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RANK GRADIENT OF SMALL COVERS

DARLAN GIRÃO

We prove that if M → P is a small cover of a compact right-angled hyper-
bolic polyhedron then M admits a cofinal tower of finite sheeted covers with
positive rank gradient. As a corollary, if π1(M) is commensurable with the
reflection group of P , then M admits a cofinal tower of finite sheeted covers
with positive rank gradient.

1. Introduction

Let Pn be an n-dimensional simple convex polytope. Here Pn is simple if the
number of codimension-one faces meeting at each vertex is n. Equivalently, the
dual K P of its boundary complex ∂Pn is an (n−1)-dimensional simplicial sphere.
A small cover of Pn is an n-dimensional manifold endowed with an action of
the group Zn

2 whose orbit space is Pn . The notion of small cover was introduced
and studied by Davis and Januszkiewicz [1991]. We will be dealing mostly with
3-dimensional polytopes. In the case P is a compact right-angled polyhedron in
H3 then Andreev’s theorem [1970] implies that all vertices have valence three and
in particular P is a simple convex polytope.

Let G be a finitely generated group. The rank of G is the minimal number of
elements needed to generate G, and is denoted by rk(G). If G j is a finite index
subgroup of G, the Reidemeister–Schreier process [Lyndon and Schupp 1977] gives
an upper bound on the rank of G j .

rk(G j )− 1≤ [G : G j ](rk(G)− 1)

Lackenby [2006] introduced the notion of rank gradient. Given a finitely generated
group G and a collection {G j } of finite index subgroups, the rank gradient of the
pair (G, {G j }) is defined by

rgr(G, {G j })= lim
j→∞

rk(G j )− 1
[G : G j ]

.

We say that the collection of finite index subgroups {G j } is cofinal if ∩ j G j = {1},
and we call it a tower if G j+1 < G j .
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In general it is very hard to construct cofinal families (G, {G j })with positive rank
gradient. For instance, it seems that only recently the first examples of torsion-free
finite covolume Kleinian groups with this property were given in [Girão 2011].
Before stating the main result we need some terminology.

If M is a finite volume hyperbolic 3-manifold, we call the family of covers
{M j → M} cofinal (resp. a tower) if {π1(M j )} is cofinal (resp. a tower). By the
rank gradient of the pair (M, {M j }), rgr(M, {M j }), we mean the rank gradient of
(π1(M), {π1(M j )}).

Theorem 1.1. Let M→ P be a small cover of a compact, right-angled hyperbolic
polyhedron of dimension 3. Then M admits a cofinal tower of finite sheeted covers
{M j → M} with positive rank gradient.

We remark here that this is not true for 3-dimensional polytopes in general. Let
T 3
→ C be the covering of a cube in 3-dimensional Euclidean space by the 3-torus

T 3. It is easy to see that any subgroup of π1(T 3) = Z3 has bounded rank and
therefore the rank gradient with respect to any tower of covers is zero.

This theorem has the following consequence:

Corollary 1.2. Let M be a finite volume hyperbolic 3-manifold such that π1(M)
is commensurable with the group generated by reflections along the faces of a
compact, right-angled hyperbolic polyhedron P ⊂ H3. Then M admits a cofinal
tower of finite sheeted covers {M j → M} with positive rank gradient.

We note that this corollary is complementary to the results of [Girão 2011],
where ideal right-angled polyhedra were considered. The key idea there was to
estimate the rank of the fundamental group of the manifolds by estimating their
number of cusps. Here the estimates on the rank of the fundamental groups are
given in terms of the rank of the mod 2 homology.

The study of the rank of the fundamental group of (finite volume hyperbolic)
3-manifolds has always been a central theme in low-dimensional topology. In recent
years the study of the rank gradient for this class of groups has received special
attention. Motivated by the seminal paper [Lackenby 2006], for instance, Long,
Lubotzky, Reid proved in [Long et al. 2008] that every finite volume hyperbolic
3-manifold has a cofinal tower of covers in which the Heegaard genus grows linearly
with the degree of the covers. Whether or not the same happens to the rank of their
fundamental groups is a major open problem. Another important recent work using
these notions is [Abért and Nikolov 2012]. There they connect the problem related
to the growth of the rank of π1 and the growth of the Heegaard genus in a cofinal
tower of hyperbolic 3-manifolds to a problem in topological dynamics, the fixed
price problem (see [Farber 1998; Gaboriau 2000]). These papers have all been
motivation for the current work.
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2. Small covers

Recall that an n-dimensional convex polytope Pn is simple if the number of
codimension-one faces meeting at each vertex is n. Equivalently, the dual K P

of its boundary complex ∂P is an (n−1)-dimensional simplicial complex. A small
cover of P is an n-dimensional manifold endowed with an action of the group Zn

2
whose orbit space is P .

Let K be a finite simplicial complex of dimension n− 1. For 0≤ i ≤ n− 1, let
fi be the number of i-simplices of K . Define a polynomial 8K (t) of degree n by

8K (t)= (t − 1)n +
n−1∑
i=0

fi (t − 1)n−1−i

and let hi be the coefficient of tn−i in this polynomial, that is,

8K (t)=
n∑

i=0

hi tn−i .

If we restrict to the case where K is the dual K P of the boundary complex of a
convex simple polytope Pn , then one can see that fi is the number of faces of Pn

of codimension i + 1. Let hi (Pn) denote the coefficient of tn−i in 8K P (t).
We state one of the main results of [Davis and Januszkiewicz 1991] in our

particular setting:

Theorem 2.1. If π : Mn
→ Pn is a small cover of a simple convex polytope Pn

and bi (Mn,Z2) is the i-th mod 2 Betti number of Mn , then bi (Mn,Z2)= hi (Pn).

As Davis and Januszkiewicz observe, it is somewhat surprising that all mod 2
Betti numbers of a small cover Mn depend on Pn only. They showed that this
theorem does not hold for homology groups in general. They proved that small
covers of a square Q by tori and Klein bottles are such that the rational Betti
numbers are not determined by Q.

When P is a right-angled dodecahedron in H3 then [Garrison and Scott 2003]
shows that up to homeomorphism there exist exactly 25 small covers of P . Choi
[2010] estimates the number of orientable small covers of the n-dimensional cube.
Also, if P is a 3-dimensional convex polytope, [Nakayama and Nishimura 2005]
proves that P admits an orientable small cover. They also prove that unless P is a
3-simplex, then it admits a nonorientable small cover.

3. Proof of theorem

Theorem 1.1. Let M→ P be a small cover of a compact, right-angled hyperbolic
polyhedron of dimension 3. Then M admits a cofinal tower of finite sheeted covers
{M j → M} with positive rank gradient.
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Proof. As observed above, when P is a compact right-angled polyhedron in H3

then Andreev’s theorem [1970] implies that all vertices have valence three and in
particular P is a simple convex polytope. Let V, E and F denote the number of
vertices, edges and faces, respectively, of a 3-dimensional simple polyhedron P .
Straightforward computations show that

8K P (t)= t3
+ (F − 3)t2

+ (3− 2F + E)t + (V − E + F − 1)

and thus h0(P)=1, h1(P)= F−3, h2(P)=3−2F+E and h3(P)=V−E+F−1.
Since P is simple we also have E = 3

2 V . And since V − E + F = 2 (∂P is
topologically a sphere) this gives F = 1

2 V + 2 and therefore h1(P)= 1
2 V − 1.

The strategy involved in the proof is similar to the proof of the main theorem in
[Girão 2011]. Given P ∈ H3, construct a family of polyhedra

P = P0, P1, . . . , Pj , . . .

such that Pj+1 is obtained from Pj by reflecting Pj along one of its faces. This
must be done in a way such that the following holds: If x ∈H3, then there exists j
sufficiently large so that x lies in the interior of Pj . This means that the family {Pj }

is an exhaustion of H3. Denote by G j the group generated by reflections along the
faces of Pj . If the family {Pj } is constructed as above, then it is easy to see that
G j+1 < G j (with index 2) and it can be shown that the tower {G j } is cofinal (see
[Agol 2008]). We refer the reader to [Girão 2011] for a detailed proof of this fact.

Now let M → P be a small cover of P , and let M j → M be the cover corre-
sponding to the group π1(M)∩G j . Recall that the degree of the cover M→ P is
23.

Lemma 3.2. [π1(M j ) : π1(M j+1)] = 2.

Proof of lemma. First observe that [G j : G j+1] = 2. Since π1(M1)= G1 ∩π1(M),
we must have [π1(M) : π1(M1)] ≤ 2. If this index were 1, then it would mean that
π1(M1)= π1(M) < G1 from which would follow that M1 is a manifold cover of
the simple polyhedron P1 of degree 22. But this is not possible, since any manifold
cover of a 3-dimensional simple polyhedron must have degree at least 23 (see [Davis
and Januszkiewicz 1991; Garrison and Scott 2003]). The remaining cases follow
by induction. �

Since [G j : G j+1] = 2, from the above lemma and an inductive argument we
see that M j → Pj is a cover of degree 23. In particular this implies that M j is a
small cover of Pj . From Theorem 2.1 we have

b1(M j ,Z2)= h1(Pj ).

Denote by V j the number of vertices of Pj . From the computations of h1,

b1(M j ,Z2)= h1(Pj )=
1
2 V j − 1.
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Also note that a lower bound for rk(π1(M j )) is b1(M j ,Z2) and thus

rk(π1(M j ))≥
1
2 V j − 1.

We also have [π1(M) : π1(M j )] = 2 j . Therefore

rgr(π1(M), {π1(M j )})= lim
j→∞

rk(π1(M j ))− 1
[π1(M) : π1(M j )]

≥ lim
j→∞

V j − 3
2 j+1 .

We thus need to show that V j is of magnitude 2 j . This follows from the next result:

Theorem 3.3 [Atkinson 2009]. There exist constants C, D > 0 such that if P is a
compact right-angled polyhedron in H3 with V vertices then

C(V − 8)≤ vol(P)≤ D(V − 10).

We now observe that, in our setting, vol(Pj )= 2 j vol(P) and thus

D(V j − 10)≥ 2 j vol(P)≥ 2 j C(V − 8)

which gives

V j ≥ 2 j C
D
(V − 8)+ 10,

where V is the number of vertices in P . Also, the second inequality in Atkinson’s
theorem provides V > 8. �

4. Extending the examples

Theorem 1.1 has an interesting corollary, which complements the family of mani-
folds provided in [Girão 2011].

Corollary 1.2. Let N be a closed hyperbolic 3-manifold such that π1(N ) is com-
mensurable with the group generated by reflections along the faces of a compact,
right-angled hyperbolic polyhedron P ⊂ H3. Then N admits a cofinal tower of
finite sheeted covers {N j → N } with positive rank gradient.

Proof. First we note that, by passing to a finite cover, we may assume N is orientable.
Note also that [Nakayama and Nishimura 2005] implies orientable small covers of
P exist and therefore N is commensurable with a small cover M→ P . Let N ′ be
the manifold cover of both M and N corresponding to the group π1(M)∩π1(N ).
Consider now N j → N corresponding to the group π1(N ′)∩G j , where the family
{G j } is given as in the proof of Theorem 1.1. Consider also {M j }, the tower where
M j is a small cover of Pj , as in the proof of Theorem 1.1.

Note that π1(N j ) = π1(N ′)∩G j = π1(N ′)∩ π1(M j ) < π1(M j ) and therefore
we have the following diagram of covers, where the labels in the arrows indicate
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the degree of the cover:

P <
2

P1 <
2
· · · <

2
Pj <

2
· · ·

M

23
∧

<
2

M1

23
∧

<
2
· · · <

2
M j

23
∧

<
2
· · ·

N < N ′

∧

< N1

∧

< · · · < N j

∧

< · · ·

Agol, Culler and Shalen proved:

Theorem 4.2 ([Agol et al. 2006]; see also [Shalen 2007]). Let M be a closed,
orientable hyperbolic 3-manifold such that b1(M,Zp) = r for a given prime p.
Then for any finite sheeted covering space M ′ of M , b1(M ′,Zp)≥ r − 1.

We thus have

rk(π1(N j ))≥ b1(N j ,Z2)≥ b1(M j ,Z2)− 1= 1
2 V j − 2

and therefore all we need to do is show that [π1(N ) : π1(N j )] grows at most as fast
as 2 j . But from the above diagram we see that [π1(N j ) : π1(N j+1)] ≤ 2 and we
are done. �
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