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SINGULARITIES AND LIOUVILLE THEOREMS FOR SOME
SPECIAL CONFORMAL HESSIAN EQUATIONS

QIANZHONG OU

We develop some new techniques to get an integral estimate for some special
conformal Hessian equations, and hence the classification of their singular-
ities. This complete results of González. By this method we were able to
deduce the Liouville theorem for these special conformal Hessian equations,
which were understood by Yanyan Li via the method of moving planes.

1. Introduction

Consider the conformal k-Hessian equation

(1-1) σk(Ag)= uα in �,

where � is the whole space Rn or the punctured unit ball B \ {0} ⊂ Rn and g =
u−2 dx2, u > 0, is a locally conformally flat metric. The matrix Ag is given by
Ag
= g−1 Ãg, where Ãg is the (0, 2) Schouten tensor

Ãg
i j =

1
n−2

(
Rici j −

R
2(n−1)

gi j

)
,

where Ric and R denote the Ricci tensor and the scalar curvature of g, respectively.
In this metric, the (1, 1) Schouten tensor becomes

(1-2) Ag
= u(D2u)− 1

2 |Du|2 I.

These σk are k-Hessians of Ag. More precisely, they are defined as the k-th
elementary symmetric polynomial functions of the eigenvalues λ1, . . . , λn of the
symmetric matrix Ag:

σk(Ag) :=
∑

1≤i1<···<ik≤n

λi1 · · · λik .
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According to Caffarelli, Nirenberg, and Spruck [Caffarelli et al. 1985], we say u
is k-admissible with respect to σk(Ag) if u ∈ 0k , where 0k is defined by

0k
= {u ∈ C2(�) : σs(Ag) > 0, s = 1, 2, . . . , k}.

Equation (1-1) is raised in conformal geometry and has been studied extensively.
For the critical case α = 0 of (1-1), the isolated singularities at the origin were
completely understood by Caffarelli, Gidas, and Spruck for k = 1 [Caffarelli et al.
1989] and by Han, Li, and Teixeira for k>1 [Han et al. 2010], where they employed
the method of moving planes; while for the subcritical case α ∈ (0, k), the isolated
singularities were classified by Gidas and Spruck for k= 1 [1981] and by González
for 1< k < (n−1)/2 [2006a]. The local behavior of singularities of the conformal
Hessian problems was also studied by Chang, Gursky, and Yang [Chang et al.
2003], González [2006b], and Gursky and Viacolvsky [2006].

In this paper, we bring the results of [González 2006a] to completion. The main
arguments in [Gidas and Spruck 1981] and [González 2006a] are some techniques
of integration by parts which were due originally to Obata [1962]. Compared with
the semilinear case k = 1, for k > 1, the problems are fully nonlinear and more
complicated. The “almost” divergent structure for σk(Ag) explored by González
[2005] allows one to carry out integration by parts for the fully nonlinear cases.
We develop the arguments in [Gidas and Spruck 1981] and [González 2006a] to
deal with the special case n = 2k+ 1. Note that the special case k = 1, n = 3 was
treated separately in [Gidas and Spruck 1981]. Of course, our main idea is to use
the “almost” divergent structure for σk(Ag).

Our main result reads as follows.

Theorem 1.1. Let α ∈ (0, k), n = 2k+ 1 and u > 0 be a k-admissible solution of

(1-3) σk(Ag)= uα in B \ {0}

with u−1
∈ C3(B \ {0}). Then there exists a constant C such that

u−1
≤

C
|x |2k/(2k−α) near x = 0.

Furthermore, if u−1 is not bounded near the origin, we also get

u−1
≥

1/C
|x |2k/(2k−α) near x = 0.

González [2006a] proved the above results for n > 2k+1. The main ingredient
in González’s proof is the following integral estimate.



SINGULARITY FOR CONFORMAL HESSIAN EQUATIONS 119

Proposition 1.2. Let α ∈ (0, k), n > 2k + 1 and u > 0 be a k-admissible solution
of (1-3). Let r > 0 small and M > 0 be such that

{r < |x |< Mr} ⊂ B \ {0}.

Then

(1-4)
∫

r<|x |<Mr
uα((k+1)/k)−δ dx ≤ Crn−(δ−α(k+1)/k)/(1−α/2k),

where the constant δ < n + 1 is close enough to n + 1 and C > 0 depends on M
and δ but not on r.

So, to prove Theorem 1.1, we need a similar integral estimate as (1-4). In fact,
in this paper, we prove the integral estimate as follows.

Proposition 1.3. Let α ∈ (0, k), n = 2k+ 1, and u > 0 be a k-admissible solution
of (1-3). Let r > 0 small and M > 0 be such that

{r < |x |< Mr} ⊂ B \ {0}.

Then

(1-5)
∫

r<|x |<Mr
uα(k+1)/k−n−1 dx ≤

C
r
,

where the constant C > 0 depends on M but not on r.

By this estimate, the rest of the proof of Theorem 1.1 can be done as in [González
2006a], and we omit it in this paper.

Meanwhile, by the method shown in this paper, we are able to get the entire
Liouville theorem for this special case of conformal Hessian equations. Precisely,
we have the following.

Theorem 1.4. For α ∈ [0,+∞) and n = 2k+ 1, consider the problem

(1-6) σk(Ag)= uα in Rn.

(i) If α > 0, (1-6) has no positive k-admissible solution.

(ii) If α = 0, any positive k-admissible solution of (1-6) must be a quadratic poly-
nomial

(1-7) u = a+ b|x − x0|
2

for some fixed x0 ∈ Rn and positive constants a, b.

Li and Li [2005] classified all the solutions of (1-6) for α ∈ [0,+∞) via the
method of moving planes. But our proof of Theorem 1.4 is quite different from
that in [Li and Li 2005], and similar to that in [Chang et al. 2003], where they
treated the case k = 2.
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The paper is organized as follows. In Section 2, we collect some known alge-
braic properties of σk . In Section 3, we deduce some preparation decomposition
results. The proofs of Proposition 1.3 and Theorem 1.4 are given in Section 4.

2. Algebraic properties of σk

Throughout the paper the summation convention for repeated indices is used.

For a general n×n symmetric matrix A, consider its eigenvalues λ1, . . . , λn and
the elementary symmetric polynomial functions

(2-1) σk =
∑

1≤i1<···<ik≤n

λi1 · · · λik .

For k = 1, . . . , n, denote the Newton tensor by

(2-2) T k
= σk I − σk−1 A+ · · ·+ (−1)k Ak

= σk I − T k−1 A,

and the traceless Newton tensor by

(2-3) Lk
=

n− k
n

σk I − T k .

Here we take σ0 = 1 and T 0
i j = δi j .

Propositions 2.1 and 2.2 are well known (see [González 2006a] and references
therein) and we omit their proofs.

Proposition 2.1. For A and T k and Lk as above and with the constant C > 0
depending only on n and s, the following hold:

(a) (n− k)σk = trace(T k).

(b) (k+ 1)σk+1 = trace(AT k).

(c) If σ1, . . . , σk > 0, then T s is positive definite for s = 1, . . . , k − 1, and hence
‖ Ti j

s
‖≤ Cσs .

(d) If σ1, . . . , σk > 0, then σs ≤ C(σ1)
s for s = 1, . . . , k.

(e) If σ1, . . . , σk > 0, then L i j
s L i j

1
≥ 0 for s = 1, . . . , k with equality if and only

if L1
= 0.

Proposition 2.2. For A = Ag, the Schouten tensor as in (1-2), and T k and Lk

defined as in (2-2) and (2-3), we have the following divergence formulas:

(a) ∇g
j Ti j

k
= 0,

(b) ∂ j Ti j
k
=−(n− k)σkui u−1

+ nTi j
ku j u−1,

(c) kσk = u∂ j (ui Ti j
k−1)− nTi j

k−1ui u j +
n−k+1

2
σk−1|Du|2,

(d) ∂ j L i j
k
=

n−k
n
∂iσk + nL i j

ku j u−1,



SINGULARITY FOR CONFORMAL HESSIAN EQUATIONS 121

where ∇g
j is the j-th covariant derivative with respect to the metric g = u−2 dx2

and ∂i = ∂/∂xi is the usual derivative.

3. Some decomposition results

Let u > 0 be in 0k . In the rest of the paper, we write σs(Ag) simply as σs .
Let η be a smooth cut-off function supported in the ball B4r satisfying

|Dmη|.
1

rm .

We use . , w, etc. to drop some positive constants independent of r and u, and
Dm means the usual m-th order multiple derivative.

Let δ, θ be constants which will be chosen later. For s = 1, . . . , k, set

bs =−
(n+ δ)k+ (2k+ δ)s

s!2s (n+ δ+ 1) · · · (n+ δ+ s− 1)

and

Bs =

∫
σk−s |Du|2suδηθ dx,

Ms =

∫
Ti j

k−sui u j |Du|2(s−1)uδηθ dx,

Es =

∫
Ti j

k−suiη j |Du|2(s−1)uδ+1ηθ−1 dx .

Throughout the paper, for convenience, we drop the domain in integrations; one
can assume that all integrations are over a suitable domain such as supp η without
confusion.

For computational convenience, we give the following recursion formula.

Lemma 3.1. For s = 1, . . . , k− 1,

(3-1) ms Ms=ms+1 Ms+1+
k+ s

2s
ms Bs−

n− k+ s+ 1
2(n+ δ+ s+ 1)

ms+1 Bs+1+cs+1 Es+1,

where

mi =
2i(n+ δ+ i)

(n+ δ)k+ (2k+ δ)i
bi

and
ci = θ

mi

n+ δ+ i

for i = 1, . . . , k.

Proof. Using the above notation, by (2-2), Proposition 2.2(c), and integration by
parts, we get
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(3-2) ms Ms

= ms

∫
Ti j

k−sui u j |Du|2(s−1)uδηθ dx

= ms

∫
(σk−sδi j − Til

k−s−1(uul j −
1
2 |Du|2δl j ))ui u j |Du|2(s−1)uδηθ dx

= ms Bs +
ms

2
Ms+1−

ms

2s

∫
ui Til

k−s−1∂l(|Du|2s)uδ+1ηθ dx

= ms Bs +
ms

2
Ms+1+

ms

2s

∫
∂l(ui Til

k−s−1)|Du|2suδ+1ηθ dx

+
ms

2s
(δ+ 1)Ms+1+ θ

ms

2s
Es+1

= ms Bs +
ms

2
Ms+1+

ms

2s

∫ [
(k− s)σk−s + nTi j

k−s−1ui u j

−
n−k+s+1

2
σk−s−1|Du|2

]
|Du|2suδηθ dx

+
ms

2s
(δ+ 1)Ms+1+ θ

ms

2s
Es+1

= ms+1 Ms+1+
k+ s

2s
ms Bs −

n− k+ s+ 1
2(n+ δ+ s+ 1)

ms+1 Bs+1+ cs+1 Es+1. �

Now we have the decomposition for the integral for σk .

Proposition 3.2.

(3-3)
∫

kσkuδηθ dx =
k∑

s=1

bs Bs +

k∑
s=1

cs Es .

Proof. By Proposition 2.2(c) and integration by parts we get

(3-4)
∫

kσkuδηθ dx

=

∫ [
u∂ j (ui Ti j

k−1)− nTi j
k−1ui u j +

n−k+1
2

σk−1|Du|2
]
uδηθ dx

=
n− k+ 1

2

∫
σk−1|Du|2uδηθ dx − n

∫
Ti j

k−1ui u j uδηθ dx

−

∫
Ti j

k−1ui∂ j (uδ+1ηθ ) dx

=
n− k+ 1

2

∫
σk−1|Du|2uδηθ dx − θ

∫
Ti j

k−1uiη j uδ+1ηθ−1 dx

− (n+ δ+ 1)
∫

Ti j
k−1ui u j uδηθ dx

=
n− k+ 1

2
B1+C1 E1+m1 M1.

Using the recursion formula (3-1) in (3-4) step by step, we deduce (3-3). �
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For the traceless Newton tensor Lk , we also have the following decomposition.

Proposition 3.3.

(3-5)
∫

L i j
k L i j

1uδηθ dx

=−
n−k

n

∫
∂i (σk)ui uδ+1ηθ dx−(n+1+δ)

∫
L i j

kui u j uδηθ dx

+
n−k

n(n+2+δ)

∫
∂i (σk)∂i (η

θ )uδ+2 dx− k
n(n+2+δ)

∫
σk1(η

θ )uδ+2 dx

−
1

2(n+2+δ)

∫
Ti j

k−1∂i j (η
θ )|Du|2uδ+2 dx+n−k+1

n+2+δ

∫
σk−1ui u j∂i j (η

θ )uδ+2 dx

−
n+3+δ
n+2+δ

∫
Til

k−1ulu j∂i j (η
θ )uδ+2 dx− 1

n+2+δ

∫
Til

k−1u j∂i jl(η
θ )uδ+3 dx .

Proof. By Proposition 2.2(d) and integration by parts we get

(3-6)
∫

L i j
k L i j

1uδηθ dx

=

∫
L i j

kui j uδ+1ηθ dx

=−

∫
∂ j (L i j

k)ui uδ+1ηθ dx−(δ+1)
∫

L i j
kui u j uδηθ dx−

∫
L i j

kui∂ j (η
θ )uδ+1 dx

=−

∫ [n−k
n
∂i (σk)+nL i j

ku j u−1
]
ui uδ+1ηθ dx

−(δ+1)
∫

L i j
kui u j uδηθ dx−

∫
L i j

kui∂ j (η
θ )uδ+1 dx

=−
n−k

n

∫
∂i (σk)ui uδ+1ηθ dx−(n+δ+1)

∫
L i j

kui u j uδηθ dx

−

∫
L i j

kui∂ j (η
θ )uδ+1 dx .

For the last term in (3-6), integrating once again, we have

(3-7) −
∫

L i j
kui∂ j (η

θ )uδ+1dx

=

∫
∂i (L i j

k)∂ j (η
θ )uδ+2dx+

∫
L i j

k∂i j (η
θ )uδ+2dx+(δ+1)

∫
L i j

k∂ j (η
θ )ui uδ+1dx

=

∫ [n−k
n
∂i (σk)+nL i j

ku j u−1
]
∂i (η

θ )uδ+2dx

+

∫
L i j

k∂i j (η
θ )uδ+2dx+(δ+1)

∫
L i j

k∂ j (η
θ )ui uδ+1dx

=
n−k

n

∫
∂i (σk)∂i (η

θ )uδ+2dx+
∫

L i j
k∂i j (η

θ )uδ+2dx

+(n+δ+1)
∫

L i j
k∂ j (η

θ )ui uδ+1dx .
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Transposition of the term implies

(3-8) −
∫

L i j
kui∂ j (η

θ )uδ+1 dx

=
n− k

n(n+ 2+ δ)

∫
∂i (σk)∂i (η

θ )uδ+2 dx+
1

n+ 2+ δ

∫
L i j

k∂i j (η
θ )uδ+2 dx .

For the last term in (3-8), we have

(3-9)
∫

L i j
k∂i j (η

θ )uδ+2 dx

=

∫ (
Til

k−1 Al j −
k
n
σkδi j

)
∂i j (η

θ )uδ+2 dx

=

∫
Til

k−1(uul j −
1
2 |Du|2δl j )∂i j (η

θ )uδ+2 dx −
k
n

∫
σk1(η

θ )uδ+2 dx

=−
k
n

∫
σk1(η

θ )uδ+2 dx − 1
2

∫
Ti j

k−1∂i j (η
θ )|Du|2uδ+2 dx

+

∫
Til

k−1ul j∂i j (η
θ )uδ+3 dx .

For the last term in (3-9), by Proposition 2.2(b), we compute

(3-10)
∫

Til
k−1ul j∂i j (η

θ )uδ+3 dx

=−

∫
∂l(Til

k−1)u j∂i j (η
θ )uδ+3 dx −

∫
Til

k−1u j∂i jl(η
θ )uδ+3 dx

− (δ+ 3)
∫

Til
k−1u j ul∂i j (η

θ )uδ+2 dx

=−

∫
[−(n− k+ 1)σk−1ui u−1

+ nTil
k−1ulu−1

]u j∂i j (η
θ )uδ+3 dx

−

∫
Til

k−1u j∂i jl(η
θ )uδ+3 dx − (δ+ 3)

∫
Til

k−1u j ul∂i j (η
θ )uδ+2 dx

= (n− k+ 1)
∫
σk−1ui u j∂i j (η

θ )uδ+2 dx −
∫

Til
k−1u j∂i jl(η

θ )uδ+3 dx

− (n+ δ+ 3)
∫

Til
k−1u j ul∂i j (η

θ )uδ+2 dx .

Inserting this into (3-9), we get

(3-11)
∫

L i j
k∂i j (η

θ )uδ+2 dx

=−
k
n

∫
σk1(η

θ )uδ+2 dx − 1
2

∫
Ti j

k−1∂i j (η
θ )|Du|2uδ+2 dx

+ (n− k+ 1)
∫
σk−1ui u j∂i j (η

θ )uδ+2 dx

− (n+ 3+ δ)
∫

Til
k−1u j ul∂i j (η

θ )uδ+2 dx −
∫

Til
k−1u j∂i jl(η

θ )uδ+3 dx .
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Substituting this into (3-8) and then (3-6), we get (3-5) as desired. �

To end this section, we give the estimate on the “error” terms “Es” in (3-3).

Lemma 3.4.

(3-12) |Es |. ε
k∑

m=s

Bm +
1

r2k

∫
uδ+2kηθ−2k dx .

Proof. First, by |Dη|. 1/r and Proposition 2.1(c), we have

|Es |.
1
r

∫
σk−s |Du|2s−1uδ+1ηθ−1 dx .

Using Young’s inequality with exponent pair (2s/(2s−1), 2s) and ε > 0 small,
the last inequality turns into

(3-13) |Es |. ε
∫
σk−s |Du|2suδηθ dx +

C(ε)
r2s

∫
σk−suδ+2sηθ−2s dx .

For the last term of (3-13), by Proposition 2.2(c), we deduce

(3-14)
C(ε)
r2s

∫
σk−suδ+2sηθ−2s dx

w
1

r2s

∫ [
u∂ j (ui Ti j

k−s−1)− nTi j
k−s−1ui u j

+
n−k+s+1

2
σk−s−1|Du|2

]
uδ+2sηθ−2s dx

w
1

r2s

∫
σk−s−1|Du|2uδ+2sηθ−2s dx −

1
r2s

∫
Ti j

k−s−1ui u j uδ+2sηθ−2s dx

−
1

r2s

∫
Ti j

k−s−1uiη j uδ+2s+1ηθ−2s−1 dx

.
1

r2s

∫
σk−s−1|Du|2uδ+2sηθ−2s dx +

1
r2s+1

∫
σk−s−1|Du|uδ+2s+1ηθ−2s−1 dx

. ε
∫
σk−s−1|Du|2(s+1)uδηθ dx +

C(ε)
r2(s+1)

∫
σk−s−1uδ+2(s+1)ηθ−2(s+1) dx,

where we have used Young’s inequality in the last step in (3-13).
Substituting (3-14) into (3-13) step by step shows (3-12). �

4. Proofs of Proposition 1.3 and Theorem 1.4

For n = 2k+ 1, if we choose δ =−2k = 1− n, (3-12) implies

(4-1) |Es |. ε
k∑

m=s

Bm + r.
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Moreover, by this choice of δ we see that bs < 0(s = 1, 2, . . . , k). Hence if we
take ε small enough, combining (3-3) with (4-1), we have

(4-2)
∫
σku1−nηθ dx +

k∑
s=1

Bs . r.

On the other hand, if we choose δ =−n− 1 in (3-5) , then

(4-3)
∫

L i j
k L i j

1u−n−1ηθ dx

=−
n−k

n

∫
∂i (σk)ui u−nηθ dx+

n−k
n

∫
∂i (σk)∂i (η

θ )u1−n dx−
k
n

∫
σk1(η

θ )u1−n dx

−
1
2

∫
Ti j

k−1∂i j (η
θ )|Du|2u1−n dx+(n−k+1)

∫
σ k−1ui u j∂i j (η

θ )u1−n dx

−2
∫

Til
k−1ulu j∂i j (η

θ )u1−n dx−
∫

Til
k−1u j∂i jl(η

θ )u2−n dx .

By (1-1) and |Dmη|. 1/rm we deduce

(4-4)
∫

L i j
k L i j

1u−n−1ηθ dx

.−
n− k

n
α

∫
|Du|2uα−n−1ηθ dx +

n− k
n

αθ

∫
uiηi uα−nηθ−1 dx

+
1
r2

∫
uα+1−nηθ−2 dx +

1
r2

∫
σk−1|Du|2u1−nηθ−2 dx

+
1
r3

∫
σk−1|Du|u2−nηθ−3 dx .

Using Young’s inequality, by (4-4), we can get

(4-5)
∫

L i j
k L i j

1u−n−1ηθ dx

.
(
ε−

n−k
n

)
α

∫
|Du|2uα−n−1ηθ dx +

1
r2

∫
uα+1−nηθ−2 dx

+
1
r2

∫
σk−1|Du|2u1−nηθ−2 dx +

1
r4

∫
σk−1u3−nηθ−4 dx .

For the last term of (4-5), using (3-14) (with δ = 1− n) step by step, we have

(4-6)
1
r4

∫
σk−1u3−nηθ−4 dx .

1
r2

[ k∑
s=2

Bs +
1

r2k

∫
u1−n+2kηθ−2−2k dx

]

.
1
r2

k∑
s=2

Bs +
1
r
.
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Taking ε small, inserting (4-6) into (4-5), and combining with (4-2) (replacing
θ with θ − 2), we get

(4-7)
∫

L i j
k L i j

1u−n−1ηθ dx +α
∫
|Du|2uα−n−1ηθ dx

.
1
r2

[∫
uα+1−nηθ−2 dx +

k∑
s=1

Bs

]
+

1
r
.

1
r
.

Now, from (4-7), we can prove Theorem 1.4 and Proposition 1.3.

Proof of Theorem 1.4. Let η ≡ 1 in Br , 0< η < 1 in B2r \ Br . Taking r→+∞ in
(4-7), we can get

(4-8)
∫

Rn
L i j

k L i j
1u−n−1 dx +α

∫
Rn
|Du|2uα−n−1 dx ≤ 0.

By Proposition 2.1(e), if α > 0, (4-8) shows u must be a positive constant solu-
tion of (1-6), which is impossible; if α = 0, (4-8) shows L1

= 0 and hence u must
be the quadratic polynomial as in (1-7). �

Proof of Proposition 1.3. Let η ≡ 1 for r ≤ |x | ≤ Mr and η = 0 for 0< |x |< r/2,
2Mr < |x |. By (1-3) and Proposition 2.1(d) we have

(4-9)
∫

uα/k+α−n−1ηθ dx =
∫
(σk)

1/kuα−n−1ηθ dx .
∫
σ1uα−n−1ηθ dx

=−
n
2

∫
|Du|2uα−n−1ηθ dx +

∫
1uuα−nηθ dx .

For the last term in (4-9), integrating by parts and using Young’s inequality, we
deduce

(4-10)
∫
1uuα−nηθ dx = (n−α)

∫
|Du|2uα−n−1ηθ dx−θ

∫
uiηi uα−nηθ−1dx

. (n−α+ε)
∫
|Du|2uα−n−1ηθ dx+

1
r2

∫
uα−n+1ηθ−2dx .

Inserting this into (4-9) and combining with (4-7)and (4-2), we have

(4-11)
∫

u((k+1)/k)α−n−1ηθ dx

.
(n

2
−α+ ε

) ∫
|Du|2uα−n−1ηθ dx +

1
r2

∫
uα−n+1ηθ−2 dx .

1
r
.

This implies (1-5) and hence the proof of Proposition 1.3 is completed. �
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