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Given a genus-g Heegaard splitting of a 3-manifold, the Goeritz group is
defined to be the group of isotopy classes of orientation-preserving home-
omorphisms of the manifold that preserve the splitting. In this work, we
show that the Goeritz groups of genus-2 Heegaard splittings for lens spaces
L( p, 1) are finitely presented, and give explicit presentations of them.

1. Introduction

It is well known that every closed orientable 3-manifold M can be decomposed into
two handlebodies of the same genus. This is what we call a Heegaard splitting of
the manifold, and the genus of the handlebodies is called the genus of the splitting.
Given a genus-g Heegaard splitting of M , the Goeritz group of the splitting, which
we will denote by Gg, is the group of isotopy classes of orientation-preserving
homeomorphisms of M that preserve each of the handlebodies of the splitting
setwise. In particular, this group is interesting when the manifold is the 3-sphere
or a lens space since it is well known from [Waldhausen 1968; Bonahon 1983;
Bonahon and Otal 1983] that they have unique Heegaard splittings for each genus
up to isotopy. In this case, each Goeritz group depends only on the genus of the
splitting, and so we can define the genus-g Goeritz group Gg of each of those
manifolds without mentioning a specific Heegaard splitting. For the 3-sphere, it
was shown in [Goeritz 1933; Scharlemann 2004] that G2 is finitely generated, and
subsequently in [Akbas 2008; Cho 2008] that G2 is finitely presented and its finite
presentation was introduced. Further, in [Koda 2011], a natural generalization of
a Goeritz group is studied, namely, the group of isotopy classes of orientation-
preserving homeomorphisms of the 3-sphere preserving an embedded genus-two
handlebody which is possibly knotted.
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In this work, we show that the Goeritz group G2 of each of the lens spaces L(p, 1)
is finitely presented. In the main theorem, Theorem 5.4, their explicit presentations
are given. For the genus-2 Goeritz groups of the other lens spaces, and for the
higher genus Goeritz groups of the 3-sphere and lens spaces, it is conjectured that
they are all finitely presented, but it is still known to be an open problem.

We generalize the method developed in [Cho 2008]. We find a tree on which G2

for L(p, 1) acts such that the quotient of the tree by the action of G2 is a single edge,
and then apply the well known theory of groups acting on trees due to Bass and
Serre (see [Serre 1980]). Such a tree will be found in the barycentric subdivision
of the disk complex for one of the handlebodies of the splitting. For arbitrary
lens spaces L(p, q), finding such trees, if they exist, is a much more complicated
problem than L(p, 1), which will be fully discussed in [Cho and Koda 2012].

Throughout the paper, we simply denote by G the genus-2 Goeritz group G2 of a
lens space. We use the standard notation L(p, q) with p≥ 2 for a lens space with its
basic properties found in standard textbooks. For an example, we refer to [Rolfsen
1976]. For a genus-1 Heegaard splitting of L(p, 1), any oriented meridian circle of
a solid torus of the splitting is identified with a (p, 1)-curve (or a (p, p− 1)-curve)
on the boundary of the other solid torus after a suitable choice of oriented longitude
and meridian of the other solid torus is made. The triple (V,W ;6) will denote a
genus-2 Heegaard splitting of a lens space L = L(p, q). That is, L = V ∪W and
V ∩W = ∂V = ∂W =6, where V and W are handlebodies of genus two.

The disks D and E in a handlebody are always assumed to be properly embedded,
and their intersection is transverse and minimal up to isotopy. In particular, if D
intersects E , then D ∩ E is a collection of pairwise disjoint arcs that are properly
embedded in both D and E . Finally, Nbd(X) will denote a regular neighborhood
of X , and cl(X) the closure of X for a subspace X of a polyhedral space where the
ambient space will always be clear from the context.

2. Primitive elements of the free group of rank two

The fundamental group of the genus-2 handlebody is the free group Z ∗Z of rank
two. We call an element of Z ∗ Z primitive if it is a member of a generating
pair of Z ∗ Z. Primitive elements of Z ∗ Z have been well understood. For an
example we refer [Osborne and Zieschang 1981] to the reader. A key property of
the primitive elements of the free group of rank two is the following, which is a
direct consequence of Corollary 3.3 in [Osborne and Zieschang 1981]:

Proposition 2.1. Fix a generating pair {x, y} of Z ∗ Z, and let w be a primitive
element of Z∗Z. Then for some ε ∈ {1,−1} and some n ∈Z, some cyclically reduced
form of w is a product of terms of the form xε yn or xε yn+1, or else a product of
terms of the form yεxn or yεxn+1.
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From the proposition, the cyclically reduced forms of a primitive element are
very restrictive. For example, if w is a primitive element of Z∗Z, then no cyclically
reduced form of w in terms of x and y can contain x and x−1 (and y and y−1)

simultaneously.
A simple closed curve in the boundary of a genus-2 handlebody W represents

an element of π1(W ) = Z ∗Z. We call a pair of essential disks in W a complete
meridian system for W if the union of the two disks cuts up W into a 3-ball. Given
a complete meridian system {F,G}, assign symbols x and y to circles ∂F and
∂G respectively. Suppose that an oriented simple closed curve l on ∂W meets
∂F ∪ ∂G transversely and minimally. Then l determines a word in terms of x and
y which can be read off from the intersections of l with ∂F and ∂G (after a choice
of orientations of ∂F and ∂G), and hence l represents an element of the free group
π1(W )= 〈x, y〉.

In this set up, the following is a simple criterion for the primitiveness of the
elements represented by such a simple closed curve:

Lemma 2.2. With a suitable choice of orientations of ∂F and ∂G, if a word deter-
mined by the simple closed curve l contains one of the subwords yxy−1 or xyxyn

for n≥ 3, then any element in π1(W ) represented by l cannot be a primitive element.

Proof. Let 6′ be the 4-holed sphere cut up from ∂W along ∂F ∪ ∂G, and denote
by f+ and f− (respectively g+ and g−) the boundary circles of 6′ that came from
∂F (respectively ∂G).

Suppose first that a word represented by l contains a subword of the form yxy−1.
Then we may assume that there are two arcs l+ and l− of l∩6′ such that l+ connects
f+ and g+, and l− connects f+ and g− as in Figure 1, left. Since |l∩ f+| = |l∩ f−|
and |l ∩ g+| = |l ∩ g−|, we must have two other arcs m+ and m− of l ∩6′ such
that m+ connects f− and g+, and m− connects f− and g−. We see then that there
exists no arc component of l ∩6′ that meets only one of f+, f−, g+ or g−. That is,
any word determined by l contains neither x±1x∓1 nor y±1 y∓1, and so each word
is cyclically reduced, but a word determined by l already contains both y and y−1,
and so l cannot represent a primitive element of π1(W ) by Proposition 2.1.

f+

f−

g+

g−

f+

f−

h+

h−

l+
l−
m+

m−

c

x2 z2F G
H

6′ W 6′′

Figure 1. The 4-holed spheres 6′ and 6′′.



4 SANGBUM CHO

Next, suppose that a word represented by l contains a subword of the form xyxyn

for n ≥ 3. We may assume there is an arc c of l ∩6′ connecting f+ and g+ in 6′.
Consider the circle which is the frontier of a regular neighborhood of f+ ∪ c∪ g+
in 6′. This circle bounds a disk H in W , and {F, H} forms a complete meridian
system of W . Assigning symbols x and z to ∂F and ∂H respectively, the circle l
represents an element of π1(W )= 〈x, z〉 (see Figure 1, middle).

Let 6′′ be the 4-holed sphere cut up from ∂W along ∂F ∪ ∂H , and denote by
f+ and f− (respectively h+ and h−) the boundary circles of 6′′ that came from
∂F (respectively ∂H). There are two arcs of l ∩6′′ such that one connects f+ and
f−, and the other one connects h+ and h−. We may assume that these two arcs
represent subwords of the form x2 and z2 (see Figure 1, right). Thus there exists no
arc component of l ∩6′′ that meets only one of f+, f−, h+ and h−. That is, each
word represented by l is cyclically reduced. But a word determined by l already
contains both x2 and z2, and so l cannot represent a primitive element of π1(W ) by
Proposition 2.1 again. �

3. Primitive disks in a handlebody

Recall that (V,W ;6) denotes a genus-two Heegaard splitting of a lens space
L = L(p, q) with p ≥ 2. We call an essential disk E in V primitive if there exists
an essential disk E ′ in W such that ∂E intersects ∂E ′ transversely in a single point.
Such a disk E ′ is called a dual disk of E . Note that E ′ is also primitive in W with
a dual disk E , and W ∪Nbd(E) and V ∪Nbd(E ′) are both solid tori. Primitive
disks are necessarily nonseparating. We call a pair of disjoint, nonisotopic primitive
disks in V a primitive pair in V . Similarly, a triple of pairwise disjoint, nonisotopic,
primitive disks (if it exists) is a primitive triple.

A nonseparating disk E0 properly embedded in V is called semiprimitive if there
is a primitive disk E ′ in W such that ∂E ′ is disjoint from ∂E0. With a suitable
choice of oriented meridian and longitude circles on the boundary of the solid
torus obtained by cutting up W along E ′, the oriented boundary circle ∂E0 can be
considered a (p, 1)-curve on the boundary of the solid torus, if q = 1.

Any simple closed curve on the boundary of W represents an element of π1(W ),
which is the free group of rank two. We can interpret primitive disks algebraically
as follows, which is a direct consequence of [Gordon 1987]:

Lemma 3.1. Let D be a nonseparating disk in V . Then D is primitive if and only
if ∂D represents a primitive element of π1(W ).

Note that no disk can be both primitive and semiprimitive since the boundary
circle of a semiprimitive disk in V represents the p-th power of a primitive element
of π1(W ).
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Let D and E be essential disks in V , and suppose that D intersects E transversely
and minimally. Let C ⊂ D be a disk cut up from D by an outermost arc β of D∩ E
in D such that C ∩ E = β. We call such a C an outermost subdisk of D cut up by
D∩ E . The arc β cuts E into two disks, say G and H . Then we have two essential
disks E1 and E2 in V which are isotopic to disks G ∪C and H ∪C respectively.
We call E1 and E2 the disks from surgery on E along the outermost subdisk C of
D cut up by D ∩ E . Observe that E1 and E2 each have fewer arcs of intersection
with D than E had, since at least the arc β no longer counts.

Since E and D are assumed to intersect minimally, E1 and E2 are isotopic to
neither E nor D. In particular, if both D and E are nonseparating, then the resulting
disks E1 and E2 are both nonseparating and they are not isotopic to each other.
Further, E1 and E2 are meridian disks of the solid torus V cut up by E , and the
boundary circles ∂E1 and ∂E2 are not isotopic to each other in the two holed torus
∂V cut up by ∂E .

Theorem 3.2. Let (V,W ;6) be the genus-two Heegaard splitting of the lens space
L = L(p, 1) with p ≥ 2. Let D and E be primitive disks in V which intersect each
other transversely and minimally. Then one of the two disks from surgery on E
along an outermost subdisk of D cut up by D ∩ E is primitive. Furthermore, it has
a common dual disk with E.

Proof. We will prove the theorem only for p ≥ 5. The cases of p ∈ {2, 3, 4} will be
similar but simpler.

Let C be an outermost subdisk of D cut up by D ∩ E . The choice of a dual disk
E ′ of E determines a unique semiprimitive disk E0 in V , namely, the meridian disk
E0 of V disjoint from E ∪ E ′. Among all the dual disks of E , choose one, denoted
by E ′ again, so that the semiprimitive E0 determined by E ′ intersects C minimally.
Further, there is a unique semiprimitive disk E ′0 in W disjoint from E ∪ E ′. We
give symbols x and y to oriented ∂E ′ and ∂E ′0 respectively to have π1(W )= 〈x, y〉.
For convenience, we simply identify the boundary circles ∂E ′ and ∂E ′0 with the
assigned symbols x and y respectively. Notice that the circle y is disjoint from ∂E
and intersects ∂E0 in p points in the same direction, and x is disjoint from ∂E0 and
intersects ∂E in a single point. Thus we may assume that ∂E0 and ∂E determine
the words y p and x respectively.

Let 60 be the 4-holed sphere ∂V cut up by ∂E ∪ ∂E0. We regard 60 as a
2-holed annulus where the two boundary circles came from ∂E0 and the two holes
came from ∂E . Then y ∩60 is the union of p spanning arcs which cut 60 into
p rectangles, and x is a single arc connecting two holes which are contained in a
single rectangle. See Figure 2, left.

Suppose first that C is disjoint from E0. Note that one of the disks from surgery
on E along C is E0, which is semiprimitive. The arc C ∩60 is the frontier of
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Figure 2. The 2-holed annulus 60 in L(5, 1).

a regular neighborhood of the union of one boundary circle of 60 and an arc α
connecting the boundary circle to a hole. Observe that the arc α is disjoint from
y ∩60, otherwise a word of ∂D must contain yxy−1 (after changing orientation
if necessary) which contradicts that D is primitive, by Lemma 2.2. See Figure 2,
right. Consequently, if we denote by E1 the disk from surgery that is not E0, then
∂E1 intersects ∂E ′ in a single point. That is, the resulting disk E1 is primitive with
the common dual disk E ′ of E . See Figure 2, left.

From now on, we assume that C intersects E0. Let C0 be an outermost subdisk
of C cut up by C ∩ E0. The arc C0∩60 is the frontier of a regular neighborhood of
one hole of 60 and an arc, say α0, connecting the hole to a boundary circle of 60.
By the same reasoning as in the case of α, the arc α0 is disjoint from y ∩60. Thus
one of the disks from surgery on E0 along C0 is E , and the other one, denoted by E1

again, is primitive since ∂E1 intersects ∂E ′ in a single point as in the previous case.
Note that |C ∩ E1|< |C ∩ E0| from the surgery construction. See 60 in Figure 3.

Let 61 be the 4-holed sphere ∂V cut up by ∂E∪∂E1. We regard 61 as a 2-holed
annulus, like 60, where the two boundary circles came from ∂E1 and the two holes
came from ∂E . Then y ∩61 is the union of p spanning arcs which cut 61 into
p rectangles as in the case of 60, but the two holes, which came from ∂E , are
now contained in different consecutive rectangles, and x ∩61 is the union of two
arcs each joining a hole and a boundary circle of 61 as in Figure 3. If the original
subdisk C is disjoint from E1, then we are done since E1 is the desired primitive
disk resulting from the surgery.

Suppose that C also intersects E1, and let C1 be an outermost subdisk of C cut
up by C ∩ E1. Then C1 ∩61 is the frontier of a regular neighborhood of the union
of one hole of 61 and an arc, say α1, connecting the hole to a boundary circle.
The arc α1 is also disjoint from y ∩61 by the same reasoning as for α0. Thus if
we denote by E2 the disk from surgery on E1 along C1 that is not E , then ∂E2

represents a word xyxy p−1. See 61 in Figure 3.
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Figure 3. The sequence of 2-holed annuli from the consecutive
surgeries for L(5, 1).

We continue such a construction repeatedly whenever C also intersects the next
disk. For each 1 ≤ j ≤ p− 1, if C intersects E j , then we obtain the disk E j+1

from surgery on E j along an outermost subdisk C j cut up by C ∩ E j . We see that
|C ∩ E j+1|< |C ∩ E j | from the surgery construction. In the 2-holed annulus 6 j ,
the arc C j ∩6 j is the frontier of a regular neighborhood of the union of a hole of
6 j and an arc α j connecting the hole to a boundary circle. The arc α j is disjoint
from y∩6 j , and so ∂E j+1 represents a word of the form (xy) j xy p− j . In particular,
notice that the disk E p is semiprimitive and E p−1 is primitive, since there is a
primitive disk E ′′ in W disjoint from ∂E p that intersects ∂E p−1 in a single point.
Such an E ′′ is not hard to find. In the final 2-holed annulus 65 in Figure 3, the arc
z is the boundary circle of E ′′ in 6p. Note that z is disjoint from x ∪ y, and so it
does bound a disk E ′′ in the 3-ball W cut up by E ′ ∪ E ′0. Also, z intersects ∂E p−1

in a single point and is disjoint from ∂E p.
We remark that each of the arcs α j , j ∈ {0, 1, . . . , p− 1}, is disjoint from the

circle y due to the fact that D is primitive. There are infinitely many arcs α0 that
are not isotopic to each other in 60, but each arc α j in 6 j with j ≥ 1 is unique up
to isotopy. Therefore, once E1 is determined, we have the unique sequence of disks
E2, E3, . . . , E p only under the condition that each α j is disjoint from y.

Claim. For each j ∈ {2, 3, . . . , p− 1}, the subdisk C intersects E j .
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Proof of claim. Suppose not, and let E j be the first disk disjoint from C . First,
suppose that j ∈ {2, 3, . . . , p−3}. Then C is disjoint from E j and intersects E j−1,
and so the arc ∂C ∩ 6 j gives a subword of ∂D of the form (yx) j y p− j which
implies that D is not primitive by Lemma 2.2 again, which is a contradiction.
Next, suppose that j = p − 2. That is, C is disjoint from E p−2 and intersects
E p−3. Then one of the resulting disks from surgery on E along C is E p−2, and the
other one is exactly E p−1, which is a disk in the sequence of disks in the previous
construction. The subdisk C is disjoint from E p−2 ∪ E p−1, and consequently, C
necessarily intersects the semiprimitive disk E p in the previous construction in a
single arc. That is, |C ∩ E p| = 1. But from the consecutive surgery constructions
for j ∈ {2, 3, . . . , p−3}, we have 1≤ |C∩E p−3|< |C∩E0|, which contradicts the
minimality of |C∩E0|. Similarly, if j = p−1, then we have the same contradiction
on the minimality, since C is disjoint from E p in this case. This proves the claim.

By the claim, we can do surgery on E p−1 along C p−1 and one resulting disk
from surgery is E p, the semiprimitive disk. But |C ∩ E j+1| < |C ∩ E j | for each
j ∈ {1, 2, . . . , p−1}, and consequently |C ∩ E p|< |C ∩ E0|, which contradicts the
minimality of |C ∩ E0| again.

Therefore the primitive disk E1 is a disk from surgery on E along C , and E ′

is also a dual disk of E1, and so we complete the proof. We note that the other
disk from surgery is either E0 or E2 depending on whether C is disjoint from E0

or not. �

Theorem 3.3. Let (V,W ;6) be the genus-two Heegaard splitting of the lens space
L = L(p, 1) with p ≥ 2. Then, for every primitive pair {D, E} of V , D and E
have a common dual disk. In particular, the two disks of each primitive pair have
a unique common dual disk if p ≥ 3, and have exactly two common dual disks if
p = 2 which form a primitive pair in W .

Proof. The proof of the existence of a common dual disk goes almost in the same
way as that of Theorem 3.2, by taking the primitive disk D disjoint from E instead
of the outermost subdisk C in Theorem 3.2. That is, when we choose a dual disk E ′

of E so that |∂D∩∂E0| is minimal where E0 is the unique semiprimitive disk in V
disjoint from Nbd(E ∪ E ′), the primitive disk D must be E1, having the common
dual disk E ′ of E .

Now, let E ′ be a common dual disk of D and E . Let E0 and E ′0 be the unique
meridian disks of V and W respectively that are disjoint from Nbd(E ∪ E ′) (see
Figure 4, left). Cut the surface 6 along ∂E ′ ∪ ∂E ′0 to obtain the 4-holed sphere 6′.
Then ∂E ∩6′ is a single arc in 6′ connecting the two holes coming from ∂E ′, and
∂D ∩6′ consists of p−1 parallel arcs connecting the two holes coming from ∂E ′0
and two arcs connecting the holes coming from ∂E ′ to ∂E ′0 on opposite sides, as in
Figure 4.
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Figure 4. The surfaces 6 and 6′ for L(2, 1).

Let D′ be a common dual disk of D and E which is not isotopic to E ′. Then
an outermost subdisk C ′ of D′ cut up by D′ ∩ (E ′ ∪ E ′0) would intersect ∂D if C ′

is incident to E ′. Denote by ∂E ′
+

and ∂E ′
−

the two holes of 6′ which came from
∂E ′. We may assume that the endpoints of the arc α′ = C ′ ∩6′ meet ∂E ′

+
. Since

|∂D′∩∂E ′
+
| = |∂D′∩∂E ′

−
|, we must have one more arc component α′′ of ∂D′∩6′

other than C ′∩6′ whose endpoints meet ∂E ′
−

(see Figure 4, right). The arc α′′ also
intersects ∂D, and so ∂D′ intersects ∂D in more than one point, which contradicts
that D′ is a dual disk of D. Similarly, if C ′ is incident to E ′0, then D′ cannot be a
dual disk of E . Thus we see that D′ is disjoint from E ′ ∪ E ′0.

If p ≥ 3, there is no possibility of such a disk D′ which is disjoint from E ′ ∪ E ′0
and is not isotopic to E ′, and so E ′ is the unique common dual disk. If p= 2, there
is a unique circle in 6′ which is not boundary parallel and which intersects ∂E and
∂D exactly once (see the circle ∂D′ in Figure 4, right). So we have exactly two
common dual disks D′ and E ′ and in this case they are disjoint from each other. �

Given a primitive disk D in V , there are infinitely many (nonisotopic) primitive
disks each of which forms a primitive pair together with D. But any primitive pair
can be contained in at most one primitive triple, proved as follows:

Theorem 3.4. Let (V,W ;6) be the genus-two Heegaard splitting of the lens space
L = L(p, 1) with p ≥ 2. Then there is a primitive triple of V if and only if p = 3.
In this case, every primitive pair is contained in a unique primitive triple.

Proof. Let {E, E1} be a primitive pair of V . Choose a common dual disk E ′ of E
and E1 given by Theorem 3.3. There are unique semiprimitive disks E0 in V and
E ′0 in W disjoint from Nbd(E ∪ E ′). Let 61 be the 4-holed sphere ∂V cut up by
∂E ∪ ∂E1, and as in Figure 3 again, consider 61 as a 2-holed annulus with two
boundary circles coming from ∂E1 and two holes from ∂E . We give symbols x
and y to ∂E ′ and ∂E ′0 respectively as in the proof of Theorem 3.2.

The boundary of any primitive disk E2 in V disjoint from E and E1, if it exists,
lies in 61, and it is the frontier of a regular neighborhood of the union of a boundary
circle, a hole of 61 and an arc α1 connecting them. This arc is disjoint from the
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E ′D′

F ′

∂E

∂D

∂F

W

Figure 5. The primitive triple {D′, E ′, F ′} of W in L(3, 1) with
the boundary circles ∂D, ∂E , and ∂F of the disks in the primitive
triple of V .

arcs y ∩61, otherwise ∂E2 represents a word containing yxy−1; that is, E2 is not
primitive. Consequently, ∂E2 is uniquely determined and it represents a word of the
form xyxy p−1, and so it is primitive if and only if p = 3. Thus, only when p = 3,
we have the unique primitive triple {E, E1, E2} containing the pair {E, E1}. �

Remark 3.5. For any primitive triple {D, E, F} of V in L(3, 1), by Theorem 3.3,
there exist unique common dual disks D′, E ′, and F ′ of the disks in the pairs {E, F},
{F, D}, and {D, E} respectively. In fact, the disks D′, E ′, and F ′ form a primitive
triple of W . Furthermore, we have |∂D′ ∩ ∂D| = |∂E ′ ∩ ∂E | = |∂F ′ ∩ ∂F | = 2.
Figure 5 illustrates the triple {D′, E ′, F, } of W together with the boundary circles
of D, E and F in ∂W =6.

4. The complex of primitive disks

Let M be an irreducible 3-manifold with compressible boundary. The disk complex
of M is a simplicial complex defined as follows: The vertices of the disk complex
are isotopy classes of essential disks in M , and a collection of k+ 1 vertices spans
a k-simplex if and only if it admits a collection of representative disks which are
pairwise disjoint. In particular, if M is a handlebody of genus g ≥ 2, then the disk
complex is (3g− 4)-dimensional and is not locally finite. The following is a key
property of a disk complex:

Theorem 4.1. If K is a full subcomplex of the disk complex satisfying the following
condition, then K is contractible:

Let E and D be disks in M representing vertices of K. If E and D intersect
transversely and minimally, then at least one of the disks from surgery on E along
an outermost subdisk of D cut up by D ∩ E represents a vertex of K.
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Figure 6. Small portions of primitive disk complexes P(V ) for
p 6= 3 (left) and p = 3 (right).

In [Cho 2008], the above theorem is proved in the case that M is a handlebody,
but the proof is still valid for an arbitrary irreducible manifold with compressible
boundary. From the theorem, we see that the disk complex itself is contractible.

Now consider the genus-two Heegaard splitting (V,W ;6) of a lens space
L(p, 1) with p ≥ 2. We define the primitive disk complex, denoted by P(V ),
to be the full subcomplex of the disk complex spanned by the vertices of primitive
disks in V . We already know that every primitive disk is a member of infinitely many
primitive pairs, and so every vertex of P(V ) has infinite valency. The following is
our main theorem, a direct consequence of Theorems 3.2, 3.4 and 4.1:

Theorem 4.2. Let (V,W ;6) be the genus-two Heegaard splitting of the lens space
L = L(p, 1) with p ≥ 2. The primitive disk complex P(V ) is contractible. In
particular, if p 6= 3 it is a tree, and if p = 3 it is 2-dimensional and every edge is
contained in a unique 2-simplex.

Figure 6 illustrates portions of the primitive disk complexes. The black vertices
are the vertices of P(V ) while the white ones are the barycenters of edges when
p 6= 3 and of 2-simplices when p = 3. Observe that the 2-dimensional P(V )
deformation retracts to a tree in its barycentric subdivision, as in the figure.

5. Genus-two Goeritz groups of lens spaces L( p, 1)

In this section, we give explicit presentation of the genus-two Goeritz group G of
each lens space L(p, 1). From Theorem 4.2, if p 6= 3, the primitive disk complex
P(V ) is a tree, and if p = 3, then P(V ) is 2-dimensional but deformation retracts
to a tree. We simply denote by T the barycentric subdivision of the tree P(V ) if
p 6= 3 and the deformation retract of P(V ) if p= 3. Each of the trees T is bipartite,
as in Figure 6, with the black vertices of (countably) infinite valence, and the white
vertices of valence 2 if p 6= 3 and of valence 3 if p = 3.

Each black vertex of T is represented by a primitive disk, while each white
vertex is represented by a primitive pair if p 6= 3 and by a primitive triple if p = 3.
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π π π

π

β ′ β α

γ

E ′0 E ′ E ′0 D′ E ′

∂E0

∂E ∂E

W W

Figure 7. Generators of the stabilizer subgroup G{E}.

An element of the group G can be considered a simplicial automorphism of T. The
tree T is invariant under the action of G for each L(p, 1). In particular, G acts
transitively on the set of black vertices and on the set of white vertices, and hence
the quotient of T by the action of G is a single edge of which one end vertex is
black and another one white. Thus, by the theory of groups acting on trees due to
Bass and Serre (see [Serre 1980]), the group G can be expressed as the free product
of the stabilizer subgroups of two end vertices with the amalgamated stabilizer
subgroup of the edge.

First, we find a presentation of the stabilizer subgroup of a black vertex of T;
that is, of (the isotopy class of) a primitive disk in V . For convenience, we will
not distinguish disks (pairs and triples of disks) and homeomorphisms from their
isotopy classes in their notations. Throughout the section, G{A1,A2,...,Ak} will denote
the subgroup of G of elements preserving A1, A2, . . . , Ak setwise, where Ai will
be (isotopy classes of) disks or unions of disks in V or in W .

Lemma 5.1. Let E be a primitive disk in V . The stabilizer subgroup G{E} of E has
the presentation 〈α |α2

= 1〉 ⊕ 〈β, γ | γ 2
= 1〉, where the generators α, β and γ

are described in Figure 7.

Proof. Let P′(W ) be the full subcomplex of the primitive disk complex P(W ) for
W spanned by the vertices of dual disks of E . There is a unique semiprimitive disk
E ′0 in W disjoint from ∂E , and it is easy to show that any dual disk of E is disjoint
from E ′0. Thus P′(W ) is 1-dimensional and further, by a similar argument used
for P(V ), we have that P′(W ) is a tree whose vertices have infinite valence. That
is, when two dual disks of E intersect each other, one of the two disks from the
surgery construction is E ′0 and the other one is again a dual disk of E . Denote by
T′ the barycentric subdivision of P′(W ). The tree T′ is invariant under the action
of the stabilizer subgroup G{E}, and the quotient of T′ by the action is a single edge.
One vertex of this edge corresponds to a dual disk E ′ of E , and the other one to a
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primitive pair {E ′, D′} of dual disks of E . Thus G{E} can be expressed as the free
product of the stabilizer subgroups G{E,E ′} ∗G{E,E ′∪D′} amalgamated by G{E,E ′,D′}.

Consider the subgroup G{E,E ′} first. Any element of G{E,E ′} also preserves the
disks E0 and E ′0, which are unique meridian disks disjoint from E ∪ E ′ in V and in
W respectively. Since V cut up by E ∪ E0 and W cut up by E ′ ∪ E ′0 are all 3-balls,
the group G{E,E ′} is identified with the group of isotopy classes of orientation-
preserving homeomorphisms of 6 = ∂V = ∂W which preserve ∂E , ∂E ′, ∂E0,
and ∂E ′0. This group has a presentation 〈β, β ′ | (ββ ′)2 = 1, ββ ′ = β ′β 〉, where the
generators β and β ′ are π -rotations (half Dehn twists) described in Figure 7, left.

Next, consider the subgroup G{E,E ′∪D′}. Any element of this group preserves
E ′ ∪ D′ in W , and further it preserves E and E0 ∪ D0 in V where E0 and D0 are
unique meridian disks in V disjoint from E ∪ E ′ and E ∪ D′ respectively. Thus
G{E,E ′∪D′} is generated by two elements α and γ , where α is the hyperelliptic
involution, and γ is the element of order 2 exchanging E ′ and D′ described in
Figure 7, right. Thus G{E,E ′∪D′} has the presentation 〈α |α2

= 1〉 ⊕ 〈γ | γ 2
= 1〉.

Similarly, G{E,E ′,D′} has the presentation 〈 α |α2
= 1〉. Observing that α satisfies

ββ ′ = α, we have the desired presentation of G{E}. �

Thus the stabilizer subgroups of black vertices have the same presentation for
each p ≥ 2, but for white vertices, we have the following cases depending on p:

Lemma 5.2. A white vertex of T corresponds to a primitive pair if p 6= 3 and to a
primitive triple if p = 3.

(1) Let {D, E} be a primitive pair of V in L(p, 1). Then the stabilizer subgroup
G{D∪E} has the presentation 〈ρ, γ | ρ4

= γ 2
= (ργ )2 = 1〉 if p = 2, and

〈α |α2
= 1〉 ⊕ 〈 σ | σ 2

= 1〉 if p ≥ 3, where the generators are described in
Figures 8 and 9.

π

π π

π/4

π/2γ

α

γ

ρ

α

D′ E ′

E ′

D′

D′

E ′

∂E

∂D

∂E

∂E

∂D ∂D

W

Figure 8. Generators of the stabilizer subgroup G{D∪E} for L(2, 1).
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π

π

σ

αD E

∂E ′

V

Figure 9. Generators of the stabilizer subgroup G{D∪E} for
L(p, 1), with p ≥ 3.

(2) Let {D, E, F} be a primitive triple of V in L(3, 1). The stabilizer subgroup
G{D∪E∪F} has the presentation 〈α |α2

= 1〉 ⊕ 〈δ, γ | δ3
= γ 2

= (γ δ)2 = 1〉,
where the generators are described in Figure 10.

Proof. (1) First, let {D, E} be a primitive pair of V in L(2, 1). Then, by Theorem 3.3,
there is a unique primitive pair {D′, E ′} of W such that D′ and E ′ are common dual
disks of D and E . Any element of G{D∪E} preserves D′ ∪ E ′, and hence G{D∪E}

is identified with the stabilizer subgroup G{D∪E,D′∪E ′}. Since D ∪ E and D′ ∪ E ′

cut up V and W into 3-balls, the group G{D∪E,D′∪E ′} is identified with the group
of isotopy classes of orientation-preserving homeomorphisms of 6 = ∂V = ∂W
which preserve ∂D ∪ ∂E and ∂D′ ∪ ∂E ′. This is the dihedral group D8 of order
8 with generators ρ and γ described in Figure 8. The 3-ball in Figure 8, right, is
obtained by cutting up W along D′ ∪ E ′. Figure 8 gives two descriptions of the

E ′
D′

F ′
∂E
∂D
∂FE ′D′

F ′

γ
γ ′

α

δ

π

π

π

π/3

W B

Figure 10. Left: The primitive triple {D′, E ′, F ′} of W and the
arcs (∂D ∪ ∂E ∪ ∂F)∩ ∂B. Right: The 3-ball B.



GENUS-TWO GOERITZ GROUPS OF LENS SPACES 15

elements α and γ . Thus we have the presentation 〈ρ, γ | ρ4
= γ 2

= (ργ )2 = 1〉.
We remark that the hyperelliptic involution α equals ρ2.

Next, let {D, E} be a primitive pair of V in L(p, 1) with p ≥ 3. There is a
unique common dual disk E ′ of D and E by Theorem 3.3, and hence G{D∪E}

is identified with the stabilizer subgroup G{D∪E,E ′}. As in the case of G{E,E ′∪D′}

in the proof of Lemma 5.1, this group is generated by two elements: One is the
hyperelliptic involution α, and the other one is the element, denoted by σ , of order
2 exchanging D and E described in Figure 9. Thus we have the presentation
〈α |α2

= 1〉⊕ 〈σ | σ 2
= 1〉.

(2) Let {D, E, F} be a primitive triple of V in L(3, 1). Then there exists a unique
primitive triple {D′, E ′, F ′} of W as described in Remark 3.5 and Figure 5. Thus
the stabilizer subgroup G{D∪E∪F} is identified with G{D∪E∪F,D′∪E ′∪F ′}. The union
of three disks D′∪E ′∪F ′ cuts up W into two 3-balls. One of them, say B, is shown
in Figure 10, right. Consider the group of isotopy classes of orientation-preserving
homeomorphisms of B which preserve D′ ∪ E ′ ∪ F ′ and (∂D∪ ∂E ∪ ∂F)∩ ∂B on
the boundary. This group is the dihedral group D6= 〈δ, γ

′
| δ3
= γ ′2= (γ ′δ)2= 1〉

of order 6 with generators δ and γ ′ in Figure 10, right. The element γ in Figure 10,
left, is different from γ ′, since γ exchanges the two 3-balls. But they are related
by γ = αγ ′, where α is the hyperelliptic involution exchanging the two 3-balls
as described in Figure 10, left. Thus we see that the relation (γ ′δ)2 = 1 in D6

is equivalent to (γ δ)2 = 1. Since the elements α, γ and δ extend to elements
of G{D∪E∪F,D′∪E ′∪F ′}, this group can be considered as the extension of D6 by
〈α |α2

= 1〉 with relations αγα = γ and αδα = δ. Thus we have the desired
presentation of G{D∪E∪F}. �

Finally, the stabilizer subgroups of an edge are calculated in a similar way.

Lemma 5.3. An edge of T corresponds to the pair of end vertices.

(i) Let {D, E} be a primitive pair of V in L(p, 1). Then G{E,D∪E} = G{E,D}
has a presentation 〈α |α2

= 1〉 ⊕ 〈γ | γ 2
= 1〉 if p = 2, and a presentation

〈α |α2
= 1〉 if p ≥ 3.

(ii) Let {D, E, F} be a primitive triple of V in L(3, 1). Then G{E,D∪E∪F} =

G{E,D∪F} has a presentation 〈α |α2
= 1〉⊕ 〈 γ | γ 2

= 1〉.

Combining Lemmas 5.1, 5.2, and 5.3, we obtain the main result.

Theorem 5.4. The genus-2 Goeritz group G of a lens space L(p, 1) with p ≥ 2 has
the following presentations:

(i) 〈β, ρ, γ | ρ4
= γ 2

= (γρ)2 = ρ2βρ2β−1
= 1〉 if p = 2.

(ii) 〈α |α2
= 1〉⊕ 〈β, δ, γ | δ3

= γ 2
= (γ δ)2 = 1〉 if p = 3.

(iii) 〈α |α2
= 1〉⊕ 〈β, γ, σ | γ 2

= σ 2
= 1〉 if p ≥ 4.
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