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It is shown that a topological group G is topologically isomorphic to the
isometry group of a (complete) metric space if and only if G coincides with
its Gδ-closure in the Raı̆kov completion of G (resp. if G is Raı̆kov-complete).
It is also shown that for every Polish (resp. compact Polish; locally compact
Polish) group G there is a complete (resp. proper) metric d on X inducing
the topology of X such that G is isomorphic to Iso(X, d), where X = `2

(resp. X = [0, 1]ω; X = [0, 1]ω \ {point}). It is demonstrated that there
are a separable Banach space E and a nonzero vector e ∈ E such that G is
isomorphic to the group of all (linear) isometries of E which leave the point e
fixed. Similar results are proved for arbitrary Raı̆kov-complete topological
groups.

1. Introduction

Gao and Kechris [2003] proved that every Polish group is isomorphic to the (full)
isometry group of some separable complete metric space. Melleray [2008] and
Malicki and Solecki [2009] improved this result in the context of compact and,
respectively, locally compact Polish groups by showing that every such group is
isomorphic to the isometry group of a compact and, respectively, a proper metric
space. (A metric space is proper if and only if each closed ball in this space
is compact). All their proofs were complicated and based on the techniques of
the so-called Katětov maps. In [Niemiec 2012] we introduced a new method to
characterize groups of homeomorphisms of a locally compact Polish space which
coincide with the isometry groups of the space with respect to some proper metrics.
As a consequence, we showed that every (separable) Lie group is isomorphic to
the isometry group of another Lie group equipped with some proper metric and
that every finite-dimensional [locally] compact Polish group is isomorphic to the
isometry group of a finite-dimensional [proper locally] compact metric space. One
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of the aims of this paper is to give the results of Gao and Kechris, Melleray, and
Malicki and Solecki a more “explicit” and unified form:

Theorem 1.1. Let G be a Polish group.

(a) There is a complete compatible metric d on `2 such that G is isomorphic to
Iso(`2, d).

(b) If G is compact, there is a compatible metric d on the Hilbert cube Q such
that G is isomorphic to Iso(Q, d).

(c) If G is locally compact, there is a proper compatible metric d on Q \ {point}
such that G is isomorphic to Iso(Q \ {point}, d).

We shall also prove the following:

Theorem 1.2. For every Polish group G there exist a separable real Banach space
E and a nonzero vector e ∈ E such that G is isomorphic to the group of all linear
isometries of E (endowed with the pointwise convergence topology) which leave the
point e fixed.

Our methods can be adapted to general settings and give a characterization of
topological groups which are isomorphic to isometry groups of complete as well
as incomplete metric spaces. To this end, we recall that a topological group G is
Raı̆kov-complete (or upper-complete) if and only if it is complete with respect to
the upper uniformity, by [Arhangel’skii and Tkachenko 2008, §3.6] or [Roelcke
and Dierolf 1981] (see also the remarks on page 1581 in [Uspenskij 2008]). In
other words, G is upper-complete if every net {xσ }σ∈6 ⊂G satisfying the following
condition is convergent in G:

(C) For every neighborhood U of the neutral element of G there is σ0 ∈6 such
that both xσ x−1

σ ′ and x−1
σ xσ ′ belong to U for any σ, σ ′ > σ0.

Equivalently, the net {xσ }σ∈6 satisfies (C) if both the nets {xσ }σ∈6 and {x−1
σ }σ∈6

are fundamental with respect to the left uniformity of G. We call Raı̆kov-complete
groups briefly complete, following [Uspenskij 2008]. The class of all complete
topological groups coincides with the class of all absolutely closed topological
groups (a topological group is absolutely closed if it is closed in every topological
group containing it as a topological subgroup). It is well-known that for every
topological group G there exists a unique (up to topological isomorphism) complete
topological group containing G as a dense subgroup (see, e.g., [Roelcke and Dierolf
1981; Arhangel’skii and Tkachenko 2008, §3.6]). This complete group is called the
Raı̆kov completion of G and we shall denote it by G.

Less classical are topological groups, which we call Gδ-complete. To define them,
let us agree with the following general convention: Whenever τ is a topology on a
set X , τδ stands for the topology on X whose base is formed by all Gδ-sets (with
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respect to τ ) in X . (In particular, Gδ-sets in (X, τ ) are open in (X, τδ).) Subsets of
X which are closed or dense in the topology τδ are called Gδ-closed and Gδ-dense,
respectively (see, for example, [Arhangel’skii 2002; Arhangel’skii and Tkachenko
2008, page 268]).

It may be easily verified that if (G, τ ) is a topological group, so is (G, τδ).

Definition 1.3. A topological group G is Gδ-complete if (G, τδ) is a complete
topological group (where τ is the topology of G).

Equivalently, a topological group G is Gδ-complete if and only if G is Gδ-closed
in G. The class of all Gδ-complete groups is huge (see Proposition 4.3 below)
and contains all complete as well as metrizable topological groups (more detailed
discussion on this class is included in Section 4). (It is worth noting here that,
according to the Birkhoff–Kakutani theorem, a topological group is metrizable if
and only if it is first-countable, that is, if it has a countable base of neighborhoods of
the neutral element. For a proof see, for example, Theorem 3.3.12 in [Arhangel’skii
and Tkachenko 2008].) However, there are topological groups which are not
Gδ-complete (see Example 4.5 below).

Gδ-complete groups turn out to characterize isometry groups of metric spaces:

Theorem 1.4. Let G be a topological group:

(A) The following conditions are equivalent:

(A1) There exists a metric space (X, d) such that G is isomorphic to Iso(X, d).
(A2) G is Gδ-complete.

Moreover, if G is Gδ-complete, the space X witnessing (A1) may be chosen so
that w(X)= w(G).

(B) The following conditions are equivalent:

(B1) There exists a complete metric space (X, d) such that G is isomorphic
to Iso(X, d).

(B2) G is complete.

Moreover, if G is complete, the space X witnessing (B1) may be chosen so that
w(X)= w(G).

(By w(X) we denote the topological weight of a topological space X .)
One concludes from Theorem 1.4 that the isometry group of an arbitrary metric

space is always Dieudonné-complete (see Corollary 4.4 below). This solves a prob-
lem posed, for example, by Arhangel’skii and Tkachenko [2008, Open Problem 3.5.4
on page 181].

A generalization of Theorems 1.1 and 1.2 has the following form:

Proposition 1.5. Let G be a complete topological group of topological weight not
greater than β > ℵ0.
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(a) There is a complete compatible metric % on Hβ such that G is isomorphic to
Iso(Hβ, %), where Hβ is a real Hilbert space of (Hilbert space) dimension
equal to β.

(b) There are an infinite-dimensional real Banach space E of topological weight β
and a nonzero vector e ∈ E such that G is isomorphic to the group of all linear
isometries of E which leave the point e fixed.

As an immediate consequence of Theorem 1.4 and Proposition 1.5 we obtain:

Corollary 1.6. Let H be a Hilbert space of Hilbert space dimension β > ℵ0 and let

G= {Iso(H, %) | % is a complete compatible metric on H}.

Then, up to isomorphism, G consists precisely of all complete topological groups of
topological weight not exceeding β.

The paper is organized as follows: In Section 2 we give a new proof of the
Gao–Kechris theorem mentioned above. We consider our proof more transparent,
more elementary, and less complicated. The techniques of this part are adapted
in Section 3, where we demonstrate that every closed subgroup of the isometry
group of a (complete) metric space (X, d) is actually (isomorphic to) the isometry
group of a certain (complete) metric space, closely “related” to (X, d). This
theorem is applied in Section 4, where we establish basic properties of the class
of all Gδ-complete groups and prove Theorem 1.4. Section 5 contains proofs of
Theorem 1.2, Proposition 1.5, Theorem 1.1(a), and Corollary 1.6. In Section 6 we
study topological groups isomorphic to isometry groups of completely metrizable
metric spaces. Section 7 is devoted to the proofs of points (b) and (c) of Theorem 1.1.

Notation and terminology. In this paper N = {0, 1, 2, . . . } (and it is equipped
with the discrete topology). All isomorphisms between topological groups are
topological, all topological groups are Hausdorff, and all isometries between metric
spaces are, by definition, bijective. All normed vector spaces are assumed to be
real. The topological weight of a topological space X is denoted by w(X) and it is
understood as an infinite cardinal number. Isometry groups (and all their subsets) of
metric as well as normed vector spaces are endowed with the pointwise convergence
topology, which makes them topological groups. A Polish space (resp. group) is
a completely metrizable separable topological space (resp. group). A metric on a
topological space is compatible if and only if it induces the topology of the space. It
is proper if all closed balls with respect to this metric are compact (in the topology
induced by this metric). Whenever (X, d) is a metric space, a ∈ X and r > 0,
BX (a, r) and B̄X (a, r) stand for, respectively, the open and the closed d-balls with
center at a and of radius r . The Hilbert cube, that is, the countable infinite Cartesian
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power of [0, 1], is denoted by Q and `2 stands for the separable Hilbert space. A
map means a continuous function.

2. The Gao–Kechris theorem revisited

This part is devoted to the proof of the Gao–Kechris theorem [2003] mentioned in
the introductory part and stated below. Another proof may be found in [Melleray
2008].

Theorem 2.1. Every Polish group is isomorphic to the isometry group of a certain
separable complete metric space.

For the purpose of this and the next section, let us agree with the following
conventions: For every nonempty collection {Xs}s∈S of topological spaces,

⊔
s∈S Xs

denotes the topological disjoint union of these spaces. In particular, whenever the
notation

⊔
s∈S Xs appears, the sets Xs(s ∈ S) are assumed to be pairwise disjoint

(the same rule for the symbol “t”). For a function f : X → X and an integer
n > 1, we denote by f n©

: Xn
→ Xn the n-th Cartesian power of f , given by

f n©(x1, . . . , xn)= ( f (x1), . . . , f (xn)); and by f ×w, for an arbitrary point w, we
denote the map X ×{w}→ X ×{w} that sends (x, w) to ( f (x), w) for any x ∈ X .
Similarly, if d is a metric on X , we denote by d n© the maximum metric on Xn

induced by d; that is,

d n©((x1, . . . , xn), (y1, . . . , yn))= max
j=1,...,n

d(x j , y j ),

and d ×w is the metric on X × {w} such that (d ×w)((x, w), (y, w)) = d(x, y).
Finally, for a topological space V and a map v : V → V we put V̂ = (V ×N)t(⊔
∞

n=2 V n
)
tN and define v̂ : V̂ → V̂ by the following rules: v̂(x,m)= (v(x),m),

v̂ |V n =v n©, and v̂(m)=m for any x ∈V , m ∈N, and n∈N\{0}. To avoid repetitions,
for a metric space (X, d) and arbitrary sets A, B ⊂ N, and C ⊂ N \ {0, 1}, let us
say a metric % on (X × A)t

(⊔
j∈C X j

)
t B (⊂ X̂) respects d if and only if the

following three conditions are satisfied:

(AX1) % coincides with d ×m on X ×{m} for each m ∈ A.

(AX2) % coincides with d n© on Xn for each n ∈ C .

(AX3) %(x, y)> 1 whenever x and y belong to distinct members of the collection
{X ×{m} | m ∈ A} ∪ {Xn

| n ∈ C} ∪ {{k} | k ∈ B}.

Observe that (AX1)–(AX3) imply that

(AX4) if % respects d then % is compatible; if, moreover, d is complete, so is %.

The main result of this section is the following:
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Proposition 2.2. Let (X, d) be a separable bounded complete metric space and
let G be a closed subgroup of Iso(X, d). There exists a metric % on X̂ such that %
respects d and the function

G 3 u 7→ û ∈ Iso(X̂ , %)

is a well-defined isomorphism of topological groups.

The proof of Proposition 2.2 will be preceded by a few auxiliary results. The
first of them is a kind of folklore and we leave its (simple) proof to the reader.

Lemma 2.3. Let {(Xs, ds)}s∈S be a nonempty family of metric spaces such that for
A =

⋂
s∈S Xs we have:

• Xs ∩ Xs′ = A and ds |A×A = ds′ |A×A for any two distinct indices s and s ′ of S.

• A is nonempty and closed in (Xs, ds) for each s ∈ S.

Let X =
⋃

s∈S Xs and let d : X × X→ [0,∞) be given by the rules:

• d coincides with ds on Xs × Xs for every s ∈ S.

• d(x, y)= inf{ds(x, a)+ds′(a, y) |a∈ A} whenever x ∈ Xs\Xs′ and y∈ Xs′\Xs

for distinct indices s and s ′.

Then d is a well-defined metric on X with the following property: Whenever fs ∈

Iso(Xs, ds)(s ∈ S) are maps such that fs |A = fs′ |A and fs(A)= A for any s, s ′ ∈ S
then their union f :=

⋃
s∈S fs (that is, f = fs on Xs) is a well-defined function

such that f ∈ Iso(X, d).

The above result will be the main tool for constructing the metric % appearing in
Proposition 2.2.

In the next two results, (X, p) is a complete nonempty metric space with

(1) p < 1.

Lemma 2.4. Let J ⊂ N \ {0} be a finite set such that n = card(J ) > 1. There is a
metric λ on F := [X × (J ∪ {0})] t Xn with the following properties:

(a) λ respects p and λ6 5.

(b) For every u ∈ Iso(X, p), û |F ∈ Iso(F, λ).

(c) If g ∈ Iso(F, λ) is such that g(X × { j}) = X × { j} for each j ∈ J ∪ {0} then
g = û |F for some u ∈ Iso(X, p).

Proof. With no loss of generality, we may assume that J = {1, . . . , n}. Let
A = {(x1, . . . , xn) ∈ Xn

| x1 = · · · = xn} and let λ′0 be the metric on X0
′
:=

(X ×{0})t A that coincides with p× 0 on X ×{0}, with p n© on A, and such that
λ′0((x, 0), (a, . . . , a)) = 1+ p(x, a) for x ∈ X and (a, . . . , a) ∈ A. Now apply
Lemma 2.3 for {(X0

′, λ′0), (X
n, p n©)} to obtain a metric λ0 on X0 := (X×{0})tXn
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which extends both λ′0 and p n©. Observe that λ0 respects p, that λ06 3 (by (1)), that
û |X0∈ Iso(X0, λ0) for each u ∈ Iso(X, p), and that, for arbitrary x, x1, . . . , xn ∈ X ,

(2) λ0((x, 0), (x1, . . . , xn))= 1 ⇐⇒ x1 = · · · = xn = x .

Further, for j ∈ J let λ j be the metric on X j := (X × { j}) t Xn that coincides
with p× j on X × { j}, with p n© on Xn , and such that λ j ((x, j), (x1, . . . , xn)) =

1+p(x, x j ) for any x, x1, . . . , xn ∈ X (λ j is indeed a metric thanks to (1)). Similarly,
as before, notice that λ j respects p, λ j 6 2 and for any x, x1, . . . , xn ∈ X :

(3) λ j ((x, j), (x1, . . . , xn))= 1 ⇐⇒ x j = x .

Now again apply Lemma 2.3 for the family {(X j , λ j ) | j ∈ J∪{0}} to obtain a metric
λ on F which extends each of λ j ( j ∈ J ∪{0}). It follows from the construction and
Lemma 2.3 that points (a) and (b) are satisfied. We turn to (c). Let g be as specified
there. Let u : X → X be such that u × 0 = g |X×{0} and, similarly, for j ∈ J let
u j : X→ X be such that u j× j = g |X×{ j}. Finally, put f = g |Xn : Xn

→ Xn . Since
λ respects p, u ∈ Iso(X, p). So we only need to check that u1 = . . . un = u and
f = u n©. Let π j : Xn

→ X be the projection onto the j -th coordinate ( j = 1, . . . , n).
For any x = (x1, . . . , xn) ∈ Xn and j ∈ J we have, by (3),

1= λ((π j (x), j), x)= λ(g(π j (x), j), g(x))= λ(((u j ◦π j )(x), j), f (x))

and therefore, again by (3), u j ◦ π j = π j ◦ f . Consequently, f (x1, . . . , xn) =

(u1(x1), . . . , un(xn)). Finally, for any z ∈ X we have, by (2),

1=λ((z, 0),(z, . . . , z))=λ(g(z, 0),g(z, . . . , z))=λ((u(z), 0),(u1(z), . . . , un(z)))

and hence, again by (2), u1(z)= · · · = un(z)= u(z). �

Lemma 2.5. Let G be a subgroup of Iso(X, p) and let z ∈ Xn and J ⊂ N \ {0} be
such that card(J )=n>1. Let D denote the closure (in Xn) of the set {u n©(z) |u∈G}.
There exists a metric µ on F := [X×(J∪{0})]tXn

t{n−1} which has the following
properties:

(a) µ respects p and µ6 11.

(b) û |F ∈ Iso(F, µ) for every u ∈ G.

(c) For any g ∈ Iso(F, µ) there is u ∈ Iso(X, p) such that g= û |F and u n©(z)∈ D.

Proof. Without loss of generality, we may assume that J = {1, . . . , n}. Let λ be as
in Lemma 2.4 (so, λ is a metric on F \ {n− 1}). Let c0, . . . , cn+1 be such that

(4) 5< c0 < c1 < · · ·< cn+1 < 6.
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Put A = [X × (J ∪ {0})] t D and denote by µ0 the metric on At {n− 1} such that
µ0 coincides with λ on A, µ0((x, j), n− 1)= c j for x ∈ X and j = 0, . . . , n, and
µ0(y, n−1)= cn+1 for y ∈ D (µ0 is a metric thanks to Lemma 2.4(a), (AX3), and
(4)). Now apply Lemma 2.3 for the family {(A∪ {n− 1}, µ0), (F \ {n− 1}, λ)} to
obtain a metric µ which extends both µ0 and λ. We infer the validity of (a) from
(4) and Lemma 2.4(a). Further, since u n©(D)= D for each u ∈ G and thanks to of
Lemma 2.4(b), condition (b) is fulfilled as well (see Lemma 2.3). We turn to (c).

Let g ∈ Iso(F, µ). Since n− 1 is a unique point q ∈ F such that µ(q, x)= c0

and µ(q, y) = c1 for some x, y ∈ F (since λ 6 5 < c0 < c1), we conclude that
g(n − 1) = n − 1. Further, observe that for each x ∈ Xn , µ(x, n − 1) > cn+1

because of (AX3) and (4). Consequently, X × { j} = {x ∈ F | µ(x, n − 1) = c j }

for j = 0, 1, . . . , n. Thus, we see that g(X × { j}) = X × { j} for such j’s. Since
g |F\{n−1} ∈ Iso(F \{n−1}, λ) and g(n−1)= n−1, point (c) of Lemma 2.4 implies
that there is u ∈ Iso(X, p) such that g = û |F . Finally, g(z)= u n©(z) ∈ Xn , and for
y ∈ Xn , µ(y, n− 1)= cn+1 if and only if y ∈ D (by (4) and (AX3)), which gives
u n©(z) ∈ D. �

Proof of Proposition 2.2. Let r > 1 be such that d < r . Put p = d/r < 1 and notice
that Iso(X, p) = Iso(X, d). Let X0 = {xn | n > 1} be a dense subset of X . Let
J1, J2, . . . be pairwise disjoint sets such that

⋃
∞

n=1 Jn=N\{0} and card(Jn)=n+1.
For each n > 2 put zn = (x1, . . . , xn) ∈ Xn , Fn = [X× (Jn−1∪{0})]t Xn

t{n−1},
and let Dn be the closure (in Xn) of {u n©(zn) | u ∈ G}. Further, let µn be a metric
on Fn obtained from Lemma 2.5 (applied for zn and Jn−1). Now apply Lemma 2.3
for the collection {(Fn, µn) | n > 2} to get a metric λ0 on X̂ \ {0} which extends
each of µn (n > 2). In particular, λ0 respects p and λ0 6 22. Finally, we extend
the metric λ0 to a metric λ on X̂ in such a way that for k > 0, λ(x, 0) = ck,1 for
x ∈ X ×{k}, λ(x, 0)= ck,2 for x ∈ X k+2, and λ(k+ 1, 0)= ck,3, where

(5) c0,1, c0,2, c0,3, c1,1, c1,2, c1,3, . . . are all different numbers,

are greater than 22, and smaller than 23 (λ is a metric thanks to (AX3)). It follows
from Lemma 2.3 and Lemma 2.5(b) that û ∈ Iso(X̂ , λ) for any u ∈G. It is clear that
the function G 3 u 7→ û ∈ Iso(X̂ , λ) is a group homomorphism and a topological
embedding. We shall now show that it is also surjective.

Let g ∈ Iso(X̂ , λ). Since 0 is a unique point q ∈ X̂ such that λ(q, x)= c0,1 and
λ(q, y)= c0,2 for some x, y ∈ X̂ , we see that g(0)= 0. Consequently, g(X×{k})=
X ×{k}, g(X k+2)= X k+2, and g(k+ 1)= k+ 1 for each k > 0, by (5). So, taking
into account that g |Fn ∈ Iso(Fn, µ), point (c) of Lemma 2.5 yields that there is
u ∈ Iso(X, p) such that g = û and u(zn) ∈ Dn . The latter condition implies that
there are elements u1, u2, . . . of G which converge pointwise to u on X0. We now
infer from the density of X0 in X that u = limn→∞ un , and in fact u ∈ G by the
closedness of G.



ISOMETRY GROUPS AMONG TOPOLOGICAL GROUPS 85

To end the proof, it suffices to put % = rλ. �

Proof of Theorem 2.1. Let (H, · ) be a Polish group. First we introduce a standard
argument used, for example, by Melleray [2008] in his proof of this theorem: Take
a left-invariant metric d0 6 1 on H and denote by (X, d) the completion of (H, d0).
Then, of course, X is separable and for every h ∈ H there is a unique uh ∈ Iso(X, d)
such that uh(x)= hx for x ∈ H . Observe that the function H 3 h 7→ uh ∈ Iso(X, d)
is a group homomorphism as well as a topological embedding. Therefore, its image
G is isomorphic to H . Since G is a Polish subgroup of a Polish group, G is closed
in Iso(X, d). Now it suffices to apply Proposition 2.2 and to use (AX4) to deduce
the completeness of the metric obtained by that result. �

3. Closed subgroups of isometry groups

In this section we generalize the ideas of the previous part to the context of all
isometry groups. Our aim is to show that a closed subgroup of the isometry group
of a metric space is isomorphic to the isometry group of another metric space. We
have decided to discuss the separable case separately, because in that case the proofs
are more transparent and easier. Actually all tools were prepared in the previous
section, except the following one:

Lemma 3.1. Let X be a set with card(X) 6= 2 and I ⊂ (0,∞) be a nondegenerate
interval. There is a metric d : X × X→ I ∪ {0} such that the identity map of X is a
unique member of Iso(X, d).

We shall prove a stronger version of Lemma 3.1 at the end of the section. Now
we generalize the concepts in Section 3. Let β be an infinite cardinal number and
let Dβ denote a fixed discrete topological space of cardinality β. For a metrizable
space X and a function f : X→ X let X0 be a one-point space and f o©

: X0
→ X0

denote the identity map. Further, we put T (X) =
⊔

n∈N Xn (recall that 0 ∈ N).
Finally, denote by X̂β and f̂β (resp.) the product T (X)×Dβ and the function of X̂β
into itself such that f̂β = f n©

× ξ on Xn
×{ξ} for any n ∈ N and ξ ∈ Dβ . (Notice

that w(X̂β)= β provided β > w(X).) For any J ⊂ N and a collection {An}n∈J of
subsets of Dβ , we say a metric % on

⊔
n∈J (X

n
× An)⊂ X̂β respects a compatible

metric d on X if and only if the following two conditions are fulfilled:

(PR1) % coincides with d n©
× ξ on Xn

×{ξ} for any n ∈ J \ {0} and ξ ∈ An .

(PR2) %(x, y)> 1 whenever x and y belong to distinct members of the collection

{Xn
×{ξ} | n ∈ J, ξ ∈ An}.

As before, we see that (AX4) is satisfied.
A counterpart of Proposition 2.2 in the general case is the following:
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Theorem 3.2. Let β be an infinite cardinal number and (X, d) be a nonempty
bounded metric space such that w(X)6 β. For any closed subgroup G of Iso(X, d)
there exists a metric % on X̂β such that % respects d and the function

(6) G 3 u 7→ ûβ ∈ Iso(X̂β, %)

is a well-defined isomorphism of topological groups.

Proof. In what follows, we shall (naturally) identify X0
× Dβ with Dβ . It follows

from the proof of Proposition 2.2 that we may assume d < 1. Let Z be a dense set
in X such that card(Z)6 β. Fix arbitrary θ ∈ Dβ and write Dβ \ {θ} in the form⋃
∞

n=0 Sn , where card(Sn)= β for any n and

(7) Sn ∩ Sm =∅ (n 6= m).

The set S0 and the point θ will be employed in the last part of the proof. For
simplicity, put S∗ =

⋃
∞

n=1 Sn and X∗ := X̂β \ (S0∪{θ})=
(⊔

n>1(X
n
× Dβ)

)
t S∗.

It follows from (7) that for any ξ ∈ Dβ \{θ} there is a unique number n(ξ)∈N such
that ξ ∈ Sn(ξ)−1. Further, for every n> 2 there are a surjection κn : Sn−1→ Zn and a
bijection τn : Sn−1→ Dβ . Take a collection {Jξ | ξ ∈ S∗} such that for any ξ, η ∈ S∗

(S1) card(Jξ )= n(ξ)(> 2);

(S2) Jξ ∩ Jη =∅ whenever ξ 6= η;

(S3)
⋃
ζ∈S∗ Jζ = Dβ \ {θ}.

We deduce from (S1) and Lemma 2.5 that for each ξ ∈ S∗ there exists a metric
µξ on Fξ := [X × (Jξ ∪ {θ})] t (Xn(ξ)

×{τn(ξ)(ξ)})t {ξ} which has the following
properties:

(D1) µξ respects d and µξ 6 11.

(D2) ûβ |Fξ ∈ Iso(Fξ , µξ ) for every u ∈ G.

(D3) For any g ∈ Iso(Fξ , µξ ) there is u ∈ Iso(X, d) with g= ûβ |Fξ , and u n©(κn(ξ))

belongs to the closure Bξ of { f n©(κn(ξ)) | f ∈ G} in Xn , where n = n(ξ).

Observe that (S2)–(S3), (D1), and the bijectivity of the τn imply that

(8) Fξ ∩ Fη = X ×{θ}

for distinct ξ, η ∈ S∗, and X × {θ} is closed in (Fξ , µξ ), by (PR2). Moreover, it
follows from (D1) that we may apply Lemma 2.3 for the family {(Fξ , µξ ) | ξ ∈ S∗}.
Let µ be the metric on

⋃
ξ∈S∗ Fξ = X∗ obtained by that lemma. Then

(9) ûβ |X∗∈ Iso(X∗, µ) (u ∈ G)

(see (D2) and the last claim in Lemma 2.3) and

(10) µ respects d and µ6 22
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(by (D1)). What is more,

(?) if g ∈ Iso(X∗, µ) is such that g(A)= A for any

A ∈ S := {Xn
×{ξ} | n > 1, ξ ∈ Dβ} ∪ {{ξ} | ξ ∈ S∗},

then g = ûβ |X∗ for some u ∈ G.

Let us briefly show (?). If g is as specified there then g(Fξ )= Fξ for any ξ ∈ S∗.
So we infer from (D3) that g = (̂uξ )β on Fξ for some uξ ∈ Iso(X, d) with

(11) (uξ ) n©(κn(ξ)) ∈ Bξ ,

where n = n(ξ). We conclude from (8) that u := uξ is independent of the choice of
ξ ∈ S∗. Consequently, g = ûβ |X∗ . To end the proof of (?), it remains to check that
u ∈G. Since the κn are surjective, (11) yields that (u(z1), . . . , u(zn)) belongs to the
closure (in Xn) of {( f (z1), . . . , f (zn)) | f ∈ G} for any n > 2 and z1, . . . , zn ∈ Z .
But this, combined with the fact that the function Iso(X, d) 3 f 7→ f |Z ∈ X Z is
an embedding (when X Z is equipped with the pointwise convergence topology),
yields that u belongs to the closure of G in Iso(X, d). But G is a closed subgroup,
so we are done.

By Lemma 3.1, there is a metric

(12) λ : S0× S0→ {0} ∪ [1, 2]

for which Iso(S0, λ) = {idS0} (idS0 is the identity map on S0). Let S be as in (?).
Since card(S) = β = card(S0), there is a one-to-one function v : S→ {11, 12}S0 .
We define a metric % on X∗ t S0 = X̂β \ {θ} by the rules:

• % = µ on X∗× X∗.

• % = λ on S0× S0.

• %(ξ, η)= %(η, ξ)= [v(A)](η) for ξ ∈ X∗ and η ∈ S0, where A ∈ S is such that
ξ ∈ A (such A is unique).

That % is indeed a metric follows from (12), (10), axiom (PR2) for µ, and the fact
that for any η ∈ S0, %( · , η) is constant on each member of S. Finally, we extend the
metric % to X̂β by putting %(ξ, θ)=22 for ξ ∈ X∗ and %(ξ, θ)=23 for ξ ∈ S0. Direct
calculations show that % is indeed a metric on X̂β and that % respects d . It remains
to check that (6) is a well-defined surjection (compare the proof of Proposition 2.2).
We infer from (9) and the fact that %( · , η) is constant on each member of S for any
η ∈ S0 ∪ {θ} that the function (6) is well-defined. Now let g ∈ Iso(X̂β, %). Since θ
is a unique point ω ∈ X̂β such that card({ξ ∈ X̂β | %(ξ, ω)= 23}) > 1, we obtain
g(θ)= θ . Consequently, g(X∗)= X∗ and g(S0)= S0. The latter yields that

(13) g |S0 = idS0
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(because % extends λ). Now if ξ, η ∈ X∗ are arbitrary, the injectivity of v and the
definition of % imply that %(ξ, · ) = %(η, · ) on S0 if and only if ξ and η belong
to a common member of S. But this, combined with (13), allows us to conclude
that g(A)= A for any A ∈ S. Now an application of (?) (recall that % extends µ)
provides us the existence of u ∈ G for which g = ûβ on X∗. Since g(ξ) = ξ for
ξ /∈ X∗, we see that g = ûβ , which finishes the proof. �

Remark 3.3. Under the notation and the assumptions of Theorem 3.2, if M > 1 is
such that d 6 M and ε > 0 is arbitrary, the metric % appearing in the assertion of
that theorem may be chosen so that % 6 M + ε. Indeed, the above proof provides
us the existence of a bounded metric %, say % 6 C , where M < C <∞. Now if
ε is small enough (that is, if M + ε 6 C), it suffices to replace % by ω ◦ %, where
ω : [0,C]→ [0,M+ ε] is affine on [0,M] and [M,C], and ω(0)= 0, ω(M)= M ,
and ω(C)= M + ε.

Let (X, d) be a nonempty metric space and (Y, %) denote the completion of
(X, d). Since every isometry of (X, d) extends to a unique isometry of (Y, %),
the topological group Iso(X, d) may naturally be identified with the subgroup
{u ∈ Iso(Y, %) | u(X)= X} of Iso(Y, %). If we follow this idea, Theorem 3.2 may
be strengthened as follows:

Proposition 3.4. Let (X, d) be a nonempty bounded metric space and (Y, %) denote
its completion. Let β be an infinite cardinal not less than w(X). Further, let G be
a closed subgroup of Iso(X, d) ⊂ Iso(Y, %) and Ḡ denote its closure in Iso(Y, %).
There are a complete metric λ on Ŷβ respecting % and a dense set Xβ ⊂ Ŷβ such
that (Ŷβ \ Xβ, λ) is isometric to (Y \ X, %), and the function

(14) Ḡ 3 u 7→ ûβ ∈ Iso(Ŷβ, λ)

is a well-defined isomorphism of topological groups which transforms G onto the
group of all u ∈ Iso(Ŷβ, λ) with u(Xβ)= Xβ .

Proof. Fix θ ∈ Dβ and put Xβ = Ŷβ \ [(Y \ X)×{θ}]. By Theorem 3.2, there is a
metric λ on Ŷβ which respects % and for which (14) is a well-defined isomorphism.
Note that then λ is complete (see (AX4)), Xβ is dense in Ŷβ , and (Ŷβ \ Xβ, λ) is
isometric to (Y \X, %) (since λ respects %). Finally, if u∈ Ḡ then ûβ(Xβ)= Xβ if and
only if u(X)= X (which follows from the formulas for ûβ and Xβ). Equivalently,
ûβ(Xβ) = Xβ if and only if u ∈ Iso(X, d) ∩ Ḡ = G, by the closedness of G in
Iso(X, d). This shows the last claim of the theorem. �

This proposition will be applied in Section 6, which is devoted to isometry groups
of completely metrizable metric spaces.

To complete the proof of Theorem 3.2, we need to show Lemma 3.1. But the
latter result immediately follows from the following much stronger result:



ISOMETRY GROUPS AMONG TOPOLOGICAL GROUPS 89

Proposition 3.5. Let a and b be two reals such that

(15) 0< a < b 6 2a.

For every set X having more than 5 points there is a metric d : X × X→ {0, a, b}
such that

(16) Iso(X, d)= {idX }.

Proof. First of all, observe that any function d : X × X → {0, a, b} which is
symmetric and vanishes precisely on the diagonal of X is automatically a complete
metric, which follows from (15). So we only need to take care of (16). For the
same reason, we may (and do) assume, with no loss of generality, that a = 1 and
b = 2. We shall make use of transfinite induction with respect to β = card(X) > 5.
Everywhere below in this proof, for x ∈ X , by S(x) we denote the set of all y ∈ X
with d(x, y)= 1. Since we have to define a metric taking values in {0, 1, 2}, it is
readily seen that it suffices to describe the sets S(x) (x ∈ X).

First assume β = n> 6 is finite. We may assume that X ={1, . . . , n}. Our metric
d is defined by the following rules: S(1)= {2}, S(2)= {1, 3, 4, 5}, S(3)= {2, 4},
S(4) = {2, 3, 5}, S(5) = {2, 4, 6}, S(n) = {n − 1}, and S( j) = { j − 1, j + 1} if
5< j < n. Take g ∈ Iso(X, d) and observe that:

• g(2)= 2, since 2 is the only point j ∈ X such that card(S( j))= 4.

• g(1)= 1, because 1 is the unique point j ∈ X for which S( j)= {2}.

• g(3)= 3, since 3 is the only point j ∈ X such that card(S( j))= 2 and 2∈ S( j).

• g(4)= 4, because 4 is the unique point j ∈ X for which 2 6= j ∈ S(3).

• g(5)= 5, since 5 is the only point j ∈ X such that j ∈ S(4) \ {2, 3}.

Now it is easy to check, using induction, that g( j)= j for j = 6, . . . , n.
When β = ℵ0, we may assume X = N. Define a metric d : N×N→ {0, 1, 2}

by d(n,m) = min(|m − n|, 2). It is left to the reader that Iso(N, d) = {idN} (use
induction to show that g(n) = n for any n ∈ N and g ∈ Iso(N, d)). Below we
assume that β >ℵ0 is such that for every infinite α < β the proposition holds for an
arbitrary set X of cardinality α. For simplicity, for any uncountable cardinal γ we
denote by Iγ the set of all cardinals α for which ℵ0 6 α < γ . To get the assertion,
we consider three cases.

First assume β is not limit; that is, β is the immediate successor of an infinite
cardinal α. We may assume that X is the union of three pairwise disjoint sets
X ′, X ′ × Y , and {a}, where card(X ′) = α and card(Y ) = β. It follows from the
transfinite induction hypothesis that there exists a metric d ′ : X ′× X ′→ {0, 1, 2}
such that Iso(X ′, d ′) = {idX ′}. Since β 6 2α, there exists a one-to-one function
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µ : X ′× Y → {1, 2}X
′

such that

(17) [µ(x, y)](x)= 1 (x ∈ X ′, y ∈ Y )

(such a function µ may easily be constructed by transfinite induction with respect
to an initial well-order on X ′× Y ). We now define a metric d on X (with values in
{0, 1, 2}) by the rules:

(d1) d = d ′ on X ′× X ′.

(d2) d((x, y), (x ′, y′))= 1 if (x, y) and (x ′, y′) are distinct elements of X ′× Y .

(d3) d((x, y), x ′)= [µ(x, y)](x ′) if x, x ′ ∈ X ′ and y ∈ Y .

(d4) d(x, a)= 1 and d((x, y), a)= 2 for any x ∈ X ′ and y ∈ Y .

Observe that S(x)⊃ {x}×Y and S(x, y)⊃ (X ′×Y ) \ {(x, y)} for any x ∈ X ′ and
y ∈ Y (thanks to (17) and (d2)–(d3)), and

(18) S(a)= X ′

(by (d4)). We infer from these facts that a is a unique point x ∈ X such that
card(S(x)) = α. Consequently, if g ∈ Iso(X, d) then g(a) = a and g(X ′) = X ′

(because of (18)). So g |X ′ ∈ Iso(X ′, d ′) and therefore g(x) = x for any x ∈ X ′.
Finally, if x, x ′ ∈ X ′ and y ∈ Y are arbitrary then g(x, y) /∈ X ′ and d(g(x, y), x ′)=
d((x, y), x ′), which yields that µ(g(x, y)) = µ(x, y). So g(x, y) = (x, y) (since
µ is one-to-one) and we are done.

Now we assume that β is limit and card(Iβ) < β. For simplicity, put I = Iβ . Let
{Xα}α∈I be a family of pairwise disjoint sets such that

(19) Xα ∩ I =∅ and card(Xα)= α < β (α ∈ I ).

Note that the set X∗ =
⊔
α∈I Xα is of cardinality β and therefore we may assume

X = {ω} t I t X∗ (recall that this notation means that ω /∈ I ∪ X∗). It follows from
the transfinite induction hypothesis that there are metrics dI : I × I →{0, 1, 2} and
dα | Xα × Xα→ {0, 1, 2} (α ∈ I ) for which the groups Iso(I, dI ) and Iso(Xα, dα)
are trivial. We define a metric d on X as follows:

(d1′ ) d = dI on I × I and d = dα on Xα × Xα for any α ∈ I .

(d2′ ) d(x, y)= 1 if x and y belong to different members of the collection {Xα}α∈I .

(d3′ ) d(α, x)= 2 for x ∈ Xα and d(α, x)= 1 for x ∈ X∗ \ Xα (α ∈ I ).

(d4′ ) d(α, ω)= 1 and d(x, ω)= 2 for any α ∈ I and x ∈ X∗.

Observe that for any α ∈ I and x ∈ Xα, we have S(α) ⊃ X∗ \ Xα by (d3′ ), and
S(x) ⊃ X∗ \ Xα, by (d2′ ). At the same time, S(ω) = I , by (d4′ ), and hence ω
is the unique point x ∈ X such that card(S(x)) < β (see (19)). Consequently, if
g ∈ Iso(X, d) then g(ω) = ω, g(I ) = I , and g(X∗) = X∗. Then g |I ∈ Iso(I, dI )
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(see (d1′ )) and hence g(α) = α for each α ∈ I . Now use (d3′ ) to conclude that
g(Xα) = Xα for any α ∈ I . So, according to (d1′ ), g |Xα ∈ Iso(Xα, dα) for every
α ∈ I and consequently g(x)= x for all x ∈

⋃
α∈I Xα = X∗, and we are done.

Finally, assume β is limit and card(Iβ)= β. Then we may assume X = Iβ . Since

(20) card(Iα)6 α < β

whenever α ∈ X , for every α ∈ X there is a cardinal γ (α) ∈ X such that

(21) card({ξ | α < ξ 6 γ (α)})= α.

Now define a metric d : X × X → {0, 1, 2} by the following rule: If ℵ0 6 α1 <

α2 < β then d(α1, α2)= 1 if and only if α2 6 γ (α1). It is easy to check that then
card(S(α))= α for any α ∈ X (thanks to (20) and (21)) and hence the identity map
is a unique isometry on (X, d). �

4. Models for Gδ-complete groups

We begin this section with a useful characterization of Gδ-complete groups.

Proposition 4.1. For a topological group G all conditions stated below are equiva-
lent:

(I) G is Gδ-complete.

(II) G is isomorphic to a Gδ-closed subgroup of a complete topological group.

(III) G is Gδ-closed in every topological group which contains G as a topological
subgroup.

(IV) Every net {xσ }σ∈6 of elements of G satisfying the following condition is
convergent in G:

(CC) For every sequence U1,U2, . . . of neighborhoods of the neutral element
of G there exist points y, z ∈ G and a sequence σ1, σ2, · · · ∈6 such that
both x−1

σ y and xσ z−1 belong to Un whenever n > 1 and σ > σn .

(V) Every net {xσ }σ∈6 of elements of G satisfying the following condition is
convergent in G:

(CC ′ ) For every continuous left-invariant pseudometric d on G there are
points y, z ∈ G such that limσ∈6 d(xσ , y)= limσ∈6 d(x−1

σ , z−1)= 0.

Proof. Everywhere below, τ is the topology of G and e is its neutral element.
First assume G is a Gδ-closed subgroup of a complete group H . We want to

show that G is Gδ-complete. Let {xσ }σ∈6 ⊂ G be a net which satisfies condition
(C) with respect to the topology τδ . It then satisfies this condition with respect to τ
as well. Since H is complete, there is y ∈ H such that limσ∈6 xσ = y. It suffices
to check that y belongs to the Gδ-closure of G in H . Take a Gδ-subset A of H
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containing y and write Ay−1 in the form Ay−1
=
⋂
∞

n=1Un , where each Un is open
in H and contains e. Using the regularity of the space H , we may find a sequence
V1, V2, . . . of open (in H ) neighborhoods of e such that the closure (in H ) of Vn is
contained in Vn−1 ∩Un for each n, where V0 = H . Then F :=

⋂
∞

n=1 Vn is a closed
Gδ-subset of H and e ∈ F ⊂ Ay−1. It follows from our assumption about the net
that there is σ0 ∈6 such that xσ0 x−1

σ ∈ F for any σ > σ0. We now infer from the
closedness of F in H that xσ0 y−1

∈ F as well, and consequently, xσ0 ∈ A, which
shows that y belongs to the Gδ-closure of G. This proves that (II) is followed by
(I). Conversely, if G is a Gδ-complete subgroup of a topological group K and O

denotes the topology of K then τδ coincides with the topology (on G) of a subspace
inherited from (K ,Oδ). It now follows from the completeness of (G, τδ) that G
is closed in (K ,Oδ) or, equivalently, that G is Gδ-closed in K , which proves that
(III) is implied by (I). Since (II) obviously follows from (III), in this way we have
shown that conditions (I), (II), and (III) are equivalent. We shall now show that (II)
is equivalent to (IV) and then that (IV) is equivalent to (V).

If (II) is fulfilled then G is Gδ-closed in G. Let {xσ }σ∈6 be a net of elements of G
which satisfies condition (CC). Then it fulfills condition (C) as well and hence there
is w ∈ G such that limσ∈6 xσ = w. It suffices to check that w ∈ G or, equivalently,
that w belongs to the Gδ-closure of G. To this end, take any Gδ-subset A of G which
contains w. Write Aw−1

=
⋂
∞

n=1 Vn , where V1, V2, . . . are open neighborhoods of
e. For each n > 1 take a neighborhood Un of e with Un =U−1

n and Un ·Un ⊂ Vn .
Now let y, z, and σ1, σ2, . . . be as in (CC), applied for the sequence

U1 ∩G,U2 ∩G, . . . .

Fix for a moment n > 1. Choose σ > σn such that xσw−1
∈ Un . Then zw−1

=

(xσ z−1)−1(xσw−1)⊂U−1
n ·Un ⊂ Vn . So zw−1

∈
⋂
∞

n=1 Vn = Aw−1, which implies
that w ∈ A. Consequently, A∩G 6=∅ and we are done.

The converse implication goes similarly: When (IV) is satisfied, we show that
G is Gδ-closed in G. Let w ∈ G belong to the Gδ-closure of G. Then, of course,
w is in the closure of G and thus there is a net {xσ }σ∈6 ⊂ G, which converges to
w. To prove that w ∈ G, it is enough to verify that (CC) is fulfilled. To this end,
fix a sequence U1,U2, . . . of neighborhoods of e and choose its open symmetric
neighborhoods V1, V2, . . . such that Vn ·Vn⊂Un (n>1). We conclude from the fact
that w is in the Gδ-closure of G that there is y ∈G such that y ∈

⋂
∞

n=1(Vnw∩wVn).
Fix n > 1. There is σn ∈ 6 such that both xσw−1 and w−1xσ belong to Vn for
σ > σn . Then, for such σ ’s, xσ y−1

= (xσw−1)(yw−1)−1
⊂ Vn · V−1

n ⊂ Un and
x−1
σ y = (w−1xσ )−1(w−1 y) ⊂ V−1

n · Vn ⊂ Un as well. This shows that (CC) is
satisfied for z = y, and we are done.

Point (V) is easily implied by (IV) (for a fixed continuous left-invariant pseudo-
metric d and a net satisfying (CC ′ ) apply (CC) for Un = {x ∈ G | d(x, e) < 2−n

}).
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The converse implication follows from the well-known fact that for an arbitrary
sequence U1,U2, . . . of neighborhoods of e there exists a left-invariant pseudometric
d on G such that {x ∈ G | d(x, e) < 2−n

} ⊂Un for every n > 1 (see, for example,
the proof of the Kakutani–Birkhoff theorem on the metrizability of topological
groups presented in [Berberian 1974, Theorem 6.3]; or use Markov’s theorem
[Arhangel’skii and Tkachenko 2008, Theorem 3.3.9] to deduce this property). �

Remark 4.2. The proof of Proposition 4.1 shows that points (IV) and (V) of that
result may be weakened by assuming that every net satisfying condition (CC) or
(CC ′ ) with z = y is convergent. However, to prove Theorem 1.4, we need (IV) in
its present form.

Now we can give many examples of Gδ-complete groups. We inform that by
the Cartesian product of a family {Gs}s∈S of topological groups we mean the “full”
Cartesian product

∏
s∈S Gs of them and by the direct product of this family we

mean the topological subgroup
⊕

s∈S Gs of
∏

s∈S Gs consisting of all its finitely
supported elements.

Proposition 4.3. Each of the following topological groups is Gδ-complete:

(a) A Gδ-closed subgroup of a Gδ-complete group. A complete group.

(b) The Cartesian as well as the direct product of arbitrary collection of Gδ-
complete groups.

(c) A topological group which is the countable union of its subgroups each of
which is Gδ-complete.

(d) A topological group which is σ -compact as a topological space. In particular,
all countable topological groups are Gδ-complete.

(e) A topological group in which singletons are Gδ. In particular, metrizable
groups are Gδ-complete.

(f) G = Iso(X, d) for an arbitrary metric space (X, d). Moreover, w(G)6w(X),
and G is complete provided (X, d) is complete.

Proof. In each point we invoke Proposition 4.1.
To prove point (a), use the equivalence between conditions (I) and (III) in

Proposition 4.1. We turn to (b). Let {Gs}s∈S be a nonempty collection of Gδ-
complete groups and let G =

∏
s∈S Gs . Let xσ = (x

(s)
σ )s∈S ∈ G (σ ∈ 6) be a

net satisfying condition (CC). It remains to check that for any t ∈ S, the net
{x (t)σ }σ∈6 ⊂G t satisfies condition (CC) as well (because then it will be convergent),
which is immediate: If V1, V2, . . . is a sequence of neighborhoods of the neutral
element of G t , apply (CC) for the sequence U1,U2, . . . with U j := {(x (s))s∈S ∈G |
x (t) ∈ V j } ( j > 1) to obtain two points y, z ∈ G and then use their t-coordinates.
Now to prove that H :=

⊕
s∈S Gs is also Gδ-complete, it suffices to check that it is
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Gδ-closed in G (by (a)). But if y = (ys)s∈S ∈ G \ H , there is a countable (infinite)
set S′ ⊂ S such that ys 6= es for any s ∈ S′, where es is the neutral element of Gs .
Then the set A := {(zs)s∈S ∈ G | zs 6= es for all s ∈ S′} is a Gδ-subset of G which
contains y and is disjoint from H , which finishes the proof of (b).

Since the proofs of points (c) and (d) are similar, we shall show only (c). Let
G =

⋃
∞

n=1 Gn , where Gn is Gδ-complete for any n. Let y ∈ G \G. Then y /∈ Gn

and Gn is Gδ-closed in G. Consequently, there are Gδ-subsets A1, A2, . . . of G
containing y such that An ∩Gn =∅. Then A :=

⋂
∞

n=1 An is also a Gδ-subset of G
containing y, and A∩G =∅. This shows that y is not in the Gδ-closure of G and
we are done.

Further, if all singletons are Gδ in G then τδ is discrete and hence G is Gδ-
complete. This proves (e).

Finally, we turn to (f). The second and the third claims of (f) are well-known,
but for the sake of completeness we shall prove them too. Let (X, d) be a metric
space and G = Iso(X, d). Let {uσ }σ∈6 ⊂ G be a net satisfying condition (CC ′ ).
Fix x ∈ X and put % : G ×G 3 (u, v) 7→ d(u(x), v(x)) ∈ [0,∞). Observe that %
is a left-invariant continuous pseudometric on G. It follows from (CC ′ ) that there
are f, g ∈ G such that limσ∈6 d(uσ (x), f (x))= limσ∈6 d(u−1

σ (x), g(x))= 0. We
conclude that both the nets {uσ (x)}σ∈6 and {u−1

σ (x)}σ∈6 converge in X . So we may
define u, v : X→ X by u(x)= limσ∈6 uσ (x) and v(x)= limσ∈6 u−1

σ (x) (x ∈ X).
It is readily seen that both u and v are isometric. What is more, a standard argument
proves that u ◦ v = v ◦ u = idX and hence u ∈ G and limσ∈6 uσ = u. So G is Gδ-
complete. Furthermore, if D is a dense subset of X such that card(D)=w(X) then
the function G 3 g 7→ g |D ∈ X D is a topological embedding (when X D is equipped
with the pointwise convergence topology) and therefore w(G)6 w(X D)6 w(X).
Finally, if (X, d) is in addition complete and {uσ }σ∈6 ⊂ G is a net satisfying (C),
similar argument to that above shows that then for any x ∈ X the nets {uσ (x)}σ∈6
and {u−1

σ (x)}σ∈6 are fundamental in (X, d) and hence converge. It now follows
from the previous part of the proof that {uσ }σ∈6 is convergent in G, which finishes
the proof. �

For the purpose of the next result, recall that a topological space X is Dieudonné-
complete if and only if there is a complete uniformity on X inducing the topology
of X (see, for example, [Engelking 1989, Chapter 8]). Accordingly, a topological
group is Dieudonné-complete if and only if it is Dieudonné-complete as a topological
space ([Arhangel’skii and Tkachenko 2008]).

Corollary 4.4. For every metric space (X, d) the topological group Iso(X, d) is
Dieudonné-complete.

Proof. By Proposition 4.3, Iso(X, d) is Gδ-complete and hence it is Gδ-closed in G
thanks to Proposition 4.1. Consequently, Iso(X, d) is Dieudonné-complete (since
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G is such and Gδ-closed subsets of Dieudonné-complete spaces are Dieudonné-
complete as well — see [Dieudonné 1939] or Problem 8.5.13(f) on page 465 in [En-
gelking 1989]; see also the proof of Proposition 6.5.2 on page 366 in [Arhangel’skii
and Tkachenko 2008]). �

The above result gives a full answer to the question of when the isometry group
of a metric space is Dieudonné-complete, posed by Arhangel’skii and Tkachenko
[2008, Open Problem 3.5.4 on page 181].

Example 4.5. As we announced in the introductory part, not every topological
group is absolutely Gδ-closed. Let us briefly justify our claim. Let S be an uncount-
able set and for each s ∈ S let Gs be a nontrivial complete group with the neutral
element es . Then G :=

∏
s∈S Gs is a complete group as well and

G0 = {(xs)s∈S ∈ G | card({s ∈ S | xs 6= es})6 ℵ0}

is a proper subgroup of G which is Gδ-dense in G (and thus G0 is not Gδ-closed in
G). Indeed, if y = (ys)s∈S ∈ G and A is a Gδ-subset of G containing y then there
is a countable set S0 ⊂ S such that {(xs)s∈S ∈ G | xs = ys for all s ∈ S0} ⊂ A; then,
z ∈ G0 ∩ A, where zs = ys for s ∈ S0 and zs = es otherwise.

We are almost ready to prove Theorem 1.4. For the purpose of its proof and the
nearest result, let us introduce auxiliary notations and terminology. Whenever d
and d ′ are two bounded pseudometrics on a common nonempty set X , we put

‖d − d ′‖∞ := sup
x,y∈X
|d(x, y)− d ′(x, y)|.

Further, the relation R := {(x, y) ∈ X × X | d(x, y) = 0} is an equivalence on
X . Let π : X → X/R be the canonical projection. The function D : (X/R)×
(X/R) 3 (π(x), π(y)) 7→ d(x, y) ∈ [0,∞) is a well-defined metric on X/R. We
call a triple (Y, %; ξ) a metric space associated with (X, d) if (Y, %) is a metric
space isometric to (X/R, D) and ξ is a function of X onto Y such that there
is an isometry g : (X/R, D)→ (Y, %) for which ξ = g ◦ π . Observe that then
%(ξ(x), ξ(y))= d(x, y) for any x, y ∈ X .

With use of the following result we shall take care of condition w(X)= w(G)
in Theorem 1.4(A):

Lemma 4.6. Let G be a topological group and {%s}s∈S be a collection of bounded
continuous left-invariant pseudometrics on G. For each s ∈ S, let (Xs, ds;πs) be a
metric space associated with (G, %s) chosen so that the sets Xs are pairwise disjoint.
There exists a metric d on X :=

⋃
s∈S Xs with the following properties:

(DD1) 1
2

3
√

ds(x, y)6 d(x, y)6 3
√

ds(x, y) for any x, y ∈ Xs and s ∈ S.

(DD2) d(πs(a), πt(a))6 3
√
‖%s − %t‖∞ for any a ∈ G and s, t ∈ S.
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(DD3) Each of the sets Xs (s ∈ S) is closed in (X, d).

(DD4) d(πs(ag), πt(ah))= d(πs(g), πt(h)) for any a, g, h ∈ G and s, t ∈ S.

Proof. To simplify arguments, for each x ∈ X denote by κ(x) the unique index
s ∈ S such that x ∈ Xs . Define a function v : X × X→ [0,∞) as follows:

v(x, y)= ‖%κ(x)− %κ(y)‖∞+ inf{dκ(x)(x, πκ(x)(g))+ dκ(y)(πκ(y)(g), y) | g ∈ G}.

Observe that:

• v(x, x)= 0 and v(y, x)= v(x, y) for any x, y ∈ X .

• v(x, y)= ds(x, y) for any x, y ∈ Xs and s ∈ S.

• v(πs(g), πt(g))= ‖%s − %t‖∞ whenever s, t ∈ S and g ∈ G.

• v(πs(g), πt(h))> ‖%s − %t‖∞ for all s, t ∈ S and g, h ∈ G.

• v(πs(ag), πt(ah))= v(πs(g), πt(h)) for any a, g, h ∈ G and s, t ∈ S.

Let us now show that for any x0, x1, x2, x3 ∈ X and each ε > 0

(22) max
j=1,2,3

v(x j−1, x j ) < ε =⇒ v(x0, x3) < 8ε.

Assume v(x j−1, x j ) < ε ( j = 1, 2, 3). This means that there are a1, a2, a3 ∈ G for
which

(23) ‖%κ(x j−1)−%κ(x j )‖∞+dκ(x j−1)(x j−1, πκ(x j−1)(a j ))+dκ(x j )(πκ(x j )(a j ), x j )<ε.

In particular, ‖%κ(x j−1)− %κ(x j )‖∞ < ε for j = 1, 2, 3 and thus

(24) ‖%κ(x0)− %κ(x3)‖∞ < 3ε.

For simplicity, for j ∈ {0, 1, 2, 3} put s j = κ(x j ) and take b j ∈ G such that
πs j (b j )= x j . Recall that ds(πs(g), πs(h))= %s(g, h) for any s ∈ S and g, h ∈ G.
Therefore we have

%s j (b j−1, b j )6 %s j (b j−1, a j )+ %s j (a j , b j )

6 ‖%s j−1 − %s j‖∞+ %s j−1(b j−1, a j )+ %s j (a j , b j ) < ε

(by (23)) and consequently

%s2(b0, b2)6 %s2(b0, b1)+ %s2(b1, b2)

6 ‖%s2 − %s1‖∞+ %s1(b0, b1)+ %s2(b1, b2) < 3ε.

Similarly,

(25) %s3(b0, b3)6 %s3(b0, b2)+ %s3(b2, b3)

6 ‖%s3 − %s2‖∞+ %s2(b0, b2)+ %s3(b2, b3) < 5ε.
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Finally, by (24) and (25) we obtain

v(x0, x3)6 ‖%s0 − %s3‖∞+ ds0(πs0(b0), πs0(b0))+ ds3(πs3(b0), πs3(b3))

< 3ε+ %s3(b0, b3)

< 8ε,

and the proof of (22) is complete. Now let f : X × X → [0,∞) be given by
f (x, y)= 3

√
v(x, y). Below we collect all properties established for v and translated

to the case of the function f :

(F1) f (x, x)= 0 and f (x, y)= f (y, x) > 0 for any distinct points x and y of X .

(F2) If ε > 0 and { f (x, y), f (y, z), f (z, w)} ⊂ [0, ε] for some x, y, z, w ∈ X then
f (x, w)6 2ε, thanks to (22).

(F3) f (x, y) = 3
√

ds(x, y) and f (πs(g), πt(g)) = 3
√
‖%s − %t‖∞ whenever x, y ∈

Xs , g ∈ G, and s, t ∈ S.

(F4) f (πs(g), πt(h))> 3
√
‖%s − %t‖∞ for all g, h ∈ G and s, t ∈ S.

(F5) f (πs(ag), πt(ah))= f (πs(g), πt(h)) for any a, g, h ∈ G and s, t ∈ S.

Finally, we define d : X × X→ [0,∞) as follows:

d(x, y)= inf
{ n∑

j=1

f (z j−1, z j )

∣∣∣ n > 1, z0, . . . , zn ∈ X, z0 = x, zn = y
}
.

Lemma 6.2 of [Berberian 1974] asserts that for any function f : X × X→ [0,∞)
satisfying conditions (F1)–(F2) the function d defined above is a metric on X such
that

(26) 1
2 f (x, y)6 d(x, y)6 f (x, y) (x, y ∈ X).

It follows from (F5) and the formula of d that (DD4) is fulfilled, while (DD1) and
(DD2) may easily be deduced from (F3) and (26). Finally, (DD3) is a consequence
of (F4) and (26). �

Proof of Theorem 1.4. The implications (A1)⇒ (A2) and (B1)⇒ (B2) follow from
Proposition 4.3. It remains to show the converse implications.

First assume that G is complete (in this case the proof is much shorter). By
a well-known result (see, for example, [Uspenskij 2008, Theorem 2.1]), there is
a bounded metric space (Y, %) such that w(G)= w(Y ) and G is isomorphic to a
subgroup H of Iso(Y, %). Since Iso(Y, %) is naturally isomorphic to a subgroup of
Iso(Ȳ , %̄), where (Ȳ , %̄) is the completion of (Y, %), we may assume that (Y, %) is
a complete metric space. Since G is complete, H is a closed subgroup of (Y, %).
Now Theorem 3.2 implies that H is isomorphic to Iso(X, d), where X = Ŷβ with
β =w(Y ), and d is a metric which respects %. Notice that d is complete (by (AX4)),
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w(X)=w(G) (because β=w(Y )=w(G)) and G is isomorphic to Iso(X, d) (being
isomorphic to H ). This proves the remainder of point (B).

We now turn to (A). Assume G is Gδ-complete. Thanks to Theorem 3.2, it
suffices to show that G is isomorphic to a closed subgroup of Iso(X, d) for a metric
space (X, d) of topological weight equal to w(G) (see the previous part of the
proof). We shall do this employing Lemma 4.6 and improving a classical argument,
presented, for example, in the first proof of [Uspenskij 2008, Theorem 2.1]. (That
proof shows that every topological group is isomorphic to a topological subgroup of
Iso(X, d) for some metric space (X, d). However, this fact is insufficient for us, not
only because the topological weight of X is out of control. A much more difficult
problem is to provide the closedness of the subgroup of Iso(X, d) isomorphic to a
given Gδ-complete group.)

Let B be a base of open neighborhoods of the neutral element e of G such that
card(B)6w(G). Let S be the set of all finite and all infinite sequences of members
of B. For any U ∈B there exists a continuous left-invariant pseudometric λU on
G bounded by 1 such that

(27) {x ∈ G | λU (x, e) < 1} ⊂U.

We leave it as a simple exercise that the family {λU }U∈B determines the topology
of G. Now for any s = (U j )

N
j=1 ∈ S (where N is finite or N =∞) let

(28) %s :=

N∑
j=1

1
2 j λU j .

Notice that %s is a continuous left-invariant pseudometric on G bounded by 1. What
is more,

(T) the family {%s}s∈S determines the topology of G

(since %s = λU for s = (U,U, . . . ) ∈ S). Now we apply Lemma 4.6 for the
family {%s}s∈S . Let (Xs, ds;πs) (s ∈ S) and (X, d) be as stated there. That is,
(Xs, ds;πs) is a metric space associated with (G, %s), the sets Xs are pairwise
disjoint, X =

⋃
s∈S Xs , and d is a metric on X satisfying conditions (DD1)–(DD4).

For each s ∈ S let %̃s : G×G→[0,∞) be given by %̃s(g, h)= d(πs(g), πs(h)). It
is clear that %̃s is a pseudometric on G. What is more, it is left-invariant, thanks to
(DD4), and moreover

(29) 1
2

3
√
%s 6 %̃s 6 3

√
%s (s ∈ S),

by (DD1). Consequently, each of the pseudometrics %̃s is continuous and

(T′) the family {%̃s}s∈S determines the topology of G
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(see (T)). We infer from the continuity of %̃s that πs , as a function of G into (X, d),
is continuous as well. We claim that w(X)6 w(G). To see this, let S f consists of
all finite sequences of members of B, and let D be a dense subset of G such that
card(D) 6 w(G). Observe that Z :=

⋃
s∈S f

πs(D) has cardinality not exceeding
w(G). We will now show that Z is dense in X . First of all, note that πs(D) is dense
in Xs , since πs is continuous. In particular, the closure of Z contains all points
of
⋃

s∈S f
Xs . Fix s /∈ S f and a ∈ G. Then s is of the form s = (U j )

∞

n=1 ∈ S. Put
sn := (U j )

n
j=1 ∈ S f and observe that, by (DD2) and (28),

d(πsn (a), πs(a))6 3
√
‖%sn − %s‖∞→ 0 (n→∞).

So, since πs(G)= Xs , the above argument shows that Z is indeed dense in X .
It remains to check that G is isomorphic to a closed subgroup of Iso(X, d).

For g ∈ G let ug : X → X be such that ug(πs(x)) = πs(gx) for any s ∈ S and
x ∈ G. Then 8 : G 3 g 7→ ug ∈ Iso(X, d) is a well-defined (by (DD4)) group
homomorphism as well as a topological embedding (thanks to (T′)). So it follows
from Proposition 4.3(f) that w(X) > w(G) and hence w(X) = w(G). We shall
check that 8(G) is closed, which will finish the proof. Assume {xσ }σ∈6 is a net in
G such that the net {uxσ }σ∈6 converges in Iso(X, d) to some u ∈ Iso(X, d). It is
enough to prove that the net {xσ }σ∈6 is convergent in G. Since G is Gδ-complete,
actually it suffices to verify condition (CC) (see Proposition 4.1). To this end, let
V1, V2, . . . be a sequence of neighborhoods of e. For any n > 1 choose Un ∈B for
which Un ⊂ Vn . Now for s := (U j )

∞

j=1 ∈ S we have

lim
σ∈6

d(πs(xσ ), u(πs(e)))= lim
σ∈6

d(uxσ (πs(e)), u(πs(e)))= 0,

lim
σ∈6

d(πs(x−1
σ ), u−1(πs(e)))= lim

σ∈6
d(u−1

xσ (πs(e)), u−1(πs(e)))= 0.

We infer from (DD3) and the above convergences that there are y, z ∈ G such that
limσ∈6 d(πs(xσ ), πs(y))= limσ∈6 d(πs(x−1

σ ), πs(z−1))= 0. But for any a, b ∈G,
d(πs(a), πs(b))= %̃s(a, b) and thus, thanks to (29),

lim
σ∈6

%s(xσ , y)= lim
σ∈6

%s(x−1
σ , z−1)= 0.

For each n > 1 let σn ∈6 be such that both the numbers %s(xσ , y)= %s(x−1
σ y, e)

and %s(x−1
σ , z−1)= %s(xσ z−1, e) are less than 2−n for any σ > σn . We deduce from

the formula of s, (28), and (27) that {x−1
σ y, xσ z−1

} ⊂Un(⊂ Vn) for all σ > σn . �

The above proof provides the existence of a metric space (namely, X̂β) whose
isometry group is isomorphic to a given Gδ-complete group G. This metric space
is highly disconnected (since it contains a clopen discrete set whose cardinality is
equal to the topological weight of the whole space). In the next section we shall
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improve Theorem 1.4 by showing that G is isomorphic to the isometry group of a
contractible open set in a normed vector space of the same topological weight as G.

Corollary 4.7. (A) Let G be a topological group and β be an infinite cardinal
number. There exists a (complete) metric space (X, d) such that w(X)= β and
Iso(X, d) is isomorphic to G if and only if G is Gδ-complete (resp. complete)
and β > w(G).

(B) A topological group is isomorphic to the isometry group of some separable
metric space if and only if it is second-countable.

Proof. Both points (A) and (B) follow from Theorems 1.4 and 3.2, (AX4) and,
respectively, points (f) and (e) of Proposition 4.3. �

We call a metrizable space X zero-dimensional if and only if X has a base
consisting of clopen (that is, simultaneously open and closed) sets; X is strongly
zero-dimensional if the covering dimension of X equals 0.

Corollary 4.8. Let G be an infinite metrizable topological group and β = w(G).
There exists a compatible metric % on Y := Ĝβ such that G is isomorphic to
Iso(Y, %). In particular:

(A) If G is discrete, there is a complete compatible (possibly nonleft-invariant)
metric d on G such that G is isomorphic to Iso(G, d).

(B) If G is countable and nondiscrete, there is a compatible metric d on F :=QtZ

such that G is isomorphic to Iso(F, d).

(C) If G is totally disconnected (zero-dimensional; strongly zero-dimensional) then
there is a metric space (X, d) such that X is totally disconnected (resp. zero-
dimensional; strongly zero-dimensional) as well, w(X)=w(G), and Iso(X, d)
is isomorphic to G.

Proof. Let p be a bounded left-invariant compatible metric on G (if G is discrete,
we may additionally assume that p is complete). It is an easy exercise (and a
well-known fact) that all left translations on G form a closed subgroup of Iso(G, p).
Consequently, by Theorem 3.2, G is isomorphic to Iso(Y, %) for some metric %
which respects p. Note that if G is discrete, Y is homeomorphic to G, which
proves (A). Further, if G is countable and nondiscrete, it is homeomorphic to
the space of all rationals (for example, by Sierpiński’s theorem [1920] that every
countable metrizable topological space without isolated points is homeomorphic
to Q; see point (d) of Exercise 6.2.A on page 370 in [Engelking 1989]) and hence
Y is homeomorphic to F , from which we deduce (B). Finally, (C) simply follows
from the fact that, if G is totally disconnected, or zero-dimensional, or strongly
zero-dimensional, then Y has the same property: see Theorems 1.3.6, 4.1.25, and
4.1.3 in [Engelking 1978]. �
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Corollary 4.8(A) may be generalized to the context of so-called nonarchimedean
complete topological groups. Recall that a topological group is nonarchimedean if
and only if it has a base of neighborhoods of the neutral element consisting of open
subgroups. Nonarchimedean Polish groups play an important role, for example, in
model theory; see §1.5 in [Becker and Kechris 1996]. The equivalence between
points (i) and (ii) of the following result is taken from this book (it was formulated
there only for Polish groups, but the proof works in the general case):

Corollary 4.9. Let G be a topological group and β = w(G). Let D be a discrete
topological space of cardinality β and Sβ be the symmetric group of the set D (that
is, Sβ consists of all permutations of D). The following conditions are equivalent:

(i) G is nonarchimedean and complete.

(ii) G is isomorphic to a closed subgroup of Sβ .

(iii) For arbitrary ε > 0, G is isomorphic to Iso(D, %) for some metric % on D such
that δD 6 % 6 (1+ ε)δD , where δD is the discrete metric on D.

Proof. First note that Sβ = Iso(D, δ). Thus, if (ii) is satisfied, Theorem 3.2 implies
that there is a metric % on X = D̂β which respects δD such that G is isomorphic
to Iso(X, %). Since % respects δD, we readily have % > δX . Use Remark 3.3 to
improve the metric % and take care of the inequality %6 (1+ε)δX . Finally, noticing
that X is homeomorphic to D gives (iii).

Now assume (iii) is satisfied. Since % is complete, so is G, by Proposition 4.3.
Furthermore, the sets UA = {u ∈ Iso(D, %) | u(a)= a for any a ∈ A}, where A runs
over all finite subsets of D, are open (because %> 1) subgroups of Iso(D, %) which
form a base of neighborhoods of the identity map and thus G is nonarchimedean.

Finally, assume (i) is fulfilled. Let B be a base of neighborhoods of the neutral
element eG of G which consists of open subgroups and has cardinality β. For
any H ∈B, the size of the collection {gH | g ∈ G} does not exceed β and hence
card(U) = β = card(D) for U = {gH | g ∈ G, H ∈ B}. Hence we may and do
identify the set D with U. For any g ∈ G put πg : U 3 U 7→ gU ∈ U. Under
the above identification, we readily have πg ∈ Sβ . What is more, the function
π : G 3 g 7→ πg ∈ Sβ is easily seen to be a group homomorphism (possibly
discontinuous). It suffices to check that π is an embedding (because then π(G) is
closed, thanks to the completeness of G). Since

⋂
B= {eG}, π is one-to-one. To

complete the proof, observe that for any net {gσ }σ∈6 ⊂ G one has

lim
σ∈6

gσ = eG ⇐⇒ ∀g ∈G : lim
σ∈6

g−1gσ g= eG

⇐⇒ ∀g ∈G ∀H ∈B ∃σ0 ∈6 ∀σ > σ0 :πgσ (gH)= gH

⇐⇒ lim
σ∈6

πgσ =πeG
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(recall that U, as identified with D, has discrete topology and that for any x ∈ G
and H ∈B, x ∈ H if and only if x H = H ). �

Using Proposition 3.4, we may easily strengthen Theorem 1.4:

Proposition 4.10. For any Gδ-complete group G there are a complete metric space
(X, d) with w(X) = w(G), a dense set X ′ ⊂ X , and an isomorphism 8 : G →
Iso(X, d) such that 8(G)= {u ∈ Iso(X, d) | u(X ′)= X ′}(= Iso(X ′, d)).

Proof. First use Theorem 1.4 to get the isomorphism between G and Iso(Y, %) for
some metric space (Y, %) with w(Y ) = w(G) and then apply Proposition 3.4 to
conclude the whole assertion (recall that the isometry group of a complete metric
space is complete). �

Example 4.11. Let (X, d) be an arbitrary metric space and G be a subgroup of
Iso(X, d). It follows from Theorem 1.4 and Proposition 4.1 that G is isomorphic to
the isometry group of some metric space if and only if G is Gδ-closed in Iso(X, d).
Let us briefly show that the Gδ-closure of G coincides with the set of all u∈ Iso(X, d)
such that for any separable subspace A of X there is v ∈ G which agrees with u
on A. Indeed, there is a countable set D ⊂ A which is dense in A. Then the set
F(u, A) := {v ∈ Iso(X, d) : v |A = u |A} coincides with {v ∈ Iso(X, d) : v |D = u |D}.
This implies that F(u, A) is Gδ in Iso(X, d). Consequently, if u belongs to the
Gδ-closure of G then necessarily G ∩ F(u, A) 6=∅. Conversely, it may be easily
shown that for every Gδ-set P containing u there is a countable set A such that
F(u, A) ⊂ P and hence to conclude that u belongs to the Gδ-closure of G it is
sufficient that F(u, A)∩G 6=∅ for all countable A.

According to the above remark, Theorem 3.2 may now be generalized as follows:
a subgroup G of Iso(X, d) is isomorphic to the isometry group of some metric
space (of the same topological weight as X ) if and only if G satisfies the following
condition: Whenever u ∈ Iso(X, d) is such that for any separable subspace A of X
there exists v ∈ G which agrees with u on A then u ∈ G.

We end the section with the concept of Gδ-completions. Similarly, as in the case
of Raı̆kov completion, any topological group G has a unique Gδ-completion; that is,
G may be embedded in a Gδ-complete group as a Gδ-dense subgroup in a unique
way, as shown by:

Proposition 4.12. Let G and K be Gδ-complete groups and H be a Gδ-dense
subgroup of G:

(a) Every continuous homomorphism of H into K extends uniquely to a continuous
homomorphism of G into K .

(b) If f : H → K is a group homomorphism as well as a topological embedding
and G̃ denotes the Gδ-closure of f (H) in K then there is a unique (topological)
isomorphism F : G→ G̃ that extends f .
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Proof. Let f : H → K be a continuous homomorphism. Since H is dense in G,
there is a unique continuous group homomorphism F : G→ K which extends f .
It suffices to show that F(G)⊂ K . But this follows from the fact that the preimage
of a Gδ-closed set under a continuous function is Gδ-closed too. This proves (a). If
in addition f is a topological embedding, it follows from the above argument that
there is a continuous group homomorphism F̃ : G̃→ G which extends f −1. We
then readily see that both F̃ ◦ F and F ◦ F̃ are the identity maps and hence F is an
isomorphism (and F̃ = F−1), which shows (b). �

Definition 4.13. Let G be a topological group. The Gδ-completion of G is a Gδ-
complete group which contains G as a Gδ-dense (topological) subgroup. It follows
from Proposition 4.12 that the Gδ-completion is unique up to isomorphism fixing
the points of G. It is also obvious that any group has the Gδ-completion.

5. Hilbert spaces as underlying topological spaces

Our first aim of this section is to prove Theorem 1.2 and Proposition 1.5(b). To
this end, we recall a classical construction due to Arens and Eells [1956] (see also
[Weaver 1999, Chapter 2]).

Definition 5.1. Let (X, d) be a nonempty complete metric space. For every p ∈ X
let χp : X → {0, 1} be such that χp(x) = 1 if x = p and χp(x) = 0 otherwise. A
molecule of X is any function m : X → R which is supported on a finite set and
satisfies

∑
p∈X m(p)= 0. Denote by AE0(X) the real vector space of all molecules

of X , and for m ∈ AE0(X) put

‖m‖AE = inf
{ n∑

j=1

|a j |d(p j , q j )

∣∣∣ m =
n∑

j=1

a j (χp j −χq j )

}
.

Then ‖ ·‖AE is a norm and the completion of (AE0(X), ‖ ·‖AE) is called the Arens–
Eells space of (X, d) and denoted by (AE(X), ‖ · ‖AE). Moreover, w(AE(X)) =
w(X).

It is an easy observation that every isometry u : X→ Y between complete metric
spaces X and Y induces a unique linear isometry AE(u) : AE(X)→ AE(Y ) such
that AE(u)(χp−χq)=χu(p)−χu(q) for any p, q ∈ X . The following result is surely
well-known, but probably nowhere explicitly stated. Therefore, for the reader’s
convenience, we give its short proof:

Lemma 5.2. For every complete metric space (X, d), the function

(30) 9 : Iso(X, d) 3 u 7→ AE(u) ∈ Iso(AE(X), ‖ · ‖AE)

is both a group homomorphism and a topological embedding.
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Proof. Continuity and homomorphicity of 9 is clear (note that AE0(X) is dense
in AE(X) and AE0(X) is the linear span of the set {χp − χq | p, q ∈ X}). Here
we focus only on showing that 9 is an embedding. We may and do assume that
card(X) > 1. Suppose {uσ }σ∈6 ⊂ Iso(X, d) is a net such that

(31) lim
σ∈6

9(uσ )=9(u)

for some u ∈ Iso(X, d). Let x ∈ X be arbitrary. We only need to verify that
limσ∈6 uσ (x)= u(x). Let y ∈ X be different from x . We infer from (31) that

(32) χuσ (x)−χuσ (y)→ χu(x)−χu(y) (σ ∈6).

For ε ∈ (0, d(x, y)) let Bε = {z ∈ X | d(u(x), z)> ε}(6=∅) and let vε : X→[0,∞)
denote the distance function to Bε, that is,

vε(z)= inf{d(z, b) | b ∈ Bε}.

Observe that vε is Lipschitz. Since the dual Banach space to AE(X) is natu-
rally isomorphic to the Banach space of all Lipschitz real-valued functions on
X (see, for example, Chapter 2 of [Weaver 1999]), we deduce from (32) that
limσ∈6[vε(uσ (x))−vε(uσ (y))] = vε(u(x))−vε(u(y)). But vε(u(x))−vε(u(y))=
vε(u(x)) > 0 (because u(y) ∈ Bε, by the isometricity of u). So there is σ0 ∈6 such
that vε(uσ (x)) > 0 for any σ > σ0. This means that for σ > σ0, uσ (x) /∈ Bε and
consequently d(uσ (x), u(x)) < ε. �

The homomorphism appearing in (30) is not surjective, unless card(X) < 3.
There is however a fascinating result, discovered by Mayer–Wolf [1981], that
characterizes all isometries of the space AE(X) under some additional conditions
on the metric of X . Below we formulate only a special case of it, enough for our
considerations.

Theorem 5.3. Let d be a bounded complete metric on a set X. Let AE(X) denote
the Arens–Eells spaces of (X,

√
d). Every linear isometry of AE(X) onto itself is of

the form ±AE(u), where u ∈ Iso(X, d)(= Iso(X,
√

d)).

Proof. All parts of this proof come from [Mayer-Wolf 1981]. Alternatively, we
give references to suitable results from [Weaver 1999]. By Proposition 2.4.5 of that
reference, the metric space (X,

√
d) is so-called concave (for the definition, see the

note preceding Lemma 2.4.4 on page 51 in [Weaver 1999]). Now, Theorem 2.7.2
in that reference implies that if 8 is a linear isometry of AE(X) then there is
r ∈R\ {0} and a bijection u : X→ X such that

√
d(u(x), u(y))= |r |

√
d(x, y) and

8(χx − χy) =
1
r (χu(x) − χu(y)) for any x, y ∈ X . The former of these relations,

combined with the boundedness of d, implies that |r | = 1 and u ∈ Iso(X, d). So
8=±AE(u), and we are done. �
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We shall also need quite an intuitive result stated below. Although its proof is
not immediate, we leave it to the reader as an exercise.

Lemma 5.4. Let X be a two-dimensional real vector space, ‖ · ‖ be any norm on
X , and let a and b be two vectors in X :

(a) If B̄X (0, 2)⊂ B̄X (b, 2)∪ B̄X (a, 1) then b = 0.

(b) If ‖a‖ = ‖b‖ = 2 and B̄X (b, 1)⊂ B̄X (0, 2)∪ B̄X (a, 1) then a = b.

Proof of Theorem 1.2 and of Proposition 1.5(b). Because Theorem 1.2 is a special
case of point (b) of the proposition, we focus only on the proof of the latter result.
It follows from Corollary 4.7 that there is a complete metric space (Y, %) such that
w(Y )= β and Iso(Y, %) is isomorphic to G. Since Iso(Y, %)= Iso(Y, %/(2+ 2%))
and the metric %/(2+ 2%) is complete (and compatible), we may and do assume
that % < 1

2 . We also assume that Y ∩ [0, 1] =∅. Let X = Y ∪ [0, 1]. We define a
metric d on X by the rules:

• d(s, t)= |s− t | for s, t ∈ [0, 1].

• d(x, y)= %(x, y) for x, y ∈ Y .

• d(x, t)= d(t, x)= 1+ t for x ∈ Y and t ∈ [0, 1].

We leave it as an exercise that d is indeed a metric, that d is complete, andw(X)=β.
Notice that for any a ∈ X and t ∈ [0, 1](⊂ X):

• a = 1 ⇐⇒ ∃b, c ∈ X : d(a, b)= 3
4 ∧ d(a, c)= 2.

• a = t ⇐⇒ d(a, 1)= 1− t .

These equivalences imply that for every f ∈ Iso(X, d)we have f (t)= t for t ∈ [0, 1]
and f |Y ∈ Iso(Y, %). It is also easy to see that each isometry of (Y, %) extends
(uniquely) to an isometry of (X, d). Hence the function Iso(X, d) 3 f 7→ f |Y ∈
Iso(Y, %) is a (well-defined) isomorphism. Now let (E, ‖ · ‖)= (AE(X), ‖ · ‖AE)

be the Arens–Eells space of (X,
√

d) and let e = χ1−χ0. We see that w(E)= β
and E is infinite-dimensional, since X is infinite. What is more, it follows from
Theorem 5.3 that every linear isometry of E which leaves the point e fixed is of the
form AE(u) for some u ∈ Iso(X,

√
d). Since AE(u)(e)= e for any u ∈ Iso(X, d)

(because u(0)= 0 and u(1)= 1 for such u), noticing that Iso(X, d)= Iso(X,
√

d)
and Lemma 5.2 finishes the proof. �

Our next aim is to show Theorem 1.1(a) and Proposition 1.5(a). We shall need
the next three results.

Theorem 5.5 [Mankiewicz 1972]. Whenever X and Y are normed vector spaces,
U and V are connected open subsets of , respectively, X and Y then every isometry
of U onto V extends to a unique affine isometry of X onto Y .
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We recall that a function 8 : X → Y between real vector spaces X and Y is
affine if 8−8(0) is linear.

The following result is a consequence, for example, of [Bessaga and Pełczyński
1975, Theorem VI.6.2] and a famous theorem of Toruńczyk’s [1981; 1985], which
says that every Banach space is homeomorphic to a Hilbert space:

Theorem 5.6. Every closed convex set in an infinite-dimensional Banach space
whose interior is nonempty is homeomorphic to an infinite-dimensional Hilbert
space.

Our last tool is the next result, which in the separable case was proved by Mogilski
[1979]. The argument there works also in the nonseparable case. This theorem
in its full generality may also be briefly concluded from the results of [Toruńczyk
1981; 1985]. For the reader’s convenience, we give a sketch of its proof.

Theorem 5.7. Let X be a metrizable space. If X is the union of its two closed
subsets A and B such that each of A, B, and A∩ B is homeomorphic to an infinite-
dimensional Hilbert space H then X itself is homeomorphic to H.

Proof. Put C = A∩ B.
First assume that C is a Z -set in both A and B (for the definition of a Z -set

see Section 6). Then there exist homeomorphisms h A : A→ H× (−∞, 0] and
hB : B→ H× [0,∞) which coincide on C and h A(C) = hB(C) = H× {0} (this
follows from the theorem on extending homeomorphisms between Z -sets in Hilbert
manifolds, see [Anderson 1967; Anderson and McCharen 1970; Chapman 1971;
Bessaga and Pełczyński 1975, Chapter V]. Now it suffices to define h : X→H×R

as the union of h A and hB to obtain the homeomorphism we searched for.
Now we consider a general case. Let X ′ = (A × [−1, 0]) ∪ (B × [0, 1]) ⊂

X ×[−1, 1]. Observe that A′ = A×[−1, 0], B ′ = B×[0, 1], and C ′ =C×{0} are
homeomorphic to H (by the assumptions of the theorem) and C ′ is a Z -set in both
A′ and B ′. Thus, we infer from the first part of the proof that X ′ is homeomorphic
to H. Finally, note that the function X ′ 3 (x, t) 7→ (x, 0) ∈ X × {0} is a proper
retraction. So Toruńczyk’s result [1981] implies that X is a manifold modeled on
H. Since it is contractible, it is homeomorphic to H. �

Proof of Theorem 1.1(a) and Proposition 1.5(a). Again, observe that point (a) of
the theorem under the question is a special case of point (a) of the proposition.
Therefore we focus only on the latter result. Let E and e be as in point (b) of
Proposition 1.5. Replacing, if needed, e by 2e/‖e‖, we may assume that ‖e‖ = 2.
Denote by E the group of all linear isometries which leave e fixed. Let W =
B̄E(0, 2) ∪ B̄E(e, 1) be equipped with the metric p induced by the norm of E .
Notice that if V ∈ E then V (W )=W and V |W ∈ Iso(W, p). Conversely, for each
g ∈ Iso(W, p), g = V |W for some linear isometry V ∈ E. Let us briefly justify this
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claim. Let x = g(0) and y= g(e). Then W ⊂ B̄E(x, 2)∪ B̄E(y, 1) and consequently
B̄X (0, 2)⊂ B̄X (x, 2)∪ B̄X (y, 1), where X is a two-dimensional linear subspace of
E which contains x and y. We infer from Lemma 5.4(a) that x = 0. So ‖y‖ = 2
(since g is an isometry) and thus B̄Y (e, 1)⊂ B̄Y (0, 2)∪ B̄Y (y, 1), where Y is a two-
dimensional linear subspace of E such that e, y ∈ Y . Now point (b) of Lemma 5.4
yields that y = e. We then have g(BE(0, 2)∪ BE(e, 1))= BE(0, 2)∪ BE(e, 1). So
an application of Theorem 5.5 gives our assertion: There is a linear (since g(0)= 0)
isometry V of E which extends g.

Having the above fact, we easily see that the function E3 V 7→ V |W ∈ Iso(W, p)
is an isomorphism. Consequently, G is isomorphic to Iso(W, p). So, to finish the
proof, it suffices to show that W is homeomorphic to Hβ . But this immediately
follows from Theorems 5.6 and 5.7, sincew(E)=β and the sets B̄E(0, 2), B̄E(e, 1),
and B̄E(0, 2)∩ B̄E(1, 2) are closed, convex, and have nonempty interiors. �

Proof of Corollary 1.6. It suffices to apply Proposition 1.5 and Proposition 4.3(f). �

The arguments used in the proofs of both points of Proposition 1.5 also show
the next result:

Corollary 5.8. Let G be a Gδ-complete topological group of topological weight
not exceeding β > ℵ0. There are an infinite-dimensional normed vector space E of
topological weight β, a contractible open set U ⊂ E , and a nonzero vector e ∈ E
such that the topological groups G, Iso(U, d), and Iso(E |e) are isomorphic, where
d is the metric on U induced by the norm of E and Iso(E |e) is the group of all
linear isometries of E which leave the point e fixed.

Proof. Let (Y0, %0) be a metric space such that w(Y0)= β and Iso(Y0, %0) is isomor-
phic to G (see Theorems 1.4 and 3.2). Denote by (Y, %) the completion of (Y0, %0).
Now let (X, d), (AE(X), ‖ · ‖AE), and e be as in the proof of Proposition 1.5(b).
We know that the function

Iso(X, d) 3 u 7→ AE(u) ∈ Iso(AE(X)|e)

is an isomorphism. Denote by E the linear span of the set {χa − χb | a, b ∈
Y0 ∪ [0, 1]}(⊂ AE(X)) (recall that X = Y t [0, 1]). Observe that if u ∈ Iso(X, d)
is such that AE(u)(E) = E then u(Y0 ∪ [0, 1]) = Y0 ∪ [0, 1] and consequently
u(Y0) = Y0 (see the proof of point (b) of Proposition 1.5). This yields that the
function

Iso(Y0, %0) 3 u 7→ AE(u)|E ∈ Iso(E |e)

is also an isomorphism. Now it suffices to put U = BE(0, ‖e‖)∪ BE(e, 1
2‖e‖) and

repeat the proof of Proposition 1.5(a) (involving Lemma 5.4 and Theorem 5.5) to
get the whole assertion. (U is contractible as the union of two intersecting convex
sets.) �
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6. Isometry groups of completely metrizable metric spaces

Taking into account Corollary 1.6, the following question naturally arises: Given
an infinite cardinal β, how do we characterize topological groups isomorphic to
Iso(H, d) for some compatible metric d on a Hilbert space H of Hilbert space
dimension β? In this part we give a partial answer to this question. In fact, we will
deduce our main result in this topic from the following general fact:

Proposition 6.1. Let (S, p) be a bounded complete metric space, β an infinite
cardinal not less than w(S), and H a Hilbert space of Hilbert space dimension
β. Let S′ be a dense subset of S and G a closed subgroup of Iso(S′, p). There
exist a compatible complete metric λ on H, a set H′ ⊂ H, and an isomorphism
9 : G→ Iso(H, λ) such that 9(G)= {u ∈ Iso(H, λ) | u(H′)=H′}, (H \H′, λ) is
isometric to (S \ S′,

√
p) and the closure of H \H′ is a Z-set in H. In particular, if

S′ is completely metrizable then H′ is homeomorphic to H.

Recall that a closed set K in a metric space X is a Z-set if and only if every map
of the Hilbert cube Q into X may uniformly be approximated by maps of Q into
X \ K .

Proof. By Proposition 3.4, there is a bounded complete metric space (Y, %), a dense
set Y ′⊂ Y , and an isomorphism F1 :G→ Iso(Y, %) such that w(Y )= β, (Y \Y ′, %)
is isometric to (S \ S′, p), and F1(G)= {u ∈ Iso(Y, %) | u(Y ′)= Y ′}. Now we shall
mimic the proof of Proposition 1.5.

Replacing, if applicable, p and % by t · p and t · % with small enough t > 0 (and
the final metric λ obtained from this proof by λ/

√
t), we may assume that % < 1

2 .
Now let (X, d)⊃ (Y, %) be as in the proof of Theorem 1.2. Further, let (E, ‖ · ‖)=
(AE(X), ‖ · ‖AE) be the Arens–Eells space of (X,

√
d) and e = χ1−χ0 ∈ E . We

denote by λ the metric on W = B̄E(0, 1)∪ B̄E(e, 1
2) induced by the norm of E . The

arguments used in the proofs of Theorem 1.2 and Proposition 1.5 show:

(I1) The function F2 : Iso(X, d)3 u 7→ u |Y∈ Iso(Y, %) is an isomorphism and there
is a dense set X ′ ⊂ X such that X \ X ′ = Y \ Y ′ and F−1

2 (F1(G)) consists
precisely of all u ∈ Iso(X, d) with u(X ′)= X ′.

(I2) The function F3 : Iso(X, d) 3 u 7→ AE(u)|W ∈ Iso(W, λ) is an isomorphism
and u(0)= 0 for any u ∈ Iso(X, d).

(I3) W is homeomorphic to H.

Point (I3) asserts that we may identify H with W . Put 9 = F3 ◦ F−1
2 ◦ F1 : G→

Iso(W, λ) and W ′=W\{χx−χ0 | x ∈ X\X ′} (recall that ‖χy−χ0‖AE=
√

d(y, 0)=1
for every y ∈ Y ⊃ X \ X ′) and note that 9 is an isomorphism. What is more, we
claim that 9(G) consists of all v ∈ Iso(W, λ) for which v(W ′) = W ′. Indeed, it
follows from (I2) that each v ∈ Iso(W, λ) has the form v = AE(u)|W for some
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u ∈ Iso(X, d). So, taking into account (I1), we only need to check that u(X ′)= X ′

if and only if (AE(u))(W ′)=W ′. But this follows from the fact that u(0)= 0.
Further, observe that the function (X \ X ′,

√
d) 3 x 7→ χx −χ0 ∈ (W \W ′, λ) is

an isometry, which implies that the latter metric space is isometric to (S \ S′,
√

p).
To show that the closure D of W \W ′ is a Z -set in W , note that D⊂C := {χy−χ0 |

y ∈ Y } and the maps W 3 w 7→ (1− 1/n)w+ e/n ∈W converge uniformly to the
identity map with respect to λ and their images are disjoint from C .

So, to complete the proof, we only need to check that if S′ is completely metriz-
able then W ′ is homeomorphic to H. But this is an immediate consequence of the
fact that W \W ′ is a set isometric to (S \ S′,

√
p) and contained in a Z -set in W ,

and a known fact on σ -Z -sets in Hilbert spaces: S′, being completely metrizable,
is a Gδ-set in S; hence, S \ S′ is Fσ in S. Consequently, W \W ′ is a countable
union of sets complete in the metric λ thus an Fσ -set in W . But the closure of
W \W ′ is a Z -set in W , so W \W ′ is a σ -Z -set, that is, it is a countable union of
Z -sets. Now the assertion follows from the well-known result that the complement
of a σ -Z -set in a Hilbert space is homeomorphic to the whole space, which simply
follows from Toruńczyk’s characterization [1981; 1985] of Hilbert manifolds. (For
the separable case one may also consult Theorem 6.3 in [Bessaga and Pełczyński
1975, Chapter V].) �

As a conclusion, we obtain:

Theorem 6.2. Let H be a Hilbert space of Hilbert space dimension β > ℵ0 and

G= {Iso(H, %) | % is a compatible metric on H}.

Then, up to isomorphism, G consists precisely of all topological groups G which are
isomorphic to closed subgroups of Iso(X, d) for some completely metrizable spaces
(X, d) with w(X)6 β.

Proof. If G is a closed subgroup of Iso(X, d) for a completely metrizable space
(X, d) with w(X)6 β, we may assume that d is bounded (replacing, if necessary, d
by d/(1+d)). Then Proposition 6.1, applied for (S, p)= the completion of (X, d)
and S′ = X , yields a complete compatible metric λ on H and a dense set H′ ⊂H

homeomorphic to H such that G is isomorphic to G ′ := {u ∈ Iso(H, λ) | u(H′)=H′}.
But G ′ is naturally isomorphic to Iso(H′, λ) and we are done. �

For an infinite cardinal number α, let us denote by IGH(α) the class of all
topological groups which are isomorphic to Iso(H, %) for some compatible metric
% on a Hilbert space H of Hilbert space dimension α (“IGH” is the abbreviation
of “isometry group of a Hilbert space”). Additionally, let IGH stand for the union
of all classes IGH(α). Theorem 6.2 implies that IGH is a variety; that is, closed
subgroups as well as topological products of members of IGH belong to IGH as
well.
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We are mainly interested in the class IGH(ℵ0). It is clear that all groups belonging
to this class are second-countable. In the sequel we shall see that the axiom of
second countability is insufficient for a topological group to belong to IGH(ℵ0) (see
Proposition 6.5 below).

As a simple consequence of Theorem 6.2 we obtain:

Corollary 6.3. If G is a second-countable, σ -compact topological group then
G ∈ IGH(ℵ0).

Proof. Let p be a compatible left-invariant metric on G and let (Y, %) ⊃ (G, p)
denote the completion of (G, p). If the interior of G in Y is nonempty then G is
locally completely metrizable and thus G is Polish. In that case the assertion follows
from Theorem 1.1. On the other hand, if G is a boundary set in Y then Y \G is dense
in Y and therefore Iso(Y \G, %) is isomorphic to {u ∈ Iso(Y, %) | u(Y \G)= Y \G}
and the latter group coincides with {u ∈ Iso(Y, %) | u(G)=G}, which is isomorphic
to Iso(G, %)= Iso(G, p). Since G is σ -compact, Y \G is completely metrizable.
Finally, since p is left-invariant, all left translations of G form a closed subgroup of
Iso(G, p) isomorphic to G. So, to sum up, G is isomorphic to a closed subgroup
of the isometry group of the Polish space (Y \ G, %). Now it suffices to apply
Theorem 6.2. �

To formulate our next result, we remind the reader that a separable metrizable
space X is said to be coanalytic if and only if X is homeomorphic to a space of
the form Y \ Z , where Y is a Polish space and Z ⊂ Y is analytic, that is, Z is the
continuous image of a Polish metric space. We also recall that continuous images
of Borel subsets of Polish spaces are analytic.

Proposition 6.4. Each member of IGH(ℵ0) is coanalytic as a topological space.

Proof. Let (X, %) be a Polish metric space and G = Iso(X, %). Denote by (Y, d)
the completion of (X, %). Since X is completely metrizable, it is a Gδ-set in Y .
Observe that G is naturally isomorphic to the subgroup {u ∈ Iso(Y, d) | u(X)= X}
of Iso(Y, d). Since Iso(Y, d) is a Polish group, it suffices to show that A := {u ∈
Iso(Y, d) | u(X) 6= X} is the continuous image of a Borel subset of a Polish metric
space. To this end, notice that the set W := {(u, x)∈ Iso(Y, d)×X | u(x)∈ Y \X} is
Borel in the Polish space Iso(Y, d)× X and π(W )= A, where π : Iso(Y, d)× X→
Iso(Y, d) is the natural projection. �

Proposition 6.5. There exists a topological subgroup of the additive group of reals
which does not belong to IGH(ℵ0).

Proof. We consider R as a vector space over the field Q of rationals. There exists
a vector subspace G of R such that Q∩G = {0} and G +Q = R. We claim that
G /∈ IGH(ℵ0). To show that, it is enough to prove that G is not coanalytic (thanks to
Proposition 6.4). Since analytic spaces are absolutely measurable (see, for example,
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Theorem A.13 in [Takesaki 1979, Appendix]), it suffices to show that G is not
Lebesgue measurable. But this follows from the following two observations:

• R=
⋃

q∈Q(q +G) and hence the outer measure of G is positive.

• G −G (which equals G) has empty interior and thus its inner measure is 0;
this follows from [Halmos 1950, Chapter XII, §61, Theorem A, p. 266]. �

Propositions 6.4 and 6.5 make the issue of characterizing members of IGH
complicated. The following problems seem to be most interesting:

Problem 6.6. If G ∈ IGH, is it true that G ∈ IGH(w(G))?

Problem 6.7. Does the class IGH contain all Gδ-complete topological groups?

Problem 6.8. Characterize members of IGH(ℵ0).

7. Compact and locally compact Polish groups

This section is devoted to the proofs of points (b) and (c) of Theorem 1.1. Our main
tool will be the following result, very recently shown by us in [Niemiec 2012]:

Theorem 7.1. Let G be a locally compact Polish group, X be a locally compact
Polish space, and let G× X 3 (g, x) 7→ g.x ∈ X be a continuous proper action of
G on X. Assume there is a point ω ∈ X such that the set G.ω = {g.ω | g ∈ G} is
nonopen and G acts freely at ω (that is, g.ω = ω implies g = the neutral element
of G). Then there exists a proper compatible metric d on X such that Iso(X, d)
consists precisely of all maps of the form x 7→ g.x (g ∈ G). In particular, the
topological groups Iso(X, d) and G are isomorphic.

We recall that (under the above notation) the action is proper if for every compact
set K ⊂ X the set {g ∈ G | g.K ∩ K 6=∅} is compact as well (where g.K = {g.x |
x ∈ K }).

Our next tool is the following classical result due to Keller [1931] (see also
[Bessaga and Pełczyński 1975, Theorem III.3.1]):

Theorem 7.2. Every infinite-dimensional compact convex subset of a Fréchet space
is homeomorphic to the Hilbert cube.

We recall that a Fréchet space is a completely metrizable locally convex topolog-
ical vector space.

We call a function u : (X, d)→R (where (X, d) is a metric space) nonexpansive
if and only if |u(x)− u(y)|6 d(x, y) for all x, y ∈ X . The function u is a Katětov
map if and only if u is nonexpansive and additionally d(x, y) 6 u(x)+ u(y) for
any x, y ∈ X . Katětov maps correspond to one-point extensions of metric spaces.

Proof of Theorem 1.1(b). Let G be a compact Polish group. Take a left-invariant
metric % 6 1 on G and equip the space X = G × [0, 1] with the metric d, where
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d((x, s), (y, t)) = max(%(x, y), |t − s|). For g ∈ G denote by ψg the function
X 3 (x, t) 7→ (g−1x, t) ∈ X . Notice that ψg ∈ Iso(G, X) for any g ∈ G. Let 1 be
the space of all nonexpansive maps of (X, d) into [0, 1] endowed with the supremum
metric. Observe that 1 is a convex set in the Banach space of all real-valued maps
on X . What is more, 1 is infinite-dimensional since X is infinite, and 1 is compact
by the Ascoli type theorem. So we infer from Theorem 7.2 that 1 is homeomorphic
to Q. Further, 8g(u) := u ◦ ψg ∈ 1 for any g ∈ G and u ∈ 1 (because ψg is
isometric). It is also easily seen that the function G×1 3 (g, u) 7→8g(u) ∈1 is a
(proper — since both G and 1 are compact) continuous action of G on 1. Finally,
the function ω : X 3 (x, t) 7→ d((x, t), (e, 1))∈R belongs to1 (since d 6 1), where
e is the neutral element of G. Observe that the set K := {ω ◦ψg | g ∈ G} has empty
interior in 1, since 1/n+ (1− 1/n)ω ◦ψg ∈1 \ K for any n > 1. Now we apply
Theorem 7.1. �

Our last aim is to prove Theorem 1.1(c). To this end, we need more information
on Hilbert cube manifolds.

One of the deepest results in infinite-dimensional topology is Anderson’s theorem
[1967] on extending homeomorphisms between Z -sets. Below we formulate it only
in the Hilbert cube settings, it holds however in a much more general context. (For
the discussion on this topic consult [Bessaga and Pełczyński 1975, Chapter V]; see
also [Anderson and McCharen 1970; Chapman 1971]).

Theorem 7.3. Every homeomorphism between two Z-sets in the Hilbert cube Q is
extendable to a homeomorphism of Q onto itself.

The result stated below is a kind of folklore in Hilbert cube manifolds theory.
We present its short proof because we could not find it in the literature.

Theorem 7.4. The spaces Q×[0,∞) and Q \ {point} are homeomorphic.

Proof. Since Q\{point} is a Hilbert cube manifold, it follows from Schori’s theorem
[1971] (see also [Chapman 1976]; compare with [Bessaga and Pełczyński 1975,
Theorem IX.4.1]) that (Q \ {point})× Q is homeomorphic to Q \ {point}. Now
the assertion follows from Theorem 7.3 since (Q×[0, 1])\ (Q×[0, 1))= Q×{1}
is a Z -set in Q× [0, 1] homeomorphic to the Z -set (in Q× Q) (Q× Q) \ [(Q \
{point})× Q]. �

Lemma 7.5. Let (X, d) be a nonempty separable metric space and let E(X) be
the set of all Katětov maps on (X, d) equipped with the pointwise convergence
topology:

(i) For any a ∈ X and r > 0 the set { f ∈ E(X) | f (a)6 r} is compact (in E(X)).

(ii) E(X)× Q is homeomorphic to Q \ {point}.
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Proof. Point (i) follows from the Ascoli type theorem, since E(X) consists of
nonexpansive maps and for any f ∈ E(X) and x ∈ X , f (x) ∈ [0, d(x, a)+ f (a)].

We turn to (ii). First of all, E(X) is metrizable, because of the separability of
X and the nonexpansivity of members of E(X). Further, thanks to Theorem 7.4,
it suffices to show that E(X)× Q is homeomorphic to Q × [0,∞). Fix a ∈ X
and let ω ∈ E(X) be given by ω(x) = d(a, x). For each n > 1 let Kn = { f ∈
E(X) | f (a) ∈ [n − 1, n]} and Zn−1 = { f ∈ E(X) | f (a) = n − 1}. We infer
from (i) that Kn and Zn−1 are compact. It is also easily seen that both are convex
nonempty sets (ω+ n− 1 ∈ Zn−1 ⊂ Kn). Since Kn× Q and Zn−1× Q are affinely
homeomorphic to convex subsets of Fréchet spaces, Theorem 7.2 yields that both
these sets are homeomorphic to Q. Let hn−1 : Zn−1× Q→ Q × {n− 1} be any
homeomorphism. We claim that Zn−1 ∪ Zn is a Z -set in Kn . This easily follows
from the fact that the maps Kn 3 f 7→ (1−1/k) f +1/k(ω+n− 1

2) ∈ Kn send Kn

into Kn \ (Zn−1 ∪ Zn) and converge uniformly (as k→∞) to the identity map of
Kn . Since Q×{n−1, n} is a Z -set in Q×[n−1, n], Theorem 7.3 provides us the
existence of a homeomorphism Hn : Kn× Q→ Q×[n− 1, n] which extends both
hn−1 and hn . We claim that the union H : E(X)×Q→ Q×[0,∞) of all Hn (n> 1)
is the homeomorphism we are searching for. It is clear that H is a well-defined
bijection. Finally, notice that the interiors (in E(X)) of the sets

⋃n
j=1 K j (n > 1)

cover X and hence H is indeed a homeomorphism. �

Proof of Theorem 1.1(c). Let G be a locally compact Polish group. By a theorem
of Struble [1974] (see also [Abels et al. 2011]), there exists a proper left-invariant
compatible metric d on G. Let E(G) be the space of all Katětov maps on (G, d)
endowed with the pointwise convergence topology. By Lemma 7.5, L := E(G)×Q
is homeomorphic to Q \ {point}. So it suffices to show that there is a proper
compatible metric % on L such that Iso(L , %) is isomorphic to G. For any g ∈ G
and ( f, q) ∈ L let g.( f, q) = ( fg, q) ∈ L , where fg(x) = f (g−1x) (since d is
left-invariant, fg ∈ E(G) for each f ∈ E(G)). As in the proof of point (b) of the
theorem, we see that the function G× L 3 (g, x) 7→ g.x ∈ L is a continuous action
of G on L . It is also clear that each G-orbit (that is, each of the sets G.x with
x ∈ L) has empty interior. Similarly, as in point (b), we show that there is ω ∈ L
such that G acts freely at ω (for example, ω = (u, q) with arbitrary q ∈ Q and
u(x)= d(x, e), where e is the neutral element of G). So, by virtue of Theorem 7.1,
it remains to check that the action is proper. To this end, take any compact set W
in L . Then there is r > 0 such that W ⊂ { f ∈ E(G) | f (e)6 r}× Q. Note that the
set {g ∈ G | g.W ∩W 6=∅} is closed and contained in D× Q, where

D = {g ∈ G | ∃ f ∈ E(G) s.t. f (e)6 r ∧ f (g−1)6 r}

and therefore it is enough to show that D has compact closure in G. But if g ∈ D,
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and f ∈ E(G) is such that f (e) 6 r and f (g−1) 6 r then d(g, e) = d(e, g−1) 6
f (e)+ f (g−1) 6 2r . This yields that D ⊂ B̄G(e, 2r) and noting that d is proper
finishes the proof. �

Remark 7.6. Van Dantzig and van der Waerden [1928] proved that the isometry
group of a connected locally compact metric space (X, d) (possibly with nonproper
or incomplete metric) is locally compact and acts properly on X . It follows from
[Niemiec 2012] that there exists then a proper compatible metric % on X such that
Iso(X, d)= Iso(X, %). In particular,

{Iso(Q \ {point}, d) | d is a compatible metric}

= {Iso(Q \ {point}, %) | % is a proper compatible metric}

and hence if we omit the word proper in Theorem 1.1(c), we will obtain an equivalent
statement.

As we mentioned in the introductory part, each (locally) compact finite-dimen-
sional Polish group is isomorphic to the isometry group of a (proper locally) compact
finite-dimensional metric space. Taking this, and Corollary 4.8, into account, the
following question may be interesting:

Problem 7.7. Is every finite-dimensional metrizable (resp. finite-dimensional Pol-
ish) group isomorphic to the isometry group of a finite-dimensional (resp. finite-
dimensional separable complete) metric space?
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