
Pacific
Journal of
Mathematics

SUPERTROPICAL LINEAR ALGEBRA

ZUR IZHAKIAN, MANFRED KNEBUSCH AND LOUIS ROWEN

Volume 266 No. 1 November 2013



PACIFIC JOURNAL OF MATHEMATICS
Vol. 266, No. 1, 2013

dx.doi.org/10.2140/pjm.2013.266.43

SUPERTROPICAL LINEAR ALGEBRA

ZUR IZHAKIAN, MANFRED KNEBUSCH AND LOUIS ROWEN

The objective of this paper is to lay out the algebraic theory of supertropical
vector spaces and linear algebra, utilizing the key antisymmetric relation of
“ghost surpasses”. Special attention is paid to the various notions of “base”,
which include d-base and s-base, and these are compared to other treat-
ments in the tropical theory. Whereas the number of elements in various
d-bases may differ, it is shown that when an s-base exists, it is unique up to
permutation and multiplication by scalars, and can be identified with a set
of “critical” elements. Then we turn to orthogonality of vectors, which leads
to supertropical bilinear forms and a supertropical version of the Gram ma-
trix, including its connection to linear dependence. We also obtain a super-
tropical version of a theorem of Artin, which says that if g-orthogonality is
a symmetric relation, then the underlying bilinear form is (supertropically)
symmetric.

1. Introduction

The objective of this paper is to lay the foundations for an algebraic theory of linear
algebra in supertropical mathematics. Special attention is paid to the notion of
base, which plays a subtler role here than in classical linear algebra. Although
an extensive literature already exists on tropical linear algebra over the max-plus
algebra, including matrix rank [Akian et al. 2006] and linear dependence [Akian et al.
2009], the emphasis often is combinatoric or geometric. The traditional approach in
semiring theory is to divide the determinant into a positive and negative part (since
−1 need not exist in the semiring); see [Akian et al. 1990]. The ensuing reliance
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on combinatorics leads to competing (and different) definitions. For example, in
[Akian et al. 2006], five different definitions of matrix rank are given: the row
rank, the Barvinok (Shein) rank, the strong rank, the Gondran–Minoux rank, the
symmetrized rank, and the Kapranov rank. Since [Maclagan and Sturmfels 2009]
is an excellent source of fundamental results and examples, we use it as a general
reference for the “standard” tropical theory and compare several of our notions with
the definitions given there.

Extending the max-plus algebra to the algebra of [Izhakian and Rowen 2010]
yields a theory paralleling the classical structure theory of commutative algebras.
The structure theory of supertropical predomains tends to unify these notions, giving
a single formula for the determinant, from which we can define a nonsingular matrix;
then the row rank, column rank, and strong rank all coincide. This makes it easier
to proceed with a traditional algebraic development. Explicit properties of matrices,
especially singularity, were studied in [Izhakian and Rowen 2009; 2011a; 2011b;
2011c]. We elaborate a bit, by proving in Theorem 3.5 that the product of two
nonsingular n× n matrices cannot be in Mn(G0) (although it might be singular).

Our main objective in this paper is to study bases of supertropical vector spaces
over supertropical semifields, relying as far as possible on the structure theory. While
this theory parallels the classical theory of linear algebra, several key differences do
emerge. The major difference is that whereas in classical linear algebra, any maximal
independent set is a minimal spanning set, these two notions differ significantly in
the tropical theory. Thus, we must consider two kinds of “base”, one defined by
means of independence and the other defined by means of spanning.

First, one can take a maximal (tropically) independent set, which we call a d-
base, called a “basis” in [Maclagan and Sturmfels 2009, Definition 5.2.4]. This has
considerable geometric significance, intuitively providing a notion of rank (although,
by an example in [Maclagan and Sturmfels 2009], the rank might vary according
to the choice of d-base). As one might expect from [Izhakian and Rowen 2011b],
any dependence among vectors can be extended to an (often unique) saturated
dependence, which is maximal in a certain sense; see Theorem 4.20. This leads to
a delicate analysis of the rank of a subspace, especially since it turns out that the
number of elements in different d-bases may differ.

Alternatively, one may consider sets that (tropically) span the subspace; a minimal
such set, when it exists, is called an s-base. Such sets are used in generating convex
spaces, as studied in [Feichtner and Sturmfels 2005]. Not every d-base is an s-base,
and not every s-base is a d-base. In fact, the number of elements of an s-base
might necessarily be larger than the number of elements of a d-base. Surprisingly,
an s-base is unique up to scalar multiples, by Corollary 5.25, and actually can
be characterized in terms of critical elements, which intuitively are elements that
cannot be decomposed into sums of other elements; see Theorem 5.24. On the
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other hand, the d-bases can be quite varied, and lead us to interesting subspaces
that they span.

In the last section, we introduce supertropical bilinear forms in order to study
“left ghost orthogonality” between vectors. One calls two vectors v and w left
g-orthogonal with respect to a supertropical bilinear form 〈 , 〉 when 〈v,w〉 is a
ghost. We construct the Gram matrix and prove the connection between tropical
dependence of vectors in a nondegenerate space and the singularity of their Gram
matrix (Theorem 6.7). Finally, we prove Theorem 6.19, a variant of Artin’s theorem:
When the g-orthogonality relation is symmetric in the sense of Definition 6.12, the
supertropical bilinear form is “supertropically symmetric”.

2. Supertropical structures

Supertropical semifields. A semiring without zero, which we notate as a semiring†,
is a structure (R,+, · ,1R) such that (R, · ,1R) is a monoid and (R,+) is a com-
mutative semigroup, with distributivity of multiplication over addition on both sides.
(In other words, a semiring† does not necessarily have the zero element 0, but any
semiring can also be considered as a semiring†.) Given a semiring† R†, we can
formally adjoin the element 0 to obtain the semiring R := R†

∪ {0}, where we
stipulate, for all a ∈ R,

0+ a = a+ 0= a, 0a = a0= 0.

A supertropical semiring† is a triple (R†,G, ν), where R† is a semiring† and G

is a semiring† ideal called the ghost ideal, together with an idempotent map

ν : R†
→ G

(preserving multiplication as well as addition) called the ghost map on R†, satisfying
the properties

(a) a+ b = aν if aν = bν , and

(b) a+ b ∈ {a, b} for all a, b ∈ R† such that aν 6= bν . (Equivalently, G is ordered
via aν ≤ bν if and only if aν + bν = bν .)

In particular, ν(a)= a+ a. We write aν for ν(a).

Remark 2.1. The element e := ν(1R) is both a multiplicative and additive idem-
potent of R†, which plays a key role, since ν(R†)= eR†. Each element of eR† is
additively idempotent:

er + er = (e+ e)r = er.

We write a >ν b if aν > bν .

Definition 2.2. Elements a and b of (R†,G, ν) are ν-matched, written a ∼=ν b, if
aν = bν . The element a dominates b if a >ν b.
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Recall that any commutative supertropical semiring satisfies the Frobenius for-
mula from [Izhakian and Rowen 2010, Remark 1.1]:

(2-1) (a+ b)m = am
+ bm

for any m ∈ N+.
A supertropical semifield† is a supertropical semiring† (F†,G, ν) in which T :=

F†
\G is an Abelian group and the restriction from ν to T maps onto G. T is called

the set of tangible elements of F†.
We have the analogous definitions when we adjoin the element 0F to the super-

tropical semifield† F† to obtain the supertropical semifield F . Thus, we write

F := F†
∪ {0F } = (F,G0, ν),

where G0 := G∪ {0F } is the ghost ideal and the ghost map ν : F → G0 satisfies
ν(0F )= 0F . Conversely, given a supertropical semifield (F,G0, ν), we can take
F†
= F \{0F } and G=G0\{0F } and define the supertropical semifield† (F†,G, ν).

Thus, the theories with or without 0F are basically the same. Throughout the
remainder of this paper, F = (F,G0, ν) denotes a supertropical semifield.

Intuitively, the tangible elements correspond in some sense to the original max-
plus algebra, although here a + a = aν instead of a + a = a. Our motivating
example [Izhakian 2009] of a supertropical semifield, used as the primary example
throughout [Izhakian and Rowen 2010] as well as in this paper, is the extended
tropical semiring

T := D(R) :=
(
R∪Rν ∪ {−∞},Rν ∪ {−∞}, 1R

)
,

whose operations are induced by the standard operations max and + over the real
numbers; we call this logarithmic notation, since the zero element 0T is −∞
and the unit element 1T is 0. To clarify our exposition, most of the examples in
this paper are presented for D(R). On the other hand, it is often convenient to
take Q or Z instead of R, especially when working with powers of elements, and
the “characteristic 1” semifield† consisting of the single element 1 has interesting
applications. (This becomes the well-known “Boolean semifield” {0,1} when the
zero element is adjoined.) Semirings of polynomials over supertropical semifields
also play a crucial role in tropical geometry. Nonidempotent semifields† such as
Q+ have applications to arithmetic. Accordingly, our theory is framed for vector
spaces over supertropical semifields†, although, in analogy to the classical theory,
the major theorems could also be formulated over semidomains.

The supertropical semifield plays a basic role in supertropical algebra parallel
to the role of the field in classical algebra. Accordingly, one is led to study linear
algebra over supertropical semifields.
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Occasionally, we also want to pass back from G to T. Abusing notation slightly,
we pick a representative in T for each class in the image of ν̂, thereby getting a
function ν̂ : R†

→ T by putting ν̂|T = 1T.

The “ghost surpass” and “ghost dependence” relations. We consider the super-
tropical semiring (R,G0, ν).

Definition 2.3. We say b is ghost dependent on a, written b ggd a, if a+ b ∈ G0.

In particular, a ∼=ν b implies that a ggd b.
The ghost dependence relation is symmetric, but not transitive, since 1ggd 3ν and

3ν ggd 2, although 1 and 2 are not ghost dependent. The following antisymmetric
and transitive relation is a key to much of the theory.

Definition 2.4. We define the ghost surpasses relation |=gs on a supertropical
semiring R = (R,G0, ν) by

a |=gs b ⇐⇒ a = b+ c for some c ∈ G0.

In this notation, by writing a |=gs 0R we mean a ∈ G0. This restricts to the ghost
surpasses relation on R† by

a |=gs b ⇐⇒ a = b or a = b+ c for some c ∈ G.

Remark 2.5. The following are equivalent:

(1) a ggd 0R .

(2) a ∈ G0.

(3) a |=gs 0R .

We quote some easy properties of |=gs from [Izhakian and Rowen 2011b]:

Remark 2.6. (i) When a is tangible, a |=gs b implies a= b [loc. cit., Remark 1.2].
In particular, tangible elements are comparable under |=gs if and only if they
are equal. In this way, the relation |=gs generalizes equality.

(ii) a |=gs b if and only if a = b or a is a ghost ≥ν b. In particular, if a |=gs b then
a ≥ν b; if a |=gs b for b ∈ G0, then a ∈ G0.

(iii) The relation |=gs is a partial order on R [loc. cit., Lemma 1.5].

(iv) If a |=gs b, then a ggd b.

Supertropical vector spaces. Modules over semirings (often called “semimodules”
in the literature, or sometimes “cones”) are defined just as modules over rings,
except that now the additive structure is that of a semigroup instead of a group.
(Subtraction does not enter into the other axioms of a module over a ring.)
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Definition 2.7. Let R be a semiring. An R-module V is a semigroup (V,+,0V )

together with scalar multiplication R× V → V satisfying the following properties
for all ri ∈ R and v,w ∈ V :

(1) r(v+w)= rv+ rw.

(2) (r1+ r2)v = r1v+ r2v.

(3) (r1r2)v = r1(r2v).

(4) 1Rv = v.

(5) r0V = 0V .

(6) 0Rv = 0V .

Note 2.8. One could also define a module over a semiring† by deleting Axiom (6).
In the other direction, any module V over a semiring† R† becomes an R-module
when we formally define 0Rv = 0V for each v ∈ V .

The reason we prefer the terminology “module” is that this definition of module
over a semiring R coincides with the usual definition of module when R is a ring,
since −v = (−1R)v.

In case the underlying semiring R is a supertropical semifield F , V is called a
(supertropical) vector space over F , or vector space for short. We focus on vector
spaces in this paper, and call their elements vectors. Our main example of a vector
space in this paper, as well as the main example in [Izhakian and Rowen 2011a], is
F (n), whose ghost map acts as ν on each component. The zero element 0 of F (n) is
(0F , . . . ,0F ). However, we also are interested in subspaces of F (n), so we need
this greater generality.

A supertropical vector space V has the distinguished standard ghost submodule
H0 := eV , as well as the ghost map ν : V →H0, given by ν(v) := v+ v = ev. We
write vν for ν(v). For example, F (n) has the standard ghost submodule G(n)0 , with

(v1, . . . , vn)
ν
= (vν1 , . . . , v

ν
n).

Definition 2.9. The tangible vectors of F (n) are those (v1, . . . , vn) 6= 0 such that
each vi ∈ T0.

Lemma 2.10. The following properties are satisfied for all α ∈ F , v,w ∈ F (n):

(1) (αv)ν = αvν = ανv.

(2) (v+w)ν = vν +wν .

Proof. (1) (αv)ν = e(αv)= (eα)v = (αe)v = α(ev)= αvν .
(2) (v+w)ν = e(v+w)= ev+ ew = vν +wν . �
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As with supertropical semirings, we define the ghost surpassing relation |=gs for
vectors v = (v1, . . . , vn), w = (w1, . . . , wn) by

v |=gs w if vi |=gs wi for 1≤ i ≤ n.

We say that two vectors v,w are ν-matched, written v∼=ν w, if vν=wν . Likewise,
we write v ≥ν w if vν |=gs w

ν .

Example 2.11.

(2-2) (v1, . . . , vn)≥ν (w1, . . . , wn)

in R(n) if and only if vi ≥ν wi for each 1≤ i ≤ n.

Also, for elements v,w in V , we define

v ggd w if v+w ∈H0.

Remark 2.12. (i) If v |=gs w, then v+w ∈H0; thus v ggd w.

(ii) If vi |=gs w for i = 1, 2, then v1+ v2 |=gs w.

Lemma 2.13. The following property holds for all v,w ∈ V , h ∈H0:

v = w+ h =⇒ v+ h = v.

Proof. v = w+ h = w+ h+ h = v+ h. �

Proposition 2.14. Any vector space V satisfies the following property, for v, h1,
h2 ∈ V :

v+ h1+ h2 = v =⇒ v+ h2 = v.

Proof. v= v+h1+h2= (v+h1+h2)+(h1+h2)= v+eh1+eh2. Takew= v+eh1

and h = eh2 in the lemma to get v = v+ eh2 = (v+ h1+ h2)+ h2 = v+ h2. �

Corollary 2.15. The ghost surpassing relation on (supertropical) vector spaces is
a partial order.

Almost tangible vectors. Since one also has the example of supertropical algebras
arising from tropicalizing Puiseux series [Izhakian and Rowen 2010], we digress
briefly to discuss the situation when ν is not necessarily 1:1.

Remark 2.16. Define
Te := {a ∈ T : a ∼=ν 1R}.

This is a submonoid of T, and in fact Te∪{e} is a supertropical subsemifield† of F .

Lemma 2.17. Generalizing Remark 2.6(i), an element a ∈ F is tangible if and only
if the following condition holds: a |=gs b implies b = αa for some α ∈ Te.
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Proof. Remark 2.6(i) yields the forward implication. Conversely, suppose a is not
tangible, that is, a ∈ G, so a = aν . Then a |=gs â, where â ∈ T and (â)ν = a. The
condition implies â = αa for some α ∈ Te, which is impossible since αa ∈ G. �

Motivated by Lemma 2.17, we have an abstract definition of tangibility for any
(supertropical) vector space V over a supertropical semifield:

Definition 2.18. The almost tangible vectors of V are those elements v ∈ V for
which v |=gs w, for all w ∈ V , implies w ∈ Tev.

Remark 2.19. A nonzero ghost vector v cannot be almost tangible. Indeed, we
would have v |=gs 0, implying 0 ∈ Tev, a contradiction.

Example 2.20. Clearly, the almost tangible vectors of F (n) all are tangible.
On the other hand, in logarithmic notation, taking F = D(R), if V is the sub-

module of F (2) spanned by the vectors v1 = (1, 1ν) and v2 = (0, 1), then one sees
without difficulty that v1 is almost tangible in V , although not tangible in F (2).

In fact, a subspace of F (n) need not have any tangible vectors at all, as exemplified
by the submodule F(1, 1ν) of F (2).

Here is a reduction to the case where ν is 1:1.

Remark 2.21. We define an equivalence on F† via a ≡ b when either a = b or
a, b ∈ T with a ∼=ν b. In other words, two tangible elements are equivalent if and
only if they are ν-matched. Then we could define the supertropical semifield† F†/≡

to be (T/≡)∪ G. The ghost map ν defines a 1:1 function from the equivalence
classes of T to G.

3. Background from matrices

Any set S = {v1, . . . , vm} of m row vectors in F (n) corresponds to an m× n matrix
A(S), whose m rows are the vectors of S. We call A(S) the matrix of S. We denote
by Mn(F) the monoid of n × n matrices over F , and by Mn(G0) the monoid of
n× n ghost matrices.

We recall that the tropical determinant of an n× n matrix A = (ai, j ) in Mn(F)
is really the permanent, which we denote as

|A| =
∑
π∈Sn

aπ(1),1 . . . aπ(n),n.

Although the equation |AB|= |A||B| fails over the max-plus algebra, the relation
|AB| |=gs |A||B| holds over a supertropical semiring by Theorem 3.5 of [Izhakian
and Rowen 2011a], and any matrix satisfies its characteristic polynomial in the
sense of Theorem 5.2 of the same work. The tangible roots of this polynomial
are precisely the supertropical eigenvalues of A, as given in [Izhakian and Rowen
2011a, Theorem 7.10].
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We say that the matrix A is nonsingular if |A| is tangible (and thus A is quasi-
invertible [Izhakian and Rowen 2011a]); otherwise, |A| ∈ G0 (that is, |A| |=gs 0F

by Remark 2.5) and we say that A is singular. Although it was shown in [Izhakian
and Rowen 2011a] that the product of nonsingular matrices could be singular, we
do have the consolation that the product of nonsingular matrices cannot be ghost;
see Theorem 3.5 below.

In [Izhakian and Rowen 2011a], we also defined vectors in F (n) to be tropically
independent if no linear combination with tangible coefficients is in H0.

Recall that a quasi-identity matrix is a nonsingular, multiplicatively idempotent
matrix ghost-surpassing the identity matrix; therefore its determinant equals 1F .
Suppose A= (ai, j ), with |A| tangible. In [Izhakian and Rowen 2011b, Theorem 2.8]
one defines the matrix

(3-1) A∇ :=
1F

|A|
adj(A)

and obtains the quasi-identity matrices

(3-2) IA = AA∇, I ′A = A∇ A.

Remark 3.1. Recall some results on nonsingularity and supertropical dependence:

• A(S) has m tropically independent rows (resp. columns) if and only if A(S)
has a nonsingular m×m submatrix [Izhakian and Rowen 2009, Theorem 3.4;
2011a, Corollary 6.6]

• |A adj(A)| = |A|n [Izhakian and Rowen 2011b, Theorem 4.9].

• |adj(A)| = |A|n−1 [Izhakian and Rowen 2011a]. Thus, adj(A) is nonsingular
if A is nonsingular.

Thus, it is natural to try to understand linear algebra in terms of the supertropical
matrix theory of [Izhakian and Rowen 2011a; 2011b].

Annihilators of matrices.

Definition 3.2. A vector v ∈ V := F (n) (written as a column) g-annihilates an
m× n matrix A if Av |=gs 0V in V . Define

Ann(A)= {v ∈ V : Av |=gs 0V };

this is clearly a subspace of V .

Accordingly, G(n)0 ⊆ Ann(A) for any m× n matrix A.

Remark 3.3. (i) The point of this definition is that the vector v = (β1, . . . , βm)

g-annihilates (A(S))t, the transpose of the matrix of S = {w1, . . . , wm}, if and
only if

∑m
i=1 βiwi |=gs 0V . Thus, tangible g-annihilators correspond to tropical

dependence relations.
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(ii) A (nonzero) tangible vector cannot g-annihilate a nonsingular matrix, since
the columns are tropically independent.

We can improve this result to include vectors that are not necessarily tangible.

Lemma 3.4. The diagonal of the product IA IB of quasi-identity matrices IA, IB

cannot all be ghosts.

Proof. Recall from [Izhakian and Rowen 2011a, §3.2] the weighted digraph G =
(V,E) of an n × n matrix A = (ai, j ), which is defined to have vertex set V =

{1, . . . , n} and an edge (i, j) from i to j (of weight ai, j ) whenever ai, j 6= 0F .
Write IA= (ai, j ) and IB= (bi, j ). If the assertion is false, then for each it , the it , it

diagonal entry must be a ghost, so there must be it+1 such that ait ,it+1bit+1,it ≥ν 1F .

This means each edge from it to it+1 in the weighted digraph G of IA IB has weight
≥ν 1. By the pigeonhole principle, the path of vertices of i1, i2, i3, . . . , in+1 contains
a cycle, say from is to i ′s . But the weight of any nonloop cycle in a quasi-identity
has ν-value < 1F . (Otherwise, multiplying by the entries ai,i for all vertices i not in
the cycle gives an extra summand ≥ e= 1νF for |IA|, contrary to |IA| = 1F .) Hence

1F ≤ν

s′−1∏
k=s

aik ,ik+1bik+1,ik =

s′−1∏
k=s

aik ,ik+1

s′−1∏
k=s

bik+1,ik <ν 1F1F = 1F ,

a contradiction. �

Theorem 3.5. The product of two nonsingular n×n matrices cannot be in Mn(G0).

Proof. If AB is ghost for A, B nonsingular, then (A∇ A)(B B∇) ∈ Mn(G0), contra-
dicting the lemma. �

On the other hand, examples were given in [Izhakian and Rowen 2011a] in which
the product of two nonsingular n×n matrices is singular. Here is a related example
using quasi-identities:

Example 3.6. The matrices

A =
(

0 0ν

−∞ 0

)
, B =

(
0 −∞
0ν 0

)

over D(R) are nonsingular, but AB =
(

0ν 0ν

0ν 0

)
and B A =

(
0 0ν

0ν 0ν

)
are singular.

4. Tropical dependence

Dependence plays a major role in module theory. The familiar definition becomes de-
generate for supertropical vector spaces; the following modification from [Izhakian
and Rowen 2011a], in which the role of zero is replaced by the ghost ideal, is more
suitable for our purposes.
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Definition 4.1. Suppose V is a supertropical vector space over F . A family of
elements S = {wi : i ∈ I } ⊂ V is tropically dependent if there exists a nonempty
finite subset I ′ ⊂ I and a family {αi : i ∈ I ′} ⊂ T such that

(4-1)
∑
i∈I ′

αiwi ∈H0.

Any such relation (4-1) is called a tropical dependence for S. A subset S ⊂ V is
called tropically independent if it is not tropically dependent.

Given an element v ∈ V , we say that v is tropically dependent on a family
S = {wi : i ∈ I } if S ∪ {v} is tropically dependent, in which case we write v ggd S.
(In particular, v ggd {v}.) A subset S′ of V is tropically dependent on S if v ggd S
for each v ∈ S′.

An easy observation:

Remark 4.2. Suppose S = {wi : i ∈ I } ⊂ V . For any given set {αi : i ∈ I } ⊂ T of
tangible elements of F , the set S is tropically independent if and only if {αiwi : i ∈ I }
is tropically independent.

Lemma 4.3. If a set S′ is tropically dependent on S ⊂ F (n), then the supertropical
vector space V of F (n) spanned by S′ is also tropically dependent on S.

Proof. It is enough to show that if v, v′ ∈ F (n) are tropically dependent on S, then
v+v′ is also tropically dependent on S. Write v+

∑
αiwi ∈H and v′+

∑
α′iwi ∈H

for wi ∈ S. It is enough to check this on each component. Thus, we may assume
that v, v′, wi , and w′i are all in F . If v ∼=ν v′, then v+ v′ ∈ G. On the other hand, if
v >ν v

′, then v+ v′ = v is already tropically dependent on S, so the assertion is
clear. �

Tropical d-bases and rank.

Definition 4.4. A d-base (for dependence base) of a supertropical vector space V
is a maximal set of tropically independent elements of V . The rank of a d-base B,
denoted rk(B), is the number of elements of B.

Our d-base corresponds to the “basis” in [Maclagan and Sturmfels 2009, Defini-
tion 5.2.4].

Proposition 4.5. Any subspace of F (n) is tropically dependent on any subset S of n
tropically independent elements. All d-bases of F (n) have precisely n elements.

Proof. By Theorem 6.6 of [Izhakian and Rowen 2011a], the matrix A of S is
nonsingular if and only if S is tropically independent, so in particular any d-base B

of F (n) must have at least n elements. Also recall that any n+ 1 vectors of F (n)

are tropically dependent, by Corollary 6.7 of the same work, so B has precisely n
elements. �
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This leads us to the following definition.

Definition 4.6. The rank of a supertropical vector space V is defined as

rk(V ) :=max
{
rk(B) :B is a d-base of V

}
.

For V ⊆ F (n), the tangible rank of V is defined as

t-rk(V ) :=max
{
rk(B) :B⊂ T(n)

0 is a d-base of V
}
.

We have just seen that t-rk(F (n))= rk(F (n))= n.

Corollary 4.7. If V ⊂ F (n), then rk(V )≤ n.

Proof. Any d-base of V is contained in a d-base of F (n) whose order must be that
of the standard base given in (5-1) below, which is n. �

We might have liked rk(V ) to be independent of the choice of d-base of V , for
any supertropical vector space V . This is proved in the classical theory of vector
spaces by showing that dependence is transitive. However, transitivity fails in the
supertropical theory, since we have the following sort of counterexample.

Example 4.8. In logarithmic notation, over D(R)(3), the vector v = (0, 1, 3) is
tropically dependent on W = {w1, w2}, where w1 = (1, 1, 2) and w2 = (1, 1, 3),
since v + w1 + w2 = (1ν, 1ν, 3ν). Furthermore, W is tropically dependent on
U = {u1, u2}, where u1 = (1, 1, 0) and u2 = (−∞,−∞, 1), since

w1+ u1+ 1u2 = (1ν, 1ν, 2ν), w2+ u1+ 2u2 = (1ν, 1ν, 3ν).

But v, u1, and u2 are tropically independent, since the tropical determinant of the
matrix whose rows are these vectors is 3 ∈ T.

In fact, different d-bases may contain different numbers of elements, even when
tangible. An example is given in [Maclagan and Sturmfels 2009, Example 5.4.20],
which is reproduced here with different entries.

Example 4.9. Consider the following vectors in D(R)(3):

v1 = (5, 5, 0), v2 = (5, 5, 4), v3 = (0, 1, 4), v4 = (0, 2, 4).

Then v1, v2, and v3 are tropically dependent (since their sum (5ν, 5ν, 4ν) is ghost),
and likewise v1, v2, and v4 are tropically dependent. It follows that {v1, v2} is a
d-base for the supertropical vector space V spanned by v1, v2, v3, and v4. But
v2, v3, and v4 are tropically independent since their determinant is 11, which is
tangible; hence, {v2, v3, v4} is also a d-base of V .

We do have a consolation.
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Lemma 4.10. If the vectors v1, . . . , vk ∈ F (n) are tropically independent and the
vector v is tangible, then there are i1, . . . , ik−1 in {1, . . . , k} such that the vectors
vi1, . . . , vik−1, v are tropically independent.

Proof. Let A be the (k+1)× n matrix whose rows are v1, . . . , vk, v, and let A0

denote the k× n matrix of the first k rows v1, . . . , vk . Then A0 has a nonsingular
k× k submatrix obtained by deleting n− k columns; deleting these columns in A,
we have reduced to the case that n = k, that is, A is a (k+1)× k matrix. Now let
A′0 = (a

′

j,i )= adj(A0), which is nonsingular; see Remark 3.1. We are done unless
for each row i ≤ k, the k × k submatrix of A obtained by deleting the i row is
singular, which means that

∑k
j=1 a′i, j ak+1, j is ghost. This means that the vector

(ak+1,1, . . . , ak+1,k) g-annihilates the nonsingular matrix A′0, which is impossible.
�

Proposition 4.11. For any tropical subspace V of F (n) and any tangible v ∈ V ,
there is a tangible d-base of V containing v whose rank is that of V .

Proof. Take a tangible d-base of V of maximal rank, and apply the lemma. �

Example 4.12 (failure of the analog of Proposition 4.11 for nontangible vectors).
Consider the supertropical vector space W ⊂ D(R)(2) spanned by w1 = (0, 1) and
w2 = (0, 2). Then v = (1, 3ν) comprises a d-base of W , consisting of only one
element.

Proposition 4.13. If A is a matrix of rank m, its g-annihilator has a tangible
tropically independent set of rank ≥ n−m.

Proof. Take m tropically independent rows v1, . . . , vm of A, which we may assume
are the first m rows of A. For any other row vu of A (m < u ≤ n), we have
βu,1, . . . , βu,m ∈ T0 such that vu +

∑
βi, jvi ∈ G(n)0 . Letting B be the (n−m) × n

matrix whose (i, j) entries are βi, j for 1≤ i, j ≤ m, and for which βi, j = δi, j (the
Kronecker delta) for m < j ≤ n, we see that B contains an (n −m)× (n −m)
identity submatrix and so has tangible rank ≥ n−m, but B A is ghost. �

Example 4.14. We exhibit a 3×3 matrix A over D(R) of rank m = 2, all of whose
entries are tangible, although rk(Ann(A))= 2> 3− 2. Take

A =

4 4 0
4 4 1
4 4 2

.
A is g-annihilated by the tropically independent vectors v1 = (1, 1, 0)t and v2 =

(1, 1, 1)t, since Av1 = Av2 = (5, 5, 5)t.
Note that this kind of example requires n ≥ 3, in view of Theorem 3.5.
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Saturated dependence relations. Let us study tropical dependence relations in F (n)

more closely. Example 5.7(ii) below shows that a tropical dependence of a vector v
on an independent set S = {wi : i ∈ I } is not uniquely determined. Nevertheless, in
this subsection we do get a “canonical” tropical dependence relation, which we call
saturated. But first, in order for tropical dependence relations to be well-defined
with respect to the ghost map ν : F→ G0, we verify the following condition.

Lemma 4.15. Any subspace of F (n) (with H0 = G(n)0 ) satisfies the property that
whenever αi , βi ∈ T with αi ∼=ν βi ,

(4-2)
∑

i

αiwi ∈H0 ⇐⇒
∑

i

βiwi ∈H0.

Proof. The argument is analogous to that of Lemma 4.3. The condition clearly passes
to submodules, so it is enough to prove it for F (n), and thus to check (4-2) on each
component. We write wi, j for the j-component of wi . Note that αiwi, j ∼=ν βiwi, j

for each i . There are two ways for
∑

i αiwi, j ∈ G0:

(1) Some αi ′wi ′, j dominates
∑

i αiwi, j and is ghost, implying wi ′, j ∈ G0, so∑
i

βiwi, j = βi ′wi ′, j = αi ′wi ′, j ∈ G0.

(2) Two essential summands αi ′wi ′, j and αi ′′wi ′′, j are ν-matched. But then∑
i

βiwi, j = βi ′wi ′, j +βi ′′wi ′′, j = (βi ′wi ′, j )
ν

= (αi ′wi ′, j )
ν
= αi ′wi ′, j +αi ′′wi ′′, j =

∑
i

αiwi, j ∈ G0. �

We examine the tropical dependence

(4-3) v ggd
∑
i∈I

αiwi .

Lemma 4.16. Suppose V = F (n). If v ggd
∑

i∈I αiwi and v ggd
∑

i∈I βiwi for
αi , βi ∈ T0, then taking γi = α̂i +βi , we have

v ggd
∑
i∈I

γiwi .

Proof. Checking each component in turn, we may assume that V = F. We proceed
as in Lemma 4.15. Namely, v ggd

∑
i∈I αiwi (resp. v ggd

∑
i∈I βiwi ) implies one

of the following:

(1) v and some term αi ′wi ′ dominate (resp. v and βi ′wi ′ dominate), in which case
γi ′ = αi ′ (resp. γi ′ = βi ′).
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(2) αi ′wi ′ and αi ′′wi ′′ dominate (resp. βi ′wi ′ and βi ′′wi ′′ dominate), in which case
γi ′ = αi ′ and γi ′′ = αi ′′ (resp. γi ′ = βi ′ and γi ′′ = βi ′′).

(3) Some ghost term αi ′wi ′ (resp. βi ′wi ′) dominates, in which case γi ′ = αi ′ (resp.
γi ′ = βi ′). �

Lemma 4.16 gives us a partial order on the coefficients of the tropical dependence
relations of v on a set S, and motivates the following definition:

Definition 4.17. We say that the support of a tropical dependence

αv ggd
∑
i∈I

αiwi

(where α ∈ T and αi ∈ T0) is the set

{i ∈ I : αi 6= 0F }.

A tropical dependence of minimal support is called irredundant.

A vector does not have a unique tropical dependence on a d-base. For example,
if each entry of a vector w1 is nonzero and α ∈ F has a suitably low ν-value, then
w1+αw2 = w1. We do have a slight consolation.

Lemma 4.18. If
∑k

i=1 αiwi ggd
∑k

i=1 βiwi for independent vectors w1, . . . , wk

and tangible αi , βi , then αi ∼=ν βi for some i .

Proof.
∑k

i=1(αi + βi )wi ∈ H0, implying that not all αi + βi are tangible, so that
αi ∼=ν βi . �

We can do better. A tropical dependence of v on a tropically independent set
S is called saturated if the coefficients αi in (4-3) all are maximal possible with
respect to ≥ν ; in other words, whenever v+

∑l
i=1 βiwi ∈ G(n)0 with βi ∈ T0, then

each βi ≤ν αi .

Remark 4.19. If

(4-4) v ggd

l∑
i=1

αiwi

is a saturated tropical dependence, then for any k ≤ l and for v′ = v+
∑k

i=1 αiwi ,

(4-5) v′ ggd

l∑
i=k+1

αiwi

is also a saturated tropical dependence, since any ν-larger tropical dependence for
(4-5) would yield the corresponding ν-larger tropical dependence for (4-4).
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Theorem 4.20. Any irredundant tropical dependence

(4-6) v ggd

l∑
i=1

αiwi

can be extended to a unique (up to equivalence in the sense of Remark 2.21)
saturated tropical dependence of v on S = {w1, . . . , wl}, having the same support.

Remark 4.21. When the vector v is tangible and S is a d-base, Theorem 4.20 is an
immediate consequence of [Izhakian and Rowen 2011b, Theorems 3.5 and 3.8],
which shows that Ax |=gs v has the maximal tangible vector solution x = ν̂(A∇v),
where A∇ = (1/|A|) adj(A). Here we take A to be the matrix of S, which is
nonsingular, and x to be the vector (α1, . . . , αl)

t.
In general, x = A∇v is a solution for the matrix equation Ax |=gs v, which, when

v is written as a row, is x At
|=gs v. (In a sense, row form is more natural, since the

matrix of S is obtained from the rows.) But this solution x need not be tangible.

Here is a direct combinatoric proof of Theorem 4.20 that does not rely on matrix
theory, and does not depend on the additional assumption of tangibility of S.

Proof of Theorem 4.20. Uniqueness of a saturated tangible solution is obvious,
since one could just take the sup of any two distinct saturated tropical dependences
to get a contradiction. This also gives the motivation for proving existence. Write
v = (v1, . . . , vn). We start with some tropical dependence (4-6), which need not be
saturated, with the aim of checking whether we can modify it until it is saturated. In
principle, we could increase the ν-values of the coefficient αi if at each component j
of the vector αiwi the ν-value of v j is not attained, and this is the main idea behind
the proof. But increasing αi still may not yield a saturated tropical dependence,
since the coefficient may be allowed to increase further, so long as some other term
in the tropical dependence also is adjusted so as to have a j -component of the same
ν-value. Since these j-components are the most difficult to keep track of, we pay
special attention to them. Write wi, j for the j-component of wi .

We say that an index j ≤ n has type 1 if v j is not dominated by
∑

i αiwi, j , which
means that either v j itself is ghost, or else there is precisely one i with αiwi, j

matching v j , and this wi, j ∈ T.
We say that j has type 2 for v if v j is dominated by

∑
i αiwi, j , which means

that either there exists i such that αiwi, j is ghost and dominates v j or there are i, i ′

such that αiwi, j and αi ′wi ′, j are ν-matched and both dominate v j .
Note that increasing the coefficients αi in a tropical dependence cannot change

the type of an index j from type 2 to type 1. Also, at least one index must have
type 1, since otherwise

∑
αiwi, j ∈ G(n)0 , contrary to the hypothesis that the wi are

tropically independent. We choose our tropical dependence such that the number
of indices of type 1 is minimal. In this case, if αiwi, j ν-matches v j for j of type 1,
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we cannot find a ν-greater tropical dependence in which αi is increased, since this
would force the tropical dependence to have an extra type 2 index. Thus, in this
case we say wi is anchored at j . Renumbering the vectors, we may assume that
w1, . . . , wk are anchored at various indices, and replace v by v′ = v+

∑k
i=1 αiwi .

Now we have a new tropical dependence

v′+

l∑
i=k+1

αiwi ∈ G(n)0 ,

which by induction on l can be extended to a saturated tropical dependence

v′ ggd

l∑
i=k+1

α′iwi .

But then the tropical dependence

v ggd

( k∑
i=1

αiwi +

l∑
i=k+1

α′iwi

)
is saturated, since w1, . . . , wk are anchored. �

Proposition 4.22. If

(4-7) v ggd

l∑
i=1

αiwi and v′ ggd

l∑
i=1

α′iwi

are saturated tropical dependences, then

(4-8) (v+ v′) ggd

l∑
i=1

̂(αi +α
′

i )wi

is also a saturated tropical dependence.

Proof. Again we have two proofs, the first using results from [Izhakian and Rowen
2011b] in the case when v, v′ are tangible and the matrix A of the wi is nonsingular.
In the first case, one just takes the solutions x = Â∇v and x ′ = Â∇v′ for the vectors
accompanying the αi and the α′i , and then notes that

ν̂
(

A∇v+ A∇v′
)
= ν̂

(
A∇(v+ v′)

)
.

For the general case, one needs to modify the second proof of Theorem 4.20 for
the vector v+ v′. Namely, consider the tropical dependence

(v+ v′) ggd

l∑
i=1

γiwi ,

where γi =
̂(αi+α

′

i ). At least one index in this tropical dependence must have type 1
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for v+ v′, since otherwise the wi are tropically dependent. We choose our tropical
dependence such that the number of indices of type 1 is minimal. As before, if γiwi, j

ν-matches v j for j of type 1, we cannot find a larger tropical dependence in which
γi is increased, so wi is anchored at j . Again, we may assume that w1, . . . , wk are
anchored at various indices, and replace v+ v′ by v′′ = v+ v′+

∑k
i=1 γiwi . But(

v+

k∑
i=1

αiwi

)
ggd

l∑
i=k+1

αiwi and
(
v′+

k∑
i=1

α′iwi

)
ggd

l∑
i=k+1

α′iwi

are saturated tropical dependences by Remark 4.19, so by induction on l,

v′′ ggd

l∑
i=k+1

γiwi

is a saturated tropical dependence. But then the tropical dependence

v ggd

( k∑
i=1

γiwi +

l∑
i=k+1

γiwi

)
is saturated. �

5. Tropical spanning

In this section, we consider further the fundamental question of what “base” should
mean for supertropical vector spaces. The d-base (defined above) competes with
another notion to be obtained from |=gs. But for the moment we turn to the naive
analog from the classical theory of linear algebra.

Definition 5.1 (classical bases and the standard base). A (supertropical) vector
space V over a semifield F is classically spanned by a set S = {wi : i ∈ I } if every
element of V can be written in the form

v =
∑
i∈J

αiwi ,

for αi ∈ F and some finite index set J ⊂ I .
A set B = {b1, . . . , bn} ⊂ V is a classical base of a vector space V over a

semifield F if every element of V can be written uniquely in the form
∑n

i=1 αi bi

for αi ∈ F.
The standard base of F (n) is the classical base defined as

(5-1)

ε1 = (1F ,0F , . . . ,0F ),

ε2 = (0F ,1F ,0F , . . . ,0F ),

. . .

εn = (0F ,0F , . . . ,1F ).
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Proposition 5.2. If V has a classical base b1, . . . , bn , then V is isomorphic to F (n).

The proof is standard; one defines the isomorphism F (n)→ V by

(α1, . . . , αn) 7→

n∑
j=1

α j b j .

Definition 5.3 (tropical spanning). A vector v ∈ V is tropically spanned by a set
S = {wi : i ∈ I } ⊂ V if there exist a nonempty finite subset J ⊂ I and a family
{αi : i ∈ J } ⊂ T such that

(5-2) v |=gs

∑
i∈J

αiwi .

In this case, we write v |=gs S.
A subset S′ ⊆ V is tropically spanned by S, written S′ |=gs S, if v |=gs S for each

v ∈ S′.

Remark 5.4 (transitivity for tropical spanning). If V |=gs W and W |=gs U , then
V |=gs U .

Obviously, any set classically spanned by S is tropically spanned; surprisingly,
the converse often holds.

Remark 5.5. (i) If a tangible vector v ∈ F (n) is tropically spanned by a set S⊂ V ,
then v is classically spanned by S with the same coefficients, as seen by
checking components.

(ii) The assertion in (i) can fail for nontangible v ∈ F (2). Take S = {(1F ,1F )};

then v= (1F ,1νF ) is tropically spanned by S since (1F ,1νF ) |=gs (1F ,1νF ), but
is not classically spanned by S.

(iii) If V has a classical spanning set B of almost tangible vectors, and B is
tropically spanned by a set S, then V is classically spanned by S, by (ii) and
transitivity. In particular, if F (n) is tropically spanned by a set S, then F (n) is
classically spanned by S, since F (n) has the standard base.

(iv) Any element tropically spanned by S is also tropically dependent on S, but
not conversely; for example v = (1F ,1F ) ∈ F (2) is tropically dependent on
S = {(1F ,1νF )} ⊂ F (2), but v is not tropically spanned by S. This leads to an
interesting dichotomy to be studied shortly.

(v) Tropical spanning does not satisfy the assertion analogous to Lemma 4.16. For
example, take {

w1 = (1, 2), w2 = (1, 3)
}
⊂ D(R)(2)

and the vector v = (1, 3ν); then v |=gs w1 and v |=gs w2, but v |6=gs w1+w2 =

(1ν, 3).
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Thus, we see that almost tangible vectors already begin to play a special role in
the theory of tropical dependence, and could be used instead of tangible vectors in
the general theory of supertropical vector spaces.

Lemma 5.6. W = {v ∈ V : v |=gs S} is a subspace of V @for any S ⊂ V .

Proof. If v =
∑

i∈I αiwi + y and v′ =
∑

i∈I α
′

iwi + z, where αi , α
′

i ∈ T, wi ∈ S
and y, z ∈H0, then letting J = {i : αi ∼=ν α

′

i }, we have, by bipotence,

v+ v′ =
∑
i /∈J

βiwi +
∑
i∈J

ανi wi + (y+ z) |=gs

∑
i /∈J

βiwi ,

where βi ∈ {αi , α
′

i } ⊂ T. The other verifications are easier. �

We call W (in Lemma 5.6) the subspace tropically spanned by S, and say that S
is a tropically spanning set of W .

A supertropical vector space is finitely spanned if it has a finite tropically spanning
set.

Example 5.7. Take R = D(R), with logarithmic notation.

(i) The vectors

v1 = (1, 0, 1), v2 = (1, 1, 0), and v3 = (0, 1, 1)

are tropically dependent in D(R)(3) since their sum is (1ν, 1ν, 1ν). None of
these vectors is tropically spanned by the two other vectors.

(ii) Even when a vector is classically spanned by tropically independent vectors,
the coefficients need not be unique. For example,

(4, 5)= 2(1, 1)+ 2(2, 3)= 1(1, 1)+ 2(2, 3).

The point of this example is that the first coefficient is sufficiently small so as
not to affect the outcome.

(iii) Another such example: The vectors

v1 = (−∞,−∞, 1), v2 = (1, 1,−∞), and v3 = (−∞, 1, 1)

are tropically independent, though classical spanning with respect to them (and
thus also tropical spanning) is not unique; e.g., (3, 3, 1)= 2v2+v3 = v1+2v2.

(iv) Another such example: Consider the vectors

v1 = (1, 4, 3), v2 = (2, 3, 4), and v3 = (0, 20, 20).

Then (3, 20, 20)= 1v2+ v3 = 2v1+ v3.
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For S = {w1, . . . , wn}, there need not be a ν-maximal set of α1, . . . , αl ∈ T

such that v |=gs
∑l

i=1 αiwi . For example, in logarithmic notation, take

v = (1, 1), w1 = (1, 0), and w2 = (1, 1).

Then v = αw1+w2 for all α < 0, but taking α = 0 yields w1+w2 = (1ν, 1).

Proposition 5.8. For any subspace V of F (n), the number of elements of any
tropically spanning set S of V is at least rk(V ).

Proof. Take a d-base {v1, . . . , vm} of V , where m = rk(V ) ≤ n. By [Izhakian
and Rowen 2009, Theorem 3.4], the m× n matrix whose rows are v1, . . . , vm has
rank m. Taking a nonsingular m×m submatrix and erasing all the n−m columns
not appearing in this submatrix, we may assume that m = n (since we still have a
supertropically generating set which we can shrink to a minimal one).

Writing vi |=gs
∑
αi, j s j for suitable s j ∈ S, we can procure a nonsingular matrix

whose rows are various s j , implying that some subset of m vectors of S is tropically
independent, and thus |S| ≥ m. �

We are ready for another version of base.

Definition 5.9 (s-base). An s-base (for spanning base) of a (supertropical) vector
space V is a minimal tropical spanning set S, in the sense that no proper subset of
S tropically spans V .

As we shall see in Examples 5.22 below, a vector space with a finite d-base could
still fail to have an s-base. Even when an s-base exists, it could be considerably
larger than any d-base.

Example 5.10. Elements of a vector space V may be tropically dependent on a
subspace W but not tropically spanned by W , as indicated in Example 5.7(i).

Example 5.11. Let V be the subspace of D(R)(2) spanned by

S = {(1, 1), (1ν, 1), (1, 1ν)}

in logarithmic notation, equipped with the standard ghost module. Each of these
vectors alone comprises a d-base of V , whereas S is an s-base of V .

An s-base S need not be finite. On the other hand, obviously any finite tropical
spanning set contains an s-base, so any finitely spanned vector space has an s-
base. In order to coordinate the definitions of s-base and d-base, we introduce the
following definition.

Definition 5.12. A d,s-base is an s-base which is also independent, that is, also
is a d-base. A supertropical vector space V is finite-dimensional if it has a finite
d,s-base.
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Proposition 5.13. The cardinality of the d,s-base S, if finite, is precisely rk(V ).

Proof. |S| ≥ rk(V ) by Proposition 5.8. But we get equality, since by definition S is
itself a d-base. �

Example 5.14. Suppose S is a tropically independent subset of V . Then S is a
d,s-base of the subspace of V tropically spanned by S. These are the subspaces of
greatest interest to us.

Example 5.15. There are four possible sorts of nonzero subspaces of F (2) tropically
spanned by a set S of tangible elements over a supertropical semifield F , writing
{ε1 = (1F ,0F ), ε2 = (0F ,1F )} for the standard base:

(i) The plane F (2) itself.

(ii) A half-plane of tangible rank 2, having tangible s-base containing ε1 or ε2, as
well as one tangible element α1ε1+α2ε2 for α1, α2 ∈ T.

(iii) A planar strip of tangible rank 2, having tangible s-base

{α1ε1+α2ε2, β1ε1+β2ε2},

where α1, α2, β1, β2 ∈ T.

(iv) A subspace of tangible rank 1, each pair of whose elements is tropically
dependent. The tangible vectors are all multiples of a single vector.

One also has examples of nontangibly generated subspaces of F (2), such as
W = {(α, αν) : α ∈ F}.

Here are some examples of strange behavior of s-bases, when we reverse the di-
rection in tropical spanning in a supertropical vector space V . For subsets S, S′ ⊂ V ,
we say that S′ ghost surpasses S if for each v ∈ S′, there is some v′ ∈ S′ such that
v′ |=gs v.

Examples 5.16. (i) Let V be the vector space tropically spanned by the vectors
v1, v2, v3 of Example 5.7(i), and let W be the subspace tropically spanned by the
vectors v1 and v2. Note that

v1+ v2 = (1ν, 1, 1) |=gs (0, 1, 1)= v3.

We claim more generally that W ghost surpasses V . Indeed, by symmetry we may
consider v = (α, β, γ ) ∈ V with α ≤ν β ≤ν γ . By the definition of V , we must
have either β ∼=ν γ or γ = γ ν . In the former case, β(v1 + v2) |=gs v, and in the
latter case, v |=gs βv1+ γ v3.

(ii) Here is an example of a supertropical space V with an s-base {v1, v2, v3, v} in
which the subspace W tropically spanned by v1, v2, and v3 ghost surpasses {v}, and
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the subspace W ′ tropically spanned by v1 and v2 ghost surpasses {v3}, but W ′ does
not ghostsurpass {v}. Let

v1 = (2, 2, 0, 2, 2, 0), v2 = (2, 0, 2, 2, 0, 2),

v3 = (0, 2, 2, 0, 2, 2), v = (2, 2, 2, 1, 1, 1).

Then v1 + v2 + v3 |=gs v and v1 + v2 |=gs v3, but we claim that W ′ does not
ghost surpass {v}. Suppose α1v1+ α2v2 |=gs v. If α1 = α2, then from the second
component, α1 = 0, so from the fifth component α2 = 2: a contradiction.

Thus α1 6= α2. By symmetry, we may assume that α1 > α2. Then from the first
component, α1 =−2, and now we have a contradiction from the second component.

(iii) We now exhibit a space V in which the s-base B has 6 vectors and which is
ghost surpassed by a set of 4 vectors; but if one removes any single vector from B

it fails to ghost surpass V . Take

v1 = (4, 4, 0, 2, 2, 0), v2 = (4, 0, 4, 2, 0, 2), v3 = (0, 4, 4, 0, 2, 2),

w1 = (2, 2, 0, 2, 2, 0), w2 = (2, 0, 2, 2, 0, 2), w3 = (0, 2, 2, 0, 2, 2).

The vector (4, 4, 4, 3, 3, 3) is not ghost surpassed by any 5 of these vectors.

Critical elements versus s-bases. Since s-bases are involved in the actual gener-
ation of the space, they are more in tune with the classical theory of convexity,
and can be studied combinatorially. Here is another way to view the s-base, which
is inspired by the literature on convex spaces. We say that two elements v,w in
a supertropical vector space V over a supertropical semifield F are projectively
equivalent, written v ∼ w, if and only if v = αw for some tangible element α ∈ F .
Accordingly, we define the equivalence class of v as

[v]∼ := {w ∈ V | w ∼ v}.

Definition 5.17. A vector v /∈H0 in a supertropical vector space V is critical if we
cannot write v |=gs v1+v2 for v1, v2 ∈ V \ [v]∼. Taking one representative for each
class [v]∼, a critical set of V is defined as a set of representatives of all the critical
elements of V .

Critical elements correspond to “extreme points” over the max-plus algebra in
[Gaubert and Katz 2007], in which it is shown that every point in F (n) is a linear
combination of at most n+ 1 extreme points.

Example 5.18. Consider the space V spanned by the five critical vectors

(0, −∞, 0, −∞, 0, −∞), (−∞, 0, −∞, 0, −∞, 0),

(0, −∞, −∞, 0, −∞, −∞), (−∞, 0, −∞, −∞, 0, −∞),

(−∞, −∞, 0, −∞, −∞, 0).
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Then (0, 0, 0, 0, 0, 0) is the sum of the first two vectors as well as the last three.

There is a basic connection between criticality and almost tangible.

Lemma 5.19. Suppose v |=gs αv+w for α ∈T, v,w ∈ V . Then α ≤ν e. Moreover:

(1) If α <ν e, then v |=gs w.

(2) Suppose α ∈ Te, that is, α ∼=ν e. If w ∈H0, then v = αv. For any w ∈ V ,

v = α2v+ ew′ = α2v,

where w′ |=gs w.

Proof. Write v = αv+w′, where w′ |=gs w.

If α >ν e, then

v = αv+w′ = (α+1F )v+w
′
= v+αv+w′ = v+ v = ev ∈H0.

But then v = v+αv+w′, implying by Proposition 2.14 that v = v+αv = αv, and
thus α ∼=ν e.

(1) If α <ν e, then 1F = α+1F , implying

v = (α+1F )v = αv+ v = αv+αv+w
′
= eαv+w′ |=gs w,

proving (1).

(2) Thus, we assume that α ∈ Te. If w = ew, then

v=αv+w′=α(αv+w′)+w′=α2v+(α+1F )w
′
=α2v+ew′=α(αv+ew′)=αv.

For any w, if α ∈ Te, then

v = αv+w′ = α(αv+w′)+w′ = α2v+ (α+1F )w
′
= α2v+ ew′.

Hence, v = α2v by the preceding argument, replacing w by ew′. �

Proposition 5.20. Any critical element v ∈ V is almost tangible.

Proof. Otherwise v =w+w′ for suitable w ∈ V , w′ ∈H0, for which w /∈Tev, but
by criticality, w = αv for α ∈ T. Then, by Lemma 5.19, α ≤ν e, and furthermore
α ∈ Te, since otherwise v |=gs ew′, contrary to v /∈H0. But now, by Lemma 5.19,
v = αv = w, a contradiction. �

Lemma 5.21. An almost tangible element v ∈ V is critical if and only if it is not
tropically spanned by V \ [v]∼, that is, v |6=gs

∑
αiwi for any αi ∈T, wi ∈ V \ [v]∼.

Proof. The “if” part is immediate by definition. To prove the converse, suppose on
the contrary that v |=gs

∑t
i=1 αiwi ; by definition of criticality, t > 1. Then taking

v1=α1w1 and v2=
∑t

i=2 αiwi , we must have v2 ∈ [v]∼, and conclude by induction
on t. �
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Clearly a critical set of a vector space V is projectively unique, but could be
empty.

Examples 5.22. (i) The standard base {ε1, . . . , εn} of F (n) is also its critical set.

(ii) The critical set of the subspace W = F (2) \ ([ε1]∼ ∪ [ε2]∼) is empty.

(iii) W = F (2) \ [ε1]∼ has the critical set [ε2]∼, but has no s-base.

Despite the last two examples, some positive information is available.

Lemma 5.23. Any tropical spanning set S contains a tropical critical set of V .

Proof. Suppose v ∈ V is critical. By hypothesis on S, v is tropically spanned by S,
but by Lemma 5.21, it must be an element of S (up to projective equivalence). �

Theorem 5.24. Suppose V has an s-base S. Then S is a critical set of V .

Proof. In view of Lemma 5.23, it remains to show that each element of S is critical.
Suppose v ∈ S is not critical. Then v = v1+ v2 where v1, v2 /∈Tv. Thus, when we
write

v1 =
∑

i

α1,i s1,i +w1 and v2 =
∑

i

α2,i s2,i +w2

for α1,i , α2,i ∈T, s1,i , s2,i ∈ S, and w1, w2 ∈H0, we must have v appearing in one
of the sums (for otherwise v = v1+ v2 is tropically spanned by the other elements
of S, contrary to hypothesis).

Thus, we may assume s1,1 = v, and we have

v1 |=gs α1v+
∑
i 6=1

α1,i s1,i ,

and similarly v2 |=gs α2v+
∑

i 6=1 α2,i s2,i . (Formally, we permit α2 = 0F .) We also
write v j = α j + x j , where x j |=gs

∑
i 6=1 α j,i s j,i .

Now
v = v1+ v2 = βv+ x,

where β = α1,1+ α2,1 and x = x1+ x2. But then β ≤ν e, by Lemma 5.19, which
also says that if β <ν e, then v |=gs x, contrary to S being an s-base. Thus, we
may conclude that β ∼=ν e. By symmetry, we assume that α1 ∼=ν e. If α2 <ν e, then
v2 |=gs x2, and

v = v1+ v2 = α1v+ x1+ v2 = α1(α1v+ x1+ v2)+ x1+ v2

= α2
1v+ (α1+1F )(x1+ v2)= α

2
1v+ e(x1+ v2),

and thus

v1 = α
2
1v+ e(x1+ v2)= α1(α

2
1v+ e(x1+ v2))+ x1+ v2

= α3
1v+ e(x1+ v2)= α1(α

2
1v+ e(x1+ v2))= α1v.
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Thus, we are done for α2 <ν e, and may assume that α2 ∈ Te. Then

v = (α1+α2)v+ x1+ x2 = ev+ x,

implying v = ex ∈H and thus α jv = α j ev = ev for j = 1, 2. Hence

v = v1+ v2 = α1v+ x1+α2v+ x2 = (α1+α2)v+ x = ev+ x,

and thus v = ev+ ex by Lemma 5.19, implying

v1 = ev+ x1 = ev+ ex + x1 = ev+ ex1+ ex2+ x1

= ev+ ex1+ ex2 = ev+ ex = v. �

Thus, we have the following striking result:

Corollary 5.25. The s-base (if it exists) of a supertropical vector space is unique
up to multiplication by tangible elements of F , and is comprised of almost tangible
elements.

Example 5.26. The only s-bases of the supertropical vector space V = F (n) are its
classical bases S = {α1ε1, . . . , αnεn}, where α1, . . . , αn ∈ T.

One also has the following tie between critical sets and s-bases.

Proposition 5.27. Any critical set C of a supertropical vector space V is an s-base
of the subspace W tropically spanned by C.

Proof. By hypothesis, C tropically spans W , so we need only check minimality.
But for any v ∈ C , by definition, C \ {v} does not tropically span v. �

Definition 5.28 (thick subspace). A subspace W of a supertropical vector space V
is thick if rk(W )= rk(V ).

For example, any subspace of F (n) containing n tropically independent vectors
is thick.

Remark 5.29. By definition, any thick subspace of a thick subspace of V is thick
in V .

Remark 5.30. Any thick subspace W of a supertropical vector space V contains a
d-base of V . Indeed, by definition, for n = rk(V ), W contains a set of n tropically
independent elements, which must be a maximal tropically independent set in V ,
by definition of rank. Thus, V is tropically dependent on any thick subspace.

Example 5.31. There exists an infinite chain of thick subspaces W1 ⊂W2 ⊂ · · · of
V = D(R)(2), where Wk is the strip tropically spanned by {(k, 0), (0, k)}, k ∈ N+.
Thus, {(k, 0), (0, k)} is not an s-base of D(R)(2). (One could expand this to an
uncountable chain by taking k ∈ R+.)

Note that projectively a thick subspace need not be either convex in the classical
sense or of pure dimension [Izhakian et al. 2011].
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5A. Change of base matrices. We write Pπ for the permutation matrix whose entry
in the (i, π(i)) position is 1F (for each 1≤ i ≤ n) and 0F elsewhere. Likewise, we
write diag{a1, . . . , an} for the diagonal matrix whose entry in the (i, i) position is
ai and 0F elsewhere, and denote it as D. We call the product Pπ D of a permutation
matrix and a tangible (nonsingular) diagonal matrix, with each diagonal entry 6= 0F ,
a generalized permutation matrix, and denote it as P̃π;D .

Recall from [Izhakian and Rowen 2011a, Proposition 3.9] that over a supertropical
semifield, a matrix is invertible if and only if it is a generalized permutation matrix
P̃π;D with D nonsingular. In particular, the set of all generalized permutation
matrices form a group whose unit element is I .

Definition 5.32. Given s-bases B={v1, . . . , vn} and B′={v′1, . . . , v
′
n} of V ⊆ F (n),

whose respective row matrices are denoted A and A′, a change of base matrix is a
matrix P such that

(5-3) A′ = PA.

Proposition 5.33. The generalized permutation matrices are the only change of
base matrices of s-bases (and thus classical bases).

Proof. Immediate by Corollary 5.25. �

Remark 5.34. It follows from Proposition 5.33, applied to the standard base, that
the matrix A is the matrix of a classical base if and only if A is a generalized
permutation matrix.

6. Supertropical bilinear forms

The classical way to study orthogonality in vector spaces is by means of bilinear
forms. In this section, we introduce the supertropical analog, providing some of the
basic properties. Although the tropical literature deals with orthogonality in terms
of the inner product, as described in [Akian et al. 2006, §25.6], the supertropical
theory leads to a more axiomatic approach.

The notion of supertropical bilinear form follows the classical algebraic theory,
although, as is to be expected, there are a few surprises, mostly because of the
characteristic 2 nature of the theory [Izhakian et al. 2013]. In this section, we
assume that V is a vector space over a supertropical semifield F .

Supertropical bilinear forms.

Definition 6.1. A (supertropical) bilinear form on supertropical vector spaces V
and V ′ is a function B : V × V ′→ F satisfying

B(v1+ v2, w1+w2) |=gs B(v1, w1)+ B(v1, w2)+ B(v2, w1)+ B(v2, w2),

B(αv,w)= αB(v,w)= B(v, αw),
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for all α ∈ F , vi ∈ V , and w j ∈ V ′. We say that a bilinear form B is strict if

B
(
α1v1+α2v2, β1w1+β2w2

)
= α1β1 B(v1, w1)+α1β2 B(v1, w2)+α2β1 B(v2, w1)+α2β2 B(v2, w2),

for all vi ∈ V and wi ∈ V ′.
When V ′ = V , we say that B is a (supertropical) bilinear form on the vector

space V .

We usually write 〈v,w〉 in place of B(v,w). We do not assume that 〈v,w〉 =
〈w, v〉. For the remainder of this section, we take V ′ = V ⊆ F (n), and consider a
(supertropical) bilinear form B on V .

Perhaps surprisingly, one can lift many of the classical theorems about bilinear
forms to the supertropical setting, without requiring strictness.

Definition 6.2. The Gram matrix of vectors v1, . . . , vk ∈ V = F (n) is defined as
the k× k matrix

(6-1) G̃(v1, . . . , vk)=


〈v1, v1〉 〈v1, v2〉 · · · 〈v1, vk〉

〈v2, v1〉 〈v2, v2〉 · · · 〈v2, vk〉

...
...

. . .
...

〈vk, v1〉 〈vk, v2〉 · · · 〈vk, vk〉

 .
The set {v1, . . . , vk} is nonsingular (with respect to B) if and only if its Gram matrix
is nonsingular (see Section 3). The Gram matrix of V is the Gram matrix of an
s-base of V .

Example 6.3. The quasi-identity

(6-2) G̃(v1, v2)=

(
0 1ν

−∞ 0

)
(in logarithmic notation) is the Gram matrix of a bilinear form. Note that

〈v1, v2〉 = 1ν > 0ν = 〈v1, v1〉+ 〈v2, v2〉.

In particular, we have the matrix G̃ = G̃(b1 . . . , bk), which can be written as
(gi, j ) where gi, j = 〈bi , b j 〉; we describe the bilinear form via the matrix equation

(6-3) 〈v,w〉 |=gs v
t G̃w.

Of course, the matrix G̃ depends on the choice of tangible s-base B of V , but
this is unique up to multiplication by scalars and permutation, so G̃ is unique up
to P̃π;DG̃ P̃ t

π;D, where P̃π;D is a generalized permutation matrix. In particular,
whether or not G̃ is nonsingular does not depend on the choice of s-base.
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Ghost orthogonality. Bilinear forms play a key role in geometry since they permit
us to define orthogonality of supertropical vectors. However, as we shall see,
orthogonality is rather delicate in this setup. We work with a fixed bilinear form
B = 〈 , 〉 on a supertropical vector space V .

Definition 6.4. For vectors v,w in V , we write v⊥⊥w when 〈v,w〉 ∈ G0, that is,
〈w1, w2〉 |=gs 0F (see Remark 2.5), and say that v andw are left ghost orthogonal, or
lg-orthogonal for short. For subspaces W1, W2 of V , we say that W1 is lg-orthogonal
to W2 if every w1 ∈W1 is lg-orthogonal to every w2 ∈W2.

The left orthogonal ghost complement S⊥⊥ of S is defined as

S⊥⊥ := {v ∈ V : 〈v, S〉 ∈ G0}.

S⊥⊥ is always a subspace of V , and H0⊆ S⊥⊥ for any S⊂V . The right orthogonal
ghost complement is defined analogously. Of course, when 〈v,w〉 ∈ H0 implies
〈w, v〉 ∈H0, we may omit the words “left” and “right” and talk of g-orthogonality,
which then is a symmetric relation.

Definition 6.5. A subspace W of V is called nondegenerate (with respect to B) if
W⊥⊥ ∩W ⊆H0. The bilinear form B is nondegenerate if the space V is nondegen-
erate.

Lemma 6.6. Suppose {w1, . . . , wm} tropically spans a subspace W of V , and v∈V .
If
∑m

i=1 βi 〈v,wi 〉 ∈ G0 for all βi ∈ T, then v ∈W⊥⊥.

Proof.
〈
v,
∑

i βiwi
〉
|=gs

∑
i 〈v, βiwi 〉 =

∑
i βi 〈v,wi 〉 ∈ G0 for all βi ∈ T. Thus,

v ∈W⊥⊥. �

Theorem 6.7. Assume that the vectors w1, . . . , wk ∈ V span a nondegenerate sub-
space W of V . If |G̃(w1 . . . , wk)| ∈ G0, then w1 . . . , wk are tropically dependent.

Proof. Write G̃ = G̃(v1, . . . , vk). By [Izhakian and Rowen 2011a, Theorem 6.6],
|G̃| ∈ G0 if and only if the rows of G̃ are tropically dependent. By the lemma,
if |G̃| ∈ G0, then some linear combination of the wi is in W⊥⊥. When W is
nondegenerate, this latter assertion is the same as saying that the wi are tropically
dependent. �

Corollary 6.8. If the bilinear form B is nondegenerate on a vector space V , then the
Gram matrix (with respect to any given supertropical d,s-base of V ) is nonsingular.

Remark 6.9. In case the bilinear form B is strict, we can strengthen Lemma 6.6 to
obtain, for v ∈ V ,

v ∈W⊥⊥ ⇐⇒
m∑

i=1

βi 〈v,wi 〉 ∈ G0 for all βi ∈ T.

(Indeed, if v ∈W⊥⊥, then
∑

i βi 〈v,wi 〉 =
〈
v,
∑

i βiwi
〉
∈ G0 for all i .)
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In this case, we can also strengthen Corollary 6.8 to read:

Corollary 6.10. A strict bilinear form B is nondegenerate on a supertropical vector
space V if and only if the Gram matrix (with respect to any given supertropical
d,s-base of V ) is nonsingular.

Symmetry of g-orthogonality.

Definition 6.11. The bilinear form B is supertropically alternate if 〈v, v〉 ∈ G0 for
all v ∈ V . B is symmetric if 〈v,w〉 = 〈w, v〉 for all v,w ∈ V . B is supertropically
symmetric if 〈v,w〉ggd 〈w, v〉 for all v,w ∈ V , that is, 〈v,w〉+ 〈w, v〉 ∈ G0.

In this subsection, we prove the supertropical version of a classical theorem
of Artin, that any bilinear form in which g-orthogonality is symmetric must be a
supertropically symmetric bilinear form. (In characteristic 2, any alternate form is
symmetric, so we would expect our supertropical forms in the conclusion of the
theorem to be symmetric in some sense.)

Definition 6.12. The (supertropical) bilinear form B is orthogonal-symmetric if it
satisfies the following property for all vi , w ∈ V :

(6-4)
∑

i

〈vi , w〉 ∈ G0 ⇐⇒
∑

i

〈w, vi 〉 ∈ G0

for any finite sum taken over vi ∈ V .
B is supertropically orthogonal-symmetric if B is orthogonal-symmetric and

satisfies the additional property that 〈v,w〉 ∼=ν 〈w, v〉 for all v,w ∈ V satisfying
〈v,w〉 ∈ T.

Remark 6.13. If every 〈v, v〉 = 0F , for all v ∈ V , then the (supertropical) bilinear
form B is trivial. (Indeed, 0F = 〈v+w, v+w〉 = 〈v,w〉+ 〈w, v〉 for all v,w ∈ V ,
implying 〈v,w〉 = 〈w, v〉 = 0F .)

Thus we need to modify our notion of isotropic.

Definition 6.14. A vector v ∈ V is g-isotropic if 〈v, v〉 ∈ G0.

Lemma 6.15. When the bilinear form B is strict, Condition (6-4) reduces to the
condition

〈v,w〉 ∈ G0 ⇐⇒ 〈w, v〉 ∈ G0.

Proof. Taking v =
∑

i vi , we have∑
i

〈vi , w〉 = 〈v,w〉, 〈w, v〉 =
∑

i

〈w, vi 〉. �

The symmetry condition extends to sums.
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Lemma 6.16. If B is supertropically symmetric, then∑
i

〈vi , w〉 ∈ T ⇐⇒

∑
i

〈w, vi 〉 ∈ T.

In this case,
∑

i 〈vi , w〉 =
∑

i 〈w, vi 〉.

Proof. We may assume that
∑

i 〈vi , w〉 ∈ T and
∑

i 〈w, vi 〉 ∈ T, since there is
nothing to check if one (and thus the other) is ghost. Take i1 such that 〈vi1, w〉

is the dominant summand of
∑

i 〈vi , w〉, and thus is tangible. Likewise, take i2

such that 〈w, vi2〉 is the dominant summand of
∑

i 〈w, vi 〉, and thus is tangible.
By hypothesis, 〈vi1, w〉 = 〈w, vi1〉 and 〈w, vi2〉 = 〈vi2, w〉, since these are tangible.
Since these dominate their respective sums, we get

∑
i 〈vi , w〉 =

∑
i 〈w, vi 〉 ∈T. �

We aim to prove that a g-orthogonal-symmetric (supertropical) bilinear form is
supertropically symmetric.

Remark 6.17. The condition 〈v,w〉+〈w, v〉∈G0 means that v is g-orthogonal tow
with respect to the new (symmetric) bilinear form given by 〈v,w〉′ :=〈v,w〉+〈w, v〉.

Lemma 6.18. Suppose that B is a g-orthogonal-symmetric bilinear form and
v,w ∈ V . Then either 〈v,w〉+ 〈w, v〉 ∈ G0, or 〈v, v〉 = 〈w,w〉 = 0F .

Proof. One may assume that 〈v,w〉 ∈ T; hence 〈w, v〉 ∈ T. If 〈v,w〉 ∼=ν 〈w, v〉,
then 〈v,w〉+ 〈w, v〉 ∈ G0, so we may assume by symmetry that 〈v,w〉>ν 〈w, v〉.

First assume that w is non-g-isotropic. Then γ 〈v,w〉 + 〈w,w〉 is ghost for
γ = 〈w,w〉/〈v,w〉 and tangible for any other tangible γ in F . At the same time,
γ 〈w, v〉 + 〈w,w〉 is ghost for γ = 〈w,w〉/〈w, v〉, contradicting g-orthogonal-
symmetry unless 〈v,w〉 ∼=ν 〈w, v〉. This implies 〈v,w〉+ 〈w, v〉 ∈ G0.

Next assume that w is g-isotropic but 〈w,w〉 = αν 6= 0F for α ∈ T. Then
for tangible γ >ν 〈w,w〉/〈v,w〉, we see that 〈γ v,w〉 + 〈w,w〉 is tangible, so
〈w, γ v〉+〈w,w〉 must also be tangible, which is false if γ <ν 〈w,w〉/〈w, v〉. This
yields a contradiction if 〈w, v〉<ν 〈v,w〉, and similarly we have a contradiction if
〈w, v〉>ν 〈v,w〉; hence 〈w, v〉 ∼=ν 〈v,w〉, implying 〈v,w〉+ 〈w, v〉 ∈ G0.

Thus, we may assume that 〈w,w〉 = 0F . Likewise, 〈v, v〉 = 0F , since otherwise
we would conclude by interchanging v and w. �

We conclude with our supertropical version of Artin’s theorem.

Theorem 6.19. Every g-orthogonal-symmetric bilinear form B on a supertropical
vector space V is supertropically symmetric.

Proof. We are done by Lemma 6.18 unless there are vectors v,w ∈ V for which
〈v, v〉 = 〈w,w〉 = 0F and 〈v,w〉+ 〈w, v〉 ∈ T.

In this case, α := 〈v,w〉 ∈ T, β := 〈w, v〉 ∈ T, and α+β ∈ T. Observe that, if
v′ ∈ V such that 〈v′, w〉 ∼=ν α, then 〈w, v′〉 ∼=ν β. Indeed, 〈v,w〉 + 〈v′, w〉 = αν ,
implying 〈w, v〉+ 〈w, v′〉 ∈ G0. But 〈w, v′〉 ∈T, so we conclude that 〈w, v′〉 ∼=ν β.
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Now let vector v′ be any vector of V . Then

〈v+ v′, w〉 |=gs 〈v,w〉+ 〈v
′, w〉 6= 0F .

Thus, 〈v+ v′, w〉 ∼=ν γ , for some γ ∈ T. Let v′′ := (α/γ )(v+ v′). Then

〈v′′, w〉 =
α

γ
〈v+ v′, w〉 ∼=ν α,

and thus 〈w, v′′〉 ∼=ν β, as just observed. Hence, 〈v′′, w〉 + 〈w, v′′〉 /∈ G. Now
Lemma 6.18 yields 〈v′′, v′′〉 = 0F . From

0F = 〈γ v
′′, γ v′′〉 |=gs 〈v, v〉+ 〈v, v

′
〉+ 〈v′, v〉+ 〈v′, v′〉,

we conclude that 〈v′, v′〉=0F for all v′ ∈V ; i.e., B is trivial, by Remark 6.13, which
is absurd since α = 〈v,w〉 6= 0F . Thus, B must be supertropically symmetric. �

Corollary 6.20. If the bilinear form B is strict and g-orthogonality is a symmetric
relation, then B is supertropically symmetric.

Proof. B is orthogonal-symmetric, by Lemma 6.15. The theorem then can be
applied. �
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