Vol. 266, No. 1, 2013

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Attaching handles to Delaunay nodoids

Frank Pacard and Harold Rosenberg

Vol. 266 (2013), No. 1, 129–183
Abstract

For all m −{0}, we prove the existence of a one-dimensional family of genus m, constant mean curvature (equal to 1) surfaces which are complete, immersed in 3, and have two Delaunay ends asymptotic to nodoidal ends. Moreover, these surfaces are invariant under the group of isometries of 3 leaving a horizontal regular polygon with m + 1 sides fixed.

Keywords
constant mean curvature surfaces, Delaunay surfaces
Mathematical Subject Classification 2010
Primary: 53C42
Secondary: 53A10
Milestones
Received: 31 July 2012
Revised: 16 December 2012
Accepted: 26 December 2012
Published: 23 September 2013
Authors
Frank Pacard
Centre de Mathématiques Laurent Schwartz, UMR-CNRS 7640
École Polytechnique
Palaiseau, 91128
France
Harold Rosenberg
Instituto de Matemática Pura e Aplicada
110 Estrada Dona Castorina
Rio de Janeiro 22460-320
Brazil