A GEOMETRIC MODEL OF AN ARBITRARY REAL CLOSED FIELD

STANISŁAW SPODZIEJA
A GEOMETRIC MODEL OF AN ARBITRARY REAL CLOSED FIELD

STANISŁAW SPODZIEJA

We give an elementary construction of any real closed field in terms of Nash function fields. We also give a characterization of any Archimedean field in terms of fields of Nash functions.

Introduction

In the study of Hilbert’s 17th problem, orderings of a real field \(k \) are of importance (see [Alonso 1986; Alonso et al. 1984; Artin 1927; Artin and Schreier 1927a; 1927b; Bochnak and Efroymson 1980; Bröker 1982; Dubois 1981; Guangxing 2005; Marshall 2003; Prestel and Delzell 2001; Schwartz 1980]). By the Artin–Schreier theorem [Artin 1927; Artin and Schreier 1927a; 1927b], the study of such orderings amounts to considering real closures of \(k \). The aim of this article is to construct a universal model of an arbitrary real closed field. To this end, we construct, in terms of Nash functions, all real closures of the rational function fields \(\mathbb{Q}(\Lambda_T) \), where \(\Lambda_T = (\Lambda_t : t \in T) \) and \(T \neq \emptyset \) is a system of any number of variables. This suffices to achieve our purpose, because any real closed field \(R \) is order-preserving isomorphic to a real closure of some field \(\mathbb{Q}(\Lambda_T) \) (Corollary 5.5). If \(T = \emptyset \), then \(\mathbb{Q}(\Lambda_T) = \mathbb{Q} \), and the above is obvious. We assume the Kuratowski–Zorn lemma, so the set \(T \) can be well-ordered, provided \(T \neq \emptyset \).

L. Bröker [1982] proved in his ultrafilter theorem that there exists a one-to-one correspondence between the family of ultrafilters and the family of orderings in \(\mathbb{Q}(\Lambda_T) \), or equivalently with the real closures of \(\mathbb{Q}(\Lambda_T) \). We prove that there exists a one-to-one correspondence between the family of orderings in \(\mathbb{Q}(\Lambda_T) \) and the family of plain filters (Theorem 5.2, Proposition 2.4, and Corollary 2.5). By a plain filter we mean a filter \(\Omega \) of subsets of \(\mathbb{R}^T \) with these properties:

1. Any \(U \in \Omega \) is a nonempty open connected semialgebraic set.
2. For any algebraic set \(V \subseteq \mathbb{R}^T \), where \(V = P^{-1}(0) \) and \(P \in \mathbb{Q}[\Lambda_T] \), some connected component of \(\mathbb{R}^T \setminus V \) belongs to \(\Omega \).

This research was partially supported by the program POLONIUM 2009-2010.

MSC2000: primary 14P10, 14P20; secondary 32C07.

Keywords: Nash function, semialgebraic set, real closed field, ordering.
(3) For any $U_1, U_2 \in \Omega$, there exists $U_3 \in \Omega$ such that $U_3 \subset U_1 \cap U_2$.

The correspondence between orderings and plain filters is as follows: For any ordering \succ of $\mathbb{Q}(\Lambda_T)$, there exists a unique plain filter Ω such that $f > 0$ if and only if $f > 0$ on some $U \in \Omega$, where \succ is the usual ordering on \mathbb{R}. Conversely, any plain filter Ω determines a unique ordering \succ of $\mathbb{Q}(\Lambda_T)$ in this way.

The main result of this article is Theorem 5.2, where we give a construction of any real closure of $\mathbb{Q}(\Lambda_T)$ in terms of Nash functions. The main idea and motivation for the above considerations was a geometric construction of the algebraic closure of $\mathbb{C}(\Lambda_1, \ldots, \Lambda_m)$ [Spodzieja 1996]. More precisely, for any plain filter Ω of open connected semialgebraic sets and any $U \in \Omega$, the ring $\mathcal{N}(U)$ of \mathbb{Q}-Nash functions (see Section 1) on U is a domain. In $\bigcup_{U \in \Omega} \mathcal{N}(U)$, we introduce an equivalence relation \sim: $(f_1 : U_1 \to \mathbb{R}) \sim (f_2 : U_2 \to \mathbb{R})$ if and only if $f_1|_{U_1} = f_2|_{U_2}$ for some $U_3 \in \Omega$. The set \mathcal{N}_Ω of equivalence classes of \sim with the usual operations of addition and multiplication is a field, which is a real closure of $\mathbb{Q}(\Lambda_T)$ (see Theorem 5.2, and compare [Spodzieja 1996, Theorem 2.4 and Corollary 2.5]). One can view \mathcal{N}_Ω as the inverse limit of the étale topology $\bigcup_{U \in \Omega} \mathcal{N}(U)$ of \mathbb{R}^T [Grothendieck 1967].

In Section 3, we prove that an ordering \succ of $\mathbb{Q}(\Lambda_T)$ is Archimedean if and only if the set $\bigcap_{U \in \Omega} U$ is nonempty for the plain filter Ω determining \succ; and if that is the case, this set has exactly one point (Theorem 3.1). In Section 4, we give some examples of non-Archimedean orderings corresponding to the one in [Spodzieja 1996].

1. Preliminaries

Let \mathbb{K} be the field \mathbb{Q} of rational, \mathbb{R} of real, or \mathbb{C} of complex numbers. Let T be a nonempty set. We denote by $\Lambda_T = (\Lambda_t : t \in T)$ a system of independent variables Λ_t, by $\mathbb{K}[\Lambda_T]$ the ring of polynomials in Λ_T over \mathbb{K}, and by $\mathbb{K}(\Lambda_T)$ the quotient field of $\mathbb{K}[\Lambda_T]$. Note that for any $P \in \mathbb{K}(\Lambda_T)$, we have $P \in \mathbb{K}(\Lambda_{t_1}, \ldots, \Lambda_{t_m})$ for some finite number of indices $t_1, \ldots, t_m \in T$.

We denote by \mathbb{K}^T the set of all functions $T \to \mathbb{K}$ equipped with the unique topology for which all projections $\mathbb{K}^T \ni x \mapsto x(t) \in \mathbb{K}$, $t \in T$ are continuous.

Let \mathbb{L} be a subfield of \mathbb{K}. A subset of \mathbb{K}^T is called \mathbb{L}-algebraic, or simply algebraic if $\mathbb{L} = \mathbb{K}$, when it is defined by a finite system of equations $P = 0$, where $P \in \mathbb{L}[\Lambda_T]$. Any \mathbb{L}-algebraic set in \mathbb{K}^T is of the form $\{x \in \mathbb{K}^T : (x(t_1), \ldots, x(t_m)) \in V\}$, where $m \in \mathbb{N}, t_1, \ldots, t_m \in T$, and $V \subset \mathbb{K}^m$ is an \mathbb{L}-algebraic subset of \mathbb{K}^m.

If \mathbb{L} is a subfield of \mathbb{R}, then we assume that \mathbb{L} is an ordered field with order induced from \mathbb{R}.

Let \mathbb{L} be a subfield of \mathbb{R}. A subset of \mathbb{R}^T is called \mathbb{L}-semialgebraic when it is defined by a finite alternative of finite systems of inequalities $P > 0$ or $P \geq 0$, where $P \in \mathbb{L}[\Lambda_T]$. Analogously to the above, any \mathbb{L}-semialgebraic set in \mathbb{R}^T is of the form
\{x \in \mathbb{R}^T : (x(t_1), \ldots, x(t_m)) \in X\}, \text{ where } m \in \mathbb{N}, t_1, \ldots, t_m \in T, \text{ and } X \subset \mathbb{R}^m \text{ is an } \mathbb{L}\text{-semialgebraic subset of } \mathbb{R}^m. \text{ A set is called open basic } \mathbb{L}\text{-semialgebraic if it has the form } \{x \in \mathbb{R}^T : g_i(x) > 0, \ i = 1, \ldots, n\}, \text{ for some } n \in \mathbb{N} \text{ and } g_i \in \mathbb{L}[\Lambda_T], \ i = 1, \ldots, n.

We now list some basic properties of algebraic and semialgebraic sets in infinite-dimensional real vector spaces, which follow easily from their analogues in finite-dimensional spaces [Benedetti and Risler 1990; Bochnak et al. 1987; Bochnak and Efroymson 1980; Efroymson 1974; 1976; 1981; Mostowski 1976; Prestel and Delzell 2001; Tancredi and Tognoli 2006; Tworzewski 1990].

Proposition 1.1. Let \(\mathbb{L} \) be a subfield of \(\mathbb{R} \) (or \(\mathbb{K} \) in (a)).

(a) The family of \(\mathbb{L}\text{-algebraic sets in } \mathbb{K}^T \) is closed with respect to union and intersection of a finite number of sets.

(b) The family of \(\mathbb{L}\text{-semialgebraic sets in } \mathbb{R}^T \) is closed with respect to complement, union, and intersection of a finite number of sets.

(c) (Tarski–Seidenberg) Let \(\pi_{t_1, \ldots, t_m} : \mathbb{R}^T \ni x \mapsto (x(t_1), \ldots, x(t_m)) \in \mathbb{R}^m, \text{ where } t_1, \ldots, t_m \in T. \text{ If } X \subset \mathbb{R}^T, Y \subset \mathbb{R}^m \text{ are } \mathbb{L}\text{-semialgebraic sets, then } \pi_{t_1, \ldots, t_m}(X) \text{ and } \pi_{t_1, \ldots, t_m}^{-1}(Y) \text{ are } \mathbb{L}\text{-semialgebraic sets, too.}

(d) For any \(\mathbb{L}\text{-semialgebraic set } X \subset \mathbb{R}^T, \text{ the interior } \text{Int} \ X, \text{ closure } \overline{X}, \text{ and the boundary } \partial X \text{ are } \mathbb{L}\text{-semialgebraic sets.}

Let \(\mathbb{L} \) be a subfield of \(\mathbb{R} \). A function \(f : U \to \mathbb{R}, \text{ where } U \subset \mathbb{R}^T \) is an open \(\mathbb{L}\text{-semialgebraic set, is called an } \mathbb{L}\text{-Nash function if } f \text{ is analytic and there exists a nonzero polynomial } P \in \mathbb{L}[\Lambda_T, Z] \text{ such that } P(\lambda, f(\lambda)) = 0 \text{ for } \lambda \in U. \text{ In fact, } f \text{ depends on a finite number of variables, so the analyticity of } f \text{ is clear. The ring of } \mathbb{L}\text{-Nash functions in } U \text{ is denoted by } \mathcal{N}^L(U).

The next result follows via R. Thom’s lemma (see for instance [Bochnak et al. 1987, Proposition 2.5.4 and the arguments of Theorems 2.3.6 and 2.4.4]) from the fact that any \(\mathbb{L}\text{-semialgebraic set in a finite-dimensional vector space over } \mathbb{R} \text{ is the disjoint union of a finite number of } \mathbb{L}\text{-semialgebraic sets which are homeomorphic to Cartesian products of intervals.}

Proposition 1.2. Let \(\mathbb{L} \) be a subfield of \(\mathbb{R} \). Any connected component of an \(\mathbb{L}\text{-semialgebraic subset of } \mathbb{R}^T \) is \(\mathbb{L}\text{-semialgebraic.}

A function \(f : U \to \mathbb{C}, \text{ where } U \subset \mathbb{C}^T \) is an open set, is called a \(\mathbb{C}\text{-Nash function if } f \text{ is holomorphic and there exists a nonzero polynomial } P \in \mathbb{C}[\Lambda_T, Z] \text{ such that } P(\lambda, f(\lambda)) = 0 \text{ for } \lambda \in U. \text{ The ring of } \mathbb{C}\text{-Nash functions in } U \text{ is denoted by } \mathcal{N}^C(U).

For the basic properties of Nash functions and semialgebraic sets in finite-dimensional vector spaces, see, for instance, [Benedetti and Risler 1990; Bochnak et al. 1987; Bochnak and Efroymson 1980; Efroymson 1974; 1976; 1981; Mostowski
1976; Nash 1952; Tancredi and Tognoli 2006; Tworzewski 1990]. From these
properties, we immediately obtain:

Proposition 1.3. Let \(\mathbb{K} = \mathbb{R} \) or \(\mathbb{K} = \mathbb{C} \), let \(\mathbb{L} \) be a subfield of \(\mathbb{K} \), and let \(U \subset \mathbb{K}^T \)
be an open connected set. Then \(\mathcal{N}^\mathbb{K}(U) \) is a domain, provided \(U \) is semialgebraic
when \(\mathbb{K} = \mathbb{R} \). In particular \(\mathcal{N}^\mathbb{Q}(U) \) is a domain.

2. Orderings in \(\mathbb{Q}(\Lambda_T) \)

Let \(T \) be a nonempty set. A family \(\Omega \) of subsets of \(\mathbb{R}^T \) will be called a c-filter
(connected sets filter) if it satisfies these conditions:

(i) Any \(U \in \Omega \) is a nonempty open connected \(\mathbb{Q} \)-semialgebraic set.

(ii) For any \(\mathbb{Q} \)-algebraic set \(V \subset \mathbb{R}^T \), there exists \(U \in \Omega \) such that \(V \cap U = \emptyset \).

(iii) For any \(U_1, U_2 \in \Omega \), there exists \(U_3 \in \Omega \) such that \(U_3 \subset U_1 \cap U_2 \).

Proposition 2.1. Let \(\Omega \) be a c-filter of subsets of \(\mathbb{R}^T \). The set \(\partial \Omega := \bigcap_{U \in \Omega} \overline{U} \) has
at most one point. Moreover, whenever \(T \) is a finite set, \(\partial \Omega \neq \emptyset \) if and only if there
exists a bounded set \(U \in \Omega \).

Proof. If \(x_1, x_2 \in \partial \Omega \) with \(x_1 \neq x_2 \), then for some polynomial \(f \in \mathbb{Q}[\Lambda_T] \), we have
\(f(x_1) < 0 < f(x_2) \). Hence, for some \(W \in \Omega \) such that \(W \cap f^{-1}(0) = \emptyset \), we have
both \(f(x) < 0 \) and \(f(x) > 0 \) for some \(x \in W \). This contradiction gives the first part
of the assertion.

Now let \(T = \{t_1, \ldots, t_m\} \). Suppose that \(\partial \Omega \neq \emptyset \) and each \(W \in \Omega \) is an unbounded
set. Take \(x_0 \in \partial \Omega \), and let \(f = (\Lambda_T) = \Lambda_{t_1}^2 + \cdots + \Lambda_{t_m}^2 - r \), where \(r \in \mathbb{Q} \) and
\(r > x_0^2(t_1) + \cdots + x_0^2(t_m) \). Then \(f^{-1}(0) \cap W = \emptyset \) for some \(W \in \Omega \). Since \(W \) is a
connected unbounded set, \(x_0 \) is not an accumulation point of \(W \). This contradicts
the choice of \(x_0 \). Now assume that some \(W \in \Omega \) is bounded. Then it is easy to
see that there exists a sequence of nonempty compact sets \(C_1 \supset C_2 \supset \cdots \) with
diameters decreasing to 0 and such that \(U \cap C_n \neq \emptyset \) for all \(U \in \Omega \) and \(n \in \mathbb{N} \). Then
there exists \(x \in \bigcap_{n \in \mathbb{N}} C_n \) belonging to \(\partial \Omega \).

Let us fix a c-filter \(\Omega \) and define a relation \(>_\Omega \) in \(\mathbb{Q}(\Lambda_T) \) by

\[
\begin{align*}
0 \rightarrow \Omega 0 & \iff \text{there exists } U \in \Omega \text{ such that } f(x) > 0 \text{ for all } x \in U, \\
0 \rightarrow \Omega g & \iff f - g >_\Omega 0.
\end{align*}
\]

Let \(\Omega \) be a family of subsets of \(\mathbb{R}^T \). If an ordering \(> \) of \(\mathbb{Q}(\Lambda_T) \) satisfies \(f > 0 \)
if and only if \(f > 0 \) on some \(U \in \Omega \), we say that \(\Omega \) determines the ordering \(> \).

Lemma 2.2. The relation \(>_\Omega \) is an ordering in \(\mathbb{Q}(\Lambda_T) \), or in other words, a total
ordering satisfying

\[
f >_\Omega g \Rightarrow f + h >_\Omega g + h \quad \text{and} \quad f >_\Omega 0, \quad g >_\Omega 0 \Rightarrow fg >_\Omega 0.
\]
Proof. The relation \succ_{Ω} is well-defined. Indeed, if $f \in \mathcal{Q}(\Lambda_T)$ and $f \neq 0$, then the union of the sets of zeros and poles of f is contained in some \mathcal{Q}-algebraic set $V \subseteq \mathbb{R}^m$. Hence, by (i) and (ii), for some $U \in \Omega$, the values $f(x)$ have a fixed sign for all $x \in U$. Moreover, if for some $U_1, U_2 \in \Omega$ we have $f(x) > 0$ for $x \in U_1$ and $f(x) \leq 0$ for $x \in U_2$, then $0 < f(x) \leq 0$ for $x \in U_1 \cap U_2$, and $U_1 \cap U_2 \neq \emptyset$ by (iii). This is impossible. It is easy to see that the remaining conditions are also satisfied. □

Proposition 2.3. Let Ω_1, Ω_2 be c-filters. If the orderings \succ_{Ω_1} and \succ_{Ω_2} are equal, then $\Omega = \{U \cup W : U \in \Omega_1, W \in \Omega_2\}$ is a c-filter determining the ordering \succ_{Ω_1}.

Proof. Since Ω_1 and Ω_2 are c-filters, it suffices to prove that $U \cap W \neq \emptyset$ for all $U \in \Omega_1$ and $W \in \Omega_2$. Suppose $U \cap W = \emptyset$ for some $U \in \Omega_1$ and $W \in \Omega_2$. Let $U = U_1 \cup \cdots \cup U_k \cup V$ be a decomposition of U into disjoint basic open semialgebraic sets U_1, \ldots, U_k and a semialgebraic set V included in an algebraic set. By (i) and (ii), there exists $U' \in \Omega_1$ such that $U' \subset U_i$ for some $i \in \{1, \ldots, k\}$. Since $U_i = \{x \in \mathbb{R}^T : f_j(x) > 0, j = 1, \ldots, n\}$ for some $f_1, \ldots, f_n \in \mathcal{Q}[\Lambda_T]$, by the assumption we have $f_1, \ldots, f_n \succ_{\Omega_1} 0$, and so there exists $W_1 \in \Omega_2$ such that $f_j(x) > 0$ for all $x \in W_1$ and $j = 1, \ldots, n$. By (iii), there exists $W_2 \in \Omega_2$ such that $W_2 \subset W \cap W_1$ and $f_j(x) > 0$ for all $j = 1, \ldots, n$ and $x \in W_2$. Thus $W_2 \subset U$, which contradicts the assumption. □

Now let \succ be an ordering in $\mathcal{Q}(\Lambda_T)$, and let

$$\mathcal{U}_\succ = \left\{ \bigcap_{i=1}^n f_i^{-1}((0, +\infty)) \subseteq \mathbb{R}^T : f_i \in \mathcal{Q}(\Lambda_T), f_i \succ 0 \text{ for } i = 1, \ldots, n, n \in \mathbb{N} \right\},$$

where we regard $f \in \mathcal{Q}(\Lambda_T)$ as a function $f : \mathbb{R}^T \to \mathbb{R}$. By the definition of \mathcal{U}_\succ and the Tarski transfer principle (see [Tarski 1948; Seidenberg 1954]), we find that $\emptyset \not\in \mathcal{U}_\succ$. Moreover, the relation \succ is defined by

$$f > 0 \iff \text{there exists } U \in \mathcal{U}_\succ \text{ such that } f(x) > 0 \text{ for all } x \in U.$$

The sets of the family \mathcal{U}_\succ may be disconnected, so \mathcal{U}_\succ is not a c-filter. We will prove that the ordering \succ is defined by some c-filter.

Proposition 2.4. There exists a unique c-filter Ω with the following properties:

(a) For any $f \in \mathcal{Q}(\Lambda_T)$, we have $f \succ_{\Omega} 0$ if and only if $f > 0$.

(b) For any $U \in \Omega$, there exists a \mathcal{Q}-algebraic set $V \subset \mathbb{R}^T$ such that U is a connected component of $\mathbb{R}^T \setminus V$.

(c) For any \mathcal{Q}-algebraic set $V \subset \mathbb{R}^T$, some connected component of $\mathbb{R}^T \setminus V$ belongs to Ω.

Proof. Let \mathcal{F} be the family of all connected components of sets $U \in \mathcal{U}_\succ$.
Claim 1. Every $U \in \mathcal{U}_\succ$ has a connected component U_0 such that $U_0 \cap W \neq \emptyset$ for any $W \in \mathcal{U}_\succ$.

Let $U \in \mathcal{U}_\succ$ and let $U = U_1 \cup \cdots \cup U_n$ be the decomposition into connected components. Assume to the contrary that there exist $W_1, \ldots, W_n \in \mathcal{U}_\succ$ such that $U_i \cap W_i = \emptyset$ for $i = 1, \ldots, n$. Then $U \cap W_1 \cap \cdots \cap W_n = \emptyset$, which is impossible. This gives Claim 1.

Claim 2. Each $U \in \mathcal{U}_\succ$ has exactly one connected component S_U that intersects every $W \in \mathcal{U}_\succ$.

Let $U \in \mathcal{U}_\succ$, and let U_1, \ldots, U_p be the connected components of U. Then

$$(1) \quad U = \bigcap_{i=1}^{s} \{ x \in \mathbb{R}^T : g_l(x) > 0 \}$$

for some nonzero polynomials $g_l \in \mathbb{Q}[^T \Lambda_T]$, with $g_l > 0$ for $l = 1, \ldots, s$, and

$$U_i = [f_i^{-1}(0) \cap U_i] \cup \bigcup_{j=1}^{n} \bigcap_{k=1}^{m} \{ x \in \mathbb{R}^T : f_i, j, k(x) > 0 \}, \quad i = 1, \ldots, p,$$

for some nonzero polynomials $f_i, f_i, j, k \in \mathbb{Q}[^T \Lambda_T]$. Denote by ϵ_i, j, k the sign of f_i, j, k in the ordering \succ. Then $\epsilon_i, j, k \neq 0$ and $\epsilon_i, j, k f_i, j, k > 0$ for any i, j, k. Observe that for some $i \in \{1, \ldots, p\}$ and $j \in \{1, \ldots, n\}$, we have $f_i, j, k > 0$ for $k = 1, \ldots, m$. Indeed, in the opposite case,

$$\emptyset = \bigcap_{l=1}^{s} \bigcap_{i=1}^{p} \bigcap_{j=1}^{n} \bigcap_{k=1}^{m} \{ x \in \mathbb{R}^T : g_l(x) > 0, \epsilon_i, j, k f_i, j, k(x) > 0 \} \in \mathcal{U}_\succ,$$

which is impossible. So, for some $i_0 \in \{1, \ldots, p\}$ and $j_0 \in \{1, \ldots, n\}$,

$$U' = \bigcap_{k=1}^{m} \{ x \in \mathbb{R}^T : f_{i_0}, j_0, k(x) > 0 \} \in \mathcal{U}_\succ,$$

and $U' \cap U_j = \emptyset$ for $j \neq j_0$. Hence, by Claim 1, $S_U = U_{j_0}$ is the unique connected component of U satisfying Claim 2.

Claim 3. The family $\Omega = \{ S_U : U \in \mathcal{U}_\succ \}$ is a c-filter.

Since for every \mathbb{Q}-algebraic set $V \subseteq \mathbb{R}^T$ there exists $U \in \mathcal{U}_\succ$ such that $U \cap V = \emptyset$, we have $S_U \cap V = \emptyset$. Hence, it suffices to prove that for any $S_{U_1}, S_{U_2} \in \Omega$, there exists $S_{U_3} \in \Omega$ contained in $S_{U_1} \cap S_{U_2}$. Indeed, by the argument of Claim 2, there exist $W_1, W_2 \in \mathcal{U}_\succ$ such that $W_1 \subset S_{U_1}$ and $W_2 \subset S_{U_2}$. Hence, $S_{W_1 \cap W_2} \subset W_1 \cap W_2 \subset S_{U_1} \cap S_{U_2}$ and $S_{W_1 \cap W_2} \in \Omega$.

Claim 4. The c-filter Ω defined in Claim 3 satisfies the assertion of Proposition 2.4.
Part (a) is obvious.

Let $U \in \mathcal{U}_\prec$ be of the form (1), $f = g_1 \ldots g_s$, and $V = f^{-1}(0)$. Then, by the
definition of S_U, we see that S_U is a connected component of $\mathbb{R}^T \setminus V$. This gives (b).

Let $V = f^{-1}(0)$ be a \mathbb{Q}-algebraic subset of \mathbb{R}^T. Then $U = \{x \in \mathbb{R}^T : f^2(x) > 0\} = \mathbb{R}^T \setminus V \in \mathcal{U}_\succ$ and $S_U \in \Omega$ is a connected component of $\mathbb{R}^T \setminus V$. This gives (c) and completes the proof. □

We call the \mathcal{C}-filter defined in Proposition 2.4 the \textit{plain filter} for the ordering \succ and denote it by \succ.

From Proposition 2.4, we immediately obtain:

Corollary 2.5. The mapping $\succ \mapsto \succ$ is a one-to-one correspondence between the
set of orderings of $\mathbb{Q}(\Lambda_T)$ and the set of plain filters.

Remark 2.6. From the ultrafilter theorem [Bröker 1982], we see that for any
ultrafilter \mathcal{F} of subsets of \mathbb{R}^T, there exists a plain filter $\Omega \subset \mathcal{F}$.

Remark 2.7. It is easy to observe that the statements of this section hold with \mathbb{Q} replaced by \mathbb{R}.

3. Archimedean orderings in $\mathbb{Q}(\Lambda_T)$

Let \succ be an ordering of $\mathbb{Q}(\Lambda_T)$. Then one can assume that T is linearly ordered by

$$t_1 \succ t_2 \iff \Lambda_{t_1} \succ \Lambda_{t_2}.$$

If $f \succ g$, then we also write $g \prec f$.

Theorem 3.1. The following conditions are equivalent:

(a) The field $(\mathbb{Q}(\Lambda_T), \succ)$ is Archimedean.

(b) There exists $x_\succ \in \partial \Omega_\succ$ such that the set of coordinates of x_\succ is algebraically
independent over \mathbb{Q}.

(c) There exists $x_\succ \in \partial \Omega_\succ$ such that $f > 0$ if and only if $f(x_\succ) > 0$.

(d) There exists $x_\succ \in \partial \Omega_\succ$ such that $x_\succ \in U$ for any $U \in \Omega_\succ$.

Proof. Assume (a). Then for any $t_1, \ldots, t_n \in T$ with $t_1 < \cdots < t_n$, and for the
projection $\pi_{t_1, \ldots, t_n} : \mathbb{R}^T \mapsto (x(t_1), \ldots, x(t_n)) \in \mathbb{R}^n$, the family

$$\Omega_{t_1, \ldots, t_n} = \{\pi_{t_1, \ldots, t_n}(U) : U \in \Omega\}$$

determines an Archimedean order in $\mathbb{Q}(\Lambda_{t_1}, \ldots, \Lambda_{t_n})$. Thus for some $W \in \Omega_{t_1, \ldots, t_n}$,
the function $f = \Lambda_{t_1}^2 + \cdots + \Lambda_{t_n}^2$ is bounded on W. So the set W is bounded.
Hence, by Proposition 2.1, there exists $(x_1, \ldots, x_n) \in \partial \Omega_{t_1, \ldots, t_n}$. Since the
projections π_{t_1, \ldots, t_n} are open, it is easy to observe that, for $t_{k_1}, \ldots, t_{k_j} \in \{t_1, \ldots, t_n\}$
with $t_{k_1} < \cdots < t_{k_j}$, we have $(x_{k_1}, \ldots, x_{k_j}) \in \partial \Omega_{t_{k_1}, \ldots, t_{k_j}}$. Consequently, there
exists \(x \in \mathbb{R}^T \) such that for any \(t_1, \ldots, t_n \in T \) with \(t_1 < \cdots < t_n \), we have \(\pi_{t_1, \ldots, t_n}(x) \in \partial \Omega_{t_1, \ldots, t_n} \). Summing up, \(x \in \partial \Omega \). The set of coordinates of \(x \) is algebraically independent over \(\mathbb{Q} \): otherwise, \(f(x) = 0 \) for some nonzero polynomial \(f \in \mathbb{Q}[\Lambda_T] \), and so \(f \) is infinitesimal. This contradicts (a) and gives (b).

Assume (b). Then any nonzero \(f \in \mathbb{Q}(\Lambda_T) \) with \(f > 0 \) is defined at \(x_\prec \). Moreover, \(f(x_\prec) \neq 0 \), so \(f(x_\prec) > 0 \). Conversely, assume that \(f(x_\succ) > 0 \). Then obviously for some connected component \(U \) of \(f^{-1}(0, +\infty) \), we have \(U \in \Omega_\succ \) and \(f(x) > 0 \) for \(x \in U \). Summing up, we obtain (c).

The implication (c) \(\Rightarrow \) (d) is trivial.

Now assume (d). Then we immediately obtain (b), and hence, no \(f \in \mathbb{Q}(\Lambda_T) \) is infinitesimal, and the field \((\mathbb{Q}(\Lambda_T), \succ) \) is Archimedean. This gives (a) and completes the proof. \(\square \)

Remark 3.2. The assertion of Theorem 3.1 also holds for every c-filter determining \(\succ \) in place of the plain filter \(\succ \).

Theorem 3.1 implies:

Corollary 3.3. Let \(T \) be a finite set. Then the set of Archimedean orderings of \(\mathbb{Q}(\Lambda_T) \) is a dense subset of the space of orderings in \(\mathbb{Q}(\Lambda_T) \) in the path topology (see, for instance, [Marshall 2008]) of the real spectrum \(\text{Sper}(\mathbb{Q}[\Lambda_T]) \).

4. Examples of non-Archimedean orderings

Let \(m \) be a fixed positive integer and \(\Lambda \) a system of \(m \) variables \(\Lambda_1, \ldots, \Lambda_m \).

Take any \(P \in \mathbb{R}[\Lambda] \). Let \(\Gamma_P \subset \mathbb{R}^m \) be a set defined by

\[
\Gamma_P = \{ (\lambda_1, \ldots, \lambda_m) \in \mathbb{R}^m : P(\lambda_1, \ldots, \lambda_m, \lambda_m + \gamma) = 0 \text{ for some } \gamma \in [0, \infty) \}. \]

We define a polynomial \(\omega(P) \in \mathbb{R}[\Lambda_1, \ldots, \Lambda_{m-1}] \) (or a number \(\omega(P) \in \mathbb{R} \) if \(m = 1 \)) by \(\omega(P) = 0 \) for \(P = 0 \), and \(\omega(P) = P_0 \) for \(P \neq 0 \), where

\[
P = P_0 \Lambda_m^d + P_1 \Lambda_m^{d-1} + \cdots + P_d
\]

and \(P_i \in \mathbb{R}[\Lambda_1, \ldots, \Lambda_{m-1}] \) (or \(P_i \in \mathbb{R} \) if \(m = 1 \)) for \(i = 0, \ldots, d \) and \(P_0 \neq 0 \).

Let us define sets \(W_P \subset \mathbb{R}^m \), for \(P \in \mathbb{R}[\Lambda] \). The definition will be inductive with respect to the number of variables \(\Lambda_1, \ldots, \Lambda_m \). For \(P \in \mathbb{R}[\Lambda] \), we put

\[
W_P = \begin{cases}
\mathbb{R} \setminus \Gamma_P \subset \mathbb{R} & \text{if } m = 1, \\
(\mathbb{R}^m \setminus \Gamma_P) \cap (W_{\omega(P)} \times \mathbb{R}) \subset \mathbb{R}^m & \text{if } m > 1.
\end{cases}
\]

By the Tarski–Seidenberg theorem — see Proposition 1.1(c) — the sets \(W_P \) are semialgebraic for all \(P \in \mathbb{R}[\Lambda] \).

Analogously to Theorem 1.1 of [Spodzieja 1996], we prove the following proposition, which gives an example of c-filter.
Proposition 4.1. The family $\mathcal{W} = \{ W_P : P \in \mathbb{R}[\Lambda] \}$ satisfies these conditions:

- R_0. $W_P \subset \{ \lambda \in \mathbb{R}^m : P(\lambda) \neq 0 \}$.
- R_1. $W_P \cap W_Q = W_{P Q}$.
- R_2. For $P \neq 0$, W_P is an unbounded subset of \mathbb{R}^m.
- R_3. For $P \neq 0$, W_P is an open, connected and simply connected set.

Moreover, one can demand that

- R_4. $W_P = \mathbb{R}^m$ for $P = \text{const}$, $P \neq 0$.

In particular, \mathcal{W} contains the c-filter

$$
\Omega = \{ W_P : P \in \mathbb{Q}[\Lambda] \}.
$$

Lemma 4.2. Let $1 \leq i_1 < \cdots < i_m \leq n$, and let $P \in \mathbb{R}[\Lambda_{i_1}, \ldots, \Lambda_{i_m}]$. Let $Q \in \mathbb{R}[\Lambda_1, \ldots, \Lambda_n]$ be a polynomial of the form

$$
Q(x_1, \ldots, x_n) = P(x_{i_1}, \ldots, x_{i_m}), \quad (x_1, \ldots, x_n) \in \mathbb{R}^n.
$$

Then $W_P \subset \mathbb{R}^m$, $W_Q \subset \mathbb{R}^n$, and

$$
W_Q \subset \{ (x_1, \ldots, x_n) \in \mathbb{R}^n : (x_{i_1}, \ldots, x_{i_m}) \in W_P \}.
$$

Proof. For $P = 0$ or $n = m$, the assertion is trivial. Assume that $P \neq 0$ and $n > m$.

Consider the case $n = m + 1$. Then there exists $1 \leq j \leq n$ such that

$$(\Lambda_{i_1}, \ldots, \Lambda_{i_m}) = (\Lambda_1, \ldots, \Lambda_{n-j}, \Lambda_{n-j+2}, \ldots, \Lambda_n),$$

under the obvious convention for $j = 1$ and $j = n$. Denote the i-th iteration of ω by ω^j, where $\omega^0(P) = P$. Then, for $(x_1, \ldots, x_{n-i}) \in \mathbb{R}^{n-i}$,

$$
\omega^j(Q)(x_1, \ldots, x_{n-i}) = \begin{cases}
\omega^j(P)(x_1, \ldots, x_{n-j}, x_{n-j+2}, \ldots, x_{n-i}) & \text{if } 0 \leq i \leq j - 2, \\
\omega^j(P)(x_1, \ldots, x_{n-j}) & \text{if } i = j - 1, \\
\omega^{j-1}(P)(x_1, \ldots, x_{n-i}) & \text{if } j \leq i \leq n.
\end{cases}
$$

Hence,

$$
\Gamma_{\omega^j(Q)} = \{ (x_1, \ldots, x_{n-i}) \in \mathbb{R}^{n-i} : (x_1, \ldots, x_{n-j}, x_{n-j+2}, \ldots, x_{n-i}) \in \Gamma_{\omega^j(P)} \}
$$

for $0 \leq i \leq j - 2$, and

$$
\Gamma_{\omega^{j-1}(Q)} = \{ (x_1, \ldots, x_{n-j+1}) \in \mathbb{R}^{n-j+1} : (x_1, \ldots, x_{n-j}) \in \Gamma_{\omega^{j-1}(P)} \}
$$

and $\Gamma_{\omega^j(Q)} = \Gamma_{\omega^{j-1}(P)}$ for $j \leq i \leq n$. In particular, $W_{\omega^j(Q)} = W_{\omega^{j-1}(P)}$ for $j \leq i \leq n$.
Summing up, by (3),
\[
W_Q = \bigcap_{i=0}^{n} \left[(\mathbb{R}^{n-i} \setminus \Gamma_{\omega^i}(Q)) \times \mathbb{R}^i \right]
\]
\[
= \bigcap_{i=0}^{j-2} \left\{ (x_1, \ldots, x_n) \in \mathbb{R}^n : (x_1, \ldots, x_{n-j}, x_{n-j+2}, \ldots, x_{n-i}) \in \mathbb{R}^{n-i-1} \setminus \Gamma_{\omega^i}(P) \right\}
\]
\[
\cap \left\{ (x_1, \ldots, x_n) \in \mathbb{R}^n : (x_1, \ldots, x_{n-j}) \in \mathbb{R}^{n-j} \setminus \Gamma_{\omega^j}(P) \right\} \cap \left[W_{\omega^j}(Q) \times \mathbb{R}^j \right]
\]
\[
\subset \bigcap_{i=0}^{j-2} \left\{ (x_1, \ldots, x_n) \in \mathbb{R}^n : (x_1, \ldots, x_{n-j}, x_{n-j+2}, \ldots, x_{n-i}) \in \mathbb{R}^{n-i-1} \setminus \Gamma_{\omega^i}(P) \right\}
\]
\[
\cap \left[W_{\omega^j}(Q) \times \mathbb{R}^j \right]
\]
\[
= \left\{ (x_1, \ldots, x_n) \in \mathbb{R}^n : (x_{i_1}, \ldots, x_{i_m}) \in W_P \right\}.
\]
This gives the assertion for \(n = m + 1 \). Hence, by an easy induction with respect to \(n - m \), we obtain the assertion. \(\Box \)

Let \(T \) be a linearly ordered set and let \(> \) be the ordering of \(T \).
For any \(t_1, \ldots, t_m \in T \), \(t_1 < \cdots < t_m \), we define a projection map
\[
\pi_{t_1, \ldots, t_m} : \mathbb{R}^T \ni x \mapsto (x(t_1), \ldots, x(t_m)) \in \mathbb{R}^m.
\]
Define a family \(\Omega \) of semialgebraic subsets \(U \) of \(\mathbb{R}^T \) by
\[
U = (\pi_{t_1, \ldots, t_m})^{-1}(W_P),
\]
where \(m \in \mathbb{N}, t_1, \ldots, t_m \in T, t_1 < \cdots < t_m \), and \(P \in \mathbb{Q}[\Lambda_{t_1}, \ldots, \Lambda_{t_m}] \setminus \{0\} \).

Proposition 4.3. The family \(\Omega \) is a c-filter.

Proof. By Proposition 4.1 (condition \(R_2 \)), any \(U \in \Omega \) is a nonempty set.

Let \(V \subseteq \mathbb{R}^T \) be a \(\mathbb{Q} \)-algebraic set, and let \(P \in \mathbb{Q}[\Lambda_T] \setminus \{0\} \) be such that \(V = \{ x \in \mathbb{R}^T : P(x) = 0 \} \). Then \(P \in \mathbb{Q}[\Lambda_{t_1}, \ldots, \Lambda_{t_m}] \setminus \{0\} \) for some \(t_1, \ldots, t_m \in T \), \(t_1 < \cdots < t_m \), and \(U = (\pi_{t_1, \ldots, t_m})^{-1}(W_P) \). Applying Proposition 4.1 (condition \(R_0 \)), we obtain that \(U \) satisfies (i).

Let \(U_1, U_2 \in \Omega \). Let \(t_1, \ldots, t_m, u_1, \ldots, u_n \in T \) satisfy \(t_1 < \cdots < t_m \) and \(u_1 < \cdots < u_n \), and assume moreover that for some \(P \in \mathbb{Q}[\Lambda_{t_1}, \ldots, \Lambda_{t_m}] \) and \(Q \in \mathbb{Q}[\Lambda_{u_1}, \ldots, \Lambda_{u_n}] \) we have \(U_1 = (\pi_{t_1, \ldots, t_m})^{-1}(W_P) \) and \(U_2 = (\pi_{u_1, \ldots, u_n})^{-1}(W_Q) \). Let \(v_1, \ldots, v_s \in T \), \(v_1 < \cdots < v_s \), be such that \(\{t_1, \ldots, t_m\} \cup \{u_1, \ldots, u_n\} \subset \{v_1, \ldots, v_s\} \), and let \(\overline{P}, \overline{Q} \in \mathbb{R}[\Lambda_{v_1}, \ldots, \Lambda_{v_s}] \) be polynomials of the form (4) determined by \(P \) and \(Q \), respectively. Then, by Proposition 4.1 (condition \(R_1 \)) and Lemma 4.2,
\[
(\pi_{v_1, \ldots, v_s})^{-1}(W_{\overline{P} \overline{Q}}) = (\pi_{v_1, \ldots, v_s})^{-1}(W_{\overline{P}}) \cap (\pi_{v_1, \ldots, v_s})^{-1}(W_{\overline{Q}}) \subset U_1 \cap U_2.
\]
This gives (ii).
Take any \(U \in \Omega \). There exist \(t_1, \ldots, t_m \in T \) and \(P \in \mathbb{R}[\Lambda_{t_1}, \ldots, \Lambda_{t_m}] \setminus \{0\} \) such that \(t_1 < \cdots < t_m \) and \(U = (\pi_{t_1, \ldots, t_m})^{-1}(W_P) \). By Proposition 4.1 (condition \(R_3 \)), \(U \) satisfies (iii). This completes the proof. \(\square \)

From the definition of the family \(\Omega \), we immediately obtain:

Corollary 4.4. For any \(t_1, t_2 \in T \), we have \(t_1 > t_2 \) if and only if \(\Lambda_{t_1} > \Omega \Lambda_{t_2} \).

Let \(\mathcal{Q} \in \mathbb{Q}[\Lambda_T] \setminus \{0\} \) and let \(\Omega_\mathcal{Q} \) be a family of semialgebraic subsets \(U \) of \(\mathbb{R}^T \) defined by

\[
(6) \quad U = (\pi_{t_1, \ldots, t_m})^{-1}(W_P \cap W_\mathcal{Q}),
\]

where \(m \in \mathbb{N}, t_1, \ldots, t_m \in T, t_1 < \cdots < t_m \), and \(P, \mathcal{Q} \in \mathbb{Q}[\Lambda_{t_1}, \ldots, \Lambda_{t_m}] \setminus \{0\} \). By Proposition 4.3, we have:

Corollary 4.5. \(\Omega_\mathcal{Q} \) is a c-filter.

Let \(X \subset \mathbb{R}^T \) be an open semialgebraic set and let \(\hat{x} \in X \) be a point with rational coordinates. There exist \(t_1, \ldots, t_k \in T, t_1 < \cdots < t_k \), and an open semialgebraic set \(Y \subset \mathbb{R}^k \) such that \(X = \{x \in \mathbb{R}^T : (x(t_1), \ldots, x(t_k)) \in Y\} \). Hence, there exists \(r > 0 \) such that

\[
B := \{x \in \mathbb{R}^T : \max_{i=1,\ldots,k} |x(t_i) - \hat{x}(t_i)| < r\} \subset X.
\]

Let

\[
P_0 = \Lambda_{t_1} \cdots \Lambda_{t_k} (\Lambda_{t_1}^2 + \cdots + \Lambda_{t_k}^2 - 1/r^2),
\]

let \(U_0 = (\pi_{t_1, \ldots, t_k})^{-1}(W_{P_0}) \), and let \(F : U_0 \to \mathbb{R}^T \) be a mapping defined by

\[
F(x)(t) = \begin{cases} \hat{x}(t) + 1/x(t) & \text{for } x \in U_0, t \in \{t_1, \ldots, t_k\}, \\ x(t) & \text{for } x \in U_0, t \in T \setminus \{t_1, \ldots, t_k\}. \end{cases}
\]

Proposition 4.6. \(\{F(U) : U \in \Omega_{P_0}\} \) is a c-filter subset of \(X \). In particular, for any open semialgebraic set \(Y \subset \mathbb{R}^T \), there exists c-filter subsets of \(Y \).

Proof. By Lemma 4.2, any set \(U \in \Omega_{P_0} \) is a subset of \(U_0 \). Moreover, \(F \) is an open semialgebraic mapping, so \(F(U) \) is semialgebraic for \(U \in \Omega_{P_0} \). Hence, \(\{F(U) : U \in \Omega_{P_0}\} \) satisfies conditions (i)–(iii). \(\square \)

From Proposition 4.6 and Theorem 3.1, we have that:

Corollary 4.7. The set of c-filters defined in Proposition 4.6 is a dense subset of the space of orderings in \(\mathbb{Q}(\Lambda_T) \) in the path topology of the real spectrum \(\text{Sper}(\mathbb{Q}[\Lambda_T]) \). Moreover, any ordering determined by such a c-filter is not Archimedean.

Remark 4.8. It is easy to see that the results of this section hold if we replace \(\mathbb{Q} \) by \(\mathbb{R} \).
5. Fields of Nash functions

Let T be a nonempty set. We denote by $N(X)$ the domain of \mathbb{Q}-Nash functions on an open connected semialgebraic set $X \subset \mathbb{R}^T$.

Let $>$ be an ordering in $\mathbb{Q}(\Lambda_T)$ and let $\Omega_>$ be the plain filter of subsets of \mathbb{R}^T determining $>$. Let us introduce in $\bigcup_{U \in \Omega_>} N(U)$ a relation $\sim_>$ by

$$(f_1: U_1 \to \mathbb{R}) \sim_>(f_2: U_2 \to \mathbb{R}) \iff \exists U \in \Omega_> (U \subset U_1 \cap U_2 \text{ and } f_1|_U = f_2|_U).$$

From Proposition 2.4, we immediately see that $\sim_>$ is an equivalence relation. The equivalence class of $\sim_>$ determined by $f: U \to \mathbb{R}$ is denoted by $[f]_>$, and the set of all such classes by $N_>$. The set $N_>$ is linearly ordered by

$$[f]_> > 0 \iff \exists U \in \Omega_> (f \in N(U) \text{ and } f(x) > 0 \text{ for } x \in U).$$

Proposition 5.1. The set $N_>$, together with the usual operations

$$[f_1]_> + [f_2]_> = [f_1|_U + f_2|_U]_>, \quad [f_1]_> \cdot [f_2]_> = [f_1|_U f_2|_U]_>,$$

where $f_1 \in N(U_1), f_2 \in N(U_2)$, and $U \in \Omega_>, U \subset U_1 \cap U_2$, is a real field.

Proof. Since the ring $N(U)$ is a domain for any $U \in \Omega_>$, so is $N_>$. We prove that any nonzero $f \in N_>$ has an inverse in $N_>$. Indeed, there exists $U \in \Omega_>$ such that $f \in N(U)$. Since $f \neq 0$, the set $f^{-1}(0)$ is contained in some proper \mathbb{Q}-algebraic subset of \mathbb{R}^T. Then, by the definition of c-filter, one can assume that $f(\lambda) \neq 0$ for any $\lambda \in U$. Thus $1/f \in N(U)$, so f has an inverse in $N_>$. Summing up, $N_>$ is a field. Since $-1 \in N(U)$ is not a sum of squares in $N(U)$, it follows that $-1 \in N_>$ is not a sum of squares in $N_>$. □

Theorem 5.2. The field $N_>$ is a real closure of the field $(\mathbb{Q}(\Lambda_T), >)$.

Proof. Take any irreducible polynomial $P \in N_>[Z]$ of odd degree d with respect to Z. Then there exists $U \in \Omega_>$ such that $P \in N(U)[Z]$. Let $t_1, \ldots, t_m \in T$, and let $\tilde{U} \subset \mathbb{R}^m$ be an open connected semialgebraic set such that $U = \{x \in \mathbb{R}^T : (x(t_1), \ldots, x(t_m)) \in \tilde{U}\}$. By using the Hermite method (for \tilde{U}) we deduce that there exists a decomposition $U = U_1 \cup \cdots \cup U_k \cup V$ of U into disjoint open basic \mathbb{Q}-semialgebraic sets U_1, \ldots, U_k and a semialgebraic set V included in an algebraic set such that $P(x, Z)$ has the same number of zeroes for all $x \in U_i$ and each of these zeroes is single. By (i) and (ii) in the definition of a c-filter, there exists $U' \in \Omega_>$ such that $U' \subset U_i$ for some $i \in \{1, \ldots, k\}$. Then there exists $k \in \mathbb{N}, k > 0$ such that $P(x, Z)$ has exactly k zeroes for $x \in U'$, and so there exist functions $\xi_1, \ldots, \xi_k: U' \to \mathbb{R}$ with $\xi_1(x) < \cdots < \xi_k(x)$ such that $P(x, \xi_i(x)) = 0$ for $x \in U', i = 1, \ldots, k$. As $\xi_i(x)$ are single zeroes of $P(x, Z)$, by the Implicit Function Theorem, ξ_i is a Nash function for $i = 1, \ldots, k$. As $N_>$ is a real field...
(Proposition 5.1), \(\mathcal{N}_\succ \) is a real closed field. Since \(\mathcal{N}_\succ \) is an algebraic extension of \(\mathbb{Q}(\Lambda_T) \), by the Artin–Schreier Theorem, it is a real closure of \((\mathbb{Q}(\Lambda_T), \succ) \). \(\square \)

Remark 5.3. The above results of this section also hold for an arbitrary \(c \)-filter determining \(\succ \) in place of the plain filter \(\Omega_\succ \). The results also hold if we put \(\mathbb{R} \) in place of \(\mathbb{Q} \).

From Theorems 3.1 and 5.2, we recover the familiar result that any Archimedean field can be embedded in \(\mathbb{R} \).

Corollary 5.4. Let \(\Omega_\succ \) be a plain filter of subsets of \(\mathbb{R}^T \) determining an Archimedean ordering \(\succ \) of \(\mathbb{Q}(\Lambda_T) \), and let \(x_\succ \in \bigcap_{U \in \Omega_\succ} U \). Then the mapping

\[
\mathcal{N}_\succ \ni f \mapsto f(x_\succ) \in \mathbb{R}
\]

is an order-preserving monomorphism.

From Theorem 5.2, we immediately obtain:

Corollary 5.5. Let \(R \) be a real closed field with ordering \(\succ \), and let \(T \) be the transcendence basis of \(R \) over \(\mathbb{Q} \) whose existence is guaranteed by the Kuratowski–Zorn lemma. Assume that \(T \neq \emptyset \) and let \(\Lambda_T = (\Lambda_t : t \in T) \) be a system of independent variables. Then the field \(R \) is order-preserving isomorphic to a real closure of the rational functions field \(\mathbb{Q}(\Lambda_T) \), i.e., to some field \(\mathcal{N}_\succ \).

Remark 5.6. Let \(\mathbb{K} \) be an algebraically closed field of characteristic zero. Then \(\mathbb{K} = R[i] \), where \(i^2 = -1 \), for some real closed field \(R \). Let \(T \subset R \) be the transcendence basis of \(\mathbb{K} \) over \(\mathbb{Q} \). Assume that \(T \neq \emptyset \). Then \(\mathbb{K} \) is isomorphic to an algebraic closure of \(\mathbb{Q}(\Lambda_T) \). By Theorem 1.1 of [Spodzieja 1996], one can introduce a filter \(\Omega_\subset \) of open, connected, and simply connected semialgebraic subsets \(U \) of \(\mathbb{C}^T \) satisfying conditions (i), (ii), and (iii). Then, analogously to [Spodzieja 1996], one can introduce a geometric construction of the algebraic closure of \(\mathbb{Q}(\Lambda_T) \) in terms of complex Nash functions.

Acknowledgements

I would like to cordially thank Jacek Chądzyński, Michel Coste, Krzysztof Kurdyka, Tadeusz Mostowski, and Alexander Prestel for their valuable remarks and advice during the preparation of this paper.

References

Received June 11, 2012. Revised September 25, 2012.

STANISŁAW SPODZIEJA
FACULTY OF MATHEMATICS AND COMPUTER SCIENCE
DEPARTMENT OF ANALYTIC FUNCTIONS AND DIFFERENTIAL EQUATIONS
UNIVERSITY OF ŁÓDŹ
S. BANACHA 22
90-238 ŁÓDŹ
POLAND

spodziej@math.uni.lodz.pl
On 4-manifolds, folds and cusps

Stefan Behrens

307 Thin r-neighborhoods of embedded geodesics with finite length and negative Jacobi operator are strongly convex

Philippe Delanoë

333 Eigenvalues of perturbed Laplace operators on compact manifolds

Asma Hassannezhad

355 Four equivalent versions of nonabelian gerbes

Thomas Nikolaus and Konrad Waldorf

421 On nonlinear nonhomogeneous resonant Dirichlet equations

Nikolaos S. Papageorgiou and George Smyrlis

455 A geometric model of an arbitrary real closed field

Stanisław Spodzieja

471 Twisted K-theory for the orbifold $[*/G]$

Mario Velásquez, Edward Becerra and Hermes Martinez

491 Linear restriction estimates for the wave equation with an inverse square potential

Junyong Zhang and Jiqiang Zheng