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A COMPUTATIONAL APPROACH TO THE
KOSTANT–SEKIGUCHI CORRESPONDENCE

HEIKO DIETRICH AND WILLEM A. DE GRAAF

Let g be a real form of a simple complex Lie algebra. Based on ideas of
Ðoković and Vinberg, we describe an algorithm to compute representatives
of the nilpotent orbits of g using the Kostant–Sekiguchi correspondence.
Our algorithms are implemented for the computer algebra system GAP and,
as an application, we have built a database of nilpotent orbits of all real
forms of simple complex Lie algebras of rank at most 8. In addition, we
consider two real forms g and g0 of a complex simple Lie algebra gc with
Cartan decompositions g D k ˚ p and g0 D k0 ˚ p0. We describe an ex-
plicit construction of an isomorphism g! g0, respecting the given Cartan
decompositions, which fails if and only if g and g0 are not isomorphic. This
isomorphism can be used to map the representatives of the nilpotent orbits
of g to other realizations of the same algebra.

1. Introduction

When considering the action of a Lie group on its Lie algebra, the question arises
as to what its orbits are. This question has mainly been studied for complex simple
Lie algebras gc , with their adjoint groups Gc . Particularly the theory concerning
nilpotent orbits (that is, Gc-orbits consisting of nilpotent elements) has seen many
interesting developments over the past decades; we refer to [Collingwood and
McGovern 1993] for a detailed account. These orbits have been classified in
terms of combinatorial objects called weighted Dynkin diagrams, using a beautiful
connection between nilpotent orbits and orbits of sl2-triples. If gc is of classical
type, then the nilpotent orbits also have been classified in terms of certain sets of
partitions (of the dimension of the natural representation).

For real Lie algebras g, with the action of the adjoint group G, it is much harder
to classify the nilpotent (G-)orbits. The main problem compared to the complex
case is that a weighted Dynkin diagram can correspond to several nilpotent orbits.
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To illustrate this phenomenon consider Gc D PSLn.C/ and G D PSLn.R/ with
their Lie algebras gc D sln.C/ and g D sln.R/. The nilpotent orbits in gc are
parametrized by partitions of n, whose parts correspond to the sizes of the Jordan
blocks of a representative of the orbit. The nilpotent orbits in g are associated with
the same partitions, with the difference that the partitions with only even terms
correspond to two nilpotent orbits.

More generally, the nilpotent orbits of the simple real Lie algebras of classical type
have been classified in terms of combinatorial objects such as partitions or certain
types of Young diagrams; see [Collingwood and McGovern 1993, Section 9.3]. For
the classification in Lie algebras of exceptional types the main ingredient is the
Kostant–Sekiguchi correspondence: Let gD k˚ p be a Cartan decomposition of
the simple real Lie algebra g with complexification gc D kc ˚ pc . Let Gc be the
adjoint group of gc and denote by G, K, and Kc the connected Lie subgroups of Gc

with corresponding Lie algebras g, k, and kc , respectively. The Kostant–Sekiguchi
correspondence states a one-to-one correspondence between the nilpotent orbits in
g and the nilpotent Kc-orbits in pc . Although this correspondence can be described
explicitly (as we will do in Section 3), it is difficult to obtain concrete representatives
of nilpotent orbits in g. Most classification results therefore are on the complex side,
that is, consider nilpotent Kc-orbits in pc ; see for example [Ðoković 1988; Galina
2009; Noël 1998; 2001a; 2001b]. However, in tedious work, Ðoković [1998; 1999;
2000] has used this correspondence to obtain representatives of the nilpotent orbits
for each of the simple real Lie algebras of exceptional type.

The aim of this paper is to describe methods for constructing representatives of
the nilpotent orbits of a real simple Lie algebra on a computer. One approach to
obtain representatives is to take the existing classifications in the literature, to set up
isomorphisms to the algebras given, and to map the given representatives. However,
it is not straightforward to verify the correctness of the representatives given in the
literature, so this approach is rather error-prone. (In fact, in each of his papers cited
above, Ðoković corrected some errors, due to typos, in his previous papers.) For
this reason we devise algorithms that effectively carry out the Kostant–Sekiguchi
correspondence. Since the correctness of each step can be checked algorithmically,
we get a certified list of representatives.

1.1. Main results. We describe computational methods to achieve three aims:

(A) Construct isomorphism type representatives for all real forms of a simple
complex Lie algebra.

(B) Construct representatives of all nilpotent orbits of a real form constructed
in (A).

(C) Construct an isomorphism between two given real forms of a simple complex
Lie algebra.
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For computational purposes it is often needed that the Lie algebras are given
by means of a multiplication table (with respect to some basis). We describe in
Section 2 how to construct multiplication tables for all real forms of simple complex
Lie algebras (up to isomorphism).

In Sections 3–6 we describe our algorithms to construct representatives of the
nilpotent orbits of a Lie algebra constructed in (A). We combine the Kostant–
Sekiguchi correspondence (see Section 3) with the theory of carrier algebras devel-
oped in [Vinberg 1979] (see Section 4). This is inspired by Ðoković’s [1987] proof
of the Kostant–Sekiguchi correspondence. In Section 5 we discuss the construction
of so-called Chevalley systems; results obtained there will also be important for (C).
In Section 6 we discuss the main computational problem for applying the Kostant–
Sekiguchi correspondence, namely, to construct a complex Cayley triple in a Kc-
orbit of homogeneous sl2-triples; we give more details in Section 3.

In order to use our lists of representatives of nilpotent orbits also in other re-
alizations of the Lie algebras (for instance in the split real forms, in their natural
representation), we devise algorithms to construct isomorphisms between real
simple Lie algebras. More precisely, in Section 7 we discuss the isomorphism
problem for two real forms g and g0 of a complex simple Lie algebra gc . If gD k˚p

and g0 D k0 ˚ p0 are given Cartan decompositions, then we describe an explicit
construction of an isomorphism g! g0, respecting the given Cartan decompositions,
which fails if and only if such an isomorphism does not exist.

1.2. Related work. Ðoković [1998; 1999; 2000] first used the Kostant–Sekiguchi
correspondence to obtain representatives of nilpotent orbits for the real forms of
Lie algebras of exceptional type. His methods vary somewhat from paper to paper.
However, in all these publications the main idea is to start with a complex nilpotent
orbit Oc � gc meeting g nontrivially. Then some real representatives of Oc in g are
computed. The Kostant–Sekiguchi correspondence is used to decide whether these
real representatives lie in the same G-orbit or not. The process stops when enough
elements lying in different G-orbits are found. This ad hoc approach has worked
for the Lie algebras of exceptional type, but there is no guarantee that it will always
yield representatives of all nilpotent orbits. Furthermore, it is rather tedious to apply
and difficult to translate into a systematic approach suitable for a computer.

In our approach the problem is reduced to finding a complex Cayley triple in
a carrier algebra. Most carrier algebras that occur are principal and for those we
have an automatic procedure for finding the triple (see Section 6.2). However, some
carrier algebras are not principal, and for those we translate the problem into a set
of polynomial equations that has to be solved. For dealing with the latter problem
we use a simple-minded systematic technique (see Section 6.3) which turned out to
work well in all our examples, which include all Lie algebras of rank at most 8.
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1.3. Computational remark. Our algorithms are implemented for the computer
algebra system GAP [GAP 2012], as part of a package for doing computations with
real Lie algebras, called CoReLG [CoReLG 2012]. The functions for obtaining
the multiplication tables of the real simple Lie algebras in this package have been
implemented by Paolo Faccin; see [Dietrich et al. 2013]. As an application, we
created a database containing representatives of nilpotent orbits for all simple real
forms of rank at most 8; this database will also be contained in the package CoReLG.
As mentioned in the previous paragraph, we construct certain complex Cayley
triples in carrier algebras. It is possible that isomorphic carrier algebras will turn
up when dealing with different simple Lie algebras. To avoid dealing with the
same problem twice, we have also built a database of nonprincipal carrier algebras,
together with the Cayley triples that we found (see Section 6.3.1).

Our approach works uniformly for all simple real Lie algebras. However, our
database is currently limited to the Lie algebras of ranks up to 8 for two reasons.
Firstly, it includes all exceptional types. Secondly, in the SLA package, the current
implementations of the algorithms for listing the nilpotent orbits of a �-group are
not very efficient when � is an outer automorphism. This makes it currently difficult
to go beyond rank 8 when the real form is defined relative to an outer involution.

There is the question of which base field to use for the computations. The Lie
algebras with which we work are defined over R or C. However, we want to perform
exact computations, and the field Q is not suitable as we often need square roots of
rational numbers. For this reason we work over the field Q

p

DQ.f
p

p jp a primeg/.
In the Appendix we indicate how the arithmetic of that field is implemented. Since
we often work in the complex Lie algebra gc in order to obtain results in the real
Lie algebra g, we also use the field Q

p

.{/ where { D
p
�1 2 C.

1.4. Notation. Throughout this paper we retain the previous notation and denote
by � the Cartan involution associated with the Cartan decomposition gD k˚ p. By
gc D kc˚pc we denote the complexification of g, and � is the complex conjugation
of gc with respect to g. By abuse of notation, we also denote by � its extension
to gc . Let Gc be the adjoint group of gc and denote by G, K, and Kc the connected
Lie subgroups of Gc with corresponding Lie algebras g, k, and kc , respectively.

2. Constructing the Lie algebras

The aim of this section is to describe the construction of the real forms we consider.
Our computational setup is as in [de Graaf 2000]; that is, in our algorithms we
suppose the Lie algebras are given by multiplication tables, usually with respect to
Chevalley bases. For the sake of completeness, we first recall the relevant definitions,
and then construct certain bases of all real forms (up to isomorphism) of simple
complex Lie algebras.
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2.1. Canonical generators. Let gc be a complex semisimple Lie algebra with
Cartan subalgebra hc . Let ˆ be the corresponding root system with basis of simple
roots � D f˛1; : : : ; ˛lg. Then gc has a Chevalley basis with respect to ˆ; see
[Humphreys 1978, Section 25.2]:

Definition 1. A basis fh1; : : : ; hl ;x˛ j ˛ 2 ˆg of gc is a Chevalley basis if
fh1; : : : ; hlg spans the Cartan subalgebra hc of gc , and for all ˛, ˇ 2ˆ the following
hold:

� x˛ spans the root space g˛Dfx 2gc j Œhi ;x�D˛.hi/x for all ig corresponding
to ˛,

� Œx˛;x�˛ �D h˛ , where h˛ is the unique element in Œg˛; g�˛ � with ˛.h˛/D 2;
in particular, hi D h˛i

for all i D 1; : : : ; l ,

� Œx˛;xˇ � D N˛;ˇx˛Cˇ if ˛ C ˇ 2 ˆ, where N˛;ˇ ¤ 0 is an integer with
N˛;ˇ D�N�˛;�ˇ,

� Œx˛;xˇ �D 0 if ˛Cˇ 62ˆ and ˛ ¤�ˇ.

Note that we see the roots in ˆ as elements of the dual space .hc/� via Œh;x˛ �D
˛.h/x˛ . For two roots ˛, ˇ 2ˆ, the corresponding Cartan integer now is h˛; ˇi D
˛.hˇ/; the Cartan matrix of ˆ defined by � is .h˛i ; j̨ i/ij ; see [Humphreys 1978,
pp. 39, 55]. In the sequel, we usually denote by fh1; : : : ; hl ;x˛ j ˛ 2 ˆg a fixed
Chevalley basis of gc , and by fhi ;xi ;yi j i D 1; : : : ; lg with xiDx˛i

and yiDx�˛i

the canonical generating set it contains:

Definition 2. A generating set fci ; ai ; bi j i D 1; : : : ; lg of gc is a canonical gener-
ating set if for all i; j 2 f1; : : : ; lg the following hold:

� ci 2 h
c , ai 2 g˛i

, and bi 2 g�˛i
,

� Œci ; cj �D 0 and Œai ; bj �D ıij ci , where ıij is the Kronecker delta,

� Œci ; aj �D h j̨ ; ˛iiaj and Œci ; bj �D�h j̨ ; ˛iibj .

Let fc0i ; a
0
i ; b
0
i j i D 1; : : : ; lg be a second canonical generating set of gc , possibly

relative to a different basis of simple roots �0. If � and �0 define the same Cartan
matrix, then there exists a unique automorphism of gc which maps .ci ; ai ; bi/ to
.c0i ; a

0
i ; b
0
i/ for every i D 1; : : : ; l ; see [Jacobson 1962, Chapter IV, Theorem 3]. We

freely use this property throughout the paper. Also, if ˆ and l follow from the
context, then we write fhi ;x˛ j ˛; ig and fhi ;xi ;yi j ig for the Chevalley basis and
canonical generating set. We end this section with a proposition, which yields a
straightforward algorithm to obtain a canonical generating set. For its proof, as
well as the algorithm, we refer to [de Graaf 2000, Section 5.11].

Proposition 3. For i D 1; : : : ; l let ai 2 g˛i
and bi 2 g�˛i

, and write ci D Œai ; bi �.
If Œci ; ai �D 2ai for all i , then fci ; ai ; bi j ig is a canonical generating set of gc .
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2.2. Real forms. We now turn to the construction of the real forms of a complex
semisimple Lie algebra gc; without loss of generality, we may assume that gc is
simple. We continue to use the notation of Section 2.1; that is, hc is a Cartan
subalgebra of gc with root systemˆ, having basis of simple roots�Df˛1; : : : ; ˛lg.
Let fhi ;x˛ j i; ˛g and fhi ;xi ;yi j ig be a corresponding Chevalley basis and
canonical generating set. Recall that a real Lie algebra g0 is a real form of gc if
gc D g0˚ {g0 as real vectorspaces.

2.2.1. Real forms defined by involutions. It is proved in [Onishchik 2004, Theo-
rem 3.1] that the real subalgebra u of gc defined as

uD SpanR.f{h1; : : : ; {hl ;x˛ �x�˛; {.x˛Cx�˛/ j ˛ 2ˆ
C
g/

is a (compact) real form of gc . Let � be the corresponding real structure; that is,
� W gc! gc is the complex conjugation of gcD u˚{u with respect to u. This implies
that �.x˛/D�x�˛ for all ˛ 2ˆ; in particular, for all i D 1; : : : ; l we have

�.hi/D�hi ; �.xi/D�yi ; and �.yi/D�xi :

It follows from [Onishchik 2004, Theorem 3.2] that, up to isomorphism, every real
form of gc is constructed as follows: Let � be an involutive automorphism of gc

commuting with � . Then uD u0˚ u1, where ui is the eigenspace of � in u with
eigenvalue .�1/i , and the real form defined by u and � is

gD g.�; u/D k˚ p with kD u0 and pD {u1:

This decomposition of g is a Cartan decomposition whose Cartan involution is the
restriction of � to g; see [Onishchik 2004, Section 5]. We denote by � W gc ! gc

the complex conjugation of gc D g˚ {g relative to g.
Two such real forms g.�; u/ and g.� 0; u/ are isomorphic if and only if � and � 0

are conjugate in Aut.gc/. The finite order automorphisms of gc are, up to conjugacy,
classified by so-called Kac diagrams; see [Vinberg et al. 1990, Section 3.3.7] or
[Helgason 1978, Section X.5]. By running through these diagrams we can efficiently
construct all involutions of gc up to conjugacy, and hence all real forms of gc up to
isomorphism.

2.2.2. Real forms of inner type. Let � be an inner involutive automorphism of gc .
Up to conjugacy, � maps .hi ;xi ;yi/ to .hi ; �ixi ; �

�1
i yi/ with �i 2 f˙1g for all i .

Clearly, such an automorphism commutes with � , and bases of k and p in g D

g.�; u/D k˚ p are

KD fx˛ �x�˛; {.x˛Cx�˛/ j ˛ 2ˆ
C with �.x˛/D x˛g[ f{h1; : : : ; {hlg;

PD f{.x˛ �x�˛/;x˛Cx�˛ j ˛ 2ˆ
C with �.x˛/D�x˛g:
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We define g by the multiplication table constructed via the basis BD K[P. We
note that f{h1; : : : ; {hlg spans a Cartan subalgebra h0 of k, which is also a Cartan
subalgebra of g. It is straightforward to see that �.x˛/D�x�˛ if �.x˛/D x˛ , and
�.x˛/D x�˛ if �.x˛/D�x˛.

2.2.3. Real forms of outer type. Let � be an outer involutive automorphism of gc .
Up to conjugacy, � D ' ı �, where ' is an involutive diagram automorphism
and � is an inner involutive automorphism; clearly, � and ' commute. As above,
we can assume that � maps .hi ;xi ;yi/ to .hi ; �ixi ; �

�1
i yi/ with �i 2 f˙1g for

all i . Further, ' maps .hi ;xi ;yi/ to .h�.i/;x�.i/;y�.i// for all i , where � is an
involutive permutation of f1; : : : ; lg with .h j̨ ; ˛ii/ij D .h˛�.j/; ˛�.i/i/ij ; note that
fh�.i/;x�.i/;y�.i/ j ig also is a canonical generating set, and ��.i/ D �i since �
and ' commute. The permutation � induces an automorphism of ˆ, which we also
denote by '; that is, '.˛i/D ˛�.i/.

Let g D g.�; u/ D k˚ p. We now determine bases K and P for k and p, and,
as before, define g by the multiplication table constructed via BD K[P. Since
gc admits outer automorphisms, it is of type A, D, or E6, in particular, simply
laced; see [Onishchik 2004, Table 1]. We first consider the case where gc is not of
type Al with l even. In this case there exists a Chevalley basis fhi ; Ox˛ j i; ˛g such
that, when defining yN˛;ˇ by Œ Ox˛; Oxˇ �D yN˛;ˇ Ox˛Cˇ , we have yN'.˛/;'.ˇ/D yN˛;ˇ for
all ˛; ˇ 2ˆ; see [Kac 1990, Section 7.9] or [de Graaf 2000, Section 5.15]. (This
result does not hold if gc is of type Al with l even; we consider this case in the
following section.) Induction on the height of ˛ now proves that '. Ox˛/D Ox'.˛/ for
all ˛ 2ˆ. Thus, if '.˛/D ˛, then ' acts as the identity on g˛ , which implies that
'.x˛/D x˛.

For ˛ 2ˆ define

v˛ D x˛ �'.x˛/ and u˛ D

�
x˛ if '.˛/D ˛;

x˛C'.x˛/ if '.˛/¤ ˛:

Let ‰C be the set consisting of all ˛ 2 ˆC such that '.˛/ D ˛, along with one
element of each pair .˛; '.˛// where '.˛/ ¤ ˛. Let I � f1; : : : ; lg be a set of
representatives of the �-orbits on f1; : : : ; lg of length 2. Now we define K as the
union of the three sets

H0 D f{hi j i D 1; : : : ; l with �.i/D ig[ f{.hi C h�.i// j i 2 Ig;

fu˛ �u�˛; {.u˛Cu�˛/ j ˛ 2‰
C with �.x˛/D x˛g; and

fv˛ � v�˛; {.v˛C v�˛/ j ˛ 2‰
C with �.x˛/D�x˛ and '.˛/¤ ˛gI

note that, if '.˛/D ˛ and �.x˛/D x˛, then �.x˛/D x˛, whence u˛ � u�˛ and
{.u˛Cu�˛/ lie in k. We define P to be the union of
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fhi � h�.i/ j i 2 Ig; f{.u˛ �u�˛/;u˛Cu�˛ j ˛ 2‰
C with �.x˛/D�x˛g;

and f{.v˛ � v�˛/; v˛C v�˛ j ˛ 2‰
C with �.x˛/D x˛ and '.˛/¤ ˛g:

It is straightforward to verify that K and P are bases of k and p. Further, H0 spans
a Cartan subalgebra h0 of k, but this time the complexification hc

0
is not a Cartan

subalgebra of gc . We have �.u˛/D �u�˛ and �.v˛/D v�˛ if �.x˛/D x˛, and
�.u˛/D u�˛ and �.v˛/D�v�˛ otherwise.

Remark 4. We consider the weight space decomposition of gc with respect to hc
0

and show that each weight space in kc and pc (corresponding to a nonzero weight)
is 1-dimensional. Note that ' fixes hc

0
pointwise and, if h 2 hc

0
, then ˛i.h/'.xi/D

'.Œh;xi �/D Œh; '.xi/�D '.˛i/.h/'.xi/ for all i , implying that ˛.h/D '.˛/.h/ for
all ˛ 2ˆ. Now write ‰D‰C[.�‰C/ and define ‰0Df˛jhc

0
j ˛ 2‰g as a subset

of .hc
0
/?. Consider the simple Lie algebra lD fx 2 gc j '.x/D xg; see [Kac 1990,

Section 7.9]. It is easy to verify that for all ˛ 2‰ we have u˛ 2 l, and, further, if
h 2 hc

0
, then Œh;u˛ � D ˛.h/u˛. Since l is simple, this proves that the root space

decomposition of l with respect to hc
0

is lD hc
0
˚
L
˛2‰ l˛, where l˛ is spanned

by u˛; in particular, j‰j D j‰0j. So we have the hc
0
-weight space decompositions

kc
Dhc

0˚

M
˛2‰0

kc
˛; pc

DSpanC.fhi�h�.i/ j iD1; : : : ; l with �.i/¤ ig/˚
M
˛2‰0

pc
˛;

where each kc
˛ D fx 2 kc j Œh;x� D ˛.h/x for all h 2 hc

0
g (and similarly pc

˛) has
dimension at most one. More precisely, if ˛ 2ˆ and N̨ D ˛jhc

0
, then the following

hold:

� if '.˛/¤ ˛ and �.x˛/D x˛, then kc
N̨
D SpanC.u˛/ and pc

N̨
D SpanC.v˛/,

� if '.˛/¤ ˛ and �.x˛/¤ x˛, then kc
N̨
D SpanC.v˛/ and pc

N̨
D SpanC.u˛/,

� if '.˛/D ˛ and �.x˛/D x˛, then kc
N̨
D SpanC.u˛/ and pc

N̨
D 0,

� if '.˛/D ˛ and �.x˛/¤ x˛, then kc
N̨
D 0 and pc

N̨
D SpanC.u˛/.

2.2.4. Real forms of Al , l even, of outer type. It remains to consider the case
where gc is of type Al with l D 2m even; we use the notation of the previous
section. Up to conjugacy, we can assume that � is the identity; thus � D ' is
the unique diagram automorphism. (This follows directly from looking at the
possible Kac diagrams of an outer involution in this case.) Since gc is simply laced,
N˛;ˇ D ˙1 for all ˛; ˇ 2 ˆ with ˛ C ˇ 2 ˆ, and induction on the height of ˛
proves that '.x˛/D˙x'.˛/ for all ˛ 2ˆ. By [Kac 1990, Section 7.10], there is
a Chevalley basis of gc such that '.x˛/D�x˛ for all ˛ 2ˆ with '.˛/D ˛. Let
gD g.�; u/D k˚ p. A basis of k is the set K defined as the union of

H0Df{.hiCh�.i// j i 2Ig and fu˛�u�˛; {.u˛Cu�˛/ j˛2‰
C with '.˛/¤˛gI
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note that jIj Dm since � acts fixed-point freely on f1; : : : ; 2mg. A basis P of p is
the union of

fhi � h�.i/ j i 2 Ig; f{.u˛ �u�˛/;u˛Cu�˛ j ˛ 2‰
C with '.˛/D ˛g;

and f{.v˛ � v�˛/; v˛C v�˛ j ˛ 2‰
C with '.˛/¤ ˛g:

Again, H0 spans a Cartan subalgebra h0 of k, and hc
0

is not a Cartan subalgebra
of gc . We obtain weight space decompositions of kc and pc as in Section 2.2.3. All
nonzero weight spaces with respect to hc

0
are 1-dimensional and spanned by a u˛

or v˛. Again, �.u˛/D u�˛ and �.v˛/D v�˛.

3. Kostant–Sekiguchi correspondence

Let gc be a complex semisimple Lie algebra with real form gD k˚ p, associated
complex conjugation � , and Cartan involution � . Recall that we denote by G

and Kc the connected Lie subgroups of the adjoint group Gc of gc with Lie
algebras g and kc , respectively. The Kostant–Sekiguchi correspondence is a one-to-
one correspondence between the nilpotent G-orbits in g and the nilpotent Kc-orbits
in pc . The latter orbits can be constructed using the algorithms in [de Graaf 2011;
2012]; note that Kc , together with its action on pc , is a so-called �-group. An
implementation of the Kostant–Sekiguchi correspondence would therefore allow us
to construct the nilpotent G-orbits in g.

We now describe this correspondence in more detail. Its proof has been com-
pleted independently in [Ðoković 1987] and [Sekiguchi 1987]; here we follow the
description in the first of these papers, and refer the reader to it for an historical
account and (references to) proofs. First, we need some notation. The following
definitions are as in [Ðoković 1987] with the exception that our “f ” has been
replaced by “�f ”. An sl2-triple in g (or gc) is a triple .f; h; e/ of elements in
g (or gc) such that Œh; e�D 2e, Œh; f �D �2f , and Œe; f �D h. The characteristic
(element) of this triple is h.

Definition 5. (a) An sl2-triple .f; h; e/ in gc is homogeneous if e; f 2 pc and
h 2 kc .

(b) An sl2-triple .f; h; e/ in gc is a complex Cayley triple if it is homogeneous
and �.e/D f .

(c) An sl2-triple .f; h; e/ in g is a real Cayley triple if �.e/D�f .

The Kostant–Sekiguchi correspondence can now be stated as in Figure 1, where
all maps are bijections. We provide some details. Every nonzero nilpotent e 2 pc

lies in some homogeneous sl2-triple .f; h; e/ of gc , and the projection .f; h; e/ 7! e

induces a bijection between the Kc-orbits of homogeneous sl2-triples in gc and
the Kc-orbits of nonzero nilpotent elements in pc ; let '1 denote the inverse of this
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bijection. Every Kc-orbit of homogeneous sl2-triples in gc contains a complex
Cayley triple and, conversely, every K-orbit of complex Cayley triples in gc is
contained in a unique Kc-orbit of homogeneous sl2-triples in gc . Thus, inclusion
gives rise to a bijection between the K-orbits of complex Cayley triples and the
Kc-orbits of homogeneous sl2-triples in gc ; again, let '2 denote the inverse of this
bijection. Let .f; h; e/ be a real Cayley triple. Then its Cayley transform is the
triple �

1
2
.{eC {f C h/; {.e�f /; 1

2
.�{e� {f C h/

�
;

which is a complex Cayley triple. The inverse Cayley transform maps a complex
Cayley triple .f; h; e/ to the real Cayley triple�

1
2
{.e�f C h/; eCf; 1

2
{.e�f � h/

�
:

Taking inverse Cayley transforms induces a bijection '3 between the K-orbits of
complex Cayley triples in gc and the K-orbits of real Cayley triples in g. The
projection .f; h; e/ 7! e yields a bijection '4 between these K-orbits of real Cayley
triples and the G-orbits of nonzero nilpotent elements in g. In conclusion, the
Kostant–Sekiguchi correspondence states that '4 ı'3 ı'2 ı'1 is a bijection.

nonzero nilpotent
G-orbits in g eG

K-orbits of real
Cayley triples in g

.f; h; e/K

K-orbits of complex
Cayley triples in g

.f 0; h0; e0/K

Kc-orbits of homoge-
neous sl2-triples in gc .f 0; h0; e0/K

c

nonzero nilpotent
Kc-orbits in pc e0K

c

projection

inverse Cayley transform

inclusion

projection'1

'2

'3

'4

Figure 1. Kostant–Sekiguchi correspondence.

Using the algorithms of [de Graaf 2011; 2012], we can compute all Kc-orbits of
homogeneous sl2-triples in gc , which also gives us the bijection '1. A realization of
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the map '4 ı'3 is straightforward. Thus, computationally, it remains to realize '2,
that is:

Main Problem. Find a complex Cayley triple in a Kc-orbit of homogeneous sl2-
triples.

We discuss our approach to this problem in Section 6. For this purpose, we
require some preliminary results; the subsequent sections therefore introduce carrier
algebras and Chevalley systems.

4. Carrier algebras

We briefly review the theory of carrier algebras as developed in [Vinberg 1979].
In general, carrier algebras are connected to Zm-graded Lie algebras. Since we
exclusively deal with Z2-gradings (coming from Cartan decompositions), we only
consider this case here.

Let gD k˚ p be as in Section 2.2, and consider the Z2-grading gc D gc
0
˚ gc

1
,

where gc
0
D kc and gc

1
D pc . Recall that G0 DKc is the connected Lie subgroup

of Gc with Lie algebra gc
0
. Let e 2 gc

1
be nilpotent, and consider the normalizer

N0.e/D fx 2 g
c
0
j Œx; e�D �e for some � 2 Cg. Let t be a maximal torus of N0.e/,

that is, a maximal abelian subalgebra consisting of semisimple elements, and let
� 2 t� be defined by Œt; e�D �.t/e for t 2 t. Let ac D

L
k2Z ak be the Z-graded

Lie algebra defined by

ak D fx 2 g
c
k mod 2 j Œt;x�D k�.t/x for all t 2 tg:

The carrier algebra of e is the commutator algebra of ac with the inherited Z-
grading; that is,

sc
D s.e; t/D

M
k2Z

sk D Œa
c ; ac �:

As shown in [Vinberg 1979], it has the following properties:

� sc is semisimple with dim s0 D dim s1,

� sc is not a proper subalgebra of a Z-graded semisimple subalgebra of gc of
the same rank,

� sk � kc if k is even, and sk � pc otherwise,

� sc is normalized by a Cartan subalgebra of gc
0
.

Moreover, e 2 s1 is in general position; that is, Œs0; e�D s1; every element in s1 in
general position is G0-conjugate to e. If .f; h; e/ is a homogeneous sl2-triple in sc ,
that is, h 2 s0 and f 2 s�1, then h=2 is the unique defining element of sc; that is,
for all k,

sk D
˚
x 2 sc

ˇ̌ �
h
2
;x
�
D kx

	
:
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Since all maximal tori of N0.e/ are conjugate, this yields a bijection between the
nilpotent G0-orbits in gc

1
and the G0-conjugacy classes of Z-graded subalgebras

with the above properties. This bijection can be used for an algorithm to list the
nilpotent G0-orbits in gc

1
; see [de Graaf 2011; Littelmann 1996].

Remark 6. Suppose .f; h; e/ is a homogeneous sl2-triple in gc and let scD sc.e; t/

be a carrier algebra. Since h 2 N0.e/, we can choose a torus containing h; thus
h 2 sc . By the Jacobson–Morozov theorem (see [Knapp 2002, Theorem X.10.3])
there is f 0 2 sc such that .f 0; h; e/ is an sl2-triple in sc , hence also in gc . The
same theorem shows f D f 0; thus we can assume that sc contains f; h; e. We also
call such an sc a carrier algebra of the triple .f; h; e/; note that h=2 is its defining
element.

Let hc
0

be a fixed Cartan subalgebra of gc
0
. A carrier algebra sc is standard if

it is normalized by hc
0
, and Œhc

0
; sk � � sk for all k. Since the Cartan subalgebras

of gc
0

are G0-conjugate, every nilpotent G0-orbit in gc
1

corresponds to at least one
standard carrier algebra sc . Now, as shown in [Vinberg 1979, p. 23], the defining
element of sc lies in hc

0
, and hc

0
\ s0 is a Cartan subalgebra of sc; let ˆsc be the

corresponding root system of sc . Clearly, the homogeneous components sk are
sums of root spaces, which allows us to define the degree of ˛ 2ˆsc as deg.˛/D k

if s˛ � sk . If �sc is a basis of simple roots such that deg.˛/ � 0 for all ˛ 2�sc ,
then in fact deg.˛/2 f0; 1g; see [Vinberg 1979, p. 29]. If deg.˛/D 1 for all ˛ 2�sc ,
then sc is principal. In that case s0 D s0 \ hc

0
is a torus (in particular, abelian)

and s1 is spanned by s˛ with ˛ 2�sc .

5. Chevalley systems

Again, we consider g D k˚ p with Cartan involution � and complexification gc

with complex conjugation � . We suppose that hc D h˚ {h is a Cartan subalgebra of
gc , where h is a Cartan subalgebra of g with hD .h\ k/˚ .h\p/; write h0D h\ k

and a D h \ p. In this situation, h is called standard and an adjoint ad.h/ has
only purely imaginary eigenvalues if h 2 h0, and only real ones if h 2 a (see
[Rothschild 1972, p. 405] or [Onishchik 2004, Proposition 5.1(ii)]). This condition
on h is not a serious restriction since every Cartan subalgebra of g is conjugate to a
standard Cartan subalgebra; see [Rothschild 1972, Proposition 1.3]. We let ˆ be the
root system of gc with respect to hc , with basis of simple roots �D f˛1; : : : ; ˛lg.
Further we assume that we have a canonical generating set fhi ;xi ;yi j ig such that
for every i either �.xi/ D �ixi , with �i D ˙1, or �.xi/ D xj with i ¤ j . We
extend these canonical generators to a Chevalley basis fhi ;x˛ j i; ˛g. If ˛ 2ˆ is
a root, then ˇ D ˛ ı � is a root with �.x˛/ 2 gˇ and �.h˛/ D hˇ; hence, by our
assumptions, � is stable under ˛ 7! ˛ ı � . Let � be the permutation of f1; : : : ; lg
defined by ˛i ı � D ˛�.i/. We retain this notation throughout this section.
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Lemma 7. For every ˛ 2ˆ the following hold.

(a) �.x˛/D �˛x˛ı� for some �˛ 2 f˙1g, and �˛ D ��1
˛ D ��˛ D �˛ı� .

(b) �.x˛/D r˛x�˛ı� for some r˛ 2 R, and r�1
˛ D r�˛ D r�˛ı� .

(c) �.h˛/D h˛ı� and �.h˛/D h�˛ı� D�h˛ı� .

Proof. (a) We already know that �˛i
D �i 2 f˙1g and now use induction: If

�˛; �ˇ 2 f˙1g, then N˛;ˇ�.x˛Cˇ/D �˛�ˇN˛ı�;ˇı�x.˛Cˇ/ı� , and hence �˛Cˇ D
N�1
˛;ˇ

N˛ı�;ˇı��˛�ˇ 2 f˙1g since jN˛;ˇj D jN˛ı�;ˇı� j; the latter holds since
jN˛;ˇjD rC1 where r is the largest integer with ˛�rˇ 2ˆ; see [Humphreys 1978,
Theorem 25.2]. Since � is an involution, �˛ı� D ��1

˛ , and ��˛ D ��1
˛ follows from

h˛ı� D �.h˛/D �.Œx˛;x�˛ �/D �˛��˛h˛ı� .

(b+c) Let fk1; : : : ; klg be a basis of hc D hc
0
˚ ac such that fk1; : : : ; kmg and

fkmC1; : : : ; klg form bases of a and h0, respectively. If i 2 f1; : : : ;mg, then
Œki ; �.x˛/�D�.Œki ;x˛ �/D�.˛.ki/x˛/D˛.ki/�.x˛/ as ˛.ki/ is real. Analogously,
if i 2fmC1; : : : ; lg, then ˛.ki/ is purely imaginary and Œki ; �.x˛/�D�˛.ki/�.x˛/.
Hence �.x˛/ D r˛x�˛ı� with r˛ 2 C. Note that h�ˇ D �hˇ for all ˇ 2 ˆ.
Now it follows from Œ�.h˛/; �.x˛/� D 2�.x˛/ that �˛ ı �.�.h˛// D 2; hence
�.h˛/ 2 Œg�˛ı� ; g˛ı� � implies that

�.h˛/D h�˛ı� D�h˛ı� :

Since �.h˛/D r˛r�˛ Œx�˛ı� ;x˛ı� �D�r˛r�˛h˛ı� , this already proves that r˛r�˛D

1 for all ˛2ˆ. On the other hand, r˛r�˛D1 (with � denoting the complex conjugate
in C) follows from

r˛��˛ı�x�˛D�.r˛x�˛ı� /D�ı�.x˛/D�ı�.x˛/D�˛�.x˛ı� /D�˛r�˛
�1x�˛I

recall that � ı � D � ı � and ��˛ı� D �˛ by (a). Together, we have r˛ 2 R for all
˛ 2ˆ. Since � has order two, r�˛ı� D r�1

˛ D r�˛ for all ˛ 2ˆ. �
As for �i D �˛i

, we sometimes write ri D r˛i
. We now consider Chevalley

systems as defined in [Bourbaki 1975, Chapter VIII, Section 3, Definition 3]; see
also [Ðoković 1987, Lemma 2].

Definition 8. We use the previous notation. A Chevalley system of gc with respect
to hc is a family .w˛/˛2ˆ where w˛ 2 g˛ with Œw˛; w�˛ �D�h˛ for all ˛ 2ˆ and
such that the linear map defined by h 7! �h for h 2 hc and w˛ 7! w�˛ for ˛ 2ˆ
is a Lie automorphism, called Chevalley automorphism. If �.w˛/D �˛w˛ı� and
�.w˛/D �˛w�˛ı� for all ˛ 2ˆ (with �˛ as in Lemma 7), then .w˛/˛2ˆ is called
adapted with respect to gD k˚ p (and the Chevalley basis fhi ;x˛ j i; ˛g).

We first show that adapted Chevalley systems exist. Then, for real forms of inner
type, we construct an adapted Chevalley system from our given Chevalley basis;
see [Ðoković 1987, Lemma 2].
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Lemma 9. There is an adapted Chevalley system .v˛/˛2ˆ of gc with respect to
gD k˚ p and hc .

Proof. For ˛2ˆ let z˛D "˛x˛ where "˛D�1 if ˛2ˆ� is negative, and "˛D1 oth-
erwise. We first prove that .z˛/˛2ˆ is a Chevalley system of gc . Clearly, Œz˛; z�˛ �D
"˛"�˛h˛ D�h˛. Let  be the linear map defined by  .h/D�h for h 2 hc and
 .z˛/Dz�˛ for ˛2ˆ. If ˛2ˆ, then "�˛D�"˛ and .x˛/D ."˛z˛/D"˛z�˛D

�x�˛. If ˛; ˇ 2 ˆ with ˛ C ˇ 2 ˆ, then  .Œz˛; zˇ �/ D  ."˛"ˇN˛;ˇx˛Cˇ/ D

"˛"ˇ"˛CˇN˛;ˇz�˛�ˇ , and N˛;ˇ D�N�˛;�ˇ yields  .Œz˛; zˇ �/D Œ .z˛/;  .zˇ/�.
Also,  .Œz˛; z�˛ �/ D Œ .z˛/;  .z�˛/� and  .Œh; z˛ �/ D Œ .h/;  .z˛/�; thus  is
an automorphism and .z˛/˛2ˆ is a Chevalley system with respect to hc .

We have seen in Section 2.2 that

QuD SpanR.f{h1; : : : ; {hl ;x˛ �x�˛; {.x˛Cx�˛/ j ˛ 2ˆ
C
g/

is a compact real form of gc . If Q� is the corresponding complex conjugation, then
Q�.x˛/ D �x�˛ for all ˛ 2 ˆ and Q�.hi/ D �hi for all i . In particular, Q� and �
commute, and Q� D � ı Q� is a real structure defining a real form QgD g.�; Qu/D Qk˚ Qp

with Cartan involution � (or, more precisely, the restriction of � to Qg). If �.i/D i ,
then {hi 2

Qk; otherwise {.hiCh�.i// 2 Qk and hi�h�.i/ 2 Qp (see Section 2.2); thus Qg
has a standard Cartan subalgebra Qh with .Qh/c D hc . It follows readily from the
definition of Q� that Q�.z˛/ D �˛z�˛ı� for all ˛ 2 ˆ. Clearly, �.z˛/ D �˛z˛ı� ,
which shows that .z˛/˛2ˆ is an adapted Chevalley system with respect to QgD Qk˚ Qp
and hc .

Set uD k˚ {p. Then u is the compact form of gc associated with the real form
gD k˚p (cf. Section 2.2). Let � W gc! gc be the complex conjugation with respect
to u; then � D � ı � , and � and � commute. Thus, g and Qg both are real forms
defined by the automorphism � and the compact real structures � and Q� , respectively.
Using Lemma 7, we get �.xi/D ri�iyi and �.yi/D r�1

i �ixi . Let �W gc! gc be
the automorphism which maps .hi ;xi ;yi/ to .hi ; jri j

�1=2xi ; jri j
1=2yi/ for all i . A

short calculation shows that the compact structures ��1 ı � ı � and Q� commute.
As shown in [Onishchik 2004, Proposition 3.5], commuting compact structures
are equal; hence � ı �D � ı Q� . Again, using Lemma 7, we see that � ı �D � ı � ,
whence also � ı � D � ı Q� . Now consider .v˛/˛2ˆ with v˛ D �.z˛/. Clearly,
this is a Chevalley system: First, v˛ 2 g˛ and Œv˛; v�˛ �D �.�h˛/D �h˛ for all
˛ 2ˆ. Second, if  is the Chevalley automorphism corresponding to .z˛/˛2ˆ, then
� ı ı ��1 is the Chevalley automorphism corresponding to .v˛/˛2ˆ. Also, for
˛ 2ˆ we have �.v˛/D � ı�.z˛/D �ı Q�.z˛/D �˛v�˛ı� and �.v˛/D � ı�.z˛/D
� ı �.z˛/D �˛v˛ı� , so .v˛/˛2ˆ is adapted with respect to gD k˚ p. �

Proposition 10. We use the previous notation. For ˛ 2 ˆ let z˛ D "˛x˛ where
"˛ D�1 if ˛ 2ˆ� is negative, and "˛ D 1 otherwise. Since �.z˛i

/D�riz�˛�.i/
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with ri D r�.i/ by Lemma 7, there are �i D ��.i/ 2 R such that �i��.i/ri 2 f˙1g.
Let  be the automorphism of gc mapping .hi ;xi ;yi/ to .hi ; �ixi ; �

�1
i yi/ for all

i ; then  commutes with � . Define w˛ D  .z˛/ for ˛ 2ˆ.

(a) .z˛/˛2ˆ and .w˛/˛2ˆ are Chevalley systems with respect to hc .

(b) �.w˛i
/D �iw˛�.i/ and �.w˛i

/D �iw�˛�.i/ for all i .

(c) If g is of inner type, then .w˛/˛2ˆ is adapted with respect to gD k˚ p.

Proof. (a) This follows as in the proof of Lemma 9.

(b) Recall z˛i
D xi and z�˛�.i/ D�y�.i/ for all i . Now w�˛�.i/ D  .z�˛�.i//D

��1
�.i/

z�˛�.i/ yields

�.w˛i
/D �. .z˛i

//D �.�iz˛i
/D��iriz�˛�.i/ D��iri��.i/w�˛�.i/ D r 0iw�˛�.i/ ;

where r 0i D��i��.i/ri 2f˙1g. We have �.xi/D�ixi if �.i/D i , and �.xi/Dx�.i/
otherwise, and, therefore, �i D ��.i/ implies that �.w˛i

/D �iw˛i
if �.i/D i , and

�.w˛i
/Dw˛�.i/ otherwise. By Lemma 9, there exists an adapted Chevalley system

.v˛/˛2ˆ with respect to gD k˚ p and hc; each v˛ can be written as v˛ D c˛w˛
for some c˛ 2 C. It follows from

�hi D Œv˛i
; v�˛i

�D c˛i
c�˛i

Œw˛i
; w�˛i

�D�c˛i
c�˛i

hi

that c�˛i
D c�1

˛i
for all i . If �.i/¤ i , then

c˛i
w˛�.i/ D �.c˛i

w˛i
/D �.v˛i

/D v˛�.i/ D c˛�.i/w˛�.i/ I

hence c˛i
D c˛�.i/ for all i . Thus c˛i

c˛�.i/ > 0 is real for every i , and r 0i D �i

follows from r 0i ; �i 2 f˙1g and

�iv�˛�.i/ D �.v˛i
/D c˛i

�.w˛i
/D c˛i

r 0ic
�1
�˛�.i/

v�˛�.i/ D r 0ic˛i
c˛�.i/v�˛�.i/ :

(c) By (b) we know that �.w˛i
/D �˛i

w�˛�.i/ , and Lemma 7 yields �.w�˛i
/D

��˛i
w˛�.i/ for i D 1; : : : ; l . For ˛; ˇ 2 ˆ with ˛ C ˇ 2 ˆ write Œw˛; wˇ � D

M˛;ˇw˛Cˇ where M˛;ˇ DM�˛;�ˇ is real (in fact, integral). Suppose now that for
˛; ˇ 2ˆ we have �.w˛/D �˛w�˛ı� and �.wˇ/D �ˇw�ˇı� . Then

M˛;ˇ�.w˛Cˇ/D �.Œw˛; wˇ �/D Œ�.w˛/; �.wˇ/�D �˛�ˇM�˛ı�;�ˇı�w�.˛Cˇ/ı� :

If g is of inner type, then ˛ ı � D ˛ and �˛�ˇ D �˛Cˇ for all ˛; ˇ 2ˆ. Thus, in
this case, M˛;ˇ DM�˛ı�;�ˇı� DM�˛;�ˇ , and induction on the height of ˛ proves
that �.w˛/ D �˛w�˛ı� . Similarly, �.w˛/ D �˛w˛ı� for all ˛; thus .w˛/˛2ˆ is
adapted with respect to gD k˚ p. �

The proof of Proposition 10(b) has the following important corollary, which we
use in Section 7. Recall that �.xi/D �ix�.i/ and �.xi/D riy�.i/ for all i .

Corollary 11. The coefficients ri and ��i have the same sign for all i .
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Proof. In the proof of Proposition 10(b) we have shown that �i D r 0i D��i��.i/ri D

��2
i ri . �

6. Constructing complex Cayley triples

Let gD k˚ p be as in Section 2.2, with complexification gc , Cartan involution � ,
and complex conjugation � . As usual, we denote by ˆ a root system of gc with
basis of simple roots �; let fhi ;x˛ j i; ˛g be a corresponding Chevalley basis.
We now discuss our Main Problem (see Section 3); that is, given a homogeneous
sl2-triple .f; h; e/ in gc , we want to construct a complex Cayley triple .f 0; h0; e0/
which is Kc-conjugate to .f; h; e/. As constructed in Section 4, we also assume
we have a standard carrier algebra sc D sc.e; t/ containing f; h; e (see Remark 6)
and normalized by the Cartan subalgebra hc

0
D h0C {h0 of kc with h0 � k as in

Section 2.2.
We will see in Section 6.1 that sc is �-stable; hence sD sc \ g is a real form

of sc . Also, we will see that sc is � -stable; thus

(?) sD .sc
\ k/˚ .sc

\ p/

is a Cartan decomposition whose Cartan involution is the restriction of � to s. Note
that s0\ k

c and s0\ k contain Cartan subalgebras of sc and s, respectively, namely,
hc

0
\s0 and h0\s0. In particular, the real form s is always of inner type and h0\s0

is a standard Cartan subalgebra. Thus the results of Section 5 can be applied: we
show in Section 6.1 how to construct an adapted Chevalley system for sc; here
adapted always means with respect to hc

0
\ s0, the Cartan decomposition (?), and a

chosen Chevalley basis of sc .
By construction, the triple .f; h; e/ is also a homogeneous sl2-triple in sc . The

approach of [Ðoković 1987] is to find x2s1 with Œx; �.x/�Dh so that .�.x/; h;x/ is
a complex Cayley triple in sc , thus also in gc . By the Kostant–Sekiguchi correspon-
dence and [Kostant and Rallis 1971, Lemma 4], such an x exists and .�.x/; h;x/
is Kc-conjugate to .f; h; e/. If sc is principal, then Chevalley systems can be used
to find x; see Section 6.2. If sc is not principal, then we make a case distinction
and use induction; see Section 6.3.

6.1. Constructing an adapted Chevalley system. In the following, let ˆsc be the
root system of sc with respect to hc

0
\ s0; let �sc D fˇ1; : : : ; ˇsg be a basis of

simple roots. As mentioned in Section 4, we can assume that each root space sˇi

either lies in s0 or s1.

6.1.1. Inner type. If g is of inner type, then hc
0
� kc is also a Cartan subalgebra

of gc; hence ˆsc can be considered as a root subsystem of ˆ. This implies that
fx˛ j ˛ 2 ˆscg, along with certain elements of hc

0
\ s0, forms a Chevalley basis
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of sc . We denote it by fki ; w˛ j ˛ 2ˆsc ; i D 1; : : : ; sg and let fki ; ai ; bi j ig be the
canonical generating set it contains. As usual, write k˛ D Œw˛; w�˛ � for ˛ 2ˆsc .
We have seen in Section 2.2.2 that �.w˛/2 f˙w�˛g and �.w˛/2 f˙w˛g; hence sc

is �- and �-stable. For ˆsc we use an ordering compatible with that of ˆ. Let
z˛ D w˛ and z�˛ D �w�˛ for ˛ 2 ˆCsc ; then .z˛/˛2ˆsc is an adapted Chevalley
system of sc .

6.1.2. Outer type. Now let g be of outer type with defining outer automorphism
� D ' ı �. By construction, each homogeneous component sk lies either in kc

or in pc , which shows that sc is �-stable. By definition, each sk is normalized
by hc

0
; thus it is a sum of weight spaces (with respect to hc

0
) as considered in

Sections 2.2.3 and 2.2.4; in the following we use the notation introduced in these
sections. Let ˛ 2ˆsc ; then s˛ is an hc

0
-weight space, and it is either contained in kc

or in pc (since it lies in a homogeneous component sk). These observations show
that there is an ˛0 2ˆ such that either s˛ D SpanC.u˛0/ or s˛ D SpanC.v˛0/, and,
accordingly, s�˛ D SpanC.u�˛0/ or s�˛ D SpanC.v�˛0/. Since �.u˛0/D˙u�˛0

and �.v˛/ D ˙v�˛0 , this shows that sc is stable under � . We can now define a
new set of canonical generators fki ; ai ; bi j i D 1; : : : ; sg for s; we make a case
distinction:

� If sˇi
is spanned by u˛ D x˛ with '.˛/D ˛, then define ai D x˛, bi D x�˛

and ki D Œai ; bi �.

� Now let sˇi
be spanned by u˛ D x˛ C x'.˛/ with '.˛/ ¤ ˛. Note that

ˇ D ˛ � '.˛/ is not a root because ' maps positive roots on positive roots
but '.ˇ/ D �ˇ. This proves Œu˛;u�˛ � D h˛ C h'.˛/. Also, it follows that
h˛; '.˛/i � 0 (see [Humphreys 1978, Lemma 9.4]) and finally h˛; '.˛/i 2
f0;�1g, asˆ is simply laced, which means that there is only one root length; in
particular, h˛; '.˛/iDh'.˛/; ˛i. The latter now implies that Œh˛Ch'.˛/;u˛ �D

.2C h'.˛/; ˛i/u˛ since '.˛/.h˛/ D h'.˛/; ˛i D h˛; '.˛/i D ˛.h'.˛//. If
h'.˛/; ˛iD 0, then we define ai D u˛ , bi D u�˛ , and ki D Œai ; bi �. Otherwise,
we set ai D

p
2u˛, bi D

p
2u�˛, and ki D Œai ; bi �.

� If sˇi
is spanned by v˛ D x˛ �x'.˛/, then we do exactly the same as in the

previous case with u replaced by v.

In all cases we find ai 2 sˇi
, bi 2 s�ˇi

, and ki D Œai ; bi � such that Œki ; ai �D 2bi

for all i . By Proposition 3, fki ; ai ; bi j ig is a canonical generating set for sc , and,
by construction, �.ai/D˙bi for all i . We extend this canonical generating set to
a Chevalley basis fki ; w˛ j i; ˛g of sc such that w˛i

D ai and w�˛i
D bi ; as usual,

write k˛ D Œw˛; w�˛ � for all ˛. We now define z˛ D w˛ for ˛ > 0 and z˛ D�w˛
for ˛ < 0; it is straightforward to verify that .z˛/˛2ˆsc is an adapted Chevalley
system of sc ; see Proposition 10.
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The conclusion is that for all g we can find an adapted Chevalley system of sc , and
the coefficients of its elements with respect to the given basis of g lie in Q.{;

p
2/;

in particular, in Q
p

.{/.

6.2. The principal case. This construction follows [Ðoković 1987, Lemma 3]. We
use the previous notation and suppose that the carrier algebra sc of .f; h; e/ is prin-
cipal; that is, there is a basis�sc ofˆsc such that for every ˛ 2�sc we have s˛� s1.
Let .z˛/˛2ˆsc be the adapted Chevalley system for sc as constructed in the previous
section. We want to find x 2 s1 with Œx; �.x/�D h of the form x D

P
˛2�sc

c˛z˛
with all c˛ real. Note that �.x/ D �

P
˛2�sc

c˛z�˛ and ˛ � ˇ 62 ˆsc for all
˛; ˇ 2�sc . Thus, the equation we have to solve is hD Œx; �.x/�D

P
˛2�sc

c2
˛k˛;

recall that Œz˛; z�˛ �D�k˛. Note that ˇ.h/D 2 for all ˇ 2�sc since zˇ 2 s1 and
h=2 is the defining element of sc . This shows that our equation is equivalent to the
system of equations 2D

P
˛2�sc

d˛ˇ.k˛/ with d˛ D c2
˛ where ˇ ranges over �sc .

The coefficients ˇ.k˛/ of this system are the entries of the Cartan matrix of ˆsc ,
whose inverse has nonnegative entries; see [Humphreys 1978, Section 13.1]. Thus,
the system has a solution with all d˛ � 0 real. In conclusion, to construct x, we
first compute hD

P
˛2�sc

d˛k˛ , and then set xD
P
˛2�sc

c˛z˛ where c˛ D
p

d˛
is real for every ˛ 2�sc .

We now show that each c˛ 2 Q
p

. For every ˛ 2 �sc � ˆsc , the element
k˛D Œw˛; w�˛ � is a Z-linear combination of k1; : : : ; ks , the elements of the Cheval-
ley basis of sc that span its Cartan subalgebra hc

0
\ s0; see [Humphreys 1978,

Theorem 25.2]. As shown in the previous paragraph, these elements are Z-linear
combinations of h1; : : : ; hl , the elements of the Chevalley basis of gc that span hc .
Similarly, the element h, which is the characteristic of an sl2-triple, is a Z-linear
combination of h1; : : : ; hl . Together, all this implies that the d˛ are in fact rational;
thus c˛ 2Q

p

.

6.3. Nonprincipal case. Now suppose that the carrier algebra sc of .f; h; e) is
nonprincipal. As mentioned above, there exists x 2 s1 such that .�.x/; h;x/ is a
complex Cayley triple in the same Kc-orbit as .f; h; e/. However, constructing x is
not straightforward. We first set up the system of rational polynomial equations in
the coefficients of x with respect to a basis of s1, equivalent to Œx; �.x/�D h. Note
that this is a system of dim s0 polynomial equations in dim s1 variables. Then in
order to solve them we use a brute-force approach; that is, for i D 1; 2; 3; : : : , we
set all but i indeterminates in these equations to zero. For each equation system that
arises we check, using Gröbner bases (see for example [Cox et al. 1992]), whether
a solution over C exists. We stop when we find an equation system consisting
of equations of the form T 2 D a, where a 2 Q and T is an indeterminate, or
Tc D ac1

T 2
c1
C � � �C acm

T 2
cm

, where each Tci
satisfies an equation of the first type.

It is then straightforward to obtain a solution over Q
p

.{/. This systematic approach
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for constructing a complex Cayley triple .�.x/; h;x/ can easily be carried out
automatically by a computer. It turned out to work well in all our computations for
the carrier algebras in the real forms constructed in Section 2.2; our experiments
include all simple real Lie algebras of rank at most 8. Unfortunately, we have no
proof that a solution of the equation system always exists over the field Q

p

.{/;
hence we cannot prove that our approach will always work.

6.3.1. A database. To reduce work, we have constructed a database of the simple
nonprincipal carrier algebras that appeared during our calculations. Let sc be such
a carrier algebra. As shown in Section 6.1, there is a canonical generating set
fki ; ai ; bi j i D 1; : : : ; sg of sc such that ai 2 s"i

with "i 2 f0; 1g and �.ai/D �ibi

with �i 2 f˙1g for all i . Since �.ki/ D �ki for all i , the map � is determined
by the signs �1; : : : ; �s . Moreover, k1; : : : ; ks 2 s0, and, if ai 2 sk , then bi 2 s�k .
Thus, the following data describes sc , its grading, and � completely; we store this
data in our database:

� a multiplication table, canonical generators fki ; ai ; bi j ig, and Cartan matrix C ,

� the signs �1; : : : ; �s and "1; : : : ; "s ,

� a complex Cayley triple .f; h; e/ in s such that e 2 s1 is in general position.

Suppose in our computations we consider a real semisimple Lie algebra g0Dk0˚p0

with complexification .g0/c D .k0/c ˚ .p0/c and complex conjugation � 0. Let
.f 0; h0; e0/ be a homogeneous sl2-triple in .g0/c , and we want to find a conjugate
complex Cayley triple in .g0/c . As before, we first construct the carrier algebra .s0/c

of the triple. If it is principal, then we proceed as in Section 6.2, so let it be nonprin-
cipal. Recall that .s0/c is semisimple and, by considering its simple components
separately, we can assume that .s0/c itself is simple. Suppose in our database there
exists a simple carrier algebra sc whose parameters as described above satisfy the
following:

(1) .s0/c has canonical generators fk 0i ; a
0
i ; b
0
i j ig with Cartan matrix C ,

(2) if � 0.a0i/D �
0
ib
0
i , then sgn.�0i/D sgn.�i/ for all i ,

(3) if a0i 2 s
0

"0
i

, then "0i D "i for all i .

If all this holds, then we can get a complex Cayley triple in .s0/c as follows. Let '
be the isomorphism from sc to .s0/c which maps .ki ; ai ; bi/ to .k 0i ; �ia

0
i ; �
�1
i b0i/,

where �i D
p
�i=�

0
i for all i . Obviously ' is an isomorphism of Z-graded Lie

algebras. A short calculation shows that the antilinear homomorphisms ' ı � and
� 0ı' agree on the canonical generators of sc ; thus ' ı� D � 0ı'. Since ' maps the
unique defining element h=2 of sc onto the unique defining element h0=2 of .s0/c ,
we have h0D'.h/. Let xD'.e/ and yD'.f /; then .y; h0;x/ is a complex Cayley
triple in .s0/c . Since x 2 s0

1
is in general position, .y; h0;x/ is .K0/c-conjugate
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to .f 0; h0; e0/. The conclusion is that by storing the simple carrier algebras in a
database we can find a complex Cayley triple in a carrier algebra by a look-up in
the database.

7. Isomorphisms

Let gc be a simple complex Lie algebra with real form g D k˚ p and Cartan
involution � and complex conjugation � . As usual, we extend � to an automorphism
of gc . Let .g0/c be a second simple complex Lie algebra with real form g0D k0˚p0,
Cartan involution � 0, and complex conjugation � 0. We consider the problem to
decide whether g and g0 are isomorphic, and, if they are, to find an isomorphism.
For this we may obviously assume that gc and .g0/c are isomorphic.

Recall that a Cartan decomposition is unique up to conjugacy; see [Onishchik
2004, Theorem 5.1]. Thus, if g and g0 are isomorphic, then there also exists an
isomorphism W g!g0 with .k/D k0 and .p/Dp0. Clearly, such an isomorphism
extends to an isomorphism  W gc! .g0/c with  ı � D � 0 ı and  ı � D � 0 ı .
Conversely, if we find an isomorphism

(�)  W gc
! .g0/c with  ı � D � 0 ı and  ı � D � 0 ı ;

then  restricts to an isomorphism  W g! g0 with  .k/D k0 and  .p/D p0.
We now describe a construction of the isomorphism (�), which fails if and only

if g and g0 are not isomorphic. Our main tool is the technique described in the
following preliminary section.

7.1. Weyl group action. We consider the following setup. Let hc � gc be a Cartan
subalgebra of gc with corresponding root system ˆ and basis of simple roots �D
f˛1; : : : ; ˛lg. Let W be the Weyl group associated toˆ. As usual, let fhi ;xi ;yi j ig

be a canonical generating set contained in a Chevalley basis fhi ;x˛ j i; ˛g of gc .
Note that �.x˛/ 2 g˛ı� , and we suppose that ˛ 7! ˛ ı � preserves �. Then
� D ' ı � D � ı ', where ' is a diagram automorphism permuting �, and � is
an inner automorphism with �.h/ D h for all h 2 hc . Let the permutation � be
defined by '.˛i/D ˛�.i/. We further suppose that �.x˛/D �˛x˛ı� with �˛ D 1 if
˛ ı � ¤ ˛. Thus, �˛ 2 f˙1g for all ˛ 2ˆ; we write �i D �˛i

and call �1; : : : ; �l

the parameters of � .
By abuse of notation, to w 2W we associate the automorphism w 2 Aut.gc/

which maps .hi ;xi ;yi/ to .hw.˛i /;xw.˛i /;x�w.˛i // for all i . Let �� D f˛ 2 � j
˛ ı � D ˛g, let ˆ� be the root subsystem of ˆ with basis �� , and let W� be its
Weyl group.

Lemma 12. If w D s˛k
2 W� , then ˛ ! ˛ ı � preserves the basis of simple

roots w.�/.
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Proof. This follows readily if � is inner since then ' is the identity and ˛ı� D ˛ for
all ˛ 2ˆ. So suppose ' is not the identity; hence ˆ is simply laced; see [Onishchik
2004, Table 1]. Note that �.k/D k; thus �.w.xk//D �.yk/D �kyk D �kw.xk/,
which shows w.˛k/ ı � D w.˛k/ 2 w.�/. If j is such that h j̨ ; ˛ki D �1, then
w. j̨ /D j̨ C˛k and w.xj /D x˛kC j̨

. Since ˆ is simply laced, N˛;ˇ D˙1 for
all ˛; ˇ 2 ˆ, and Œxk ;xj �DN˛k ; j̨ x˛kC j̨

implies that �.w.xj //D˙x˛kC˛�.j/ .
Since also h˛�.j/; ˛ki D �1, we have x˛kC˛�.j/ D w.x�.j//; hence w. j̨ / ı

� D w.˛�.j// 2 w.�/. Analogously, if h j̨ ; ˛ki D 0, then w.xj / D xj ; hence
w. j̨ / ı � D w.˛�.j// 2 w.�/. �

Suppose � has parameters �1; : : : ; �l , that is, �.xi/D �ix�.i/ for all i , and let
wD s˛k

2W� . Clearly, fw.hi/; w.xi/; w.yi/ j ig is a canonical generating set, and
we modify it as follows: whenever �.i/ > i , we replace w.x�.i// and w.y�.i// by
�.w.xi// and �.w.yi//; let f Nhi ; Nxi ; Nyi j ig be the resulting canonical generating set
with corresponding basis of simple roots w.�/, which still is � -stable by Lemma 12.
By construction, if �.i/ ¤ i , then �. Nxi/ D Nx�.i/. Now let �.j / D j and recall
that w. j̨ / D j̨ � h j̨ ; ˛ki˛k and �.k/ D k. A case distinction on the value of
h j̨ ; ˛ki shows that

�.w.xj //D �j�
h j̨ ;˛ki

k
w.xj /:

In conclusion, if we replace our original canonical generators and basis of simple
roots by their (modified) images under w 2 Aut.gc/, then for the parameters Q�j

of � we have Q�j D 1 if �.j /¤ j and Q�j D �j�
h j̨ ;˛ki

k
if �.j /D j .

7.2. Inner type. First we suppose that g is of inner type; that is, k contains a Cartan
subalgebra h of g. Let ˆ be the root system of gc with respect to hc , with basis
of simple roots �D f˛1; : : : ; ˛lg. Let fhi ;xi ;yi j ig be a canonical generating set
corresponding to �. If g0 is not of inner type, that is, if a Cartan subalgebra of
k0 is not a Cartan subalgebra of g0, then g and g0 are not isomorphic. Hence, we
assume that g0 is of inner type and define h0, ˆ0, and �0 in the same way. Since
gc and .g0/c are isomorphic we may assume that � and �0 are ordered so that the
corresponding Cartan matrices are the same. Recall that each root space g˛ with
˛ 2ˆ lies either in kc or pc; thus we have �.xi/D �ixi with �i 2 f˙1g for all i .
Let �0

1
; : : : ; �0

l
be defined similarly.

Suppose that we are in the situation �i D �
0
i for all i , and write �.xi/ D riyi

and �.x0i/ D r 0iy
0
i . By Corollary 11, we have sgn.ri/ D sgn.r 0i / for all i , which

allows us to define the reals �i D
p

ri=r 0i . Now the isomorphism  W gc ! .g0/c

which maps .hi ;xi ;yi/ to .h0i ; �ix
0
i ; �
�1
i y0i/ for all i satisfies  ı � D � 0 ı and

 ı � D � 0 ı , and we are done.
In the remainder of this section we show how to achieve �i D �

0
i for all i in the

case that g and g0 are isomorphic. The idea is to use the results of Section 7.1 to
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find a new basis of simple roots such that � and its parameters �1; : : : ; �l are in a
standard form. As explained below, this means that at most one parameter �k is
negative, with certain restrictions on k. The possible standard forms are obtained
by listing the Kac diagrams of the inner involutions of gc; to each Kac diagram
corresponds exactly one standard form, and g and g0 are isomorphic if and only if
the standard forms of � and � 0 coincide.

In the following we explain this in detail for the simple Lie algebra of type Dl .

Example 13. Let the notation be as above and suppose gc is of type Dl with l > 4.
We suppose that our basis of simple roots � D f˛1; : : : ; ˛lg corresponds to the
labels of the following Dynkin diagram of Dl :

1 2 l � 2

l � 1

l

Up to conjugacy, the involutive inner automorphisms of gc are N�j with j D

1; : : : ; bl=2c or j D l � 1, where N�j .xi/ D .�1/ıij xi for all i . If we do not
have that � D N�j for some j , then we proceed as follows. Recall that the parameters
of � are �1; : : : ; �l where �.xi/ D �ixi . For k D 1; : : : ; l write wk D s˛k

2 W

for the reflection defined by k-th simple root ˛k . Let Qxi D wk.xi/, Qyi D wk.yi/,
and Qhi D wk.hi/ be the images of the canonical generators under wk . As seen
in Section 7.1, with respect to this new canonical generating set, � has the same
parameters as before, except that �j is replaced by �j�k if h j̨ ; ˛ki D �1 (or,
equivalently, if j̨ and ˛k are connected in the Dynkin diagram). We will now
iterate this modification of parameters. We stress that in each iteration step the
reflections w1; : : : ; wl are defined with respect to the new basis of simple roots
constructed in the previous step; thus, acting with wi and then with wj means
we first apply the reflection s˛i

and then the reflection swi . j̨ /. Similarly, in each
iteration step we have new parameters �i and a new canonical generating set. By
abuse of notation, in each iteration step we always denote these by the same symbols.

We now show that we can apply a sequence of simple reflections to find a new
set of canonical generators such that for the parameters of � there is a unique
k 2 f1; : : : ; bl=2c; l � 1; lg with �k D �1; that is, � D N�k . The details are as
follows:

� The first step is to achieve that at most one of �1; : : : ; �l�2 has value �1. If
this is not already the case, then there exist i < k � l�2 with �i ; �k D�1 and
�j D1 whenever i <j <k or k<j � l�2. If we act withwi ; wiC1; : : : ; wk�1,
then we obtain new parameters of � with �k�1D�1 and �k D � � � D �l�2D 1.
Now either k � 1 is the only index in f1; : : : ; l � 2g with �k�1 D �1, or we
iterate this process. Eventually, at most one value of �1; : : : ; �l�2 is �1.
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� Next, a case distinction with four cases �l�1; �l 2 f˙1g shows that we can in
fact assume that at most one value of �1; : : : ; �l is �1: For example, suppose
�i D �1 with i < l � 1 and �l�1 D �1 are the only negative parameters. If
we act with wl�1; wl�2; : : : ; wiC1, then among the new parameters the only
negative ones are �iC1 D�1 and �l D�1. By an iteration, the only negative
parameters are �l�2 D �l D�1 (or �l�2 D �l�1 D�1), and acting with wl

(or wl�1) yields the assertion.

� If the only negative parameter �k D�1 satisfies k 2 f1; : : : ; bl=2c; l � 1; lg,
then we are done. Thus, suppose we have �k D�1 with bl=2c< k � l�2. Let
t D l�k�1, and act with wk ; wkC1; : : : ; wkCt Iwk�1; wk ; : : : ; wk�1Ct I : : : I

w1; w2; : : : ; w1Ct . This gives new parameters with only negative parameter
�tC1 D�1.

If �l D�1 is the only negative parameter, then we apply the diagram automorphism
which fixes ˛1; : : : ; ˛l�1 and interchanges ˛l�1 and ˛l ; the resulting new basis of
simple roots still defines the same Cartan matrix, and now we have � D N�l�1. Thus,
every inner automorphisms � of order two can be brought into standard form; that
is, there is exactly one negative parameter �k D�1, and k 2 f1; : : : ; bl=2c; l � 1g.

Our approach for the other simple Lie algebras is the same: We act with the
Weyl group (as described in Section 7.1) and certain diagram automorphisms to
find a new basis of simple roots such that � has standard form; that is, at most one
parameter �k D�1 is negative, with the following restrictions: k � dl=2e for Al ,
k D l or k � bl=2c for Cl , k D 1 for G2, k 2 f2; 3g for F4, k 2 f1; 2g for E6,
k 2 f1; 2; 7g for E7, and k 2 f1; 8g for E8.

Remark 14. A more uniform approach to the problem of finding the standard
form of � is by using the classification of finite order inner automorphisms as, for
example, given in [Reeder 2010]. In this approach one acts with the affine Weyl
group, and finding the Kac diagram of an automorphism is equivalent to finding
a point in the fundamental alcove conjugate to a given point. It can be worked
out how acting by an element of the affine Weyl group amounts to choosing a
different basis of simple roots. For the purposes of this paper, as we are dealing
with involutions only, we have chosen the more elementary method outlined above.

7.3. Outer type. Suppose � is an outer involutive automorphism of gc . We apply
the following four steps to g (and then g0).

(1) The first step is to construct a �-stable Cartan subalgebra of gc: For this
purpose let hc

0
be a Cartan subalgebra of kc and define hc D Cgc .hc

0
/ as its

centralizer in gc . It is shown in [Knapp 2002, Proposition 6.60] that hc is a
Cartan subalgebra of gc ; clearly, it is fixed by � . Now hDhc\g is a maximally
compact Cartan subalgebra of g (see [Knapp 2002, Proposition 6.61]), and all
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Cartan subalgebras of g constructed this way are conjugate in g (see [Knapp
2002, Proposition 6.61]). Thus, if g and g0 are isomorphic and h and h0 are
Cartan subalgebras constructed as above, then there is an isomorphism g! g0

which maps h to h0.

(2) The second step is to construct a basis of simple roots which is stable under
˛ 7! ˛ ı � : Let ˆ be the root system with respect to hc , and recall that, if
˛ 2 ˆ, then ˇ D ˛ ı � is a root with �.x˛/ 2 gˇ and �.h˛/ D hˇ. This
shows that the R-span hR of all h˛ with ˛ 2ˆ is invariant under � . Moreover,
h0;RDhR\h

c
0

is the 1-eigenspace of � in hR. Since h0;R spans hc
0

as a C-vector
space, the restriction of each ˛ 2ˆ to h0;R is nonzero: if ˛.h0;R/D f0g, then
g˛ � Cgc .hc

0
/D hc yields a contradiction. This shows that there is h0 2 h0;R

with ˛.h0/¤ 0 for all ˛ 2ˆ: such an h0 can be chosen as any element outside
a finite number of hyperplanes in h0;R, namely, the kernels of ˛ in h0;R. We
use h0 to define ˛ > 0 if and only if ˛.h0/ > 0; note that elements in hR only
have real eigenvalues. It is easy to check that this defines a root ordering, and,
if ˛ > 0, then also ˛ ı � > 0. Therefore the corresponding set of simple roots
�D f˛1; : : : ; ˛lg is �-stable. Let � be the permutation of f1; : : : ; lg defined
by ˛i ı � D ˛�.i/, and denote by fhi ;xi ;yi j ig a canonical generating set
corresponding to �.

(3) The third step is to adjust the coefficients of � : If �.i/D i , then set Qhi D hi ,
Qxi D xi and Qyi D yi . Otherwise, for all .i; �.i// with �.i/ > i set Qhi D hi ,
Qxi D xi , Qyi D yi , and Qh�.i/ D �.hi/, Qx�.i/ D �.xi/, Qy�.i/ D �.yi/. By
replacing fhi ;xi ;yi j ig with the canonical generating set f Qhi ; Qxi ; Qyi j ig (see
Proposition 3), we may assume that �.xi/D �ix�.i/ with �i D 1 if �.i/¤ i .

(4) Finally, we decompose � : Let ' be the diagram automorphism defined by �
with respect to the new canonical generating set defined in (3) (see Section 2.2);
that is, '.xi/D x�.i/, '.yi/D y�.i/, and '.hi/D h�.i/ for all i . By construc-
tion,

�D ' ı � D � ı'

is an involutive inner automorphism of gc with �.xi/D xi if �.i/¤ i , and
�.xi/D �ixi if �.i/D i and �.xi/D �ixi ; clearly, �i D˙1. The analogous
statement holds for yi .

We use the same procedure to construct a � 0-stable set of positive roots �0, and
automorphisms '0 and �0 of .g0/c . We also assume that the bases � and �0 are
ordered such that the corresponding Cartan matrices are the same, and � D � 0 as
permutations of f1; : : : ; lg. If the latter is not possible, then gc and .g0/c are not
isomorphic. Let fhi ;xi ;yi j ig and fh0i ;x

0
i ;y
0
i j ig be the associated sets of canonical
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generators as constructed in Step (3) above, and let  W gc! .g0/c be the associated
isomorphism. We now try to modify  so that it is compatible with � , � 0 and � , � 0.

7.3.1. Make  compatible with � and � 0. Recall that � D � ı', � 0 D �0 ı'0, and
 ı' D '0 ı . If �.i/¤ i , then

� 0 ı .xi/D �
0.x0i/D x0� 0.i/ D x0�.i/ D  .x�.i//D  ı �.xi/I

similarly, � 0 ı  and  ı � coincide on the whole subspace of gc spanned by
all xi , yi , hi with �.i/¤ i . If �.i/D i with �.xi/D �ixi and � 0.x0i/D �

0
ix
0
i , then

� 0 ı .xi/D  ı �.xi/ if and only if �i D �
0
i .

� Type Al : If lD2m is even, then � acts fixed-point freely; thus as constructed
above already satisfies � 0 ı D  ı � . If l D 2mC 1, then � has exactly one
fixed point, say i D 1, and either �1D 1 or �1D�1. On the other hand, up to
conjugacy, Al has two outer automorphisms, so each choice for �1 corresponds
to a different conjugacy class of automorphisms. Thus, if gc and .g0/c are
isomorphic, then �1 D �

0
1
, and  is an isomorphism with � 0 ı D  ı � .

� Type E6: Here � has two fixed points, say i D 2; 4; thus there are four possible
combinations of signs for �2 and �4. However, up to conjugacy, E6 has two
outer automorphisms. Suppose our root basis �D f˛1; : : : ; ˛6g corresponds
to the labels of the following Dynkin diagram of E6:

1 3 4 5 6

2

Up to conjugacy, E6 has two outer automorphisms ' ı N�, where ' is the
diagram automorphism acting via the permutation � D .1; 6/.3; 5/, and N� is
an inner automorphisms which satisfies N�.x4/D˙x4 and N�.xi/D xi if i ¤ 4.
As outlined in Section 7.1 we now act with w2 D s˛2

and w4 D s˛4
in order

to find a new canonical generating set (with respect to a new basis of simple
roots), relative to which we have �2 D �4 D 1, or �2 D 1 and �4 D�1. It is
straightforward to see that this can always be done. For example, if �2 D�1

and �4 D 1, then we first act with w2 to get �2 D �4 D�1 and subsequently
with w4 to get �2 D 1 and �4 D �1. Finally we use the same trick as in
the beginning of Section 7.3 to obtain �i D 1 for all i ¤ 2; 4 (that is, we set
x5 D �.x3/, etc.). The conclusion is that we can arrange that �i D �

0
i for

every i ; hence  is an isomorphism with � 0 ı D  ı � .

� Type Dl : We proceed as for E6 and suppose that our basis of simple roots �
corresponds to the Dynkin diagram of Dl as shown on page 370. Up to
conjugacy, the involutive outer automorphisms of Dl are ' ı N�, where '
is the diagram automorphism defined by � D .l � 1; l/, and N� is an inner
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automorphism with N�.xi/D N�ixi , where either N�i D 1 for all i , or there exists
a unique negative N�k and k 2 f1; : : : ; dl=2e� 1g. As in Example 13, we act
with reflections s

j̨
2W , j 2 f1; : : : ; l � 2g, to find a canonical generating set

relative to which there is a unique negative parameter �k , and k 2f1; : : : ; l�2g.
If k � dl=2e � 1, then we are done; otherwise we proceed as follows. Set
ˇi D ˛l�i�1 for i D 1; : : : ; l � 2, and ˇl�1 D �˛1 � � � � � ˛l�2 � ˛l�1, and
ˇl D�˛1� � � � �˛l�2�˛l . Then N�D fˇ1; : : : ; ˇlg is also a basis of simple
roots with the same Dynkin diagram. Now we take a canonical generating set
with respect to N�. With respect to this new canonical generating set, � has a
unique negative parameter �k D�1, and k 2 f1; : : : ; dl=2e� 1g.

Using these constructions, we can arrange that �i D �
0
i for all i ; thus the corre-

sponding isomorphism  (defined on the newly constructed canonical generating
sets) is compatible with � and � 0.

7.3.2. Make  compatible with � and � 0. Using the construction in the previous
paragraphs, we have established that either g and g0 are not isomorphic, or we have
an isomorphism  W gc ! .g0/c compatible with � and � 0. We assume the latter
holds, and we now adjust  so it is also compatible with the complex conjugations �
and � 0; this yields the desired isomorphism between g and g0.

By our previous construction, if i ¤ �.i/, then �.xi/D x�.i/, and �.xi/D �ixi

otherwise. Lemma 7 shows that �.xi/D riy�.i/ for some ri 2 R with ri D r�.i/.
If i ¤ �.i/, then ri < 0, and, if i D �.i/, then ri and ��i have the same sign;
see Corollary 11. Now define �i D

p
1=jri j for i D 1; : : : ; l . If we replace

xi ;yi ;x�.i/;y�.i/ by Qxi D �ixi , Qyi D �
�1
i yi , Qx�.i/ D �ix�.i/, Qy�.i/ D ��1

i y�.i/,
then we get a new set of canonical generators where � acts in the same way and
�. Qxi/ D ˙ Qy�.i/ for all i . In a similar way, we obtain a new set of canonical
generators f Qx0i ; Qy

0
i ; h
0
i j ig of .g0/c; recall that �i D �0i for all i . The associated

isomorphism gc! .g0/c now is compatible with � , � , and � 0, � 0, and restricts to
an isomorphism g! g0 preserving the Cartan decompositions.

Remark 15. In the algorithms described in this section we compute root systems
of gc and .g0/c with respect to Cartan subalgebras hc and .h0/c . In order for that
to work well we need Cartan subalgebras that split over Q

p

.{/ (or an extension
thereof of small degree). However, the problem of finding such Cartan subalgebras
is very difficult; see [Ivanyos et al. 2012]. Therefore, in our algorithms we assume
that we have a Cartan subalgebra with a small splitting field.

7.4. Nilpotent orbits under isomorphisms. Suppose gD k˚p and g0D k0˚p0 are
semisimple real Lie algebras and  W g! g0 is an isomorphism such that  .k/D k0

and  .p/D p0. As described in the previous sections, we can extend this to an iso-
morphism  W gc! .g/c compatible with the corresponding Cartan involutions � , � 0
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and complex conjugations � , � 0. Let G be the connected Lie subgroup of the adjoint
group Gc of gc , having Lie algebra g. Similarly, let G0 be defined for g0.

Lemma 16. The isomorphism  W g! g0 maps nilpotent orbits to nilpotent orbits.

Proof. Clearly, e 2 g is nilpotent if and only if  .e/ 2 g0 is nilpotent. We show
that, if two nilpotent e; f 2 g are conjugate under G, then e0 D  .e/ and f 0 D
 .f / are conjugate under G0; then the same argument with  replaced by  �1

proves the assertion. As shown in [Helgason 1978, pp. 126–127], the adjoint
group G is generated by all exp ad x with x 2 g, and the isomorphism  lifts to an
isomorphism Q WG! G0, ˇ 7!  ıˇ ı �1. Thus, if ˇ.e/D f for some ˇ 2 G,
then Q .ˇ/. .e//D  .f /, and  .e/ and  .f / are G0-conjugate in g0. �

Appendix: Comment on the implementation

For computing with semisimple Lie algebras we use the package SLA [de Graaf
2012] for the computer algebra system GAP [GAP 2012]. This package provides the
functionality, for example, to compute Chevalley bases, canonical generators, and
involutive automorphisms. In Section 6.3 we use the Gröbner bases functionality
of the computer algebra system SINGULAR [Decker et al. 2011] via the linkage
package Singular [Costantini and de Graaf 2006].

A.1. The field Q
p

. We now comment on the field Q
p

D Q.f
p

p j p a primeg/.
GAP already allows us to work with subfields of cyclotomic fields Q.�n/, where �n
is a complex primitive n-th root of unity. However, if x D

Pm
iD1

p
pi for primes

p1; : : : ;pm, then the smallest n with x 2 Q.�n/ is n D lcm.e1; : : : ; em/, where
ei D pi if pi � 1 mod 4, and ei D 4pi otherwise; see Lemma 17. Thus, already for
small m this requires to work in large cyclotomic fields. Alternatively, one could
work in an algebraic extension defined by an irreducible polynomial over Q. The
disadvantage here is that we do not know in the beginning which irrationals turn
up, so we would have to extend and therefore change the underlying field several
times. To avoid all this, we have implemented our own realization of Q

p

.{/. Every
element of Q

p

.{/ can be written uniquely as uD
Pn

iD1 ri
p

zi where zi > 0 are
pairwise distinct squarefree integers and ri 2Q.{/. Internally, we represent u as a
list with entries .ri ; zi/, which allows efficient addition and multiplication in Q

p

.{/.
A computational bottleneck is the construction of the multiplicative inverse of such
a u ¤ 0: We compute powers f1;u;u2; : : : ;umg until um can be expressed as a
Q-linear combination of f1;u; : : : ;um�1g, say um D

Pm�1
iD0 qiu

i . The minimal
polynomial of u over Q is f .x/ D xm �

Pm�1
iD0 qix

i D xg.x/C q0; therefore
u�1 D�g.u/=q0. Although all this can done with linear algebra, m can become
rather large; see Lemma 19.
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Often we had to deal with the following problem: Suppose v 2Q
p

.{/ is given
as an element of Q.�n/ for some n; write it as an element of Q

p

.{/, that is,
v D

Pm
iD1 ri

p
ki for pairwise distinct positive squarefree integers ki and Gaussian

rationals ri . Clearly, it is sufficient to consider v real. The first step is to determine
the set S of all positive squarefree k with

p
k 2Q.�n/; we do this in Corollary 18.

The second step is to make the ansatz vD
P

k2S rk

p
k in Q.�n/with indeterminates

rk 2 Q. Linear algebra can be used to find a solution of this equation; we prove
in Lemma 19 that such a solution always exists. We now provide the theoretical
background of this approach; our starting point is the following lemma; see [Shirali
and Yogananda 2004, p. 56, Proposition 3], and its corollary.

Lemma 17. If p is an odd prime, then
p
.�1/.p�1/=2p 2Q.�p/.

Corollary 18. Let k and n be positive integers. Suppose k is squarefree and let e

be the number of primes p � 3 mod 4 dividing k.

(a) If
p

2 2Q.�n/, then 8 j n. If
p

k 2Q.�n/, then k j n.

(b) If n is odd, then Q.�n/DQ.�2n/, and
p

k 2Q.�n/ if and only if e is even and
k j n.

(c) If 4 j n and 8 − n, then
p

k 2Q.�n/ if and only if k is odd and k j n.

(d) If 8 j n, then
p

k 2Q.�n/ if and only if k j n.

(e) Let n be minimal with
p

k 2Q.�n/. If k is odd and e is even, then nD k, and
nD 4k otherwise.

Lemma 19. (a) Let n; k1; : : : ; km be pairwise distinct positive squarefree integers
and suppose there exists a prime p j n with p − ki for all i . Then

p
n 62

Q.
p

k1; : : : ;
p

km/.

(b) Let v D
Pm

iD1 ri

p
ki 2Q

p

for rational ri ¤ 0 and pairwise distinct positive
squarefree integers ki . Then v is a primitive element of Q.

p
k1; : : : ;

p
km/.

Proof. (a) We use induction on m. The assertion clearly holds if m D 1; thus
let m > 1 and write K0 D Q.

p
k1; : : : ;

p
km�1/ and K DK0.b/ with b D

p
km.

Suppose that
p

n 2K. Since
p

n 62K0 by the induction hypothesis, b 62K0 and,
therefore,

p
n D r C bs for unique r; s 2 K0. Note that s; r ¤ 0 since otherwise

p
n or

p
nkm=km would lie in K0, a contradiction. Now squaring yields b D

.n� r2� s2km/=.2rs/ 2K0, the final contradiction.

(b) Suppose K D Q.
p

k1; : : : ;
p

km/ D Q.
p

k1; : : : ;
p

ks/ has degree d D 2s

over Q with s � m. Since K is the splitting field of the separable polynomial
.x2� k1/ � � � .x

2� ks/, the extension is Galois and therefore GD Gal.K=Q/ has
order d . Clearly, every map defined by

p
ki 7! ˙

p
ki for i D 1; : : : ; s gives rise

to a Galois automorphism, and an order argument shows that G consists exactly of
these automorphisms. We now show that 1;

p
k1; : : : ;

p
ks are linearly independent
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over Q. Clearly, this is true for s D 1, so let s � 2. For a contradiction, assume
.|/

Ps
iD1 ri

p
ki C rmC1 D 0 for rationals ri . Let p be a prime dividing k1 � � � ks .

Now .|/ implies that
p

p lies in the field generated by
p

k 01; : : : ;
p

k 0s with k 0i D

ki= gcd.ki ;p/, contradicting part (a). Let f be the minimal polynomial of v over
Q. Clearly, 
 .v/ is a root of f for every 
 2G. Since

p
k1; : : : ;

p
ks are Q-linearly

independent, it follows that 
 .v/¤ 
 0.v/ for all 
 ¤ 
 0 in G. This shows that f
has at least d different zeros, which implies that f has in fact degree d and v is
primitive. �
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