(d). This Lie groupoid becomes
a Lie 2-group if the following structure is given: a smooth left action of G on H by
Lie group homomorphisms, denoted by (g, h) 7→ gh, satisfying

t (gh)= gt (h)g−1 and t (h)x = hxh−1
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for all g ∈ G and h, x ∈ H . Indeed, the objects G of G//H already form a Lie
group, and the multiplication on the morphisms H ×G of G//H is the semidirect
product

(2.4-1) (h2, g2) · (h1, g1)= (h2
g2h1, g2g1).

The homomorphism t : H → G together with the action of G on H is called a
smooth crossed module. Summarizing, every smooth crossed module defines a Lie
2-group.

Remark 2.4.3. Every Lie 2-group 0 can be obtained from a smooth crossed module.
Indeed, one puts G := 00 and H := ker(s), equipped with the Lie group structures
defined by the multiplication functor m of 0. The homomorphism t : H → G is
the target map t : 01 → 00, and the action of G on H is given by the formula
gγ := idg · γ · idg−1 for g ∈ 00 and γ ∈ ker(s). These two constructions are inverse
to each other (up to canonical Lie group isomorphisms and strict Lie 2-group
isomorphisms, respectively).

Example 2.4.4. Consider a connected Lie group H , so that its automorphism
group Aut(H) is again a Lie group [Onishchik and Vinberg 1988]. Then, we
have a smooth crossed module (Aut(H), H, i, ev), where i : H → Aut(H) is the
assignment of inner automorphisms to group elements, and ev : Aut(H)× H→ H
is the evaluation action. The associated Lie 2-group is denoted by AUT(H) and is
called the automorphism 2-group of H .

Example 2.4.5. Let

1 // H
t // G

p // K // 1

be an exact sequence of Lie groups, i.e., an exact sequence in which p is a sub-
mersion and t is an embedding. The homomorphisms t : H → G and p : G→ K
define action groupoids G//H and K//G as explained in Example 2.1.1. The first
one is even a Lie 2-group: the action of G on H is defined by gh := t−1(gt (h)g−1).
This is well-defined: since

p(gt (h)g−1)= p(g)p(t (h))p(g−1)= p(g)p(g)−1
= 1,

the element gt (h)g−1 lies in the image of t , and has a unique preimage. The action
is smooth because t is an embedding. The axioms of a crossed module are obviously
satisfied.

If a Lie groupoid 0 is a Lie 2-group in virtue of a multiplication functor
m : 0×0→ 0, then the category Bun0(M) of principal 0-bundles over a smooth
manifold M is monoidal:
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Definition 2.4.6. Let P : Mdis→ 0 and Q : Mdis→ 0 be principal 0-bundles. The
tensor product P ⊗ Q is the anafunctor

Mdis
diag // Mdis×Mdis

P×Q // 0×0
m // 0.

Example 2.4.7. (a) Since trivial principal 0-bundles I f correspond to smooth
functors f : Mdis→ 0 (Example 2.3.3), it is clear that I f ⊗ Ig = I f g.

(b) Unwinding Definition 2.4.6 in the general case, the tensor product of two
principal 0-bundles P1 and P2 with anchors α1 and α2, respectively, and
actions ρ1 and ρ2, respectively, is given by

(2.4-2) P1⊗ P2 =
(
(P1×M P2) m◦(α1×α2)×t 01

)
/∼ ,

where

(2.4-3) (p1, p2,m(γ1, γ2) ◦ γ )∼ (ρ1(p1, γ1), ρ2(p2, γ2), γ )

for all p1 ∈ P1, p2 ∈ P2 and morphisms γ, γ1, γ2 ∈01 satisfying t (γi )=αi (pi )

for i = 1, 2 and s(γ1)s(γ2)= t (γ ). The bundle projection is

π̃(p1, p2, γ ) := π1(p1)= π2(p2),

the anchor is α̃(p1, p2, γ ) := s(γ ), and the 0-action is given by

ρ̃((p1, p2, γ ), γ
′) := (p1, p2, γ ◦ γ

′).

As a consequence of Lemma 2.3.9 and the fact that the composition of anafunctors
is associative up to coherent transformations, we have:

Proposition 2.4.8. For M a smooth manifold and 0 a Lie 2-group, the tensor
product

⊗ : Bun0(M)×Bun0(M)→ Bun0(M)

equips the groupoid of principal 0-bundles over M with a monoidal structure.
Moreover, it turns the stack Bun0(−) into a monoidal stack.

Notice that the tensor unit of the monoidal groupoid Bun0(M) is the trivial
principal 0-bundle I1 associated to the constant map 1 : M→ 00, or, in terms of
anafunctors, the one associated to the constant functor 1 : M→ 0.

A (weak) Lie 2-group homomorphism between Lie 2-groups (0,m0) and (�,m�)

is an anafunctor 3 : 0→� together with a transformation

(2.4-4)

0×0
m0 //

3×3

��

0

3

��

η

x�
�×� m�

// �
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satisfying the evident coherence condition. Under the equivalence with smooth
crossed modules (Remark 2.4.3), Lie 2-group homomorphisms correspond to so-
called butterflies [Aldrovandi and Noohi 2009]. A Lie 2-group homomorphism
is called weak equivalence, if the anafunctor 3 is a weak equivalence. Since
extensions and tensor products are both defined via composition of anafunctors, we
immediately obtain:

Proposition 2.4.9. Extension along a Lie 2-group homomorphism 3 : 0 → �

between Lie 2-groups is a monoidal functor

3 : Bun0(M)→ Bun�(M)

between monoidal categories. Moreover, these form a monoidal morphism between
monoidal stacks.

Since a monoidal functor is an equivalence of monoidal categories if it is an
equivalence of the underlying categories, Corollary 2.3.12 implies:

Corollary 2.4.10. For 3 : 0→� a weak equivalence between Lie 2-groups, the
monoidal functor of Proposition 2.4.9 is an equivalence of monoidal categories.
Moreover, these form a monoidal equivalence between monoidal stacks.

If we represent the Lie 2-group 0 by a smooth crossed module t : H → G as
described in Example 2.4.2, we want to determine explicitly what the tensor product
looks like under the correspondence of (G//H)-bundles and principal H -bundles
with antiequivariant maps to G; see Lemma 2.2.9.

Lemma 2.4.11. Let t : H → G be a crossed module and let P and Q be G//H-
bundles over M. Let (PH , f ) and (Q H , g) be the principal H-bundles together
with their H-antiequivariant maps that belong to P and Q, respectively, under the
equivalence of Lemma 2.2.9. Then, the principal H-bundle that corresponds to the
tensor product P ⊗ Q is given by

(P ⊗ Q)H = (P ×M Q) /∼ where (p ? h, q)∼
(

p, q ?
( f (p)−1

h
))

.

The action of H on (P⊗Q)H is [(p, q)]?h=[(p?h, q)], and the H-antiequivariant
map of (P ⊗ Q)H is [(p, q)] 7→ f (p) · g(q).

Similar to the tensor product of principal 0-bundles, the dual P∨ of a principal
0-bundle P over M is the extension of P along the inversion i : 0→ 0 of the 2-
group, P∨ := i(P). The equality m ◦(id, i)= 1 of functors M→0 induces a death
map d : P ⊗ P∨→ I1. We are going to use this bundle morphism in Section 5.2,
but omit a further systematical treatment of duals for the sake of brevity.



370 THOMAS NIKOLAUS AND KONRAD WALDORF

3. Version I: groupoid-valued cohomology

We have already mentioned group-valued Čech 1-cocycles in the introduction. They
consist of an open cover U= {Ui }i∈I of M and smooth functions gi j :Ui ∩U j→G
satisfying the cocycle condition gi j · g jk = gik . Segal [1968] realized that this is
the same as a smooth functor

g : Č(U)→ BG

where BG denotes the one-object groupoid introduced in Example 2.1.1(b) and Č(U)
denotes the Čech groupoid corresponding to the cover U. It has objects

⊔
i∈I Ui

and morphisms
⊔

i, j∈I Ui ∩U j , and its structure maps are

s(x, i, j)= (x, i), t (x, i, j)= (x, j),

id(x,i) = (x, i, i) and (x, j, k) ◦ (x, i, j)= (x, i, k).

Analogously, smooth natural transformations between smooth functors Č(U)→ BG
give rise to Čech coboundaries. Thus the set [Č(U),BG] of equivalence classes of
smooth functors equals the usual first Čech cohomology with respect to the cover U.
The classical first Čech-cohomology Ȟ1(M,G) of M is hence given by the colimit
over all open covers U of M :

Ȟ1(M,G)= lim
−→

U

[Č(U),BG].

We use this coincidence in order to define the 0-th Čech cohomology with
coefficients in a general Lie groupoid 0:

Definition 3.1. If 0 is a Lie groupoid we set

Ȟ0(M, 0) := lim
−→

U

[Č(U), 0]

where the colimit is taken over all covers U of M and [Č(U), 0] denotes the set of
equivalence classes of smooth functors Č(U)→ 0.

Remark 3.2. The choice of the degree is such that Ȟ0(M, 0) agrees in the case
0 = Gdis (Example 2.1.1(a)) with the classical 0-th Čech-cohomology Ȟ0(M,G)
of M with values in G.

The geometrical meaning of the set is given in the following well-known theorem,
which can be proved, e.g., using Lemma 2.2.8.

Theorem 3.3. There is a bijection

Ȟ0(M, 0)∼= { Isomorphism classes of principal 0-bundles over M }.
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If 0 is not only a Lie 2-groupoid but a Lie 2-group one can also define a first
cohomology group Ȟ1(M, 0). Indeed, in this case one can consider the Lie 2-
groupoid B0 with one object, morphisms 00 and 2-morphisms 01. Multiplication
in 0 gives the composition of morphisms in B0. Let [Č(U),B0] denote the set of
equivalence classes of smooth, weak 2-functors from the Čech-groupoid Č(U) to
the Lie 2-groupoid B0. For the definition of weak functors see [Bénabou 1967].
Below we will determine this set explicitly.

Definition 3.4. For a 2-group 0 we set

Ȟ1(M, 0) := lim
−→

U

[Č(U),B0].

Remark 3.5. This agrees for 0 = Gdis with the classical Ȟ1(M,G). Furthermore,
for an abelian Lie group A the Lie groupoid BA is even a 2-group and Ȟ1(M,BA)
agrees with the classical Čech-cohomology Ȟ2(M, A).

Unwinding the above definition, we get Version I of smooth 0-gerbes:

Definition 3.6. Let 0 be a Lie 2-group, and let U = {Uα}α∈A be an open cover
of M .

(1) A 0-1-cocycle with respect to U is a pair ( fαβ, gαβγ ) of smooth maps

fαβ :Uα ∩Uβ→ 00 and gαβγ :Uα ∩Uβ ∩Uβ→ 01

satisfying s(gαβγ )= fβγ · fαβ and t (gαβγ )= fαγ , and

(3-1) gαβδ ◦ (gβγ δ · id fαβ )= gαγ δ ◦ (id fγ δ · gαβγ ).

Here, the symbols ◦ and · stand for the composition and multiplication of 0,
respectively.

(2) Two 0-1-cocycles ( fαβ, gαβγ ) and ( f ′αβ, g′αβγ ) are equivalent, if there exist
smooth maps hα :Uα→ 00 and sαβ :Uα ∩Uβ→ 01 with

s(sαβ)= g′αβ · hα, t (sαβ)= hβ · gαβ
and (idhγ · gαβγ ) ◦ (sβγ · id fαβ ) ◦ (id fβγ · sαβ)= sαγ ◦ (g′αβγ · idhα ).

Remark 3.7. For a crossed module t : H → G and 0 := G//H the associated Lie
2-group (Example 2.4.2) one can reduce 0-1-cocycles to pairs

f̃αβ :Uα ∩Uβ→ G and g̃αβγ :Uα ∩Uβ ∩Uβ→ H,

which then satisfies a cocycle condition similar to (3-1). Analogously, coboundaries
can be reduced to pairs

h̃α :Uα→ G and s̃αβ :Uα ∩Uβ→ H .
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This yields the common definition of nonabelian cocycles, which can for example
be found in [Breen 1990] or [Baez and Stevenson 2009].

Example 3.8. In case of the crossed module i : H → Aut(H) with 0 = AUT(H)
(see Example 2.4.4) 0-1-cocycles consist of pairs f̃αβ : Uα ∩Uβ → Aut(H) and
g̃αβ : Uα ∩Uβ ∩Uγ → H . Cocycles of this kind classify so-called Lie groupoid
H -extensions [Laurent-Gengoux et al. 2009, Proposition 3.14], which can hence be
seen as another equivalent version for AUT(H)-gerbes.

4. Version II: classifying maps

It is well-known that for a Lie group G the smooth Čech-cohomology Ȟ1(M,G)
and the continuous Čech-cohomology Ȟ1

c(M,G) agree if M is a smooth manifold
(in particular paracompact). This can, e.g., be shown by locally approximating
continuous cocycles by smooth ones without changing the cohomology class — see
[Müller and Wockel 2009] (even for G infinite-dimensional). Below we generalize
this fact to nonabelian cohomology for certain Lie 2-groups 0. Here the contin-
uous Čech-cohomology Ȟ1

c(M, 0) is defined in the same way as the smooth one
(Definition 3.4) but with all maps continuous instead of smooth. A Lie groupoid 0
is called smoothly separable, if the set π00 of isomorphism classes of objects is a
smooth manifold for which the projection 00→ π00 is a submersion.

Proposition 4.1. Let M be a smooth manifold and let 0 be a smoothly separable
Lie 2-group. Then, the inclusion

Ȟ1(M, 0)→ Ȟ1
c(M, 0)

of smooth into continuous Čech cohomology is a bijection.

Remark 4.2. It is possible that the assumption of being smoothly separable is not
necessary, but a proof not assuming this would certainly be more involved than
ours. Anyway, all Lie 2-groups we are interested in are smoothly separable.

Proof of Proposition 4.1. We denote by π10 the Lie subgroup of 01 consisting
of automorphisms of 1 ∈ 00. Since it has two commuting group structures —
composition and multiplication — it is abelian. The idea of the proof is to reduce
the statement via long exact sequences to statements proved in [Müller and Wockel
2009]. The exact sequence we need can be found in [Breen 1990]:

Ȟ0(M, (π00)dis)→ Ȟ1(M,Bπ10)→ Ȟ1(M, 0)

→ Ȟ1(M, (π00)dis)→ Ȟ2(M,Bπ10).

Note that Ȟ1(M, 0) and Ȟ1(M, (π00)dis) do not have group structures; hence,
exactness is only meant as exactness of pointed sets. But we actually have more
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structure, namely an action of Ȟ1(M, Bπ10) on Ȟ1(M, 0). This action factors to
an action of

C := coker
(
Ȟ0(M, (π00)dis)→ Ȟ1(M,Bπ10)

)
.

In fact on the nonempty fibers of the morphism Ȟ1(M, 0)→ Ȟ1(M, (π00)dis) this
action is simply transitive. In other words: Ȟ1(M, 0) is a C-torsor over

K := ker
(
Ȟ1(M, (π00)dis)→ Ȟ2(M,Bπ10)

)
.

The same type of sequence also exists in continuous cohomology, namely

Ȟ0
c(M, (π00)dis)→ Ȟ1

c(M,Bπ10)→ Ȟ1
c(M, 0)

→ Ȟ1
c(M, (π00)dis)→ Ȟ2

c(M,Bπ10).

With
C ′ := coker

(
Ȟ0

c(M, (π00)dis)→ Ȟ1
c(M,Bπ10)

)
,

K ′ := ker
(
Ȟ1

c(M, (π00)dis)→ Ȟ2
c(M,Bπ10)

)
,

we exhibit Ȟ1
c(M, 0) as a C ′-torsor over K ′.

The natural inclusions of smooth into continuous cohomology form a chain map
between the two sequences. From [Müller and Wockel 2009] we know that they
are isomorphisms on the second, fourth and fifth factor. In particular we have
an induced isomorphism K−→∼ K ′. Lemma 4.3 below additionally shows that the
induced morphism C→ C ′ is an isomorphism. Using these isomorphisms we see
that Ȟ1(M, 0) and Ȟ1

c(M, 0) are both C-torsors over K and that the natural map

Ȟ1(M, 0)→ Ȟ1
c(M, 0)

is a morphism of torsors. But each morphism of group torsors is bijective, which
concludes the proof. �

Lemma 4.3. The images of

f : Ȟ0(M, (π00)dis)→ Ȟ1(M,Bπ10) and f ′ : Ȟ0
c(M, (π00)dis)→ Ȟ1

c(M,Bπ10)

are isomorphic.

Proof. Recall that Ȟ0(M, (π00)dis) is the group of smooth maps s : M → π00

and Ȟ0
c(M, (π00)dis) is the group of continuous maps t : M→ π00. The groups

Ȟ1(M,Bπ10)= Ȟ2(M, π10) and Ȟ1
c(M,Bπ10)= Ȟ2

c(M, π10) are isomorphic
by the result of [Müller and Wockel 2009]. Under the connecting homomorphism

Ȟ0(π00, (π00)dis)→ Ȟ1(π00,Bπ10)

the identity idπ00 is sent to a class ξ0 with the property that f (s) = s∗ξ0 and
f ′(t)= t∗ξ0 . Hence it suffices to show that for each continuous map t : M→ π00



374 THOMAS NIKOLAUS AND KONRAD WALDORF

there is a smooth map s :M→π00 with s∗ξ0 = t∗ξ0 . It is well-known that for each
continuous map t between smooth manifolds a homotopic smooth map s exists. It
remains to show that the pullback Ȟ1(π00,Bπ10)→ Ȟ1(M,Bπ10) along smooth
maps is homotopy invariant. This can, e.g., be seen by choosing smooth (abelian)
Bπ10-bundle gerbes as representatives, in which case the homotopy invariance can
be deduced from the existence of connections. �

It is a standard result in topology that the continuous G-valued Čech cohomol-
ogy of paracompact spaces is in bijection with homotopy classes of maps to the
classifying space BG of the group G. A model for the classifying space BG is for
example the geometric realization of the nerve of the groupoid BG, or Milnor’s
join construction [1956].

Now let 0 be a Lie 2-group, and let |0| denote the geometric realization of the
nerve of 0. Since the nerve is a simplicial topological group, |0| is a topological
group. Version II for smooth 0-gerbes is this:

Definition 4.4 [Baez and Stevenson 2009]. A classifying map for a smooth 0-gerbe
is a continuous map

f : M→B|0|.

We denote by [M,B|0|] the set of homotopy classes of classifying maps.

Proposition 4.5 [Baez and Stevenson 2009, Theorem 1]. Let 0 be a Lie 2-group.
Then there is a bijection

Ȟ1
c(M, 0)∼= [M,B|0|]

where the topological group |0| is the geometric realization of the nerve of 0.

Note that the assumption of [Baez and Stevenson 2009, Theorem 1] that 0
is well-pointed is automatically satisfied because Lie groups are well-pointed.
Propositions 4.1 and 4.5 imply the following equivalence theorem between Version I
and Version II.

Theorem 4.6. For M a smooth manifold and 0 a smoothly separable Lie 2-group,
there is a bijection

Ȟ1(M, 0)∼= [M,B|0|].

Remark 4.7. Baez and Stevenson [2009, Section 5.2] argue that the space B|0|

is homotopy equivalent to a certain geometric realization of the Lie 2-groupoid
|B0| from Section 3. Baas, Böstedt and Kro [Baas et al. 2012] have shown that
|B0| classifies concordance classes of charted 0-2-bundles. In particular, charted
0-2-bundles are a further equivalent version of smooth 0-gerbes.
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5. Version III: groupoid bundle gerbes

Several definitions of nonabelian bundle gerbes have appeared in literature so far
[Aschieri et al. 2005; Jurčo 2011; Murray et al. 2012]. The approach we give here not
only shows a conceptually clear way to define nonabelian bundle gerbes, but also pro-
duces systematically a whole bicategory. Moreover, these bicategories form a 2-stack
over smooth manifolds (with the Grothendieck topology of surjective submersions).

5.1. Definition via the plus construction. Recall that the stack Bun0(−) of prin-
cipal 0-bundles is monoidal if 0 is a Lie 2-group (Proposition 2.4.8). Associated
to the monoidal stack Bun0(−) we have a pre-2-stack

T rivGrb0(−) := B(Bun0(−))

of trivial 0-gerbes. Explicitly, there is one trivial 0-gerbe I over every smooth
manifold M . The 1-morphisms from I to I are principal 0-bundles over M , and
the 2-morphisms between those are morphisms of principal 0-bundles. Horizontal
composition is given by the tensor product of principal 0-bundles, and vertical
composition is the ordinary composition of 0-bundle morphisms.

Now we apply the plus construction of [Nikolaus and Schweigert 2011] in order
to stackify this pre-2-stack. The resulting 2-stack is by definition the 2-stack of
0-bundle gerbes; i.e.,

Grb0(−) := (T rivGrb0(−))+.

Unwinding the details of the plus construction, we obtain the following definitions:

Definition 5.1.1. Let M be a smooth manifold. A 0-bundle gerbe over M is
a surjective submersion π : Y → M , a principal 0-bundle P over Y [2] and an
associative morphism

µ : π∗23 P ⊗π∗12 P→ π∗13 P

of 0-bundles over Y [3].

The morphism µ is called the bundle gerbe product. Its associativity is the
evident condition for bundle morphisms over Y [4].

In order to proceed with the 1-morphisms, we say that a common refinement of
two surjective submersions π1 : Y1→ M and π2 : Y2→ M is a smooth manifold Z
together with surjective submersions Z→ Y1 and Z→ Y2 such that the diagram

Z

  ~~
Y1

π1   

Y2

π2~~
M
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is commutative.
We fix the following convention: suppose P1 and P2 are 0-bundles over surjective

submersions U1 and U2, respectively, and V is a common refinement of U1 and U2.
Then, a bundle morphism ϕ : P1 → P2 is understood to be a bundle morphism
between the pullbacks of P1 and P2 to the common refinement V . For example,
in the following definition this convention applies to U1 = Y [2]1 , U2 = Y [2]2 and
V = Z [2].

Definition 5.1.2. Let G1 and G2 be 0-bundle gerbes over M . A 1-morphism
A : G1 → G2 is a common refinement Z of the surjective submersions of G1

and G2 together with a principal 0-bundle Q over Z and a morphism

β : P2⊗ ζ
∗

1 Q→ ζ ∗2 Q⊗ P1

of 0-bundles over Z [2], where ζ1, ζ2 : Z [2]→ Z are the two projections, such that α
is compatible with the bundle gerbe products µ1 and µ2.

The compatibility of α with µ1 and µ2 means that the diagram

(5-1)

π∗23 P2⊗π
∗

12 P2⊗ ζ
∗

1 Q

id⊗ζ ∗12β

��

µ2⊗id // π∗13 P2⊗ ζ
∗

1 Q

ζ ∗13β

��

π∗23 P2⊗ ζ
∗

2 Q⊗π∗12 P1

ζ ∗23β⊗id

��
ζ ∗3 Q⊗π∗23 P1⊗π

∗

12 P1
id⊗µ1

// ζ ∗3 Q⊗π∗13 P1

of morphisms of 0-bundles over Z [3] is commutative.
If A12 : G1→ G2 and A23 : G2→ G3 are 1-morphisms between bundle gerbes

over M , the composition A23 ◦A12 : G1→ G3 is given by the fiber product Z :=
Z23×Y2 Z12, the principal 0-bundle Q := Q23⊗ Q12 over Z , and the morphism

P3⊗ ζ
∗

1 Q
β23⊗id // ζ ∗2 Q23⊗ P2⊗ ζ

∗

1 Q12
id⊗β12 // ζ ∗2 Q⊗ P1.

The identity 1-morphism idG associated to a 0-bundle gerbe G is given by Y
regarded as a common refinement of π : Y → M with itself, the trivial 0-bundle I1

(the tensor unit of Bun0(Y )), and the evident morphism I1⊗ P→ P ⊗ I1.
In order to define 2-morphisms, suppose that π1 : Y1→ M and π2 : Y2→ M are

surjective submersions, and that Z and Z ′ are common refinements of π1 and π2.
Let W be a common refinement of Z and Z ′ with surjective submersions r :W→ Z
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and r ′ :W → Z ′. We obtain two maps

s1 :W
r // Z // Y1 and t1 :W

r ′ // Z ′ // Y1,

and, analogously, two maps s2, t2 :W → Y2. These patch together to maps

xW := (s1, t1) :W → Y1×M Y1 and yW := (s2, t2) :W → Y2×M Y2.

Definition 5.1.3. Let G1 and G2 be 0-bundle gerbes over M , and let

A,A′ : G1→ G2

be 1-morphisms. A 2-morphism

ϕ :A⇒A′

is a common refinement W of the common refinements Z and Z ′, together with a
morphism

ϕ : y∗W P2⊗ r∗Q→ r ′∗Q′⊗ x∗W P1

of 0-bundles over W that is compatible with the morphisms β and β ′.

The compatibility means that a certain diagram over W [2] commutes. Fiberwise
over a point (w,w′) ∈W ×M W this diagram looks as follows:

(5-2)

P2|s2(w′),t2(w′)⊗P2|s2(w),s2(w′)⊗Q|r(w)
id⊗β //

µ2⊗id

��

P2|s2(w′),t2(w′)⊗Q|r(w′)⊗P1|s1(w),s1(w′)

ϕ⊗id
��

P2|s2(w),t2(w′)⊗Q|r(w)

µ−1
2 ⊗id

��

Q′|r ′(w′)⊗P1|s1(w′),t1(w′)⊗P1|s1(w),s1(w′)

id⊗µ1

��
P2|t2(w),t2(w′)⊗P2|s2(w),t2(w)⊗Q|r(w)

id⊗ϕ

��

Q′|r ′(w′)⊗P1|s1(w),t1(w′)

id⊗µ−1
1

��
P2|t2(w),t2(w′)⊗Q′|r ′(w)⊗P1|s1(w),t1(w)

β ′⊗id
// Q′|r ′(w′)⊗P1|t1(w),t1(w′)⊗P1|s1(w),t1(w).

Finally we identify two 2-morphisms (W1, r1, r ′1, ϕ1) and (W2, r2, r ′2, ϕ2) if the
pullbacks of ϕ1 and ϕ2 to W ×Z××Z ′ W ′ agree. Explicitly, this condition means
that, for all w1 ∈W1 and w2 ∈W2 with r1(w1)= r2(w2) and r ′1(w1)= r ′2(w2), and
for all p2 ∈ y∗W1

P2 = y∗W2
P2 and q ∈ r∗1 Q = r∗2 Q, we have ϕ1(p2, q)= ϕ2(p2, q).

Remark 5.1.4. • In the above situation of a common refinement W of two
common refinements Z , Z ′ of surjective submersions Y1, Y2, the diagram
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(5-3)

Z

  ~~
Y1 W

r
OO

r ′
��

Y2

Z ′

`` >>

is not necessarily commutative. In fact, diagram (5-3) commutes if and only if
the two maps xW : W → Y1×M Y1 and yW : W → Y2×M Y2 factor through
the diagonal maps Y1→ Y1×M Y1 and Y2→ Y2×M Y2, respectively.

• In the case that a 2-morphism ϕ is defined on a common refinement Z for which
diagram (5-3) does commute, Definition 5.1.3 can be simplified. As remarked
before, the two maps xW and yW factor through the diagonals, over which the
bundles P1 and P2 have canonical trivializations (see Corollary 5.2.6). Under
these trivializations, ϕ can be identified with a bundle morphism

ϕ : Q→ Q′.

Furthermore, the compatibility diagram (5-2) simplifies to the diagram

(5-4)

P2⊗ η
∗

1 Q
β //

id⊗η∗1ϕ

��

η∗2 Q⊗ P1

η∗2ϕ⊗id

��
P2⊗ η

∗

1 Q′
β ′

// η∗2 Q′⊗ P1.

Next we define the vertical composition

ϕ23 • ϕ12 :A1⇒A3

of 2-morphisms ϕ12 : A1⇒ A2 and ϕ23 : A2⇒ A3. The refinement is the fiber
product W :=W12×Z2 W23 of the covers of ϕ12 and ϕ23. The bundle gerbe products
induce isomorphisms

x∗W P1 ∼= x∗W23
P1⊗ x∗W12

P1 and y∗W P2 ∼= y∗W23
P2⊗ y∗W12

P2

over W . Under these identifications, the morphism y∗W P2⊗ Q1→ Q3⊗ x∗W P1 for
the 2-morphism ϕ23 • ϕ12 is defined as

y∗W23
P2⊗y∗W12

P2⊗Q1
id⊗ϕ12 // y∗W23

P2⊗Q2⊗x∗W12
P1

ϕ23⊗id // Q3⊗x∗W23
P1⊗x∗W12

P1.

The identity for vertical composition is just the identity refinement and the identity
morphism. Finally we come to the horizontal composition

ϕ23 ◦ϕ12 :A23 ◦A12⇒A′23 ◦A′12
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of 2-morphisms ϕ12 :A12⇒A′12 and ϕ23 :A23⇒A′23: its refinement W is given
by W12 ×(Y2×Y2) W23. We look at the three relevant maps xW : W → Y1 ×M Y1,
yW :W→ Y2×M Y2 and zW :W→ Y3×M Y3. The morphism ϕ of the 2-morphism
ϕ23 ◦ϕ12 is defined as the composition

z∗W P3⊗ Q23⊗ Q12
ϕ23⊗id // Q′23⊗ y∗W P2⊗ Q12

id⊗ϕ12 // Q′23⊗ Q′12⊗ x∗W P1.

It follows from the properties of the plus construction [Nikolaus and Schweigert
2011] that (a) these definitions fit together into a bicategory Grb0(M), and that (b)
these form a pre-2-stack Grb0(−) over smooth manifolds. That means there are
pullback 2-functors

f ∗ : Grb0(N )→ Grb0(M)

associated to smooth maps f : M → N , and that these are compatible with the
composition of smooth maps. Pullbacks of 0-bundle gerbes, 1-morphisms, and
2-morphisms are obtained by just taking the pullbacks of all involved data. Finally,
the plus construction implies (c):

Theorem 5.1.5 [Nikolaus and Schweigert 2011, Theorem 3.3]. The pre-2-stack
Grb0(−) of 0-bundle gerbes is a 2-stack.

Remark 5.1.6. Every 2-stack over smooth manifolds defines a 2-stack over Lie
groupoids [Nikolaus and Schweigert 2011, Proposition 2.8]. This way, our ap-
proach produces automatically bicategories Grb0(X ) of 0-bundle gerbes over a Lie
groupoid X . In particular, for an action groupoid X = M//G we have a bicategory
Grb0(M//G) of G-equivariant 0-bundle gerbes over M .

In the remainder of this section we give some examples and describe relations
between the definitions given here and existing ones.

Example 5.1.7. Let A be an abelian Lie group, for instance U(1). Then, BA-bundle
gerbes are the same as the well-known A-bundle gerbes [Murray 1996]. For more
details see Remark 5.1.10 below.

Example 5.1.8. Let (G, H, t, α) be a smooth crossed module, and let G//H be
the associated action groupoid. Then, a (G//H)-bundle gerbe is the same as a
crossed module bundle gerbe in the sense of Jurčo [2011]. The equivalence relation
of “stably isomorphic” of [Jurčo 2011] is given by “1-isomorphic” in terms of
the bicategory constructed here. These coincidences come from the equivalence
between (G//H)-bundles and so-called G-H -bundles used in [Jurčo 2011; Aschieri
et al. 2005] expressed by Lemma 2.3.10. In particular, in case of the automorphism
2-group AUT(H) of a connected Lie group H , a AUT(H)-bundle gerbe is the same
as a H -bibundle gerbe in the sense of [Aschieri et al. 2005].
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Example 5.1.9. Let G be a Lie group, so that Gdis is a Lie 2-group. Then, there is
an equivalence of 2-categories

GrbGdis(M)∼= BunBG(M)dis.

Indeed, if G is a Gdis-bundle gerbe over M , its principal Gdis-bundle over Y [2] is
by Example 2.2.4 just a smooth map α : Y [2]→ G, and its bundle gerbe product
degenerates to an equality π∗23α ·π

∗

12α= π
∗

13α for functions on Y [3]. In other words,
a Gdis-bundle gerbe is the same as a so-called G-bundle 0-gerbe. These form a
category that is equivalent to the one of ordinary principal G-bundles, as pointed
out in Section 1.

Remark 5.1.10. There are two differences between the definitions given here (for
0 = BA) and the ones discussed in the list below. Firstly, we have a slightly
different ordering of tensor products of bundles. These orderings are not essential
in the case of abelian groups because the tensor category of ordinary A-bundles is
symmetric. In the nonabelian case, a consistent theory requires the conventions we
have chosen here. Secondly, the definitions of 1-morphisms and 2-morphisms have
been generalized step by step:

(1) In [Murray 1996], 1-morphisms did not include a common refinement, but
rather required that the surjective submersion of one bundle gerbe refines the
other. This definition is too restrictive in the sense that, e.g., U(1)-bundle
gerbes are not classified by H3(M,Z), as intended.

(2) In [Murray and Stevenson 2000], 1-morphisms were defined on the canonical
refinement Z := Y1×M Y2 of the surjective submersions of the bundle gerbes.
This definition solves the previous problems concerning the classification of
bundle gerbes, but makes the composition of 1-morphisms quite involved
[Stevenson 2000].

(3) In [Waldorf 2007], 1-morphisms were defined on refinements ζ : Z→Y1×M Y2.
This generalization allows the same elegant definition of composition we have
given here, and results in the same isomorphism classes of bundle gerbes.
Moreover, 2-morphisms are defined with commutative diagrams (5-3) — this
makes the structure of the bicategory outmost simple (see Remark 5.1.4).

(4) In the present article we have allowed for a yet more general refinement in the
definition of 1-morphisms. Its achievement is that bundle gerbes come out as
an example of a more general concept — the plus construction — and we get,
e.g., Theorem 5.1.5 for free.

Despite these different definitions of 1-morphisms and 2-morphisms, the resulting
bicategories of BA-bundle gerbes in (2), (3) and (4) are all equivalent (see [Waldorf



FOUR EQUIVALENT VERSIONS OF NONABELIAN GERBES 381

2007, Theorem 1; Nikolaus and Schweigert 2011, Remark 4.5] and Lemma 5.2.8
below).

5.2. Properties of groupoid bundle gerbes. We recall that a homomorphism 3 :

0 → � between Lie 2-groups is an anafunctor together with a transformation
(2.4-4) describing its compatibility with the multiplications. We recall further from
Proposition 2.4.9 that extension along 3 is a 1-morphism

3 : Bun0(−)→ Bun�(−)

between monoidal stacks over smooth manifolds. That is, extension along 3 is
compatible with pullbacks, tensor products, and morphisms between principal 0-
bundles. Applying it to the principal 0-bundle P of a 0-bundle gerbe G, and also
to the bundle gerbe product µ, we obtain immediately an �-bundle gerbe 3G. The
same is evidently true for morphisms and 2-morphisms. Summarizing, we get:

Proposition 5.2.1. Extension of bundle gerbes along a homomorphism 3 : 0→�

between Lie 2-groups defines a 1-morphism

3 : Grb0(−)→ Grb�(−)

of 2-stacks over smooth manifolds.

We recall that a weak equivalence between Lie 2-groups is a homomorphism
3 : 0→� that is a weak equivalence (see Definition 2.3.11). We have:

Theorem 5.2.2. Suppose 3 : 0→� is a weak equivalence between Lie 2-groups.
Then, the 1-morphism 3 : Grb0(−)→ Grb�(−) of Proposition 5.2.1 is an equiva-
lence of 2-stacks.

Proof. The monoidal equivalence 3 : Bun0(−)→ Bun�(−) between the monoidal
stacks (Corollary 2.4.10) induces an equivalence T rivGrb0(M)→ T rivGrb3(M)
between pre-2-stacks. Since the plus construction is functorial, this induces in turn
the claimed equivalence of 2-stacks. �

Next we generalize a couple of well-known results from abelian to nonabelian
bundle gerbes. We define a refinement of a surjective submersion π : Y → M
to be another surjective submersion ω : W → M together with a smooth map
f : W → Y such that ζ = π ◦ f . Notice that such a refinement induces smooth
maps fk :W [k]→ Y [k] that commute with the various projections ωi1···ik and πi1···ik .

Lemma 5.2.3. Suppose G1 = (Y1, P1, µ1) and G2 = (Y2, P2, µ2) are 0-bundle
gerbes over M , f : Y1 → Y2 is a refinement of surjective submersions, and
ϕ : f ∗2 P2→ P1 is an isomorphism of 0-bundles over Y [2]1 that is compatible with
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the bundle gerbe products µ1 and µ2 in the sense that the diagram

π∗23 f ∗2 P2⊗π
∗

12 f ∗2 P2

π∗23ϕ⊗π
∗

12ϕ

��

f ∗3 µ // π∗13 f ∗2 P2

π∗13ϕ

��
π∗23 P1⊗π

∗

12 P1 µ
// π∗13 P1

is commutative. Then, G1 and G2 are isomorphic.

The proof works just the same way as in the abelian case: one constructs the
1-isomorphism over the common refinement Z := Y1×M Y2 in a straightforward
way. As a consequence of Lemma 5.2.3 we have:

Proposition 5.2.4. Let G = (Y, P, µ) be a 0-bundle gerbe over M , and f :W→ Y
a refinement of its surjective submersion π : Y → M. Then, (W, f ∗2 P, f ∗3 µ) is a
0-bundle gerbe over M , and is isomorphic to G.

Lemma 5.2.5. Let G = (Y, P, µ) be a 0-bundle gerbe over M. Then, there exist
unique smooth maps i : P→ P and t : Y → P such that:

(i) The diagrams

P
i //

χ

��

P

χ

��
Y [2] flip

// Y [2]

and

P

χ

��
Y

diag
//

t

>>

Y [2]

are commutative.

(ii) The map t is neutral with respect to the bundle gerbe product µ; i.e.,

µ(t (y2), p)= p = µ(p, t (y1))

for all p ∈ P with χ(p)= (y1, y2).

(iii) The map i provides inverses with respect to the bundle gerbe product µ; i.e.,

µ(i(p), p)= t (y1) and µ(p, i(p))= t (y2)

for all p ∈ P with χ(p)= (y1, y2).

Moreover, α(t (y))= 1 and α(i(p))= α(p)−1 for all p ∈ P and y ∈ Y .

Proof. Concerning uniqueness, suppose (t, i) and (t ′, i ′) are pairs of maps satisfying
(i), (ii) and (iii). Firstly, we have t ′(y)= µ(t (y), t ′(y))= t (y) and so t = t ′. Then,
µ(i(p), p) = t (y1) = t ′(y1) = µ(i ′(p), p) implies i(p) = i ′(p), and so i = i ′. In
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order to see the existence of t and i , denote by Q := diag∗ P the pullback of P to Y ,
denote by Q∨ the dual bundle and by d : Q⊗ Q∨→ I1 the death map. Consider
the smooth map

Y
s // I1

d−1
// Q⊗ Q∨

µ−1
⊗idQ∨ // Q⊗ Q⊗ Q∨

id⊗d // I1⊗ Q ∼= Q
diag // P

where s : Y → I1 is the canonical section (see the proof of Lemma 2.2.6). It is
straightforward to see that this satisfies the properties of the map t . Since all maps
in the above sequence are (anchor-preserving) bundle morphisms, it is clear that
t ◦α = 1. �

Corollary 5.2.6. Let G = (Y, P, µ) be a 0-bundle gerbe over M , and let t and i be
the unique maps of Lemma 5.2.5. Then,

(i) t is a section of diag∗ P , and defines a trivialization diag∗ P ∼= I1;

(ii) i is a bundle isomorphism i : P∨→ flip∗ P;

(iii) C0 := Y and C1 := P define a Lie groupoid with source and target maps π1 ◦χ

and π2 ◦χ , respectively, composition µ, identity t and inversion i .

The following statement is well-known for abelian gerbes; the general version
can be proved by a straightforward generalization of the constructions given in the
proof of [Waldorf 2007, Proposition 3].

Lemma 5.2.7. Every 1-morphism A : G→H between 0-bundle gerbes over M is
invertible.

The last statement of this section shows a way to bring 1-morphisms and
2-morphisms into a simpler form (see Remark 5.1.10). For bundle gerbes G1

and G2 with surjective submersions π1 : Y1→ M and π2 : Y2→ M we denote by
Hom(G1,G2) the Hom-category in the bicategory Grb0(M), and by Hom(G1,G2)

FP

the category whose objects are those 1-morphisms whose common refinement is
Z := Y1×M Y2, and whose 2-morphisms are those 2-morphisms whose refinement
is W := Y1×M Y2 with the maps r, r ′ :W → Z the identity maps.

Lemma 5.2.8. The inclusion Hom(G1,G2)
FP
→Hom(G1,G2) is an equivalence of

categories.

Proof. First we show that it is essentially surjective. We assume A : G1→ G2 is a
general 1-morphism with a principal 0-bundle Q over a common refinement Z of
the surjective submersions π1 : Y1→ M and π2 : Y2→ M of the two bundle gerbes.
We look at the principal 0-bundle

Q̃ := κ∗2 P2⊗ pr∗2 Q⊗ κ∗1 P1

over Z̃ := Y1×M Z ×M Y2, where

κ1 : Z̃→Y [2]1 : (y1, z, y2) 7→ (y1, y1(z)), κ2 : Z̃→Y [2]2 : (y1, z, y2) 7→ (y2(z), y2).
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The projection pr13 : Z̃→Y1×M Y2 is a surjective submersion, and over Z̃×Y1×M Y2 Z̃
we have a bundle morphism α : pr∗1 Q̃→ pr∗2 Q̃ defined over a point (z̃, z̃′) with
z̃ = (y1, z, y2) and z̃′ = (y1, z′, y2) by

Q̃ z̃ P2|y2(z),y2 ⊗ Qz ⊗ P1|y1,y1(z)

µ−1
2 ⊗id⊗id
��

P2|y2(z′),y2 ⊗ P2|y2(z),y2(z′)⊗ Qz ⊗ P1|y1,y1(z)

id⊗β⊗id
��

P2|y2(z′),y2 ⊗ Qz′ ⊗ P1|y1(z),y1(z′)⊗ P1|y1,y1(z)

id⊗id⊗µ1
��

P2|y2(z′),y2 ⊗ Qz′ ⊗ P1|y1,y1(z′) Q̃ z̃′ .

The compatibility condition (5-1) implies a cocycle condition for α over the threefold
fiber product of Z̃ over Y1×M Y2, and since principal 0-bundles form a stack, the
pair (Q̃, α) defines a principal 0-bundle QFP over ZFP

:= Y1 ×M Y2. It is now
straightforward to show that the bundle isomorphism β itself descends to a bundle
isomorphism βFP over ZFP

×M ZFP in such a way that the triple (ZFP, QFP, βFP)

forms a 1-morphism AFP
: G1→ G2.

In order to show that AFP is an essential preimage of A, it remains to construct
a 2-morphism ϕFP

A :A⇒AFP. In the terminology of Definition 5.1.3, we choose
W = Z̃ with r := pr2 :W → Z and r ′ := pr13 :W → ZFP. Note that diagram (5-3)
does not commute. The maps xW : W → Y [2]1 and yW : W → Y [2]2 are given by
xW = s◦κ1 and yW = κ2, where s :Y [2]1 →Y [2]1 switches the factors. Now, the bundle
isomorphism of the 2-morphism ϕFP

A we want to construct is a bundle isomorphism

ϕ : y∗W P2⊗ r∗Q→ Q̃⊗ x∗W P1

over W , and is fiberwise over a point w = (y1, z, y2) given by

P2|y2(z),y2⊗Qz
id⊗id⊗t−1

// P2|y2(z),y2⊗Qz⊗Py1(z),y1(z)

id⊗id⊗µ−1
1��

P2|y2(z),y2⊗Qz⊗P1|y1,y1(z)⊗P1|y1(z),y1 Q̃w⊗P1|s(y1,y1(z)),

where t is the trivialization of diag∗ P of Corollary 5.2.6. The compatibility condi-
tion (5-2) is straightforward to check.

Now we show that the inclusion Hom(G1,G2)
FP
→ Hom(G1,G2) is full and

faithful. Since it is clearly faithful, it only remains to show that it is full. Given a
morphism A→A′ in Hom(G1,G2), i.e., a common refinement W of Y1×M Y2 with
itself and a bundle morphism ϕ, we have to find a morphism in Hom(G1,G2)

FP such
that the two morphisms are identified under the equivalence relation on bundle gerbe
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2-morphisms. We denote the bundles over Y1×M Y2 corresponding to A and A′ by Q
and Q′. The refinement maps are denoted as before by r = (s1, s2) :W→ Y1×M Y2

and r ′ = (t1, t2) : W → Y1×M Y2. Then we obtain an isomorphism r∗Q→ r∗Q′

fiberwise over a point w ∈W by

(5-1)

Q|s1(w),s2(w)
d−1
⊗id// P∨2 |s2(w),t2(w)⊗P2|s2(w),t2(w)⊗Q|s1(w),s2(w)

id⊗ϕ
��

P∨2 |s2(w),t2(w)⊗Q′|t1(w),t2(w)⊗P1|s1(w),t1(w)

id⊗β ′−1

��
P∨2 |s2(w),t2(w)⊗P2|s2(w),t2(w)⊗Q′|s1(w),s2(w)

d⊗id // Q′|s1(w),s2(w)

where d : P∨2 |s2(w),t2(w) ⊗ P2|s2(w),t2(w) → I1 is the death map. One can use the
compatibility condition for ϕ to show that this morphism descends to a morphism
ψ : Q→ Q′ which is a morphism in Hom(G1,G2)

FP. The two morphisms (W, ψ)
and (Y1×M Y2, ϕ) are identified if their pullbacks to

W ×(Y1×M Y2×M Y1×M Y2) (Y1×M Y2)= {w ∈W | r(w)= r ′(w)} =:W0

are equal. On the one side, the map W0 → W is the inclusion and the map
W0→ Y1×M Y2 is equal to r . The pullback of ψ along r is by construction the
map r∗Q → r∗Q′ from (5-1). On the other side, bundles x∗W P1 and y∗W P2 over
W0 have canonical trivializations (Corollary 5.2.6(i)) under which ϕ becomes also
equal to the morphism (5-1). �

5.3. Classification by Čech cohomology. In this section we prove that Versions I
(Čech 0-1-cocycles) and III (0-bundle gerbes) are equivalent. For this purpose,
we extract a Čech cocycle from a 0-bundle gerbe G over M , and prove that this
procedure defines a bijection on the level of equivalence classes (Theorem 5.3.2).
First we have to ensure the existence of appropriate open covers.

Lemma 5.3.1. For every 0-bundle gerbe G = (Y, P, µ) over M there exists an
open cover U = {Ui }i∈I of M with sections σi : Ui → Y , such that the principal
0-bundles (σi × σ j )

∗P over Ui ∩U j are trivializable.

Proof. One can choose an open cover such that the 2-fold intersections Ui ∩U j are
contractible. Since every Lie 2-group is a crossed module G//H (Remark 2.4.3),
and G//H -bundles are ordinary H -bundles (Lemma 2.2.9), these admit sections
over contractible smooth manifolds. But a section is enough to trivialize the original
0-bundle (Lemma 2.2.6). �

Let G be a 0-bundle gerbe over M , and let U= {Ui }i∈I be an open cover with
the properties of Lemma 5.3.1. We denote by MU the disjoint union of all the
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open sets Ui , and by σ : MU → Y the union of the sections σi . Then, σ is a
refinement of π : Y → M , and we have a 0-bundle gerbe GU,σ that is isomorphic
to G (Proposition 5.2.4).

The principal 0-bundle Pi j of GU,σ over the component Ui∩U j is by assumption
trivializable. Thus there exists a trivialization ti j : Pi j → I fi j for smooth functions
fi j :Ui ∩U j → 00. We define an isomorphism µi jk between trivial bundles such
that the diagram

Pjk ⊗ Pi j
µ //

t jk⊗ti j

��

Pik

tik

��
I f jk ⊗ I fi j µi jk

// I fik

is commutative. Now we are in the situation of Lemma 5.2.3, which implies that
the 0-bundle gerbe GU,σ,t := (MU, I fi j , µi jk) is still isomorphic to G.

Combining Lemma 2.2.8 with Example 2.4.7(a), we see that the isomorphisms
µi jk correspond to smooth maps gi jk :Ui∩U j∩Uk→01 such that s(gi jk)= f jk · fi j

and t (gi jk)= fik . The associativity condition for µi jk implies moreover that

gαγ δ ◦ (gαβγ · id fγ δ )= gαβδ ◦ (id fαβ · gβγ δ).

Hence, the collection { fi j , gi jk} is a 0-1-cocycle on M with respect to the open
cover U.

Theorem 5.3.2. Let M be a smooth manifold and let 0 be a Lie 2-group. The above
construction defines a bijection

{ Isomorphism classes of 0-bundle gerbes over M } ∼= Ȟ1(M, 0).

Proof. We claim that 0-bundle gerbes (MU, I fi j , µi jk) and (MV, Ihi j , νi jk) are
isomorphic if and only if the corresponding 0-1-cocycles are equivalent. This
proves at the same time that the choices of open covers and sections we have
made during the construction do not matter, that the resulting map is well-defined
on isomorphism classes, and that this map is injective. Surjectivity follows by
assigning to a 0-1-cocycle ( fi j , gi jk) with respect to some cover U the 0-bundle
gerbe (MU, I fi j , µi jk) with µi jk determined by Lemma 2.2.8.

It remains to prove that claim. We assume A= (Z , Q, α) is a 1-isomorphism
between the 0-bundle gerbes (MU, I fi j , µi jk) and (MV, Ihi j , νi jk). Similarly to
Lemma 5.3.1 one can show that there exists a cover W of M by open sets Wi that
refines both U and V, and that allows smooth sections ωi : Wi → Z for which
the 0-bundle ω∗i Q is trivializable. In the terminology of the above construction,
choosing a trivialization t : ω∗Q→ Ihi with smooth maps hi :Wi → 00 over MW
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converts the isomorphism α into smooth functions si j :Wi ∩W j → 01 satisfying
s(si j )= g′i j · hi and t (si j )= h j · gi j . The compatibility diagram (5-1) implies the
remaining condition that makes (hi , si j ) an equivalence between the 0-2-cocycles
( fi j , gi jk) and ( f ′i j , g′i jk). �

6. Version IV: principal 2-bundles

The basic idea of a smooth 2-bundle is that it gives for every point x in the base
manifold M a Lie groupoid Px varying smoothly with x . Numerous different
versions have appeared so far in the literature, e.g., [Bartels 2006; Baez and Schreiber
2007; Wockel 2011; Schommer-Pries 2011]. The main objective of our version
of principal 2-bundles is to make the definition of the objects (i.e., the 2-bundles)
as simple as possible, while keeping their isomorphism classes in bijection with
nonabelian cohomology. Thus, our principal 2-bundles will be defined using strict
actions of Lie 2-groups on Lie groupoids, and not using anafunctors. The necessary
“weakness” will be pushed into the definition of 1-morphisms.

6.1. Definition of principal 2-bundles. As an important prerequisite for princi-
pal 2-bundles we have to discuss actions of Lie 2-groups on Lie groupoids, and
equivariant anafunctors.

Definition 6.1.1. Let P be a Lie groupoid, and let 0 be a Lie 2-group. A smooth
right action of 0 on P is a smooth functor R : P ×0→ P such that R(p, 1)= p
and R(ρ, id1)= ρ for all p ∈ P0 and ρ ∈ P1, and such that the diagram

P ×0×0 id×m //

R×id

��

P ×0

R

��
P ×0 m

// P

of smooth functors is commutative (strictly, on the nose).

For example, every Lie 2-group acts on itself via multiplication. Note that, due
to strict commutativity, one has R(R(p, g), g−1) = p and R(R(ρ, γ ), i(γ )) = ρ
for all g ∈ 00, p ∈ P0, γ ∈ 01 and ρ ∈ P1.

Remark 6.1.2. This definition could be weakened in two steps. First, one could
allow a natural transformation in the above diagram instead of commutativity.
Secondly, one could allow R to be an anafunctor instead of an ordinary functor. It
turns out that for our purposes the above definition is sufficient.

Definition 6.1.3. Let X and Y be Lie groupoids with smooth actions (R1, ρ1),
(R2, ρ2) of a Lie 2-group 0. An equivariant structure on an anafunctor F :X →Y
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is a transformation

X ×0

F×id

��

R1 // X

λ

x�

F

��
Y ×0

R2

// Y

satisfying the following condition:

X×0×0 id×m //
R1×id

$$
F×id×id

��

X×0
R1

��
X×0

λ×id
v~

R1 //

F×id

��

X

λ

z�

F

��

Y×0×0

R2×id $$
Y×0

R2

// Y

=

X×0×0 id×m //

F×id×id

��

X×0

F×id

��

R1

��
X

λ
{�

F

��

Y×0×0

R2×id ##

id×m // Y×0
R2

��
Y×0

R2

// Y.

An anafunctor together with a 0-equivariant structure is called 0-equivariant ana-
functor.

In Appendix A we translate this abstract (but evidently correct) definition of
equivariance into more concrete terms involving a 01-action on the total space of
the anafunctor.

Definition 6.1.4. If (F, λ) :X→Y and (G, γ ) :X→Y are 0-equivariant anafunc-
tors, a transformation η : F⇒ G is called 0-equivariant, if the following equality
of transformation holds:

X ×0

G×id

��

F×id

��

η×idks

R1 // X

λ
s{

F

��
Y ×0

R2

// Y

=

X ×0

G×id

��

R1 // X

γ

s{

G

��

F

��

ηks

Y ×0
R2

// Y.

It follows from abstract nonsense in the bicategory of Lie groupoids, anafunctors
and transformations that we have another bicategory with

• objects: Lie groupoids with smooth right 0-actions;

• 1-morphisms: 0-equivariant anafunctors;

• 2-morphisms: 0-equivariant transformations.
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We need three further notions for the definition of a principal 2-bundle. Let M
be a smooth manifold, and let P be a Lie groupoid. We say that a smooth functor
π : P → Mdis is a surjective submersion functor, if π : P0 → M is a surjective
submersion. Let π : P → Mdis be a surjective submersion functor, and let Q be
a Lie groupoid with some smooth functor χ :Q→ Mdis. Then, the fiber product
P ×M Q is defined to be the full subcategory of P ×Q over the submanifold
P0×M Q0 ⊂ P0×Q0.

Definition 6.1.5. Let M be a smooth manifold and let 0 be a Lie 2-group.

(a) A principal 0-2-bundle over M is a Lie groupoid P , a surjective submersion
functor π :P→ Mdis, and a smooth right action R of 0 on P that preserves π ,
such that the smooth functor

τ := (pr1, R) : P ×0→ P ×M P

is a weak equivalence.

(b) A 1-morphism between principal 0-2-bundles is a 0-equivariant anafunctor

F : P1→ P2

that respects the surjective submersion functors to M .

(c) A 2-morphism between 1-morphisms is a 0-equivariant transformation between
these.

Remark 6.1.6. (a) The condition in Definition 6.1.5(a) that the action R preserves
the surjective submersion functor π means that the diagram of functors

P ×0 R //

pr1

��

P

π

��
P π

// Mdis

is commutative.

(b) The condition in Definition 6.1.5(b) that the anafunctor F respects the surjective
submersion functors means in the first place that there exists a transformation

P1
F //

π1

��

P2

qy
π2

��
Mdis.



390 THOMAS NIKOLAUS AND KONRAD WALDORF

However, since the target of the anafunctors π1 and π2 ◦ F is the discrete
groupoid Mdis, the equivalence of Example 2.3.4 applies, and implies that,
if such a transformation exists, it is unique. Indeed, it is easy to see that an
anafunctor F : P→Q with anchors αl : F→ P0 and αr : F→Q0 respects
smooth functors π :P→ Mdis and χ :Q→ Mdis if and only if π ◦αl = χ ◦αr .

Example 6.1.7. The trivial 0-2-bundle over M is defined by

P := Mdis×0, π := pr1, R := idM ×m.

Here, the smooth functor τ even has a smooth inverse functor. In the following we
denote the trivial 0-2-bundle by I.

Remark 6.1.8. The principal 0-2-bundles of Definition 6.1.5 are very similar to
those of Bartels [2006] and Wockel [2011], in the sense that their fibers are groupoids
with a 0-action. They only differ in the strictness assumptions for the action, and
in the formulation of principality. Opposed to that, the principal 2-group bundles
introduced in [Ginot and Stiénon 2008] are quite different: their fibers are Lie
2-groupoids equipped with a certain Lie 2-groupoid morphism to B0.

6.2. Properties of principal 2-bundles. Principal 0-2-bundles over M form a bi-
category denoted 2-Bun0(M). There is an evident pullback 2-functor

f ∗ : 2-Bun0(N )→ 2-Bun0(M)

associated to smooth maps f : M→ N , and these make 2-Bun0(−) a pre-2-stack
over smooth manifolds. We deduce the following important two theorems about
this pre-2-stack. The first asserts that it actually is a 2-stack:

Theorem 6.2.1. Principal 0-2-bundles form a 2-stack 2-Bun0(−) over smooth
manifolds.

Proof. This follows from Theorem 5.1.5 (0-bundle gerbes form a 2-stack) and
Theorem 7.0.1 (the equivalence Grb0(−)∼= 2-Bun0(−)) we prove in Section 7. �

Remark 6.2.2. Similar to Remark 5.1.6, we obtain automatically bicategories
2-Bun0(X ) of principal 0-2-bundles over Lie groupoids X , including bicategories
of equivariant principal 0-2-bundles.

The second concerns a homomorphism 3 : 0 → � of Lie 2-groups, which
induces the extension 3 : Grb0(−)→ Grb�(−) between 2-stacks of bundle gerbes
(Proposition 5.2.1). Combined with the equivalence Grb0(−) ∼= 2-Bun0(−) of
Theorem 7.0.1, it defines a 1-morphism

3 : 2-Bun0(−)→ 2-Bun�(−)

between 2-stacks of principal 2-bundles. Now we get as a direct consequence of
Theorem 5.2.2:
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Theorem 6.2.3. If 3 : 0→ � is a weak equivalence between Lie 2-groups, then
the 1-morphism 3 : 2-Bun0(−)→ 2-Bun�(−) is an equivalence of 2-stacks.

A third consequence of the equivalence of Theorem 7.0.1 in combination with
Lemma 5.2.7 is

Corollary 6.2.4. Every 1-morphism F : P1→ P2 between principal 0-2-bundles
over M is invertible.

The following discussion centers around local trivializability that is implicitly
contained in Definition 6.1.5. A principal 0-2-bundle that is isomorphic to the trivial
0-2-bundle I introduced in Example 6.1.7 is called trivializable. A section of a
principal 0-2-bundle P over M is an anafunctor S :Mdis→P such that π◦S= idMdis

(recall that an anafunctor π ◦ S : M→ M is the same as a smooth map). One can
show that every point x ∈ M has an open neighborhood U together with a section
s : Udis→ P|U . Such sections can even be chosen to be smooth functors, rather
than anafunctors, namely simply as ordinary sections of the surjective submersion
π : (P|U )0→Udis.

Lemma 6.2.5. A principal 0-2-bundle over M is trivializable if and only if it has a
smooth section.

Proof. The trivial 0-2-bundle I has the section S(m) := (m, 1), where 1 denotes
the unit of 00. If P is trivializable, and F : I→ P is an isomorphism, then, F ◦ S
is a section of P . Conversely, suppose P has a section S : Mdis→ P . Then, we get
the anafunctor

(6-1) I = Mdis×0
S×id // P ×0 R // P .

It has an evident 0-equivariant structure and respects the projections to M . Accord-
ing to Corollary 6.2.4, this is sufficient to have a 1-isomorphism. �

Corollary 6.2.6. Every principal 0-2-bundle is locally trivializable; i.e., every
point x ∈ M has an open neighborhood U and a 1-morphism T : I→ P|U .

Remark 6.2.7. In Wockel’s version [2011] of principal 2-bundles, local trivializa-
tions are required to be smooth functors and to be invertible as smooth functors,
rather than allowing anafunctors. This version turns out to be too restrictive in
the sense that the resulting bicategory receives no 2-functor from the bicategory
Grb0(M) of 0-bundle gerbes that would establish an equivalence.

It is also possible to reformulate our definition of principal 2-bundles in terms of
local trivializations. This reformulation gives us criteria which might be easier to
check than the actual definition, similar to the case of ordinary principal bundles.
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Proposition 6.2.8. Let P be a Lie groupoid, π : P→ Mdis be a surjective submer-
sion functor, and R be a smooth right action of 0 on P that preserves π . Suppose
every point x ∈ M has an open neighborhood U together with a 0-equivariant
anafunctor T : I → P|U that respects the projections. Then, π : P → Mdis is a
principal 0-2-bundle over M.

Proof. We only have to prove that the functor τ is a weak equivalence, and we use
Theorem 2.3.13. Since all morphisms of P have source and target in the same fiber
of π : P0→ Mdis, we may check the two conditions of Theorem 2.3.13 locally, i.e.,
for P|Ui where Ui is an open cover of M . Using local trivializations Ti : I→P|Ui ,
the smooth functor τ translates into the smooth functor (id, pr1,m) :Mdis×0×0→

(Mdis×0)×M (Mdis×0). This functor is an isomorphism of Lie groupoids, and
hence essentially surjective and fully faithful. �

7. Equivalence between bundle gerbes and 2-bundles

In this section we show that Versions III and IV of smooth 0-gerbes are equivalent
in the strongest possible sense:

Theorem 7.0.1. For M a smooth manifold and 0 a Lie 2-group, there is an equiva-
lence of bicategories

Grb0(M)∼= 2-Bun0(M)

between the bicategories of 0-bundle gerbes and principal 0-2-bundles over M.
This equivalence is natural in M ; i.e., it is an equivalence between pre-2-stacks.

Since the definitions of the bicategories Grb0(M) and 2-Bun0(M), and the above
equivalence are all natural in M , we obtain automatically an induced equivalence
for the induced bicategories over Lie groupoids (see Remarks 5.1.6 and 6.2.2).

Corollary 7.0.2. For X a Lie groupoid and 0 a Lie 2-group, there is an equivalence

Grb0(X )∼= 2-Bun0(X ).

The following outlines the proof of Theorem 7.0.1. In Section 7.1 we construct
explicitly a 2-functor

EM : 2-Bun0(M)→ Grb0(M).

Then we use a general criterion assuring that EM is an equivalence of bicategories.
This criterion is stated in Lemma B.1: it requires (A) that EM is fully faithful on
Hom-categories, and (B) to choose certain preimages of objects and 1-morphisms un-
der EM . Under these circumstances, Lemma B.1 constructs an inverse 2-functor RM

together with the required pseudonatural transformations assuring that EM and RM

form an equivalence of bicategories. Condition (A) is proved as Lemma 7.1.7 in
Section 7.1. The choices (B) are constructed in Section 7.2.
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In order to prove that the 2-functors EM extend to the claimed equivalence
between pre-2-stacks, we use another criterion stated in Lemma B.3. The only addi-
tional assumption of Lemma B.3 is that the given 2-functors EM form a 1-morphism
of pre-2-stacks; this is proved in Proposition 7.1.8. Then, the inverse 2-functors RM

obtained before automatically form an inverse 1-morphism between pre-2-stacks.

7.1. From principal 2-bundles to bundle gerbes. In this section we define the
2-functor EM : 2-Bun0(M)→ Grb0(M).

Definition of EM on objects. Let P be a principal 0-2-bundle over M , with projec-
tion π : P→ M and right action R of 0 on P . The first ingredient of the 0-bundle
gerbe EM(P) is the surjective submersion π : P0→ M . The second ingredient is a
principal 0-bundle P over P [2]0 . We put

P := P1×00.

Bundle projection, anchor and 0-action are given, respectively, by

(7.1-1) χ(ρ, g) := (t (ρ), R(s(ρ), g−1)), α(ρ, g) := g

and (ρ, g) ◦ γ := (R(ρ, idg−1 · γ ), s(γ )).

These definitions are motivated by Remark 7.1.2 below.

Lemma 7.1.1. This defines a principal 0-bundle over P [2]0 .

Proof. First we check that χ : P → P [2]0 is a surjective submersion. Since the
functor τ = (id, R) is a weak equivalence, we know from Theorem 2.3.13 that

f : (P0×00) τ×t×t P [2]1 → P [2]0 : (p, g, ρ1, ρ2) 7→ (s(ρ1), s(ρ2))

is a surjective submersion. Now consider the smooth surjective map

g : (P0×00) τ×t×t P [2]1 → P1×00 : (p, g, ρ1, ρ2) 7→ (ρ−1
1 ◦ R(ρ2, idg−1), g−1).

We have χ ◦ g = f ; thus, χ is a surjective submersion. Next we check that we have
defined an action. Suppose (ρ, g) ∈ P and γ ∈ 01 such that α(ρ, g) = g = t (γ ).
Then, α((ρ, g) ◦ γ ) = s(γ ). Moreover, suppose γ1, γ2 ∈ 01 with t (γ1) = g and
t (γ2)= s(γ1). Then,

((ρ, g) ◦ γ1) ◦ γ2 = (R(ρ, idg−1 · γ1), s(γ1)) ◦ γ2

=
(
R(ρ, idg−1 · γ1 · ids(γ1)−1 · γ2), s(γ2)

)
= (ρ, g) ◦ (γ1 ◦ γ2),

where we have used that γ1 ◦ γ2 = γ1 · ids(γ1)−1 · γ2 in any 2-group. It remains to
check that the smooth map

τ̃ : P α×t 01→ P χ×χ P : ((ρ, g), γ ) 7→ ((ρ, g), (ρ, g) ◦ γ )
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is a diffeomorphism. For this purpose, we consider the diagram

(7.1-2)

P [2]1

s×t
��

(P0×00)× (P0×00)
τ×τ

// P [2]0 ×P [2]0

and claim that (a) N1 := P α×t 01 is a pullback of (7.1-2), (b) N2 := P χ×χ P
is a pullback of (7.1-2), and (c) the unique map N1 → N2 is τ̃ . Thus, τ̃ is a
diffeomorphism.

In order to prove claim (a) we use again that the functor τ = (id, R) is a weak
equivalence, so that by Theorem 2.3.13 the triple (P1×01, τ, s× t) is a pullback
of (7.1-2). We consider the smooth map

ξ : N1→ P1×01 : ((ρ, g), γ ) 7→ (R(ρ, idg−1), γ )

which is a diffeomorphism because (ρ, γ ) 7→ ((R(ρ, idt (γ )), t (γ )), γ ) is a smooth
map which is inverse to ξ . Thus, putting f1 := τ ◦ ξ and g1 := (s× t) ◦ ξ we see
that (N1, f1, g1) is a pullback of (7.1-2). In order to prove claim (b), we put

f2((ρ1, g1), (ρ2, g2)) := (R(ρ1, idg−1
1
), ρ2),

g2((ρ1, g1), (ρ2, g2)) :=
(
R(s(ρ), g−1

1 ), g2, R(t (ρ1), g−1
1 ), g1

)
.

It is straightforward to check that the cone (N2, f2, g2) makes (7.1-2) commutative.
The triple (N2, f2, g2) is also universal: in order to see this suppose N ′ is any smooth
manifold with smooth maps f ′ : N ′→ P [2]1 and g′ : N ′→ (P0×00)× (P0×00)

so that (7.1-2) is commutative. For n ∈ N ′, we write f ′(n)= (ρ1, ρ2) and g′(n)=
(p1, g1, p2, g2). Then, σ(n) := ((R(ρ1, idg−1

2
), g2), (ρ2, g1)) defines a smooth map

σ : N ′→ P χ×χ P . One checks that f2 ◦ σ = f ′ and g2 ◦ σ = g′, and that σ is
the only smooth map satisfying these equations. This proves that (N2, f2, g2) is a
pullback. We are left with claim (c). Here one only has to check that τ : N1→ N2

satisfies f2 = f1 ◦ τ and g2 = g1 ◦ τ . �

Remark 7.1.2. The smooth functor τ = (id, R) : P × 0 → P ×M P is a weak
equivalence, and so has a canonical inverse anafunctor τ−1 (Remark 2.3.14). The
anafunctor

P [2]0
ι // P ×M P c // P ×M P τ−1

// P ×0
pr2 // 0,

where c is the functor that switches the factors, corresponds to a principal 0-bundle
over P [2]0 that is canonically isomorphic to the bundle P defined above.

It remains to provide the bundle gerbe product

µ : π∗23 P ⊗π∗12 P→ π∗13 P ,
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which we define by the formula

(7.1-3) µ((ρ23, g23), (ρ12, g12)) := (ρ12 ◦ R(ρ23, idg12), g23g12).

Lemma 7.1.3. Formula (7.1-3) defines an associative isomorphism

µ : π∗23 P ⊗π∗12 P→ π∗13 P

of principal 0-bundles over P [3]0 .

Proof. First of all, we recall from Example 2.4.7(b) that an element in the tensor
product π∗23 P ⊗π∗12 P is represented by a triple (p23, p12, γ ) where p23, p12 ∈ P
with π1(χ(p23))= π2(χ(p12)), and α(p23) ·α(p12)= t (γ ). In (7.1-3) we refer to
triples where γ = idg23g12 , and this definition extends to triples with general γ ∈ 01

by employing the equivalence relation

(7.1.4) (p1, p2, γ )∼ (p1 ◦ (γ · idα(p2)−1), p2, ids(γ )).

The complete formula for µ is then

(7.1.5) µ((ρ23, g23), (ρ12, g12), γ )= (ρ12 ◦ R(ρ23, idg−1
23
· γ ), s(γ )).

Next we check that (7.1.5) is well-defined under the equivalence relation (7.1.4):

µ(((ρ23, g23), (ρ12, g12), γ ))

= (ρ12 ◦ R(ρ23, idg−1
23
· γ ), s(γ ))

=
(
ρ12 ◦ R(ρ23 ◦ R(idR(s(ρ23),g−1

23 )
, γ · idg−1

12
), idg12), s(γ )

)
= µ

(
(ρ23 ◦ R(idR(s(ρ23),g−1

23 )
, γ · idg−1

12
), s(γ )g−1

12 ), (ρ12, g12), ids(γ ))
)

= µ
(
((ρ23, g23) ◦ (γ · idg−1

12
), (ρ12, g12), ids(γ ))

)
.

Now we have shown that µ is a well-defined map from π∗23 P ⊗ π∗12 P to π∗13 P ,
and it remains to prove that it is a bundle morphism. Checking that it preserves
fibers and anchors is straightforward. It remains to check that (7.1.5) preserves the
0-action. We calculate

µ(((ρ23, g23), (ρ12, g12), γ ) ◦ γ̃ )

= µ((ρ23, g23), (ρ12, g12), γ ◦ γ̃ )=
(
ρ23 ◦ R(ρ12, idg12 · i(γ ◦ γ̃ )), s(γ̃ )

)
=
(
ρ23 ◦ R(R(ρ12, idg12), i(γ ) ◦ i(γ̃ )), s(γ̃ )

)
=
(
ρ23 ◦ R(R(ρ12, idg12), i(γ )) ◦ R(idR(s(ρ12),g), i(γ̃ )), s(γ̃ )

)
=
(
ρ23 ◦ R(ρ12, idg12 · i(γ )) ◦ R(idR(s(ρ12),g), i(γ̃ )), s(γ̃ )

)
=
(
ρ23 ◦ R(ρ12, idg12 · i(γ )), s(γ )

)
◦ γ̃ = µ((ρ23, g23), (ρ12, g12), γ ) ◦ γ̃ .
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Summarizing, µ is a morphism of 0-bundles over P [3]0 . The associativity of µ
follows directly from the definitions. �

Definition of EM on 1-morphisms. We define a 1-morphism EM(F) : EM(P)→
EM(P ′) between 0-bundle gerbes from a 1-morphism F :P→P ′ between principal
0-2-bundles. The refinement of the surjective submersions π : P → M and π ′ :
P ′→ M is the fiber product Z := P0×M P ′0. Its principal 0-bundle has the total
space

Q := F ×00,

and its projection, anchor and 0-action are given, respectively, by

(7.1.6) χ( f, g) :=
(
αl( f ), R(αr ( f ), g−1)

)
, α( f, g) := g

and ( f, g) ◦ γ := (ρ( f, idg−1 · γ ), s(γ )),

where ρ : F × 01 → F denotes the 01-action on F that comes from the given
0-equivariant structure on F (see Appendix A).

Lemma 7.1.4. This defines a principal 0-bundle Q over Z.

Proof. We show first that the projection χ : Q→ Z is a surjective submersion. Since
the functor τ ′ :P ′×0→P×MP is a weak equivalence, we have by Theorem 2.3.13
a pullback

X //

ξ

��

(P ′0×00) R×t (P ′1×M P ′1)

s◦pr2

��
F π ′◦αl ( f )×π ′ P ′0 // P ′0×M P ′0

along the bottom map ( f, p′) 7→ (αr ( f ), p′), which is well-defined because the
anafunctor F preserves the projections to M (see Remark 6.1.6(b)). In particular,
the map ξ is a surjective submersion. It is easy to see that the smooth map

k : X→ F ×00 : (( f, p′), (p′0, g, ρ, ρ̃)) 7→ ( f ◦ ρ−1
◦ R(ρ̃, idg−1), g−1)

is surjective. Now we consider the commutative diagram

X

ξ

��

k // F ×00

χ

��
F π ′◦αl ( f )×π ′ P0

αl×id
// P0×M P ′0.

The surjectivity of k and the fact that ξ and αl× id are surjective submersions shows
that χ is one, too.
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Next, one checks (as in the proof of Lemma 7.1.1) that the 0-action on Q defined
above is well-defined and preserves the projection. Then it remains to check that
the smooth map

ξ : Q α×t 01→ Q×P0×MP ′0 Q : ( f, g, γ ) 7→ ( f, g, ρ( f, idg−1 · γ ), s(γ ))

is a diffeomorphism. An inverse map is given as follows. Given an element
( f1, g1, f2, g2) on the right-hand side, we have αl( f1) = αl( f2), so that there
exists a unique element ρ ′ ∈ P ′1 such that f1 ◦ ρ

′
= f2. One calculates that

(ρ ′, g2) and (idαr ( f1), g1) are elements of the principal 0-bundle P ′ × 00 over
P ′[2]0 of Lemma 7.1.1. Thus, there exists a unique element γ ∈ 01 such that
(ρ ′, g2) = (idαr ( f1), g1) ◦ γ . Clearly, t (γ ) = g1 and s(γ ) = g2, and we have
ρ ′ = R(idαr ( f1), idg−1

1
· γ ). We define ξ−1( f1, g1, f2, g2) := ( f1, g1, γ ). The cal-

culation that ξ−1 is an inverse for ξ uses property (ii) of Definition A.1 for the
action ρ, and is left to the reader. �

The next step in the definition of the 1-morphism E(F) is to define the bundle
morphism

β : P ′⊗ ζ ∗1 Q→ ζ ∗2 Q⊗ P

over Z ×M Z . We use the notation of Example 2.4.7(b) for elements of tensor
products of principal 0-bundles; in this notation, the morphism β in the fiber over
a point ((p1, p′1), (p2, p′2)) ∈ Z ×M Z is given by

β : ((ρ ′, g′), ( f, g), γ ) 7→ (( f̃ , g′gh), (ρ̃, h−1), γ ),

where h ∈ 00 and ρ̃ ∈ P ′1 are chosen such that s(ρ̃)= R(p2, h−1) and t (ρ̃)= p1,
and

(7.1.7) f̃ := ρ(ρ̃−1
◦ f ◦ R(ρ ′, idg), idh).

Lemma 7.1.5. This defines an isomorphism between principal 0-bundles.

Proof. The existence of choices of ρ̃, h follows because the functor τ ′ : P ′×0→
P ′×M P ′ is smoothly essentially surjective (Theorem 2.3.13); in particular, one
can choose them locally in a smooth way. We claim that the equivalence relation on
ζ ∗2 Q⊗ P identifies different choices; thus, we have a well-defined smooth map. In
order to prove this claim, we assume other choices ρ̃ ′, h′. The pairs (ρ̃, h−1) and
(ρ̃ ′, h′−1) are elements in the principal 0-bundle P ′ over P ′0×M P ′0 and sit over the
same fiber; thus, there exists a unique γ̃ ∈ 01 such that (ρ̃, h−1) ◦ γ̃ = (ρ̃ ′, h′−1);
in particular, R(ρ̃, idh · γ̃ )= ρ̃

′. Now we have

(( f̃ , g′gh), (ρ̃, h−1), γ )=
(
( f̃ , g′gh), (ρ̃, h−1), (idt (γ ) · i(γ̃ ) · γ̃ ) ◦ γ

)
∼
(
( f̃ , g′gh) ◦ (idt (γ ) · i(γ̃ )), (ρ̃, h−1) ◦ γ̃ , γ

)
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so that it suffices to calculate

( f̃ , g′gh) ◦ (idt (γ ) · i(γ̃ ))=
(
ρ( f̃ , idh−1 · i(γ̃ )), g′gh′

)
=
(
ρ(ρ̃−1

◦ f ◦ R(ρ ′, idg), i(γ̃ )), g′gh′
)

=
(
ρ(R(ρ̃−1, i(γ̃ ) · idh′−1) ◦ f ◦ R(ρ ′, idg), idh′), g′gh′

)
,

where the last step uses the compatibility condition for ρ from Definition A.1(ii).
In any 2-group, we have i(γ̃ ) · ids(γ̃ ) = (idt (γ̃ )−1 · γ̃ )−1, in which case the last line
is exactly the formula (7.1.7) for the pair (ρ̃ ′, h′).

Next we check that β is well-defined under the equivalence relation on the tensor
product P ′⊗ ζ ∗1 Q. We have

x := ((ρ ′, g′), ( f, g), (γ1 · γ2) ◦ γ )∼ ((ρ
′, g′) ◦ γ1, ( f, g) ◦ γ2, γ )=: x ′

for γ1, γ2 ∈ 01 such that t (γ1) = g′, t (γ2) = g and s(γ1)s(γ2) = t (γ ). Taking
advantage of the fact that we can make the same choice of (ρ̃, h) for both repre-
sentatives x and x ′, it is straightforward to show that β(x) = β(x ′). Finally, it is
obvious from the definition of β that it is anchor-preserving and 0-equivariant. �

In order to show that the triple (Z , Q, β) defines a 1-morphism between bundle
gerbes, it remains to verify that the bundle isomorphism β is compatible with the
bundle gerbe products µ1 and µ2 in the sense of diagram (5-1). This is straightfor-
ward to do and left for the reader.

Definition of EM on 2-morphisms, compositors and unitors. Let F1, F2 : P→ P ′
be 1-morphisms between principal 0-bundles over M , and let η : F ⇒ G be a
2-morphism. Between the 0-bundles Q1 and Q2, which live over the same common
refinement Z = P0×M P ′0, we find immediately the smooth map

η : Q1→ Q2 : ( f1, g) 7→ (η( f1), g)

which is easily verified to be a bundle morphism. Its compatibility with the bundle
morphisms β1 and β2 in the sense of the simplified diagram (5-4) is also easy to
check. Thus, we have defined a 2-morphism EM(η) : EM(F1)⇒ EM(F2).

The compositor for 1-morphisms F1 : P → P ′ and F2 : P ′→ P ′′ is a bundle
gerbe 2-morphism

cF1,F2 : EM(F2 ◦ F1)→ EM(F2) ◦EM(F1).

Employing the above constructions, the 1-morphism EM(F2 ◦ F1) is defined on the
common refinement Z12 :=P0×MP ′′0 and has the 0-bundle Q12= (F1×P ′0 F2)/P ′1×
00, whereas the 1-morphism EM(F2)◦EM(F1) is defined on the common refinement
Z := P0×M P ′0×M P ′′0 and has the 0-bundle Q2⊗ Q1 with Qk = Fk ×00. The
compositor cF1,F2 is defined over the refinement Z with the obvious refinement
maps pr13 : Z→ Z12 and id : Z→ Z making diagram (5-3) commutative. It is thus
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a bundle morphism cF1,F2 : pr∗13 Q12→ Q2⊗ Q1. For elements in a tensor product
of 0-bundles we use the notation of Example 2.4.7(b). Then, we define cF1,F2 by

(7.1.8) ((p, p′, p′′), ( f1, f2, g)) 7→
(
(ρ2(ρ̃

−1
◦ f2, idh), gh), ( f1 ◦ ρ̃, h−1), idg

)
,

where h ∈ 00 and ρ̃ : R(p′, h−1)→ αr ( f1)= αl( f2) are chosen in the same way as
in the proof of Lemma 7.1.5. The assignment (7.1.8) does not depend on the choices
of h and ρ̃, nor on the choice of the representative ( f1, f2) in (F1×P ′0 F2)/P ′1. It
is obvious that (7.1.8) is anchor-preserving, and its 0-equivariance can be seen by
choosing (ρ̃, h) in order to compute cF1,F2((p, p′, p′′), ( f1, f2, g)) and (ρ̃ ′, h) with
ρ̃ ′ := R(ρ̃, idg−1 ·γ−1) in order to compute cF1,F2(((p, p′, p′′), ( f1, f2, g))◦γ ). In
order to complete the construction of the bundle gerbe 2-morphism cF1,F2 we have to
prove that the bundle morphism cF1,F2 is compatible with the isomorphisms β12 of
EM(F2 ◦ F1) and (id⊗β1)◦ (β2⊗ id) of EM(F2)◦EM(F1) in the sense of diagram
(5-4). We start with an element ((ρ ′′, g′′), ( f12, g)) ∈ EM(P ′′)⊗ ζ ∗1 Q12, where
f12 = ( f1, f2). We have

β12((ρ
′′, g′′), ( f12, g))= ( f̃12, g′′gh, ρ̃, h−1)

upon choosing (ρ̃, h) as required in the definition of EM(F2 ◦ F1). Writing f̃12 =

( f̃1, f̃2) further we have

(7.1.9) (ζ ∗2 cF1,F2 ⊗ id)( f̃12, g′′gh, ρ̃, h−1)

=
(
ρ2(ρ̃

−1
2 ◦ f̃2, idh2), g′′ghh2, f̃1 ◦ ρ̃2, h−1

2 , ρ̃, h−1)
upon choosing appropriate (ρ̃2, h2) as required in the definition of cF1,F2 . This is the
result of the clockwise composition of diagram (5-4). Counterclockwise, we first get

(id⊗ ζ ∗1 cF1,F2)((ρ
′′, g′′), ( f12, g))= (ρ ′′, g′′, f ′′, gh1, f ′, h−1

1 )

for choices (ρ̃1, h1), where f ′′ := ρ2(ρ̃
−1
1 ◦ f2, idh1) and f ′ := f1 ◦ ρ̃1. Next we

apply the isomorphism β2 of EM(F2) and get

(β2⊗ id)(ρ ′′, g′′, f ′′, gh1, f ′1, h−1
1 )= ( f̃ ′′, g′′ghh2, ρ̂, ĥ−1, f ′1, h−1

1 )

where we have used the choices (ρ̂, ĥ) defined by ρ̂ := R(ρ̃−1
1 , h1) ◦ R(ρ̃2, h−1h1)

and ĥ := h−1
1 hh2. The last step is to apply the isomorphism β1 of EM(F2) which

gives

(7.1.10) (id⊗β1)( f̃ ′′,g′′ghh2, ρ̂, ĥ−1, f ′1,h
−1
1 )= ( f̃ ′′,g′′ghh2, f̃ ′,h−1

2 , ρ̃,h−1),

where we have used the choices (ρ̃, h) from above. Comparing (7.1.9) and (7.1.10),
we have obvious coincidence in all but the first and third components. For these
remaining factors, coincidence follows from the definitions of the various variables.



400 THOMAS NIKOLAUS AND KONRAD WALDORF

Finally, we have to construct unitors. The unitor for a principal 0-2-bundle P
over M is a bundle gerbe 2-morphism

uP : EM(idP)⇒ idEM (P).

Abstractly, one can associate to idEM (P) the 1-morphism idFP
EM (P) constructed in the

proof of Lemma 5.2.8, and then notice that idFP
EM (P) and EM(idP) are canonically

2-isomorphic. In more concrete terms, the unitor uP has the refinement W := P [3]0
with the surjective submersions r := pr12 and r ′ := pr3 to the refinements Z = P [2]0
and Z ′ = P0 of the 1-morphisms EM(idP) and idEM (P), respectively. The relevant
maps xW and yW are pr13 and pr23, respectively. The principal 0-bundle of the
1-morphism idEM (P) is the trivial bundle Q′ = I1. We claim that the principal
0-bundle Q of EM(idP) is the bundle P of the bundle gerbe EM(P). Indeed, the
formulae (7.1.6) reduce for the identity anafunctor idP to those of (7.1-1). Now,
the bundle isomorphism of the unitor uP is

y∗W P ⊗ r∗Q = pr∗23 P ⊗ pr∗12 P
µ // pr∗13 P ∼= r ′∗Q′⊗ x∗W P ,

where µ is the bundle gerbe product of EM(P). The commutativity of diagram
(5-2) follows from the associativity of µ.

Proposition 7.1.6. The assignments EM for objects, 1-morphisms and 2-morphisms,
together with the compositors and unitors defined above, define a 2-functor

EM : 2-Bun0(M)→ Grb0(M).

Proof. A list of axioms for a 2-functor with the same conventions as we use here can
be found in [Schreiber and Waldorf 2008, Appendix A]. The first axiom requires
that the 2-functor EM respects the vertical composition of 2-morphisms — this
follows immediately from the definition.

The second axiom requires that the compositors respect the horizontal compo-
sition of 2-morphisms. To see this, let F1, F ′1 : P→ P ′ and F2, F ′2 : P ′→ P ′′ be
1-morphisms between principal 0-2-bundles, and let η1 : F1⇒ F ′1 and η2 : F2⇒ F ′2
be 2-morphisms. Then, the diagram

EM(F2 ◦ F1)

cF1,F2

��

EM (η1◦η2) +3 EM(F ′2 ◦ F ′1)

cF ′1,F
′
2

��
EM(F2) ◦EM(F1)

EM (η1)◦EM (η2)
+3 EM(F ′2) ◦EM(F ′1)

has to commute. Indeed, in order to compute cF1,F2 and cF ′1,F
′

2
one can make the

same choice of (ρ̃, h), because the transformations η and η2 preserve the anchors.
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Then, commutativity follows from the fact that η1 and η2 commute with the groupoid
actions and the 01-action according to Definition A.1.

The third axiom describes the compatibility of the compositors with the compo-
sition of 1-morphisms in the sense that the diagram

EM(F3 ◦ F2 ◦ F1)
cF2◦F1,F3 +3

cF3◦F2,F1

��

EM(F3) ◦EM(F2 ◦ F1)

id◦cF2,F1

��
EM(F3 ◦ F2) ◦EM(F1) cF3,F2◦id

+3 EM(F3) ◦EM(F2) ◦EM(F1)

is commutative. In order to verify this, one starts with an element ( f1, f2, f3, g)
in EM(F3 ◦ F2 ◦ F1). In order to go clockwise, one chooses pairs (ρ̃12,3, h12,3) and
(ρ̃1,2, h1,2) and gets from the definitions

CW=
((
ρ3(ρ̃

−1
12,3 ◦ f3, idh12,3), gh12,3

)
,(

ρ2(ρ̃
−1
1,2 ◦ f2 ◦ ρ̃12,3, idh1,2), h−1

12,3h1,2
)
, ( f1 ◦ ρ̃1,2, h−1

1,2)
)
.

Counterclockwise, one can choose firstly again the pair (ρ̃1,2, h1,2) and then the
pair (ρ̃2,3, h2,3) with ρ̃2,3 = R(ρ̃12,3, idh1,2) and h2,3 = h−1

1,2h12,3. Then, one gets

CCW=
((
ρ3(ρ̃

−1
2,3 ◦ ρ3( f3, idh1,2), idh2,3), gh1,2h2,3

)
,(

ρ2(ρ̃
−1
1,2 ◦ f2, idh1,2) ◦ ρ̃2,3, h−1

2,3

)
, ( f1 ◦ ρ̃1,2, h−1

1,2)
)
,

where one has to use formula (A-2) for the 01-action on the composition of equi-
variant anafunctors. Using the definitions of h2,3 and ρ̃2,3 as well as the axiom of
Definition A.1(ii) one can show that CW= CCW.

The fourth and last axiom requires that compositors and unitors are compatible
with each other in the sense that for each 1-morphism F :P→P ′ the 2-morphisms

EM(F)∼=EM(F◦idP)
cidP ,F +3 EM(F)◦EM(idP)

id◦uP +3 EM(F)◦idEM (P)
∼=EM(F),

EM(F)∼=EM(idP ′◦F)
cF,idP ′ +3 EM(idP ′)◦EM(F)

uP ′◦id +3 idEM (P ′)◦EM(F)∼=EM(F)

are the identity 2-morphisms. We prove this for the first one and leave the second as
an exercise. Using the definitions, we see that the 2-morphism has the refinement
W :=P0×M P0×M P ′0 with r = pr13 and r ′= pr23. The maps xW :W→P0×M P0

and yW :W→P ′0×M P ′0 are pr12 and 1◦pr3, respectively, where 1 is the diagonal
map. Its bundle morphism is a morphism

ϕ : pr∗13 Q→ pr∗23 Q⊗ pr∗12 P ,

where Q = F ×00 is the principal 0-bundle of EM(F), and P = P1×00 is the
principal 0-bundle of EM(P). Over a point (p1, p2, p′) and ( f, g) ∈ pr∗13 Q, i.e.,
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αl( f )= p1 and R(αr ( f ), g−1)= p′, the bundle morphism ϕ is given by

( f, g) 7→
(
ρ(ρ̃−1

◦ f, idh), gh, ρ̃, h−1),
where h ∈ 00, and ρ̃ ∈ P1 with s(ρ̃) = R(p2, h−1) and t (ρ̃) = αl( f ). We have
to compare (W, ϕ) with the identity 2-morphism of EM(F), which has the refine-
ment Z with r = r ′ = id and the identity bundle morphism. According to the
equivalence relation on bundle gerbe 2-morphisms we have to evaluate ϕ over a
point w ∈W with r(w)= r ′(w); i.e., w is of the form w= (p, p, p′). Here we can
choose h = 1 and ρ̃ = idp, in which case we have

ϕ( f, g)= (( f, g), (idp, 1)).

This is indeed the identity on Q. �

Properties of the 2-functor EM . For the proof of Theorem 7.0.1 we provide the
following two statements.

Lemma 7.1.7. The 2-functor EM is fully faithful on Hom-categories.

Proof. Let P , P ′ be principal 0-2-bundles over M , and let F1, F2 : P → P ′ be
1-morphisms. By Lemma 5.2.8 every 2-morphism η : EM(F1)⇒ EM(F2) can be
represented by one whose refinement is P0×M P ′0, so that its bundle isomorphism is
η : Q1→ Q2, where Qk := Fk×0 for k = 1, 2. We can read off a map η : F1→ F2,
and it is easy to see that this is a 2-morphism η : F1⇒ F2. This procedure is clearly
inverse to the 2-functor EM on 2-morphisms. �

Proposition 7.1.8. The 2-functors EM form a 1-morphism between pre-2-stacks.

Proof. For a smooth map f : M→ N , we have to look at the diagram

2-Bun0(N )

EN

��

f ∗ // 2-Bun0(M)

EM

��
Grb0(N ) f ∗

// Grb0(M)

of 2-functors. For P a principal 0-2-bundle over N , the 0-bundle gerbe EM( f ∗P)
has the surjective submersion pr1 : Y := M ×N P0→ M , the principal 0-bundle
P := M ×N P1×00 over Y [2], and a bundle gerbe product µ defined as in (7.1-3)
that ignores the M-factor. On the other hand, the 0-bundle gerbe f ∗EN (P) has
the same surjective submersion, and — up to canonical identifications between
fiber products — the same 0-bundle and the same bundle gerbe product. These
canonical identifications make up a pseudonatural transformation that renders the
above diagram commutative. �
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7.2. From bundle gerbes to principal 2-bundles. We now provide the data we will
feed into Lemma B.1 in order to produce a 2-functor RM :Grb0(M)→ 2-Bun0(M)
that is inverse to the 2-functor EM constructed in the previous section. These data
are:

(1) A principal 0-2-bundle RG for each 0-bundle gerbe G over M .

(2) A 1-isomorphism AG : G→ EM(RG) for each 0-bundle gerbe G over M .

(3) A 1-isomorphism RA : P→ P ′ and a 2-isomorphism ηA :A⇒ EM(RA) for
all principal 0-2-bundles P , P ′ over M and all bundle gerbe 1-morphisms
A : EM(P)→ EM(P ′).

Construction of the principal 0-2-bundle RG . We assume that G consists of a
surjective submersion π : Y → M , a principal 0-bundle P over Y [2] and a bundle
gerbe product µ. Let α : P→ 00 be the anchor of P , and let χ : P→ Y [2] be the
bundle projection.

The Lie groupoid P of the principal 2-bundle RG is defined by

P0 := Y ×00 and P1 := P ×00;

source map, target maps, and composition are given by, respectively,

(7.2.1) s(p, g) := (π2(χ(p)), g), t (p, g) :=
(
π1(χ(p)), α(p)−1

· g
)

and (p2, g2) ◦ (p1, g1) := (µ(p1, p2), g1).

The identity morphism of an object (y, g) ∈ P0 is (ty, g) ∈ P1, where ty denotes
the unit element in P over the point (y, y); see Lemma 5.2.5. The inverse of
a morphism (p, g) ∈ P1 is (i(p), α(p)−1g), where i : P → P is the map from
Lemma 5.2.5. The bundle projection is π(y, g) := π(y). The action is given on
objects and morphisms by

(7.2.2) R0((y, g), g′) := (y, gg′),

R1((p, g), γ ) :=
(

p ◦ (idg · γ · idt (γ )−1g−1α(p)), g · s(γ )
)
.

Lemma 7.2.1. This defines a functor R : P × 0→ P , and R is an action of 0
on P .

Proof. We assume that t : H → G is a smooth crossed module, and that 0 is the
Lie 2-group associated to it; see Example 2.4.2 and Remark 2.4.3. Then we use
the correspondence between principal 0-bundles and principal H -bundles with
H -antiequivariant maps to G of Lemma 2.2.9. Writing γ = (h, g′), we have

R1((p, g), γ )= (p ? gh, gg′).

With this simple formula at hand it is straightforward to show that R respects source
and target maps and satisfies the axiom of an action. For the composition, we
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assume composable (p2, g2), (p1, g1) ∈ P1; i.e., g2 = α(p1)
−1g1, and composable

(h2, g′2), (h1, g′1) ∈ 01; i.e., g′2 = t (h1)g′1. Then we have

R
(
(p2, g2) ◦ (p1, g1), (h2, g′2) ◦ (h1, g′1)

)
= R

(
(µ(p1, p2), g1), (h2h1, g′1)

)
=
(
µ(p1, p2) ?

g1(h2h1), g1g′1
)

=
(
µ(p1 ?

g1h2, p2) ?
g1h1, g1g′1

)
=
(
µ(p1, p2 ?

g2h2) ?
g1h1, g1g′1

)
=
(
µ(p1 ?

g1h1, p2 ?
g2h2), g1g′1

)
= (p2 ?

g2h2, g2g′2) ◦ (p1 ?
g1h1, g1g′1)

= R((p2, g2), (h2, g′2)) ◦ R((p1, g1), (h1, g′1)),

finishing the proof. �

It is obvious that the action R preserves the projection π . Thus, in order to
complete the construction of the principal 2-bundle RG it remains to show that the
functor τ = (pr1, R) is a weak equivalence. This is the content of the following
two lemmata in connection with Theorem 2.3.13.

Lemma 7.2.2. The functor τ is smoothly essentially surjective.

Proof. The condition we have to check is whether or not the map

(Y ×00×00) τ×t ((P ×00)×M (P ×00))
(s×s)◦pr2 // (Y ×00)×M (Y ×00)

is a surjective submersion. The left-hand side is diffeomorphic to (P ×00) π1×π1

(P ×00) via pr2, so that this is equivalent to checking that

s× s : (P ×00) π1◦χ×π1◦χ (P ×00)→ (Y ×00)×M (Y ×00)

is a surjective submersion. Since the 00-factors are just spectators, this is in turn
equivalent to checking that

(π2×π2) ◦ (χ ×χ) : P π1◦χ×π1◦χ P→ Y [2]

is a surjective submersion. It fits into the pullback diagram

P π1◦χ×π1◦χ P �
� //

χ×χ

��

P × P

χ×χ

��
Y [2] π1×π1 Y [2]

π2×π2

��

� � // Y [2]× Y [2]

π2×π2

��
Y [2]
� � // Y × Y
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which has a surjective submersion on the right-hand side; hence, also the map on
the left-hand side must be a surjective submersion. �

Lemma 7.2.3. The functor τ is smoothly fully faithful.

Proof. We assume a smooth manifold N with two smooth maps

f : N → (P0×00)× (P0×00) and g : N → P1×M P1

such that the diagram

N

f

��

g // P1×M P1

s×t

��
(P0×00)× (P0×00)

τ×τ
// (P0×M P0)× (P0×M P0)

is commutative. For a fixed point n ∈ N we put

((p1, g1), (p2, g2)) := g(n) ∈ (P ×00)×M (P ×00),

((y, g, g̃), (y′, g′, g̃′)) := f (n) ∈ (Y ×00×00)× (Y ×00×00).

The commutativity of the diagram implies χ(p1)= χ(p2)= (y′, y), so that there
exists γ ′ ∈ 01 with p2 = p1 ◦γ

′. We define γ := idg−1
1
·γ ′ · idα(p2)−1g2 , which yields

a morphism γ ∈ 01 satisfying τ(p1, g1, γ )= (p1, g1, p2, g2)= g(n). On the other
hand, we check that

(s(p1, g1, γ ), t (p1, g1, γ ))=
(
π2(p1), g1, s(γ ), π1(p1), α(p1)

−1g1, t (γ )
)
= f (n),

using that s(γ )= g−1
1 g2 and t (γ )= g−1

1 α(p1)α(p2)
−1g2. Summarizing, we have

defined a smooth map

σ : N → P1×01 : n 7→ (p1, g1, γ )

such that τ ◦σ = g and (s× t)◦σ = f . Now let σ ′ : N→P1×01 be another such
map, and let σ ′(n)=: (p′1, g′1, γ

′). The condition that τ(σ (n))= g(n)= τ(σ ′(n))
shows immediately that p1 = p′1 and g1 = g′1, and then that p1 ◦ γ = p1 ◦ γ

′.
But since the 0-action on P is principal, we have γ = γ ′. This shows σ = σ ′.
Summarizing, P1×01 is a pullback. �

Example 7.2.4. Suppose 0 = BU(1) (see Example 2.1.1(b)) and suppose G is a
0-bundle gerbe over M , also known as a U(1)-bundle gerbe (see Example 5.1.7).
Then, the associated principal BU(1)-2-bundle RG has the groupoid P with P0= Y
and P1 = P , source and target maps s = π2 ◦χ and t = π1 ◦χ , and composition
p2 ◦ p1 = µ(p1, p2). The action of BU(1) on P is trivial on the level of objects
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and the given U(1)-action on P on the level of morphisms. The same applies for
general abelian Lie groups A instead of U(1).

Construction of the 1-isomorphism AG : G → EM(RG). The 0-bundle gerbe
EM(RG) has the surjective submersion Ỹ := Y × 00 with π̃(y, g) := π(y). The
total space of its 0-bundle P̃ is P̃ := P×00×00; it has the anchor α(p, g, h)= h,
the bundle projection

χ̃ : P̃→ Ỹ [2] : (p, g, h) 7→
(
(π1(χ(p)), α(p)−1g), (π2(χ(p)), gh−1)

)
,

the 0-action is

(p, g, h) ◦ γ
(7.1-1)
=

(
(p, g) ◦ R((tπ2(χ(p)), gh−1), γ ), s(γ )

)
(7.2.2)
=

(
(p, g) ◦ (tπ2(χ(p)) ◦ (idgh−1 · γ · idg−1), gh−1s(γ )), s(γ )

)
(7.2.1)
=

(
µ(tπ2(χ(p)) ◦ (idgh−1 · γ · idg−1), p), gh−1s(γ ), s(γ )

)
(2.4-3)
=

(
p ◦ (idgh−1 · γ · idg−1α(p)), gh−1s(γ ), s(γ )

)
,

and its bundle gerbe product µ̃ is given by

µ̃((p23, g23, h23), (p12, g12, h12))
(7.1-3)
=

(
(p12, g12) ◦ R((p23, g23), idh12), h23h12

)
(7.2.2)
= ((p12, g12) ◦ (p23, g23h12), h23h12)

(7.2.1)
= (µ(p23, p12), g23h12, h23h12).

In order to compare the bundle gerbes G and EM(RG) we consider the smooth
maps σ : Y → Y × 00 and σ̃ : P → P̃ that are defined by σ(y) := (y, 1) and
σ̃ (p) := (p, α(p), α(p)).

Lemma 7.2.5. The map σ̃ defines an isomorphism σ̃ : P→ (σ×σ)∗ P̃ of 0-bundles
over Y [2]. Moreover, the diagram

π∗23 P ⊗π∗12 P

µ

��

σ̃⊗σ̃ // π̃∗23 P̃ ⊗ π̃∗12 P̃

µ̃

��
π∗13 P

σ̃

// π̃∗13 P̃

is commutative.
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Proof. For the first part it suffices to prove that σ̃ is 0-equivariant, preserves the
anchors, and that the diagram

P

χ

��

σ̃ // P̃

χ̃

��
Y [2] σ×σ

// Ỹ [2]

is commutative. Indeed, the commutativity of the diagram is obvious, and also that
the anchors are preserved. For the 0-equivariance, we have

σ̃ (p ◦ γ )= (p ◦ γ, s(γ ), s(γ ))= (p, α(p), α(p)) ◦ γ = σ̃ (p) ◦ γ .

Finally, we calculate

µ̃
(
(p23, α(p23), α(p23)), (p12, α(p12), α(p12))

)
=
(
µ(p23, p12), α(p23)α(p12), α(p23)α(p12)

)
=
(
µ(p23, p12), α(µ(p23, p12)), α(µ(p23, p12))

)
which shows the commutativity of the diagram. �

Via Lemma 5.2.7 the bundle morphism σ̃ defines the required 1-morphism AG ,
and Lemma 5.2.3 guarantees that AG is a 1-isomorphism.

Construction of the 1-morphism RA : P → P ′. Let A : EM(P)→ EM(P ′) be
a 1-morphism between 0-bundle gerbes obtained from principal 0-2-bundles P
and P ′ over M . By Lemma 5.2.8 we can assume that A consists of a principal
0-bundle χ : Q→ Z with Z =P0×M P ′0, and some isomorphism β over Z [2]. For
preparation, we consider the fiber products Zr :=P0×M P ′[2]0 and Zl :=P [2]0 ×M P ′0
with the obvious embeddings ιl : Zl → Z and ιr : Zr → Z obtained by doubling
elements. Together with the trivialization of Corollary 5.2.6, the pullbacks of β
along ιl and ιr yield bundle morphisms

βl := ι
∗

l β : pr∗13 Q→ pr∗23 Q⊗ pr∗12 P

and

βr := ι
∗

rβ : pr∗23 P ′⊗ pr∗12 Q→ pr∗13 Q,

where P :=P1×00 and P ′ :=P ′×00 are the principal 0-bundles of the 0-bundle
gerbes EM(P) and EM(P ′), respectively.

Lemma 7.2.6. The bundle morphisms βl and βr have the following properties:
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(i) They commute with each other in these sense that the diagram

P ′p′1,p′2
⊗ Q p1,p′1

β

((

βr //

id⊗βl

��

Q p1,p′2

βl

��
P ′p′1,p′2

⊗ Q p2,p′1 ⊗ Pp1,p2
βr⊗id

// Q p2,p′2 ⊗ Pp1,p2

is commutative for all ((p1, p′1), (p2, p′2)) ∈ Z [2].

(ii) βl is compatible with the bundle gerbe product µ in the sense that

βl |p1,p3,p′ = (id⊗µp1,p2,p3) ◦ (βl |p2,p3,p′ ⊗ id) ◦βl |p1,p2,p′

for all (p1, p2, p3, p′) ∈ P [3]0 ×P ′0.

(iii) βr is compatible with the bundle gerbe product µ′ in the sense that

βr |p,p′1,p
′

3
◦ (µ′p′1,p

′

2,p
′

3
⊗ id)= βr |p,p′2,p

′

3
◦ (id⊗βr |p,p′1,p

′

2
)

for all (p, p′1, p′2, p′3) ∈ P0×P ′[3]0 .

Proof. The identities (ii) and (iii) follow by restricting the commutative diagram
(5-1) to the submanifolds P [3]0 ×P ′0 and P0×P ′[3]0 of Z [3], respectively. Similarly,
the commutativity of the two triangular subdiagrams in (i) follows by restricting
(5-1) along appropriate embeddings Z [2]→ Z [3]. �

Now we are in position to define the anafunctor RA. First, we consider the left
action

β0 : 00× Q→ Q : (g, q) 7→ βr ((id, g), q)

that satisfies α(β0(g, q))= gα(q). The action β0 is properly discontinuous and free
because βr is a bundle isomorphism. The quotient F := Q/00 is the total space
of the anafunctor RA we want to construct. Left and right anchors of an element
q ∈ F with χ(q)= (p, p′) are given by

αl(q) := p and αr (q) := R(p′, α(q)).

The actions are defined by

ρl(ρ, q) := β−1
l (q, (ρ, 1)) and ρr (q, ρ ′) := βr

(
(R(ρ ′, idα(q)−1), 1), q

)
.

The left action is invariant under the action β0 because of Lemma 7.2.6(i). For the
right action, invariance follows from Lemma 7.2.6(ii) and the identity

µ′
(
(R(ρ ′, idα(q)−1g−1), 1), (id, g)

) (7.1-3)
= µ′

(
(id, g), (R(ρ ′, idα(q)−1), 1)

)
.
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Lemma 7.2.7. The above formulas define an anafunctor F : P→ P ′.

Proof. The compatibility between anchors and actions is easy to check. The
axiom for the actions ρl and ρr follows from parts (ii) and (iii) of Lemma 7.2.6.
Lemma 7.2.6(i) shows that the actions commute. It remains to prove that αl : F→P0

is a principal P ′-bundle. Since αl is a composition of surjective submersions, we
only have to show that the map

τ : F αr×t P ′→ F αl×αl F : (q, ρ ′) 7→ (q, ρr (q, ρ ′))

is a diffeomorphism. We construct an inverse map τ−1 as follows. For (q1, q2)

with χ(q1)= (p, p′) and χ(q2)= (p, p̃′), choose a representative

((ρ̃ ′, g′), q̃) := βr |
−1
p,p′, p̃′(q2).

Such choices can be made locally in a smooth way, and the result will not depend on
them. We have χ(q̃)= (p, p′) that there exists a unique γ ∈01 such that q1= q̃ ◦γ .
Now we put

τ−1(q1, q2) := (q1, R(ρ̃ ′, γ−1)).

The calculation of τ−1
◦τ is straightforward. For the calculation of (τ ◦τ−1)(q1, q2)

we have to compute in the second component

βr
(
(R(ρ̃ ′, γ−1

· idα(q1)−1), 1), q1
)

= βr
(
(R(ρ̃ ′, γ−1

· idα(q1)−1), 1) ◦ (γ · idα(q̃)−1), q̃
)
= βr

(
(ρ̃ ′, α(q1)α(q̃)−1), q̃

)
= β0

(
α(q1)α(q̃)−1g′−1, βr ((ρ̃

′, g′), q̃)
)
= β0(α(q1)α(q̃)−1g′−1, q2),

and this is equivalent to q2. �

In order to promote the anafunctor F to a 1-morphism between principal 2-
bundles, we have to do two things: we have to check that F commutes with the
projections of the bundle P1 and P2, and we have to construct a 0-equivariant
structure on F . For the first point we use Remark 6.1.6(b), whose criterion π ◦αl =

π ◦ αr is clearly satisfied. For the second point we provide a smooth action ρ :
F ×01→ F in the sense of Definition A.1 and use Lemma A.2, which provides a
construction of a 0-equivariant structure. The action is defined by

(7.2.3) ρ(q, γ ) := β−1
l

(
q ◦ (idα(q) · γ · idt (γ )−1), (idR(αl (q),t (γ )), t (γ ))

)
.

Lemma 7.2.8. This defines a smooth action of 01 on F in the sense of Definition A.1.

Proof. Smoothness is clear from the definition. The identity

ρ(ρ(q, γ1), γ2)=β
−1
l

(
q◦(idα(q)·γ1·γ2·idt (γ2)−1t (γ1)−1), (id, t (γ1·γ2))

)
=ρ(q, γ1·γ2)
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follows from the definition and the two identities

(7.2.4) α(ρ(q, γ ))= α(q)s(γ )

and (γ1 · idt (γ1)−1) · (ids(γ1) · γ2 · idt (γ2)−1t (γ1)−1)= γ1 · γ2 · idt (γ2)−1t (γ1)−1 .

The latter can easily be verified upon substituting a crossed module for 0. Checking
condition (i) of Definition A.1 just uses the definitions. We check condition (ii) in
two steps. First we prove the identity

ρ(ρl(ρ, q), γl ◦ γ )= ρl(R(ρ, γl), ρ(q, γ )).

The main ingredient is the decomposition

(7.2.5) idα(q) ·(γl ◦γ )·idt (γl )−1 = (idα(q) ·γ ·idt (γ )−1)◦(idα(q)s(γ )t (γ )−1 ·γl ·idt (γl )−1)

that can, e.g., be verified in the crossed module language. Now we compute

ρ(ρl(ρ, q), γl ◦ γ ) = β−1
l

(
q ◦ (idα(q) · (γl ◦ γ ) · idt (γl )−1), (R(ρ, t (γl)), t (γl))

)
(7.2.5)
= β−1

l

(
q ◦ (idα(q) · γ · idt (γ )−1), (R(ρ, γl), t (γl))

)
= ρl(R(ρ, γl), ρ(q, γ )).

The second step is to show the identity

ρ(ρr (q, ρ ′), γ ◦ γr )= ρr (ρ(q, γ ), R(ρ ′, γr )).

Here we use the decomposition

(7.2.6) idα(q) · (γ ◦ γr ) · idt (γ )−1 = (idα(q) · γ · idt (γ )−1) ◦ (idα(q) · γr · idt (γ )−1).

Then we compute

ρ(ρr (q, ρ ′), γ ◦ γr )

= β−1
l

(
βr ((R(ρ ′, idα(q)−1), 1), q ◦ (idα(q) · (γ ◦ γr ) · idt (γ )−1)), (id, t (γ ))

)
(7.2.6)
= β−1

l

(
βr ((R(ρ ′, γr · ids(γ )−1α(q)−1), 1),

β0(α(q)s(γr )s(γ )−1α(q)−1, q ◦ (idα(q) · γ · idt (γ )−1))), (id, t (γ ))
)

(7.2.4)
= β−1

l

(
βr ((R(ρ ′, γr · idα(ρ(q,γ ))−1)), q ◦ (idα(q) · γ · idt (γ )−1)), (id, t (γ ))

)
= ρr (ρ(q, γ ), R(ρ ′, γr )),

where we have employed the equivalence relation on F that was generated by the
action of β0. �
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Construction of a 2-isomorphism ηA :A⇒ EM(RA). We may again assume that
the common refinement of A is the fiber product P0×M P ′0; otherwise, the proof
of Lemma 5.2.8 provides a 2-isomorphism between A and one of these. Now, A
and EM(RA) have the same common refinement, and ηA is given by the map

η : Q→ F ×00 : q 7→ (q, α(q)).

This is obviously smooth and respects the projections to the base: if χ(q)= (p, p′),
then

χ(q, α(q))
(7.1.6)
=

(
αl(q), R(αr (q), α(q)−1)

)
= (p, p′).

Further, it respects the 0-actions:

η(q◦γ )=(q◦γ,s(γ ))=β−1
l (q◦γ,(id,1))

(7.2.3)
= (ρ(q,idα(q)−1 ·γ ),s(γ ))

(7.1.6)
= η(q)◦γ ,

so that η is a bundle morphism. It remains to verify the commutativity of the
compatibility diagram (5-4). Let ((ρ ′, g′), q ′) ∈ P ′ ⊗ ζ ∗1 Q, and let (q, (ρ, g)) ∈
ζ ∗2 Q ⊗ P be a representative for β((ρ ′, g′), q ′). In particular, we have α(q)g =
g′α(q ′), since βr is anchor-preserving. Then, we get clockwise

(7.2.7) (η⊗ id)
(
β((ρ ′, g′), q ′)

)
=
(
(q, α(q)), (ρ, g)

)
.

Counterclockwise, we have to use the isomorphism of Lemma 7.1.5 that we call β̃
here. Then,

(7.2.8) β̃
(
(id⊗ η)((ρ ′, g′), q ′)

)
= β̃

(
(ρ ′, g′), (q ′, α(q ′))

)
=
(
(q̃, g′α(q ′)g−1), (ρ, g)

)
where the choices (ρ̃, h) we have to make for the definition of β̃ are here (ρ, g−1),
and q̃ is defined in (7.1.7), which gives here

q̃ = β−1
l

(
βr ((ρ

′, 1), q ′), (R(ρ−1, idg−1), g−1)
)
.

Comparing (7.2.7) and (7.2.8) it remains to prove q= q̃ in F . As F was the quotient
of Q by the action β0, it suffices to have

β0(g′, q̃)
(i)
= β−1

l

(
βr ((id, g′), βr ((ρ

′, 1), q ′)), (R(ρ−1, idg−1), g−1)
)

(iii)
= β−1

l

(
βr ((ρ

′, g′), q ′), (R(ρ−1, idg−1), g−1)
)

= β−1
l

(
β−1

l (q, (ρ, g)), (R(ρ−1, idg−1), g−1)
)

(ii)
= β−1

l (q, (id, 1))= q .

This finishes the construction of the 2-isomorphism ηA.
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Appendix A. Equivariant anafunctors and group actions

In this section we are concerned with a Lie 2-group 0 and Lie groupoids X and Y
with actions R1 : X ×0→ X and R2 : Y ×0→ Y .

Definition A.1. An action of the 2-group 0 on an anafunctor F : X → Y is an
ordinary smooth action ρ : F ×01→ F of the group 01 on the total space F that

(i) preserves the anchors in the sense that the diagrams

F ×01

αl×t

��

ρ // F

αl

��
X0×00 R1

// X0

and

F ×01
ρ //

αr×s

��

F

αr

��
Y0×00 R2

// Y0

are commutative;

(ii) is compatible with the 0-actions in the sense that the identity

ρ(χ ◦ f ◦ η, γl ◦ γ ◦ γr )= R1(χ, γl) ◦ ρ( f, γ ) ◦ R2(η, γr )

holds for all appropriately composable χ ∈X1, η∈Y1, f ∈ F , and γl , γ , γr ∈01.

If F1, F2 : X → Y are anafunctors with 0-action, a transformation η : F1⇒ F2 is
called 0-equivariant if the map η : F1→ F2 between total spaces is 01-equivariant
in the ordinary sense.

Anafunctors X → Y with 0-actions together with 0-equivariant transformations
form a groupoid Ana∞0 (X ,Y). On the other hand, there is another groupoid
0-Ana∞(X ,Y) consisting of 0-equivariant anafunctors (Definition 6.1.3) and 0-
equivariant transformations (Definition 6.1.4).

Lemma A.2. The categories Ana∞0 (X ,Y) and 0-Ana∞(X ,Y) are canonically
isomorphic.

Proof. We construct a functor

(A-1) E :Ana∞0 (X ,Y)→ 0-Ana∞(X ,Y).

Let F :X → Y be an anafunctor with 0-action ρ. We shall define a transformation

λρ : F ◦ R1⇒ R2 ◦ (F × id).

First of all, the composite

X ×0
R1 // X F // Y

is given by the total space (X0×00) R1×αl F , left and right anchors send an element
(x, g, f ) to (x, g) and αr ( f ), respectively, and the actions are
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(χ, γ )◦(x, g, f )= (t (χ), t (γ ), R1(χ, γ )◦ f ) and (x, g, f )◦η= (x, g, f ◦η).

On the other hand, the composite

X ×0 F×id // Y ×0
R2 // Y

is given by the total space ((F × 01) R2◦(αr×s)×t Y1) / ∼ with the equivalence
relation

( f ◦ η′, γ ◦ γ ′, η)∼ ( f, γ, R2(η
′, γ ′) ◦ η).

The left and right anchors send an element ( f, γ, η) to (αl( f ), t (γ )) and s(η),
respectively, and the actions are

(χ, γ ′) ◦ ( f, γ, η)= (χ ◦ f, γ ′ ◦ γ, η) and ( f, γ, η) ◦ η′ = ( f, γ, η ◦ η′).

The inverse of the following map will define the transformation λ:

(F×01) R2◦(αr×s)×tY1→ (X0×00) R1×αl F : ( f, γ, η) 7→
(
αl( f ), t (γ ), ρ( f, γ )◦η

)
.

Condition (i) ensures that this map ends in the correct fiber product, and condition (ii)
ensures that it is well-defined under the equivalence relation ∼ . The left anchors
are automatically respected, and the right anchors require condition (i). Similarly,
the left action is respected automatically, and the right actions due to condition (ii).
The axiom for a transformation is satisfied because ρ is a group action. This defines
the functor E on objects. On morphisms, it is straightforward to check that the
conditions on both hand sides coincide; in particular, E is full and faithful.

In order to prove that the functor E is an isomorphism, we start with a given
0-equivariant structure λ on the anafunctor F . Then, an action ρ : F ×01→ F is
defined by

( f, γ ) 7→ pr3(λ
−1( f, γ, idR2(αr ( f ),s(γ ))))

with pr3 : (X0×00) R1×αl F→ F the projection. The axiom for an action is satisfied
due to the identity λ obeys. It is straightforward to verify conditions (i) and (ii) of
Definition A.1. To close the proof it suffices to notice that the two procedures we
have defined are (strictly) inverse to each other. �

We are also concerned with the composition of anafunctors with 0-action. Sup-
pose that Z is a third Lie groupoid with a 0-action R3, and F : X → Y and
G : Y→ Z are anafunctors with 0-actions ρ : F ×01→ F and τ : G×01→ G.
Then, the composition G ◦ F is equipped with the 0-action defined by

(A-2) (F ×Y0 G)×01→ (F ×Y0 G) : (( f, g), γ ) 7→ (ρ( f, γ ), τ (g, ids(γ ))).

We leave it to the reader to check:

Lemma A.3. Let X , Y and Z be Lie groupoids with 0-actions R1, R2 and R3.
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(a) Let F :X→Y and G :Y→Z be 0-equivariant anafunctors. If 0-equivariant
structures on F and G correspond to 01-actions under the isomorphism of
Lemma A.2, then the 0-equivariant structure on the composite F ◦G corre-
sponds to the 01-action defined above.

(b) The isomorphism of Lemma A.2 identifies the trivial 0-equivariant structure
on the identity anafunctor id : X → X with the 01-action R1 : X1×01→ X1

on its total space X .

Appendix B. Constructing equivalences between 2-stacks

Let C be a bicategory (we assume that associators and unifiers are invertible 2-
morphisms). We fix the following terminology: a 1-isomorphism f : X1→ X2

in C always includes the data of an inverse 1-morphism f̄ : X2 → X1 and of
2-isomorphisms i : f̄ ◦ f ⇒ id and j : id⇒ f ◦ f̄ satisfying the zigzag identities.
Let D be another bicategory. A 2-functor F : C→D is assumed to have invertible
compositors and unitors.

The following lemma is certainly “well-known”, although we have not been able
to find a reference for exactly this statement.

Lemma B.1. Let F : C→D be a 2-functor that is fully faithful on Hom-categories.
Suppose one has chosen:

(1) for every object Y ∈D an object GY ∈C and a 1-isomorphism ξY :Y→ F(GY );

(2) for all objects X1, X2 ∈ C and all 1-morphisms g : F(X1)→ F(X2), a 1-
morphism Gg : X1→ X2 in C together with a 2-isomorphism ηg : g⇒ F(Gg).1

Then, there is a 2-functor G :D→ C and pseudonatural equivalences

a : idD⇒ F ◦G and b : G ◦ F ⇒ idC .

In particular, F is an equivalence of bicategories.

Proof. We recall our convention concerning 1-isomorphisms: the 1-isomorphisms ξY

include choices of inverse 1-morphisms ξ̄Y together with 2-isomorphisms iY :

ξ̄Y ◦ ξY ⇒ id and jY : id⇒ ξY ◦ ξ̄Y satisfying the zigzag identities.
First we explicitly construct the 2-functor G. On objects, we put G(Y ) := GY .

We use the notation g̃ := (ξY2 ◦ g) ◦ ξ̄Y1 for all 1-morphisms g : Y1 → Y2 in D,
and define G(g) = G g̃. If g, g′ : Y1→ Y2 are 1-morphisms, and ψ : g⇒ g′ is a
2-morphism, we consider the 2-morphism ψ̃ defined by

F(G g̃)
η−1

g̃ +3 (ξY2 ◦ g) ◦ ξ̄Y1

(id◦ψ)◦id +3 (ξY2 ◦ g′) ◦ ξ̄Y1

ηg̃′ +3 F(G g̃′).

1More accurately we should write G X1,X2,g and ηX1,X2,g , but we will suppress X1 and X2 in the
notation.
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Since F is fully faithful on 2-morphisms, we may choose the unique 2-morphism
G(ψ) : G(g)⇒ G(g′) such that F(G(ψ))= ψ̃ . In order to define the compositor
of G we look at 1-morphisms g12 : Y1→ Y2 and g23 : Y2→ Y3. We consider the
2-morphism

F(G(g23) ◦G(g12))
c−1

G(g12),G(g23) +3 F(G g̃23) ◦ F(G g̃12)

η−1
g̃23
◦η−1

g̃12
��

((ξY3 ◦ g23) ◦ ξ̄Y2) ◦ ((ξY2 ◦ g12) ◦ ξ̄Y1)

a,iY2
��

(ξY3 ◦ (g23 ◦ g12)) ◦ ξ̄Y1 η ˜g23◦g12

+3 F(G(g23 ◦ g12));

its unique preimage under the 2-functor F is the compositor

cg12,g23 : G(g23) ◦G(g12)⇒ G(g23 ◦ g12).

In order to define the unitor of G we consider an object Y ∈ D and look at the
2-morphism

F(G(idY ))
η−1

ĩdY +3 (ξY ◦ idY ) ◦ ξ̄Y
lξY , j−1

Y +3 idF(G(Y ))
u−1

G(Y ) +3 F(idG(Y )).

Its unique preimage under the 2-functor F is the unitor uY : G(idY )⇒ idG(Y ). The
second step is to verify the axioms of a 2-functor. This is simple but extremely
tedious and can only be left as an exercise. The third step is to construct the
pseudonatural transformation

a : idD⇒ F ◦G.

Its component at an object Y in D is the 1-morphism a(Y ) := ξY : Y → F(G(Y )).
Its component at a 1-morphism g : Y1→ Y2 is the 2-morphism a(g) defined by

a(Y2) ◦ g ξY2 ◦ g

id◦l−1
ξY2
◦g

��
(ξY2 ◦ g) ◦ id

a,i−1
Y2��

((ξY2 ◦ g) ◦ ξ̄Y1) ◦ ξY1

ηg̃◦id
��

F(G g̃) ◦ ξY1 F(G(g)) ◦ a(Y1).
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There are two axioms a pseudonatural transformation has to satisfy, and their proofs
are again left as an exercise. It is easy to see that a is a pseudonatural equivalence,
with an inverse transformation given by ā(Y ) := ξ̄Y . The fourth and last step is to
construct the pseudonatural transformation

b : G ◦ F ⇒ idC .

Its component at an object X is b(X) := G ξ̄F(X)
: G(F(X))→ X . Its component at

a 1-morphism f : X2→ X2 is the 2-morphism

b( f ) : b(X2) ◦G(F( f ))⇒ f ◦ b(X1)

given as the unique preimage under F of the 2-morphism

F(b(X2) ◦G(F( f ))) c−1
+3 F(b(X2)) ◦ F(G(F( f )))

η−1
ξ̄F(X2)

◦η−1
F( f )
��

ξ̄F(X2) ◦ ((ξF(X2) ◦ F( f )) ◦ ξF(X1))

a,iF(X2),r
��

F( f ) ◦ ξ̄F(X1)

idF( f )◦ηξ̄F(X1)
��

F( f ) ◦ F(b(X1)) c
+3 F( f ◦ b(X1)).

The proofs of the axioms are again left for the reader, and again it is easy to
see that b is a pseudonatural equivalence with an inverse transformation given by
b̄(X) := GξF(X) . �

As a consequence of Lemma B.1 we obtain the certainly well-known result:

Corollary B.2. Let F : C→D be essentially surjective, and an equivalence on all
Hom-categories. Then, F is an equivalence of bicategories.

Since we work with 2-stacks over manifolds, we need the following stacky
extension of Lemma B.1. For a pre-2-stack C, we denote by CM the 2-category it
associates to a smooth manifold M , and by ψ∗ : CN→ CM the 2-functor it associates
to a smooth map ψ : M→ N . The pseudonatural equivalences ψ∗ ◦ϕ∗ ∼= (ϕ ◦ψ)∗

will be suppressed from the notation in the following. If C and D are pre-2-stacks,
a 1-morphism F : C → D associates 2-functors FM : CM → DM to a smooth
manifold M , pseudonatural equivalences

Fψ : ψ∗ ◦ FN → FM ◦ψ
∗

to smooth maps ψ :M→ N , and certain modifications Fψ,ϕ that control the relation
between Fψ and Fϕ for composable maps ψ and ϕ.
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Lemma B.3. Suppose C and D are pre-2-stacks over smooth manifolds, and F :
C→D is a 1-morphism. Suppose that for every smooth manifold M

(1) the assumptions of Lemma B.1 for the 2-functor FM are satisfied, and

(2) the data (GY , ξY ) and (Gg, ηg) is chosen for all objects Y and 1-morphisms g
in DM .

Then, there is a 1-morphism G :D→C of pre-2-stacks together with 2-isomorphisms

a : F ◦G⇒ idD and b : G ◦ F ⇒ idC

such that for every smooth manifold M the 2-functor G M and the pseudonatural
transformations aM and bM are the ones of Lemma B.1. In particular, F is an
equivalence of pre-2-stacks.

For the proof one constructs the required pseudonatural equivalences Gψ and
the modifications Gψ,ϕ from the given ones, Fψ and Fψ,ϕ , respectively, in a sim-
ilar way as explained in the proof of Lemma B.1. Since these constructions are
straightforward to do but would consume many pages, and the statement of the
lemma is not too surprising and certainly well-known to many people, we leave
these constructions for the interested reader.
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