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ATTACHING HANDLES TO DELAUNAY NODOIDS

FRANK PACARD AND HAROLD ROSENBERG

For all m ∈ N− {0}, we prove the existence of a one-dimensional family of
genus m, constant mean curvature (equal to 1) surfaces which are complete,
immersed in R3, and have two Delaunay ends asymptotic to nodoidal ends.
Moreover, these surfaces are invariant under the group of isometries of R3

leaving a horizontal regular polygon with m+ 1 sides fixed.

1. Introduction

Delaunay surfaces are complete, noncompact constant mean curvature surfaces of
revolution in R3 which are either embedded or immersed. The embedded Delaunay
surfaces are usually referred to as unduloids. The elements of this family are
generated by roulettes of ellipses [Eells 1987], and they interpolate between a right
cylinder S1

( 1
2

)
×R⊂ R3 and a singular surface which is constituted by infinitely

many tangent spheres of radius 1 which are periodically arranged along the vertical
axis. Close to the singular limit, the Delaunay unduloids can be understood as
infinitely many spheres of radius 1 which are disjoint, arranged periodically along
the vertical axis, each sphere being connected to its two nearest neighbors by
catenoids, whose rotational axis is the vertical axis, which have been scaled by a
small factor τ > 0.

The immersed Delaunay surfaces are referred to as nodoids. The elements of
this family are generated by roulettes of hyperbolas [Eells 1987]. Again, part of
this family converges to infinitely many spheres of radius 1 which are periodically
arranged along the vertical axis. In contrast to unduloids, close to the singular limit,
the Delaunay nodoids can be understood as infinitely many spheres of radius 1
which are either disjoint or slightly overlapping and which are arranged periodically
along the vertical axis, each sphere being connected to its two nearest neighbors
(with which it shares a slight overlap) by catenoids that have vertical axes and that
have been scaled by a small factor τ > 0.

In this paper, we prove the existence of constant mean curvature surfaces which
have two Delaunay ends (of nodoid type) and finite genus.
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Theorem 1.1. For all m ≥ 1, there exists a one parameter family of genus m
constant mean curvature (with mean curvature equal to 1) surfaces which are
invariant under the action of the full dihedral group Dih(3)m+1 (the group of isometries
of R3 leaving a horizontal regular polygon with m+ 1 sides fixed) and which have
two Delaunay ends asymptotic to nodoidal ends.

Let us briefly describe how these surfaces are constructed, since this will provide
an opportunity to give a precise picture of the surfaces themselves.

As already mentioned, close to the singular limit, the Delaunay nodoids can
be understood as infinitely many spheres of radius 1 which are either disjoint or
slightly overlapping, arranged periodically along the vertical axis and which are
connected together by catenoids, which have vertical axes, and which are scaled
by a small factor τ > 0; these latter ones are called catenoidal necks. The spheres
of radius 1 arranged along the vertical axis can be ordered (by the height of their
centers) and can be indexed by j ∈ Z (without loss of generality, we can assume
that the center of the sphere of index j is at height 2 j + 1). In this description, one
can check that the distance between the centers of two consecutive spheres can be
expanded as

dτ = 2+ 2τ log τ +O(τ ),

as τ tends to 0. In order to obtain the surfaces of Theorem 1.1, instead of connecting
the sphere indexed by 0 and the sphere indexed by 1 using one catenoidal neck, we
connect these two spheres using m+ 1 catenoids which are scaled by a factor

τ̃ =
τ

m+ 1
+O(τ 3/2),

and whose axes are vertical and pass through the vertices of a horizontal regular
polygon (with m+1 sides) of size ρ>0. We show that this construction is successful
provided the parameter ρ, which measures the size of the polygon, is carefully
chosen (as a function of τ ), and, in fact, we find that

ρ2
=

m
m+ 1

τ

2
+O(τ 5/4).

Notice that all the surfaces we construct have the same small vertical flux (we refer
to Section 4 for a definition of the flux of a Delaunay surface).

Our construction is quite flexible and provides many other interesting constant
mean curvature surfaces. For example, using similar ideas and proofs, one can also
construct singly periodic constant mean curvature surfaces with (infinite) topology:
starting with the spheres of radius 1 which are periodically arranged along the verti-
cal axis and which are either disjoint or slightly overlapping, we can choose to con-
nect any two consecutive spheres using m+ 1 catenoids scaled by a factor τ̃ whose
axes are vertical and pass through the vertices of a horizontal regular polygon (with
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m+1 sides) of size ρ > 0. More generally, there is strong evidence for the following.
It should be possible to construct constant mean curvature surfaces starting from

a subset Z⊂Z and assuming that, for all j ∈Z−Z, we decide to connect the sphere
of index j to the sphere of index j+1 using one catenoid whose axis is the vertical
axis and which is scaled by a factor τ , while, when j ∈ Z, we decide to connect
the sphere of index j to the sphere of index j + 1 using m + 1 catenoids whose
axes are vertical and pass through the vertices of a small horizontal regular polygon
(with m+ 1 sides) of size ρ > 0 with

ρ2
∼

m
m+ 1

τ

2
,

and which are scaled by a factor τ̃ ∼ τ/(m+ 1). We believe that this configuration
can be perturbed into a genuine constant mean curvature surface.

We mention that the present construction is very much inspired by [Hauswirth and
Pacard 2007], where the authors perform a construction of minimal surfaces in R3

that have finite genus and two Riemann type ends. In fact, part of the analysis in the
present paper parallels the analysis in [Hauswirth and Pacard 2007]. Nevertheless,
in the present situation, some extra technical difficulties arise in the construction
(see Section 6), since the points where the connected sum is performed are located
at the vertices of a polygon whose size tends to 0 as the parameter τ tends to 0.

We end the introduction by giving an overview of the paper. In Section 2 we
recall some well known facts about the mean curvature operator of normal graphs
with special emphasize on the differential of the mean curvature operator. Section 3
is concerned with harmonic extensions on half cylinders, for which we prove some
decay properties. Section 4 is quite long. It starts with a careful description of
the Delaunay nodoids as the Delaunay parameter τ tends to 0 (that is, close to the
singular limit). Then we proceed with the analysis of the Jacobi operator about
a Delaunay surface as the Delaunay parameter tends to 0. Finally, starting on
page 151, we apply the implicit function theorem about a half nodoid (which is
a constant mean curvature surface with one boundary and one Delaunay end) to
prove the existence of an infinite-dimensional family of constant mean curvature
surfaces which have one Delaunay end and one boundary. These surfaces are close
to the half nodoid we started with and are parametrized by their boundary data. In
Section 6, we perform a similar analysis starting from the catenoid. As a result, we
obtain the existence of an infinite-dimensional family of constant mean curvature
surfaces which have two boundaries, are close to a truncated catenoid, and are
parametrized by their boundary data. In Section 6, we start with a unit sphere,
from which we excise one small disc close to the north pole and m+ 1 small discs
arranged symmetrically at the vertices of a regular polygon near the south pole. We
perturb this surface with m+ 2 boundaries applying the implicit function theorem
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to obtain an infinite-dimensional family of constant mean curvature surfaces which
are parametrized by their boundary data. In the final section, we explain how all
these pieces can be connected together to produce the surfaces in Theorem 1.1. At
this stage, the problem then reduces to being able to choose the boundary data of the
different summands so that their union is a C1 surface, since elliptic regularity theory
will imply that what we have built is a smooth surface of constant mean curvature.

The construction relies heavily on the analysis of elliptic operators on noncompact
spaces as in [Melrose 1993; Mazzeo 1991; Lockhart and McOwen 1985]. It is true
that similar techniques and ideas have already been used in many constructions,
but the proofs are usually hard to read for nonspecialists, since they always refer
to results which are difficult to find in the literature in the precise form they are
needed. This is why we have decided to present complete proofs based on simple
well-known tools; we hope that this will help the interested reader master these
techniques.

Finally, we mention a problem related to our work. To introduce this problem,
we consider 6 to be the union of the upper hemisphere of the sphere of radius 1
centered at the points (0, 0,−1) and the lower hemisphere of the sphere of radius
1 centered at the points (0, 0, 1). The existence of unduloids, nodoids with small
Delaunay parameters, and the surfaces we construct in this paper shows that, for
all ε > 0, there exist infinitely many surfaces of constant mean curvature 1 that
are included in an ε-tubular neighborhood of the unduloid and are not congruent.
Obviously a similar result holds for the surface 6.

Now, if we consider two radius 1 spheres tangent at a point, can we find constant
mean curvature (=1) surfaces (with no boundary) in any small tubular neighborhood
of this configuration? In fact, we can not even answer the following (apparently)
simpler but striking question: is there any compact mean curvature (= 1) surface
(with no boundary) near a radius 1 sphere? More precisely, is there an ε0 > 0 such
that if 6 is a mean curvature (= 1) surface in the ε0-tubular neighborhood of a
radius 1 sphere, is 6 congruent to the sphere? In other words, what is the form of a
compact constant mean curvature surface?

2. Generalities

The mean curvature. We gather some basic material concerning the mean curva-
ture of a surface in Euclidean space. All these results are well known, but we feel
that collecting them here makes the paper easier to read. This also gives us an
opportunity to introduce some of the notation we use throughout the paper. We
refer to [Colding and Minicozzi 2011; Lawson 1977] for further details.

Let us assume that 6 is a surface embedded in R3. We denote by g the metric
induced on 6 by the Euclidean metric g̊, and by h the second fundamental form,
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defined by
h(t1, t2)=−g̊(∇t1 N , t2)

for all t1, t2 ∈ T6. Here N is a unit normal vector field on6. In this paper, we agree
that the mean curvature of a surface is defined to be the average of the principal
curvatures, or, since we are interested in 2-dimensional surfaces, the half of the
trace of the second fundamental form. Hence the mean curvature of 6 is given by

H := 1
2 trgh,

and the mean curvature vector is then given by EH := H N .
For computational purposes, we recall that the mean curvature appears in the

first variation of the area functional. More precisely, given w, a sufficiently small
smooth function which is defined on 6 and has compact support, we consider the
surface 6w, which is the normal graph over 6 for the function w. Namely,

6 3 p 7→ p+w(p)N (p) ∈6w.

We denote by Aw the area of the surface 6w (we assume that this area is finite).
Then

D A|w=0(v)=−2
∫
6

Hv dvolg.

In the case where surfaces close to 6 are parametrized as graphs over 6 using a
vector field Ñ which is transverse to 6 but which is not necessarily a unit normal
vector field, the previous formula has to be modified. Let us denote by 6̃w the
surface which is the graph over 6, using the vector field Ñ , for some sufficiently
small smooth function w. Namely,

6 3 p 7→ p+w(p)Ñ (p) ∈ 6̃w.

We denote by Ãw the area of this surface. The previous formula must be changed to

(2-1) D Ã|w=0(v)=−2
∫
6

( EH · Ñ )v dvolg.

In the next result, we give the expression of the mean curvature Hw of the surface
6w in terms of w. Some notation is needed. For z ∈ R small enough, we define gz

to be the induced metric on the parallel surface

6z :=6+ zN .

It is given explicitly by
gz = g− 2zh+ z2k,

where the tensor k is defined by

k(t1, t2) := g(∇t1 N ,∇t2 N )

for all t1, t2 ∈ T6.
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Proposition 2.1. The mean curvature Hw of the surface 6w is given by the formula

Hw = 1
2

√
1+ |∇gww|2 trgw(h−wk)+ 1

2 divgw

(
∇

gww√
1+ |∇gww|2

)
−

1
2

1
√

1+ |∇gww|
(h−wk)(∇gww,∇

gww).

Proof. The induced metric g̃ on 6w is given by

g̃ = gz=w + dw⊗ dw.

This implies that
det g̃ = (1+ |∇gww|2) det gw.

We can now compute the area of 6w,

Aw =
∫
6

√
1+ |∇gww|2 dvolgw ,

as well as the differential of this functional with respect to w. In doing so, one
should be careful that the function w appears implicitly in the definition of gw.
Using integration by parts, we find

D Aw(v)=−
∫
6

divgw

(
∇

gww√
1+|∇gww|2

)
v dvolgw

−
1
2

∫
6

g′w(∇
gww,∇

gww)√
1+|∇gww|2

v dvolgw+
1
2

∫
6

√
1+|∇gww|2 trgwg′wv dvolgw ,

where g′w := ∂zgz|z=w =−2(h−wk). To proceed, observe that, if Nw denotes the
unit normal vector field about 6w, we have

Nw =
1√

1+ |∇gww|2
(N −∇gww),

and hence we get
dvolgw = (Nw · N ) dvolg̃.

The result then follows at once from (2-1). �

Linearized mean curvature operators. Again, the material in this section is well
known, and we refer to [Colding and Minicozzi 2011; Lawson 1977] for a more
detailed description. The Jacobi operator appears in the linearization of the mean
curvature operator when nearby surfaces are parametrized as normal graphs over
a given surface. Indeed, we can consider the nonlinear operator w 7→ Hw, which
is defined, for example, from the space C2

loc(6) into the space C0
loc(6), and it
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follows from Proposition 2.1 that the differential of this operator with respect to w,
computed at w = 0, is given by

J := DHw=0 =
1
2(1g + trgk),

where 1g is the Laplace–Beltrami operator on 6 and trgk is the square of the norm
of the shape operator.

Finally, we recall that if 6 is a constant mean curvature surface and if 4 is a
killing vector field (that is, 4 generates a one parameter family of isometries), the
function N ·4, which is usually referred to as a Jacobi field, satisfies

J (N ·4)= 0.

This is probably a good time to recall some elementary facts concerning linearized
mean curvature operators when different vector fields are used. As above, we
assume that we are given a vector field Ñ which is transverse to 6, but which is
not necessarily a unit normal vector field. Any surface close enough to 6 can be
considered either as a normal graph over 6 or as a graph over 6, using the vector
field Ñ . Hence we can define two nonlinear operators

w 7→ Hw and w 7→ H̃w,

which are (respectively) the mean curvature of the normal graph of w and the mean
curvature of the graph of w using the vector field Ñ . The following result gives the
relation between the differentials of these two operators at w = 0.

Proposition 2.2 [Mazzeo et al. 2001]. The relation

DH̃|w=0(v)= DH|w=0((Ñ · N )v)+ (∇H · Ñ )v

holds for any v ∈ C2
loc(6), where H denotes the mean curvature of 6. In the

particular case where 6 has constant mean curvature, this formula reduces to

DH̃|w=0(v)= DH|w=0((Ñ · N )v).

Proof. The implicit function theorem can be applied to the equation

p+ t N (p)= q + s Ñ (q)

to express (at least locally) p and t as functions of q and s, namely,

p =8(q, s) and t =9(q, s),

with 8(q, 0)= q and 9(q, 0)= 0. It is easy to check that

∂s8( · , 0)= Ñ T and ∂s9( · , 0)= Ñ · N ,

where superscript T denotes the projection over T6.
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Differentiating the identity

H9( · ,w)(8(q, w(q)))= H̃w(q)

with respect to w, at w = 0, we find

DH|w=0(∂s9( · , 0)v)+∇H|w=0 · ∂s8v = DH̃|w=0(v).

The result then follows from the expression of ∂s8 and ∂s9 and the fact that
H̃|w=0 = H|w=0. �

3. Harmonic extensions

For all x ∈ R2 and all r > 0 we denote by D(x, r) ⊂ R2 the open disc of radius
r centered at x and by D(x, r)⊂ R2 the closed disc of radius r centered at x . In
this section, we study the harmonic extension of a function which is defined on the
unit circle S1 to a half cylinder [0,∞)× S1, or to a punctured disc D∗(0, 1), or
to the complement of the closed unit disc R2

− D(0, 1). We use the fact that all
these domains are conformal to each other and that the Laplacian is conformally
invariant in dimension 2.

Let us assume that we are given a function f ∈ C2,α(S1). We consider F to
be the bounded harmonic extension of f to the half cylinder, endowed with the
cylindrical metric

gcyl = ds2
+ dθ2.

In other words, F is bounded and is a solution of

1gcyl F = 0

in [0,∞)× S1 with F = f on {0}× S1.
Observe that one can use cylindrical coordinates to parametrize the punctured

unit disc by
X̃(s, θ)= (e−s cos θ, e−s sin θ),

in which case the function F̃ defined by F̃ ◦ X̃ := F is the unique bounded solution
of

1F̃ = 0

(where 1 denotes the Laplacian in R2) in the punctured unit disc with F̃ = f on
S1. We set

W ins
f := F̃ .

Also, one can use cylindrical coordinates to parametrize the complement of the
unit disc in R2 by

X̂(s, θ)= (es cos θ, es sin θ),
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in which case F̂ , defined by F̂ ◦ X̂ = F , is the unique bounded solution of

1F̂ = 0

in the complement of the unit disc with F̂ = f on S1. We set

W out
f := F̂ .

All properties of F will transfer easily to F̃ and F̂ .
Given a function f defined on S1, we shall frequently assume that one or both

of the following assumptions are fulfilled:∫
S1

f dθ = 0.(H1) ∫
S1

cos θ f dθ =
∫

S1
sin θ f dθ = 0.(H2)

The following result follows essentially from [Fakhi and Pacard 2000], where a
similar result was proven in higher dimensions.

Lemma 3.1. There exists a constant C > 0 such that, for all f ∈C2,α(S1) satisfying
(H1), we have

‖es F‖C2,α([0,∞)×S1) ≤ C‖ f ‖C2,α(S1),

and, if f satisfies (H1) and (H2), we have

‖e2s F‖C2,α([0,∞)×S1) ≤ C‖ f ‖C2,α(S1).

Before we proceed with the proof of this result, let us emphasize that the norms
in C2,α([0,∞)× S1) are computed with respect to the cylindrical metric gcyl.

Proof. We consider the Fourier series decomposition of the function f

f (θ)=
∑
n∈Z

fneinθ .

Observe that f0 = 0 when (H1) is fulfilled and f±1 = 0 when (H2) is fulfilled.
For the time being, let us assume that both (H1) and (H2) are satisfied. Then the
(bounded) harmonic extension of f is given explicitly by

F(s, θ)=
∑
|n|≥2

e−|n|s fneinθ .

Since
| fn| ≤ ‖ f ‖L∞(S1),

we get the pointwise estimate

|F(s, θ)| ≤ 2‖ f ‖L∞(S1)

∑
n≥2

e−ns
≤ 2‖ f ‖L∞(S1)

e−2s

1− e−s ,
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which implies that

sup
[1,∞)×S1

e2s
|F(s, θ)| ≤ C‖ f ‖L∞(S1).

Increasing the value of C > 0 if necessary, we can use the maximum principle in
the annular region [0, 1]× S1 to get

sup
[0,∞)×S1

e2s
|F(s, θ)| ≤ C‖ f ‖L∞(S1).

The estimates for the derivatives of F then follow from classical elliptic estimates,
since Schauder’s estimates can be applied on each annulus [s, s+ 1] × S1 for all
s ≥ 0. This already completes the proof of the result when both (H1) and (H2)
are fulfilled. When only (H1) holds, one has to take into account the function
f±1e−se±iθ , which accounts for the slower decay of F as e−s . �

4. The Delaunay nodoids

Parametrization and notations. The Delaunay nodoid Dτ is a surface of revolution
which can be parametrized by

(4-1) Xτ (s, θ) := (φτ (s) cos θ, φτ (s) sin θ, ψτ (s)),

where (s, θ) ∈ R× S1. Here the functions φτ and ψτ depend on the real parameter
τ > 0, but, unless necessary, we do not make this apparent in the notation. The
function φ is chosen to be the unique, smooth, periodic, nonconstant solution of

(4-2) φ̇2
+ (φ2

− τ)2 = φ2,

which takes its minimum value at s = 0 (we denote by · differentiation with respect
to the parameter s), and the function ψ is obtained by integration of

(4-3) ψ̇ = φ2
− τ

with initial condition ψ(0)= 0. Observe that φ is a smooth solution of

(4-4) φ̈+ 2φ(φ2
− τ)= φ.

Since φ2
− τ changes sign, the function ψ is not monotone, and closer inspection

of the solutions shows that Dτ is actually not embedded. The Delaunay nodoids
also arise as the surface of revolution whose generating curve is a roulette of a
hyperbola; we refer to [Eells 1987] for a description of this construction. The
quantity (1/4)τ is sometimes referred to as the vertical flux of the Delaunay surface
Dτ ; see [Rossman 2005, Definition 3.1]. Define

(4-5) τ :=

√
1+ 4τ − 1

2
and τ :=

√
1+ 4τ + 1

2
,
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which, thanks to (4-2) and (4-4), are, respectively, the minimum and maximum
values of φ. As already mentioned, the function φ is periodic. We agree that sτ
denotes one half of the fundamental period of φ. Using (4-2), we can write

(4-6) sτ =
∫ τ̄

τ

dζ√
ζ 2− (ζ 2− τ)2

.

In the above parametrization, the induced metric on Dτ is given by

gτ := φ2(ds2
+ dθ2),

and it is easy to check that the second fundamental form on Dτ is given by

hτ := (φ2
+ τ) ds2

+ (φ2
− τ)dθ2,

when the unit normal vector field is chosen to be

Nτ :=
1
φ
((τ −φ2) cos θ, (τ −φ2) sin θ, φ̇).

Finally, the tensor kτ is given by

kτ :=
(
φ+

τ

φ

)2
ds2
+

(
φ−

τ

φ

)2
dθ2.

In particular, the formulae for the induced metric and the second fundamental form
imply that the mean curvature of this surface is constant and equal to

H := 1
2 trgh = 1.

In these coordinates, it follows at once from the expression of gτ and kτ that the
Jacobi operator about Dτ is given by

Jτ :=
1

2φ2

(
∂2

s + ∂
2
θ + 2

(
φ2
+
τ 2

φ2

))
.

Structure and refined asymptotics. The structure of the Delaunay surfaces Dτ is
well understood, and it is known that, as the parameter τ tends to 0, Dτ converges
to the union of infinitely many spheres of radius 1 which are arranged periodically
along the vertical axis. To get a better grasp on the structure of Dτ as τ tends to
0, we have the following results, which were already used in many constructions
of constant mean curvature surfaces by gluing [Mazzeo and Pacard 2001; Mazzeo
et al. 2001; 2005]. For completeness we give independent proofs of these results.

Lemma 4.1. As τ tends to 0, the following holds.

(i) The sequence of functions φτ ( · + sτ ) converges uniformly on compact sets of
R to the function s 7→ (cosh s)−1.
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(ii) The sequence of functions ψτ ( ·+sτ )−ψτ (sτ ) converges uniformly on compact
sets of R to the function s 7→ tanh s.

Proof. It is easy to check that φτ ( · + sτ ) is even and that φτ (sτ ) = τ̄ converges
to 1 as τ tends to 0 (this follows from the fact that the function φτ achieves its
maximum value when s = sτ ). Passing to the limit in (4-2), we conclude that the
sequence of functions φτ converges uniformly on compact sets of R to a function
φ0 which is a solution of

φ̈0+ 2φ3
0 = φ0.

Moreover, the function φ0 is even and is equal to 1 when s = 0. Therefore,
necessarily φ0(s)= (cosh s)−1. Next, one can pass to the limit in (4-3) to prove that
the sequence ψτ ( · + sτ )−ψτ (sτ ) converges to a function ψ0 which is a solution of

ψ̇0 = φ
2
0

and satisfies ψ0(0)= 0. We find that ψ0(s)= tanh s. �

Now we investigate the behavior of Dτ close to the origin in R3. It turns out that
the sequence of rescaled surfaces (1/τ)Dτ converges on compact sets of R3 to a
catenoid whose axis is the vertical axis:

Lemma 4.2. As τ tends to 0, the following holds:

(i) The sequence of functions (1/τ)φτ converges uniformly on compact sets of R

to the function s 7→ cosh s.

(ii) The sequence of functions (1/τ)ψτ converges uniformly on compact sets of R

to the function s 7→ −s.

Proof. It is easy to check that φτ is even and that (1/τ)φτ (0) = τ/τ converges
to 1 as τ tends to 0 (this follows from the fact that the function φτ achieves its
minimum value when s= 0). Passing to the limit in (4-2), we conclude that (1/τ)φτ
converges uniformly on compact sets of R to a function φ0 which is a solution of

φ̈0 = φ0.

Moreover, φ0 is even and is equal to 1 when s = 0. Therefore, φ0(s)= cosh s. Next,
one can pass to the limit in (4-3) to prove that the sequence (1/τ)ψτ converges to
a function ψ0 that is a solution of ψ̇0 =−1 and satisfies ψ0(0)= 0. Therefore, we
conclude that ψ0(s)=−s, as desired. �

Geometrically, these results show that, as τ tends to 0, the Delaunay surface Dτ

is close to infinitely many spheres of radius 1 which are arranged along the vertical
axis (and are slightly overlapping), each sphere connected to its two neighbors by
small rescaled catenoids.



ATTACHING HANDLES TO DELAUNAY NODOIDS 141

We will need a refined and more quantitative version of Lemma 4.2. Observe
that φ̇ < 0 in (−sτ , 0), and hence φ is a diffeomorphism from (−sτ , 0) into (τ , τ̄ ).
We can define the change of variables

r = φτ (s),

to express s ∈ (−sτ , 0) as a function of r ∈ (τ , τ̄ ), so that the equality

Xτ (s, θ)= (r cos θ, r sin θ, uτ (r)),

where r = φτ (s), holds for some function uτ defined in an annulus of R2. Geo-
metrically, this means that the image of (−sτ , 0)× S1 by Xτ is a vertical graph for
some function uτ which is defined over the annulus

{x ∈ R2
: τ < |x |< τ̄ }.

Proposition 4.3. As τ tends to 0,

uτ (r)=
τ

√
1+2τ

log 2r
τ
+OC̊∞

(
τ 3

r2

)
+OC̊∞(r

2)

for r ∈
(
2τ , 1

2 τ̄
)

uniformly as τ tends to 0.

The notation f1 = OC̊∞( f2) means that the function f1 and all its derivatives with
respect to the vector fields r∂r and ∂θ are bounded by a constant (depending on the
order of derivation) times the (positive) function f2.

Proof. By definition τ is the minimum value of φ. Hence we can write

φ(s)= τ cosh(w(s))

for some function w which vanishes at s = 0. Plugging this into (4-2), we find that
the function w is a solution of

ẇ2
= 1+ 2τ − τ 2(1+ cosh2w).

As long as |w(s)− s| ≤ 1, we can estimate

w(s)=
√

1+ 2τ s+O(τ 2 cosh2 s).

In particular, we conclude a posteriori that |w(s)− s| ≤ 1 holds, and hence that
the above estimate is justified, provided |s| ≤ −log τ − c for some constant c > 0
independent of τ ∈ (0, 1). In the range of study, we are entitled to consider the
change of variable

r = τ coshw(s),

and express s < 0 as a function of r . We find

(4-7)
√

1+ 2τ s =−log 2r
τ
+O

(
τ 2

r2

)
+O(r2).
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Finally, using (4-3), we can write

ψ̇ =−τ + τ 2 cosh2w.

Integrating over s, we get

ψ(s)=−τ s+O(τ 2 cosh2 s),

and the result follows directly from (4-7) together with the fact that uτ (r)= ψ(s),
by definition, Similar estimates can be obtained for the derivatives of uτ . �

A close inspection of the proof of Proposition 4.3 also yields the following.

Lemma 4.4. As τ tends to 0, half of the fundamental period of the function φτ can
be expanded as

sτ =−log τ +O(1),

and there exists a constant C > 1 such that
τ

C
cosh s ≤ φτ ≤ Cτ cosh s,

when s ∈ (−sτ , sτ ), this estimate being uniform as τ tends to 0.

Proof. The asymptotics of the half period of φ can also be derived from the formula
(4-6). The estimate for φ follows from the proof of Proposition 4.3. �

Analysis of the Jacobi operator. We analyze the mapping properties of the Jacobi
operator about the Delaunay surface Dτ , paying special attention to what happens
when τ tends to 0. This analysis is very close to the one available in [Mazzeo and
Pacard 2001; Hauswirth and Pacard 2007]. Again, we give a self-contained proof
adapted to the nonlinear argument we use in subsequent sections.

We first analyze the behavior, as τ tends to 0, of the potential which appears in
the expression of Jτ . To this end, we assume that, for each τ > 0, we are given a
real number tτ ∈ R and we define

ξτ :=

(
φ2
τ +

τ 2

φ2
τ

)
( · − tτ ).

Lemma 4.5. As τ tends to 0, a subsequence of the sequence of functions ξτ
converges uniformly on compact sets of R either to 0 or to the function s 7→
(cosh(s− s0))

−2, for some s0 ∈ R.

Proof. We define

ζτ :=

(
φτ +

τ

φτ

)
( · − tτ ).

Using (4-2), we find that ζτ is a solution of

(4-8) ζ̇ 2
τ = (ζ

2
τ − 2τ)(1+ 4τ − ζ 2

τ ),
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and, additionally, (4-4) implies that

(4-9) ζ̈τ = ζτ (1+ 6τ − 2ζ 2
τ ).

Now we can estimate

ζ 2
τ =

(
φ−

τ

φ

)2
+ 4τ ≤ 1+ 4τ,

where we have used (4-2), which provides the estimate (φ2
−τ)2≤φ2. This implies

that ζτ and its derivatives remain bounded as τ tends to 0. We can then let τ tend to
0 and pass to the limit in (4-8) and (4-9) to get that, as τ tends to 0, the sequence
ζτ converges on compact sets to a solution of the equation ζ̈ = ζ(1− 2ζ 2), which
satisfies ζ̇ 2

= ζ 2(1− ζ 2). Hence ζ is either 0 or a translation of z 7→ (cosh s)−1.
The result then follows from the identity ξτ = ζ 2

τ − 2τ . �

We denote by ±δ j (τ ), for j ∈ N, the indicial roots of the operator Jτ . Recall
that the indicial roots ±δ j correspond to the indicial roots of

Jτ, j :=
1

2φ2

(
∂2

t − j2
+ 2

(
φ2
+
τ 2

φ2

))
,

which appears in the Fourier decomposition of the operator Jτ in the θ variable. The
indicial roots of Jτ, j characterize the exponential growth or decay rate at infinity
of the solutions of the homogeneous problem Jτ, jw = 0. In general, it is a very
hard problem to determine the exact value of the indicial roots of an operator, but
in the present case, taking advantage of the geometric nature of the problem, we
can prove the following.

Proposition 4.6. For all τ > 0, we have δ0(τ )= δ1(τ )= 0. Furthermore, for j ≥ 2,

δ j (τ )≥
√

j2
− 2− 4τ ,

provided τ <
√

j2− 2.

Proof. The fact that δ0(τ )= 0 follows from the observation that the function φ̇/φ
is periodic and solves

Jτ,0(φ̇/φ)= 0.

This follows from direct computation, or it can be derived from the fact that

8+0 := φ̇/φ

is the Jacobi field associated to vertical translation (see page 134). Since the function
φ is periodic, the homogeneous problem Jτ,0w = 0 has a bounded solution, which
implies that δ0(τ )= 0.
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The fact that δ1(τ )= 0 follows from the observation that the function φ− τ/φ
is periodic and solves

Jτ,1
(
φ−

τ

φ

)
= 0.

Again, this follows from direct computation or can be derived from the fact that

8+1 :=
(
φ−

τ

φ

)
cos θ and 8+

−1 :=

(
φ−

τ

φ

)
sin θ

are the Jacobi fields associated to translations perpendicular to the axis of the
Delaunay surface.

The estimate from below for the other indicial roots follows from the fact that,
according to (4-2),

2
(
φ2
+
τ 2

φ2

)
= 2

(
φ−

τ

φ

)2
+ 4τ ≤ 2+ 4τ.

This, in particular, implies that the potential in ∂2
s − j2

+ 2(φ2
+ τ 2/φ2) can be

estimated from below by δ̄2
j , where

δ̄ j :=
√

j2
− 2− 4τ .

The result then follows from the maximum principle and standard ODE arguments,
since the function s 7→ eδ̄ j s can be used as a barrier to prove the existence of two
positive solutions of Jτ, jw = 0 which are defined on (0,∞), one being bounded
from above by e−δ̄ j s and the other from below by eδ̄ j s . This implies that δ j ≥ δ̄ j ,
completing the proof of the result. �

For all δ ∈ R, we define the operator

Lδ : eδsC2,α(R× S1)→ eδsC0,α(R× S1),

w 7→ φ2 Jτw,

where the norms in the function spaces Ck,α(R× S1) are computed with respect to
the cylindrical metric gcyl. Observe that the Jacobi operator has been multiplied by
the conformal factor φ2, and hence

φ2 Jτ = 1
2

(
∂2

s + ∂
2
θ + 2

(
φ2
+
τ 2

φ2

))
.

Also, this operator depends on the parameter τ . We now study the mapping
properties of φ2 Jτ as the parameter τ tends to 0. The following result selects a
range of weights for which the norm of the solution of Lδw = f is controlled,
uniformly as τ tends to 0.
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Proposition 4.7. Assume that |δ| > 1, δ /∈ Z is fixed. Then there exist τδ > 0 and
C>0, only depending on δ, such that, for all τ ∈ (0, τδ) and allw∈ eδsC2,α(R×S1),
we have

‖e−δsw‖C2,α(R×S1) ≤ C‖e−δs Lδw‖C0,α(R×S1).

Proof. Observe that, thanks to Schauder’s elliptic estimates, it is enough to prove

‖e−δsw‖L∞(R×S1) ≤ C‖e−δsφ2
τ Jτw‖L∞(R×S1),

provided τ is close enough to 0. The proof of this estimate is by contradiction.
Assume that, for some sequence τn tending to 0, there exists a sequence of functions
wn such that

‖e−δswn‖L∞(R×S1) = 1 and lim
j→∞
‖e−δsφ2

τn
Jτnwn‖L∞(R×S1) = 0.

Pick a point sn ∈ R such that ‖e−δsnwn(sn, ·)‖L∞(S1) ≥
1
2 and define the rescaled

sequence
w̄n(s, θ) := e−δsnwn(s+ sn, θ).

We still have

‖e−δsw̄n‖L∞(R×S1) = 1 and lim
j→∞
‖e−δs L̄nw̄n‖L∞(R×S1) = 0,

where, by definition, L̄n is defined by

L̄n := ∂
2
s + ∂

2
θ + 2

(
φ2
τn
+
τ 2

n

φ2
τn

)
( · + sn).

Elliptic estimates and the Ascoli–Arzelà theorem allow us to extract some sub-
sequence and pass to the limit as n tends to ∞ to get a function w∞ which is a
nontrivial solution to either

(4-10) (∂2
s + ∂

2
θ )w∞ = 0

or

(4-11)
(
∂2

s + ∂
2
θ +

2
cosh2( ·+s∗)

)
w∞ = 0,

according to the different cases described in Lemma 4.5. To simplify notation, we
assume that s∗ = 0; straightforward modifications are needed to handle the general
case. Observe that we also have

‖e−δsw∞‖L∞(R×S1) ≤ 1,

and ‖w∞(0, ·)‖L∞(S1) ≥
1
2 .
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We decompose w∞ as

w∞(s, θ)=
∑
j∈Z

w( j)(s)ei jθ .

It is easy to prove that, for any solution of (4-10), w( j) is a linear combination of
e± js and it is not bounded by a constant times eδs unless δ is an integer (which we
have assumed not to be the case).

Similarly, if w∞ is a solution of (4-11), we find that w( j) is a solution of

(4-12)
(
∂2

s − j2
+

2
cosh2 s

)
w( j)
= 0,

and is asymptotic to either e js or to e− js at ±∞. Inspection of the behavior of
(4-12) at infinity then implies that there is no solution bounded by a constant times
eδs if | j | < |δ|. When | j | > |δ|, inspection of the behavior of (4-12) at infinity
implies that any solution is necessarily bounded, and the maximum principle then
implies that this solution is identically 0 (observe that in this case j2 > 2 since
| j |> |δ|> 1, and hence the potential in (4-12) is negative).

When j = 0, all solutions of(
∂2

s +
2

cosh2 s

)
w(0) = 0

are linear combinations of the functions tanh s and 1−s tanh s and none is bounded
by a constant times eδs unless δ = 0 (which is not the case).

Finally — and this is the reason we had to choose |δ| > 1 — when j = 1, all
solutions of (

∂2
s − 1+ 2

cosh2 s

)
w(1) = 0

are linear combinations of the functions (cosh s)−1 and s(cosh s)−1
+ sinh s and

none is bounded by a constant times eδs unless |δ| ≤ 1 (which is contrary to our
assumption). Again we have reached a contradiction. Having reached a contradiction
in all cases, the proof of the Proposition is complete. �

Thanks to the previous result, we can now describe the mapping properties of
φ2 Jτ for the range of weights δ of interest for our problem.

Proposition 4.8. Assume that |δ| > 1, δ /∈ Z is fixed. Then there exist τδ > 0 and
C > 0, only depending on δ, such that, for all τ ∈ (0, τδ), the operator Lδ is an
isomorphism, the norm of whose inverse is bounded independently of τ .

Proof. Injectivity follows at once from Proposition 4.7. As far as surjectivity is
concerned, we give here a simple self-contained proof in the case where δ ∈ (1,

√
2)

(or δ ∈ (−
√

2,−1)). We then sketch a general proof.
To fix the ideas, assume that δ ∈ (1,

√
2). First assume that f ∈ C0,α(R× S1)
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has compact sets support and decompose it as

f (s, θ)= f0(s)+ f±1(s)e±iθ
+ f̄ (s, θ),

where, by definition,
f̄ :=

∑
j 6=0,±1

f j (s)ei jθ .

Observe that, if we restrict our attention to functions w̄ whose Fourier decompo-
sition in the θ variable is of the form

w̄(s, θ)=
∑

j 6=0,±1

w j (s)ei jθ ,

we have

(4-13)
∫

R×S1

(
|∂sw̄|

2
+|∂θ w̄|

2
−2

(
φ2
+
τ 2

φ2

)
w̄2
)

ds dθ≥ (2−4τ)
∫

R×S1
w̄2 ds dθ.

This follows at once from the estimate of the potential involved in the expression
of Jτ obtained in the proof of Proposition 4.6, namely,

(4-14) 2
(
φ2
+
τ 2

φ2

)
≤ 2+ 4τ

together with the fact that∫
R×S1
|∂θ w̄|

2 ds dθ ≥ 4
∫

R×S1
w̄2 ds dθ.

Thus, if we assume that
√

2τ < 1, this inequality implies that we can solve

φ2 Jτ w̄ = f̄

in H 1(R× S1). Elliptic estimates then imply that w̄ ∈ C2,α(R× S1). Finally, the
solvability of

φ2 Jτ (w j ei jθ )= f j ei jθ ,

for j=0,±1, follows easily from integration of the associated second order ordinary
differential equation starting from −∞. Hence w j ≡ 0 when s is close to −∞.
Obviously, the function

w := w0+w±1e±iθ
+ w̄

is a solution of the equation φ2 Jτw = f .
We claim that, provided τ is chosen small enough, w ∈ eδsC2,α(R× S1). Assum-

ing that the claim is already proven, Proposition 4.7 applies and we get

‖e−δsw‖C2,α(R×S1) ≤ C‖e−δs f ‖C0,α(R×S1)
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for any function f having compact support. The general result, when f does not
necessarily have compact support, follows from a standard exhaustion argument.
We choose a sequence of functions f (n) ∈ C0,α(R× S1) having compact support
converging on compact sets to a given function f ∈ eδsC0,α(R× S1). Moreover,
without loss of generality, we can assume that

‖e−δs f (n)‖C0,α(R×S1) ≤ C‖e−δs f ‖C0,α(R×S1)

for some constant C > 0 independent of n ≥ 0. Thanks to the above, we have a
sequence of solutions of φ2 Jτw(n) = f (n) satisfying

‖e−δsw(n)‖C2,α(R×S1) ≤ C‖e−δs f ‖C0,α(R×S1).

Extracting some subsequence and passing to the limit, one gets the existence of
w ∈ eδsC0,α(R× S1), a solution of φ2 Jτw = f satisfying

‖e−δsw‖C0,α(R×S1) ≤ C‖e−δs f ‖C0,α(R×S1).

The result then follows from Schauder’s estimates.
It remains to prove the claim. We keep the notations introduced above. We first

prove that w̄ tends to 0 exponentially fast at infinity. Indeed, away from the support
of f̄ , we can multiply the equation φ2 Jτ w̄ = f̄ by w̄ and integrate over S1 to get

1
2

d2

ds2

(∫
S1
w̄2 dθ

)
=

∫
S1

(
|∂sw̄|

2
+ |∂θ w̄|

2
−

(
φ2
+
τ 2

φ2

)
w̄2
)

dθ.

But ∫
S1
|∂θ w̄|

2 dθ ≥ 2
∫

S1
w̄2 dθ,

and we conclude from (4-14) that

d2

ds2

(∫
S1
w̄2 dθ

)
≥ 4(1− 2τ)

∫
S1
w̄2 dθ.

Since we have assumed that δ ∈ (1,
√

2), we can assume that τ > 0 is small enough
so that

δ2
≤ 2(1− 2τ),

and using the fact that w̄ is bounded, we conclude that there exists C > 0 such that∫
S1
w̄2 dθ ≤ C(cosh s)−2δ.

This shows that w̄ ∈ (cosh s)−δL2(R× S1), and, by elliptic regularity, this implies
that w̄ ∈ (cosh s)−δC2,α(R× S1).

It remains to check that the functions w0 and w±1 are at most growing linearly
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at +∞. This follows at once from the fact that, for s large enough, these functions
are solutions of the second order homogeneous ordinary differential equations(

∂2
s − j2

+ 2
(
φ2
+
τ 2

φ2

))
w j = 0.

For j = 0, 1, this ordinary differential equation, whose potential is periodic, has one
solution which is periodic (see the proof of Proposition 4.6), and a standard result
implies that the other linearly independent solution of this ordinary differential equa-
tion is at most growing linearly (see the appendix). In particular, w j ∈ eδsC2,α(R),
and this completes the proof of the claim.

We briefly explain how the proof of the general result can be obtained. The
idea is to solve the equation φ2 Jτ w̄s0 = f̄ in [−s0, s0] × S1 with 0 boundary
conditions. This can be done using the coercivity inequality (4-13). Then the proof
of Proposition 4.7 can be adapted to prove that

‖e−δsw̄s0‖C2,α([−s0,s0]×S1) ≤ C‖e−δs f̄ ‖C0,α(R×S1)

for some constant C > 0 independent of s0 > 1 (observe that we use the fact that
the Fourier decomposition of the function w̄ in the θ variable does not have any
component over 1 and e±iθ ). It then remains to pass to the limit in the sequence ws0

as s0 tends to∞ to prove the existence of a solution w̄ to φ2 Jτ w̄ = f̄ in R× S1,
which satisfies the correct estimate. �

Using similar arguments, one can give a direct proof of the following general
result, which will not be needed in this paper.

Theorem 4.9. Assume that δ 6= ±δ j (τ ) for all j ∈ N. Then Lδ is an isomorphism.

The proof of this result follows from the general theory developed in [Pacard 2008]
(see Theorem 10.2.1 on page 61 and Proposition 12.2.1 on page 81) or [Melrose
1993; Mazzeo 1991].

In what follows we restrict our attention to functions which are invariant under
some symmetries. More precisely, we assume that the functions are invariant under
the action on S1 of the dihedral group Dih(2)m+1 of isometries of R2 which leave a
regular polygon with m + 1 sides fixed. The operator associated to φ2 Jτ , acting
on the weighted space of functions which are invariant under these symmetries,
is denoted by L]δ. This time L]δ is an isomorphism provided δ 6= ±δ j for all
j ∈ Z for which there exist eigenfunctions of ∂2

θ which are invariant under the
action of Dih(2)m+1, namely, j /∈ mZ. Observe that, when j = 1, there are no such
eigenfunctions, and hence working equivariantly allows us to extend the range in
which the weight parameter δ can be chosen.

Close inspection of the previous proof shows that the range in which the weight
δ can be chosen so that the inverse of L]δ remains bounded as τ tends to 0 can be
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enlarged if we work equivariantly. Even though we will not use it, we state here
the corresponding result for the sake of completeness.

Proposition 4.10. Assume that δ /∈ mZ is fixed. Then there exist τδ > 0 and C > 0,
only depending on δ, such that, for all τ ∈ (0, τδ) and for all w ∈ eδsC2,α(R× S1),
which is invariant under the action of Dih(2)m+1, we have

‖e−δsw‖C2,α(R×S1) ≤ C‖e−δs L]δw‖C0,α(R×S1).

The mean curvature of normal graphs over Dτ . In this section, we investigate
the mean curvature of a surface which is a normal graph over Dτ . Given a smooth
function w (small enough) defined on Dτ , we consider the surface parametrized by

X̃(s, θ)= Xτ (s, θ)+w(s, θ)Nτ (s, θ).

We have the following technical result.

Lemma 4.11. The mean curvature of the surface parametrized by X̃ is given by

H(w)= 1+ Jτw+
1
φ

Qτ

(
w

φ

)
,

where the second order differential nonlinear operator Qτ depends on τ and satisfies

‖Qτ (v2)− Qτ (v1)‖C0,α([s,s+1]×S1)

≤ c(‖v1‖C2,α([s,s+1]×S1)+‖v2‖C2,α([s,s+1]×S1))‖v2− v1‖C2,α([s,s+1]×S1)

for some constant c > 0 independent of s and τ ∈ (0, 1) and for all functions v1, v2

satisfying ‖vi‖C2,α([s,s+1]×S1) ≤ 1.

Proof. This follows at once from Proposition 2.1 together with the fact that the
functions φ, τ/φ, and φ̇/φ, as well as their derivatives, are uniformly bounded as τ
tends to 0. Indeed, we have

gw = g− 2wh+w2k = φ2
((

1−
(
φ+

τ

φ

)
w

φ

)2
ds2
+

(
1−

(
φ−

τ

φ

)
w

φ

)2
dθ2

)
.

Hence φ−2gw has coefficients which are bounded functions of w/φ. Similarly,
the tensor φ−1(h−wk) also has coefficients which are bounded functions of w/φ.
Using this, it is straightforward to check that the nonlinear terms in H(w) are a
function of ∂k

s ∂
l
θw/φ for k+ l = 0, 1, 2 with coefficients bounded by 1/φ. Finally,

observe that
∂sw

φ
= ∂s

(
w

φ

)
+
φ̇

φ

w

φ
,

and hence any expressions of the form ∂sw/φ can also be expressed as a linear
combination (with coefficients bounded uniformly as τ tends to 0) of the function
w/φ and its derivatives. We leave the details to the reader. �
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A first fixed-point argument. We assume that we are given τ > 0. We define
s̄ ∈ (−sτ , 0) by the identity

φτ (s̄)= τ 3/4.

Observe that s̄ depends on τ even though we have chosen not to make this apparent
in the notation. Moreover, it follows from the proof of Proposition 4.3 that

s̄ = 1
4 log τ +O(1)

as τ tends to 0. We define the truncated nodoid D+τ to be the image of [s̄,+∞)×S1

by Xτ . Observe that this surface has a boundary, and, thanks to Proposition 4.3,
close to this boundary it can be parametrized as the vertical graph of the function

x 7→ τ log 2|x |
τ
+OC̊∞(τ

3/2)

over the annulus D(0, τ 3/4)− D(0, τ 3/4/2). Moreover, D+τ has one end in the
upper half space.

In this section, we apply the implicit function theorem (or, to be more precise, a
fixed-point argument for a contraction mapping) to produce an infinite-dimensional
family of constant mean curvature surfaces which are close to D+τ and have one
boundary which can be described using a function f : S1

→ R.

Proposition 4.12. Assume that we are given κ > 0 large enough (to be fixed later
on). For all τ > 0 small enough and for all functions f invariant under the action
of Dih(2)m+1 satisfying (H1) (observe that (H2) is automatically satisfied) and

(4-15) ‖ f ‖C2,α(S1) ≤ κτ
3/2,

there exists a constant mean curvature surface D+τ, f with mean curvature equal to 1
that is a graph over D+τ and has one Delaunay end asymptotic to the end of D+τ
and one boundary. When f = 0, Dτ,0 =D+τ and, close to its boundary, the surface
Dτ, f is a vertical graph over the annulus

{x ∈ R2
:

1
2τ

3/4
≤ |x | ≤ τ 3/4

}

for the function x 7→U �
τ, f (τ

−3/4x), which can be expanded as

(4-16) U �
τ, f (x)= τ log 2

τ 1/4 + τ log |x | −W ins
f (x)+U �

τ, f (x),

where we recall that W ins
f denotes the bounded harmonic extension of f in the

punctured unit disc and where

(4-17) ‖U �
τ,0‖C2,α(D(0,1)−D(0,1/2)) ≤ Cτ 3/2.
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Moreover, the nonlinear operator

C2,α(S1) 3 f 7→U �
τ, f ∈ C2,α(D(0, 1)− D

(
0, 1

2

))
is Lipschitz, and, given δ ∈ (−2,−1), we have

(4-18) ‖U �
τ, f ′ −U �

τ, f ‖C2,α(D(0,1)−D(0,1/2)) ≤ Cτ (2+δ)/4‖ f ′− f ‖C2,α(S1)

for some constant C > 0, independent of κ , τ and f, f ′. Finally, D+τ, f is invariant
under the action of the dihedral group Dih(2)m+1.

Before we proceed with the proof, observe that we have chosen to describe the
surface near its boundary as the graph of the function x 7→ U �

τ, f (τ
−3/4x), and,

consequently, the function U �
τ, f is defined over the annulus D(0, 1)− D

(
0, 1

2

)
.

Alternatively, we could have chosen not to scale the coordinates and to have a
function defined over the annulus D(0, τ 3/4)−D(0, τ 3/4/2), which would be more
natural. However, with this latter choice, we would have to consider, in (4-17) and
(4-18), function spaces where partial derivatives are taken with respect to the vector
fields r∂r and ∂θ to evaluate the norm of these functions, while with the former
choice, the Hölder spaces are the usual ones.

Proof. The proof of this result is fairly technical but, by now, standard. To begin
with, in the annular region which is the image of (s̄ − 2, s̄ + 2)× S1 by Xτ , we
modify the unit vector field Nτ into N̄τ in such a way that N̄τ is equal to −e3, the
downward pointing unit normal vector field on the image of (s̄− 1, s̄+ 1)× S1 by
Xτ . Using Proposition 2.2, direct estimates imply that the expression of the mean
curvature given in Lemma 4.11 has to be altered to

H(w)= 1+ Jτw+
1
φ2 lτw+

1
φ

Qτ

(
w

φ

)
,

where Qτ enjoys properties which are similar to the properties enjoyed by Qτ and
where lτ is a linear second order partial differential operator in ∂s and ∂θ whose
coefficients are smooth, have support in [s̄−2, s̄+2]× S1, and are bounded (in the
C∞ topology) by a constant (independent of τ ) times τ 1/2. This estimate comes
from the fact that

N · (−e3)= 1+O(τ 1/2)

on the image of [s̄− 2, s̄+ 2]× S1 by Xτ .
We assume that we are given a function f ∈ C2,α(S1) satisfying (H1), (H2), and

(4-15), and we denote by F the harmonic extension of f in (s̄,∞)× S1.
Given these data, we would like to solve the nonlinear equation

(4-19) φ2 Jτ (F +w)+ lτ (F +w)+φQτ

(
F+w
φ

)
= 0



ATTACHING HANDLES TO DELAUNAY NODOIDS 153

in (s̄,∞)× S1. Provided w is small enough and decays exponentially at infinity,
this will then provide constant mean curvature surfaces which are close to a half
nodoid D+τ .

We choose an extension operator

Eτ : C
0,α([s̄,∞)× S1)→ C0,α(R× S1)

such that

Eτ (ψ)=

{
ψ in [s̄,∞)× S1,

0 in (−∞, s̄− 1]× S1,

and
‖Eτ (ψ)‖C0,α([s̄−1,s̄+1]×S1) ≤ C‖ψ‖C0,α([s̄,s̄+1]×S1).

We rewrite (4-19) as

(4-20) φ2 Jτw =−Eτ

(
φ2 Jτ (F +w)+ lτ F +φQτ

(
F+w
φ

))
,

where, this time, the function w is defined on all R× S1 (to be more precise, one
should say that, on the right side, we consider the restriction of w to [s̄,∞)× S1).

The following estimates follow easily if one uses the fact that

C
τ

cosh s ≤ φ ≤ Cτ cosh s in (−sτ , sτ )

for some C > 1, and also that φ is periodic of period 2sτ . Assume that δ ∈ (−2,−1)
is fixed. It is easy to check that there exists a constant c> 0 (independent of κ) and
a constant cκ > 0 (depending on κ) such that∥∥∥∥e−δsEτ

((
φ2
+
τ 2

φ2

)
F
)∥∥∥∥

C0,α(R×S1)

≤ cτ 1/2
‖ f ‖C2,α(S1),

‖e−δsEτ (lτ (F+w))‖C0,α(R×S1)≤ cτ 1/2(
‖e−δsw‖C2,α

δ (R×S1)
+τ−δ/4‖ f ‖C2,α(S1)

)
,

and we also have∥∥∥∥e−δsEτ

(
φQτ

(
w′+F ′

φ

)
−φQτ

(
w+F
φ

))∥∥∥∥
C0,α(R×S1)

≤ cκ(τ 3/4
‖e−δs(w′−w)‖C2,α

δ (R×S1)
+ τ (3−δ)/4‖ f ′− f ‖C2,α(S1)),

provided w and w′ satisfy

‖e−δsw‖C2,α(R×S1)+‖e
−δsw′‖C2,α(R×S1) ≤ Cκτ 2

for some fixed constant Cκ > 0. Here F and F ′ are the harmonic extensions of the
boundary data f and f ′, respectively.

At this stage, we make use of Proposition 4.8 (or, more precisely, its equivariant
version) to rephrase (4-20) as a fixed-point problem in eδsC2,α(R × S1). The
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estimates we have just derived are precisely enough to solve this nonlinear problem
using a fixed-point argument for contraction mappings in the ball of radius Cκτ 2 in
eδsC2,α(R× S1), where Cκ is a constant which is fixed large enough. Therefore,
for all τ > 0 small enough, we find a solution w of (4-20) satisfying

‖e−δsw‖C2,α(R×S1) ≤ Cκτ 2.

In addition, it follows from the above estimates that

‖e−δs(w′−w)‖C2,α(R×S1) ≤ Cκτ 1/2
‖ f ′− f ‖C2,α(S1),

where w (respectively w′) is the solution associated to f (respectively f ′).
To complete the result, it is enough to change coordinates r = φ(s) in the range

where 1
2τ

3/4
≤ r ≤ 2τ 3/4 and |s− s̄| ≤ 1. There is no real difficulty in deriving the

estimates (4-17) and (4-18), which follow from Proposition 4.7 and the estimate for
w. There is a subtlety here: if we change variables r = φ(s) for 1

2τ
3/4
≤ r ≤ 2τ 3/4

and |s− s̄| ≤ 1, then F(s) is not equal to W ins
f (φ(s)), because s does not correspond

to the cylindrical coordinate r = et in R2
−{0}! In fact, we have

F(s)=W ins
f (e

s̄−s),

and τ−3/4r = φ(s)/φ(s̄) and is not equal to es̄−s . Nevertheless, using the expansion
of φ we have derived, we easily check that

‖F(s̄− logφ(s)+ logφ(s̄))− F(s)‖C2,α([s̄,s̄+2]×S1) ≤ cτ 1/2
‖ f ‖C2,α(S1)

for some constant c > 0 independent of τ . �

5. The catenoid

Parametrization and notations. We recall some well-known facts about catenoids
in Euclidean space. The normalized catenoid C is the minimal surface of revolution,
parametrized by

Y0(s, θ) := (cosh s cos θ, cosh s sin θ, s),

where (s, θ) ∈ R× S1. The induced metric on C is given by

g0 := (cosh s)2(ds2
+ dθ2),

and it is easy to check that the second fundamental form is given by

h0 := ds2
− dθ2

when the unit normal vector field is chosen to be

N0 :=
1

cosh s
(cos θ, sin θ,− sinh s).
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In particular, the formulae for the induced metric and the second fundamental form
imply that the mean curvature of the surface C is constant and equal to 0.

In the above defined coordinates, the Jacobi operator about the catenoid is given
by

J0 :=
1

2 cosh2 s

(
∂2

s + ∂
2
θ +

2
cosh2 s

)
.

Refined asymptotics. We are interested in the parametrization of the catenoid as a
(multivalued) vertical graph over the horizontal plane. We consider, for example,
the lower part of the catenoid as the graph over the complement of the unit disc in
the horizontal plane for the function u0. Namely, u0 is the negative function defined
by

u0(cosh s)= s

for all s ≤ 0. It is easy to check that

s =−log(2r)+OC̊∞(r
−2),

and hence the lower end of the catenoid can also be parametrized as a vertical graph
over R2

− D(0, 1) by

(r, θ) 7→ (r cos θ, r sin θ, u0(r)).

With little work, one proves the following.

Lemma 5.1. The expansion

u0(r)=−log(2r)+OC̊∞(r
−2)

holds in R2
− D(0, 2).

Mapping properties of the Jacobi operator about the catenoid. The functional
analysis of the Jacobi operator about the catenoid is well understood, and some
results can be found, for example, in [Mazzeo et al. 2001]. Again the indicial roots
of J0 characterize the asymptotic behavior of the solutions of the homogeneous
problem J0, jw = 0, where

J0, j :=
1

2 cosh2 s

(
∂2

s − j2
+

2
cosh2 s

)
.

It is easy to see that the indicial roots of J0, j are equal to ± j , and hence the indicial
roots of J0 are equal to ± j for j ∈ N.

For all δ ∈ R, we define the operator

Lδ : (cosh s)δC2,α(R× S1)→ (cosh s)δC0,α(R× S1),

w 7→ (cosh s)2 J0w,
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where, as usual, the norms in the function spaces Ck,α(R× S1) are computed with
respect to the cylindrical metric gcyl.

Paralleling what we have proven in Section 4, we have the following.

Proposition 5.2. Assume that δ ∈ (−2, 2). Then there exists C > 0, only depending
on δ, such that, for all w̄ ∈ (cosh s)δC2,α(R× S1), we have

‖(cosh s)−δw̄‖C2,α(R×S1) ≤ C‖(cosh s)−δLδw̄‖C0,α(R×S1),

provided

(5-1)
∫

S1
w̄(s, θ) dθ =

∫
S1
w̄(s, θ)e±iθ dθ = 0

for all s ∈ R.

Proof. The proof is parallel to that of Proposition 4.7 and is left to the reader. �

The following result follows from the general theory developed in [Pacard 2008]
(see Theorem 10.2.1 on page 61 and Proposition 12.2.1 on page 81) or [Lockhart
and McOwen 1985; Melrose 1993; Mazzeo 1991]. For the sake of completeness
we provide a self-contained proof.

Theorem 5.3. Assume δ ∈ (1, 2). Then Lδ is surjective and has a 6-dimensional
kernel.

Proof. The proof is similar to that of Proposition 4.8. Recall that the action of rigid
motions and dilations provides many Jacobi fields. For example,

(5-2) J0(tanh s)= 0 and J0(1− s tanh s)= 0,

which either follow from direct computation or from the fact that these are the Jacobi
fields associated to the group of vertical translations and the group of dilations
centered at the origin.

Similarly

(5-3) J0

(
1

cosh s
e±iθ

)
= 0 and J0

((
sinh s+ 1

cosh s

)
e±iθ

)
= 0,

which again either follows from direct computation or from the fact that these are
the Jacobi fields associated to the group of horizontal translations and the group of
rotations about the vertical axis, centered at the origin.

This already shows that when δ ∈ (1, 2) the kernel of Lδ is at least 6-dimensional.
We first assume that f ∈ C0,α(R× S1) has compact support and we decompose

it as f (s, θ)= f0(s)+ f±1(s)e±iθ
+ f̄ (s, θ), where, by definition,

f̄ :=
∑

j 6=0,±1

f j (s)ei jθ .
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If we restrict our attention to functions w̄ whose Fourier decomposition in the θ
variable is of the form

w̄(s, θ)=
∑

j 6=0,±1

w j (s)ei jθ ,

we have

(5-4)
∫

R×S1

(
|∂sw̄|

2
+ |∂θ w̄|

2
−

2
cosh2 s

w̄2
)

ds dθ ≥ 2
∫

R×S1
w̄2 ds dθ.

Therefore, we can solve
(cosh s)2 J0w̄ = f̄

in H 1(R× S1). Elliptic estimates then imply that w̄ ∈ C2,α(R× S1).
Obviously w̄ ∈ (cosh s)δC2,α(R× S1), since δ > 0. Proposition 5.2 applies, and

we get
‖(cosh s)−δw̄‖C2,α(R×S1) ≤ C‖(cosh s)−δ f ‖C0,α(R×S1)

for any function f having compact support. The general result, when f does not
necessarily have compact support, follows from a standard exhaustion argument.

Finally, the solvability of

(cosh s)2 J0(w j ei jθ )= f j ei jθ

for j=0,±1, follows easily from integration of the associated second order ordinary
differential equation starting from 0 (with initial data and initial velocity equal to
0). We have, explicitly,

w j = A+j

∫ s

0
A−j (t) f j (t) dt − A−j

∫ s

0
A+j (t) f j (t) dt,

where A±j are the two independent solutions of(
∂2

s − j2
+

2
cosh2 s

)
A±j = 0,

which are given in (5-2) and (5-3) and are normalized so that their Wronskian is
equal to 1. Direct estimates imply that

‖(cosh s)−δw j‖C2,α(R) ≤ C‖(cosh s)−δ f ‖C0,α(R×S1),

provided δ > 1 (more precisely, δ > 0 is needed to derive the estimate for w0 and
δ > 1 is needed to derive the estimate for w±1). We set w=w0+w±1e±iθ

+w̄. This
completes the proof of the fact that the operator Lδ is surjective when δ ∈ (1, 2). The
fact that this operator, restricted to the space of functions satisfying the orthogonality
conditions (5-1), is injective follows from Proposition 5.2. Hence the kernel of Lδ

is 6-dimensional. �
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The mean curvature of normal graphs over the catenoid. We consider in this
section the mean curvature of a surface which is a normal graph over C. Hence,
for some smooth (small enough) function w defined on C, we consider the surface
parametrized by

Y (s, θ)= Y0(s, θ)+w(s, θ)N0(s, θ).

We have the following technical result.

Lemma 5.4. The mean curvature of the surface parametrized by Y is given by

H(w)= J0w+
1

cosh s
Q0

(
w

cosh s

)
,

where the nonlinear second order differential operator Q0 satisfies

‖Q0(v2)− Q0(v1)‖C0,α([s,s+1]×S1)

≤ c(‖v1‖C2,α([s,s+1]×S1)+‖v2‖C2,α([s,s+1]×S1))‖v2− v1‖C2,α([s,s+1]×S1)

for some constant c > 0 independent of s and τ ∈ (0, 1) and for all functions v1, v2

satisfying ‖vi‖C2,α([s,s+1]×S1) ≤ 1.

Proof. This result is already proven in [Mazzeo and Pacard 2001]. In any case, a
simple proof follows easily from Proposition 2.1 together with the fact that

gw = cosh2 s
((

1−
w

cosh2 s

)2
ds2
+

(
1+

w

cosh2 s

)2
dθ2

)
.

We leave the details to the reader. �

A second fixed-point argument. Assume that τ, τ̃ > 0 are chosen small enough
and satisfy

(5-5)
∣∣∣∣τ̃ − τ

m+1

∣∣∣∣≤ κτ 3/2,

where the constant κ > 0 is large enough; its value will be fixed in Section 7. The
rationale for this estimate is also explained in Section 7. We define s̃ > 0 by

τ̃ cosh s̃ = τ 3/4.

Observe that s̃ depends on both τ and τ̃ even though we have chosen not to make
this apparent in the notation. It is easy to check that s̃ =−(1/4) log τ +O(1). We
define the truncated catenoid Cτ̃ to be the image of [−s̃, s̃]× S1 by τ̃Y0 (to simplify
the notations, we do not write the dependence of this surface on the parameter τ ).

Building on the previous analysis, we prove the existence of constant mean
curvature surfaces which are close to the truncated catenoid Cτ̃ and have two
boundaries which can be described by some function f : S1

→ R. We also require
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that the surfaces are invariant under the action of the symmetry with respect to the
horizontal plane. More precisely, we have the following.

Proposition 5.5. Assume we are given κ > 0 large enough (to be fixed later). For
all τ, τ̃ > 0 small enough satisfying (5-5) and for all functions f invariant under
the action of the Dih(2)m+1 satisfying (H1) (notice that (H2) is automatically satisfied)
and

(5-6) ‖ f ‖C2,α(S1) ≤ κτ
3/2,

there exists a constant mean curvature 1 surface Cτ̃ , f which is close to Cτ̃ and has
two boundaries. The surface Cτ̃ , f is invariant under the action of S3, the symmetry
with respect to the horizontal plane x3 = 0, S2, the symmetry with respect to the
plane x2 = 0. And, close to its lower boundary, the surface Cτ̃ , f is a vertical graph
over the annulus

{x ∈ R2
:

1
2τ

3/4
≤ |x | ≤ τ 3/4

},

for some function x 7→U �
τ̃ , f (τ

−3/4x) which can be expanded as

(5-7) U �
τ̃ , f (x)=−τ̃ log 2τ 3/4

τ̃
− τ̃ log |x | +W ins

f (x)+U �
τ̃ , f (x),

where we recall that W ins
f denotes the bounded harmonic extension of f in the

punctured unit disc and where

(5-8) ‖U �
τ̃ ,0‖C2,α

(
D(0,1)−D

(
0, 12

)) ≤ Cτ 3/2.

Moreover, the nonlinear mapping

C2,α(S1) 3 f 7→U �
τ̃ , f ∈ C2,α(D(0, 1)− D

(
0, 1

2

))
is Lipschitz, and, given δ ∈ (1, 2), we have

(5-9) ‖U �
τ̃ , f ′ −U �

τ̃ , f ‖C2,α
(

D(0,1)−D
(

0, 12

)) ≤ Cτ (2−δ)/4‖ f ′− f ‖C2,α(S1)

for some constant C > 0 independent of κ, τ, τ̃ and f, f ′. The function U �
τ̃ , f

depends continuously on τ̃ .

Proof. The proof of this result is very similar to the proof of Proposition 4.12, so
we cover only the main differences.

Again, in the annular region which is the image of (−s̃− 2,−s̃+ 2)× S1 by Y0,
we modify the unit vector field N0 into N̄0 in such a way that N̄0 is equal to e3 on
the image of (−s̃− 1, s̃+ 1)× S1 by τ̃Y0. We perform a similar modification on
the upper half of the catenoid, on the image of (s̃ − 2, s̃ + 2)× S1 by Y0, so that
our construction remains invariant under the action of the symmetry with respect
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to the horizontal plane. In this case, using Proposition 2.2, one can check that the
expression of the mean curvature given in Lemma 4.11 has to be altered to

H(w)= J0w+
1

cosh2 s
l0w+

1
cosh s

Q0

(
w

cosh s

)
,

where Q0 enjoys properties which are similar to the properties enjoyed by Q0 and
where l0 is a linear second order partial differential operator in ∂s and ∂θ whose
coefficients are smooth, supported in (−s̃−2,−s̃+2)×S1 and in (s̃−2, s̃+2)×S1,
and are bounded (in the smooth topology) by a constant, independent of τ , times
τ 1/2.

We assume that f is chosen to satisfy (H1), (H2), and

‖ f ‖C2,α(S1) ≤ κτ
1/2.

Observe that the norm of the boundary data f is bounded by a constant times τ 1/2

and not τ 3/2, the reason being that we are going to perturb the image of [−s̃, s̃]×S1

by Y0 and then scale the surface we obtain by a factor τ̃ instead of perturbing Cτ̃ ,
which is the image of [−s̃, s̃]× S1 by Ỹ0. This is also the reason the equation we
solve is H(w)= τ̃ and not H(w)= 1.

We denote by F the harmonic extension of f in (−∞, s̃)× S1 and we set

F̃(s, θ) := F(s, θ)+ F(−s, θ),

which is well defined in [−s̃, s̃]× S1. One should be aware that the boundary data
of F is not exactly equal to f , but the difference between F and f on the boundary
tends to 0 as τ tends to 0. More precisely, we have

‖F − F̃‖C2,α([s̃−1,s̃]×S1) ≤ Cτ‖ f ‖C2,α(S1).

We would like to solve the equation

(5-10) (cosh s)2 J0(F̃ +w)+ l0(F̃ +w)+ cosh s Q0

(
F̃+w
cosh s

)
= (cosh s)2τ̃

in (−s̃, s̃)× S1. This will provide constant mean curvature surfaces with mean
curvature equal to τ̃ which are close to the truncated catenoid. Again, the solvability
of this nonlinear problem follows from a fixed-point theorem for a contraction
mapping.

We choose
Ēτ : C

0,α([−s̃, s̃]× S1)→ C0,α(R× S1),

an extension operator, such that{
Ēτ (ψ)= ψ in [−s̃, s̃]× S1,

Ēτ (ψ)= 0 in ((−∞,−s̃− 1] ∪ [s̃+ 1,∞))× S1,
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and
‖Ēτ (ψ)‖C0,α([−s̃−1,−s̃+1]×S1) ≤ C‖ψ‖C0,α([−s̃,−s̃+1]×S1),

‖Ēτ (ψ)‖C0,α([s̃−1,s̃+1]×S1) ≤ C‖ψ‖C0,α([s̃−1,s̄′]×S1).

We rewrite (5-10) as

(5-11) (cosh s)2 J0w= Ēτ

(
(cosh s)2(τ̃−J0 F̃)−l0(F̃+w)−cosh s Q0

(
F̃+w
cosh s

))
.

Again, on the right side it is understood that we consider the image by Ēτ of the
restriction of the functions to [−s̃, s̃]× S1.

We assume that δ ∈ (1, 2) is fixed. It is easy to check that there exists a constant
c > 0 (independent of κ) and a constant cκ > 0 (depending on κ) such that

‖(cosh s)−δĒτ (cosh2 sτ̃ )‖C2,α(R×S1) ≤ cτ (2+δ)/4,∥∥∥∥(cosh s)−δĒτ
(

F̃
cosh2 s

)∥∥∥∥
C2,α(R×S1)

≤ cτ 1/2
‖ f ‖C2,α(S1),

‖(cosh s)−δĒτ (l0(F̃ +w))‖C2,α(R×S1)

≤ cτ 1/2(‖ f ‖C2,α(S1)+ τ
δ/4
‖(cosh s)−δw‖C2,α(R×S1), ),

and∥∥∥∥(cosh s)−δĒτ
(

cosh s Q
(
w′+ F̃ ′

cosh s

)
− cosh s Q

(
w+ F̃
cosh s

))∥∥∥∥
C2,α(R×S1)

≤ cκ(τ 3/4
‖(cosh s)−δ(w′−w)‖C2,α(R×S1)+ τ

(1+δ)/4
‖ f ′− f ‖C2,α(S1)),

provided w and w′ satisfy

‖(cosh s)−δw‖C2,α(R×S1)+‖(cosh s)−δw′‖C2,α(R×S1) ≤ Cτ (2+δ)/4

for some fixed constant C > 0 (independent of κ, τ , and f ). Here F̃ and F̃ ′ are the
harmonic extensions of the boundary data f and f ′, respectively.

Now we make use of Theorem 5.3 to rephrase the problem as a fixed-point
problem, and the previous estimates are precisely enough to solve this nonlinear
problem using a fixed-point argument for contraction mappings in the ball of radius
Cτ (2+δ)/4 in (cosh s)δC2,α(R× S1), where C > 0 is fixed large enough independent
of κ , provided τ is small enough. Then, for all τ > 0 small enough, we find that
there exists constants C > 0 (independent of κ) and Cκ > 0 (depending on κ) such
that, for all functions f satisfying (H1), (H2), and (4-15), there exists a unique
solution w of (4-20) satisfying

‖(cosh s)δw‖C2,α(R×S1) ≤ Cτ (2+δ)/4.
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In addition, we have the estimate

‖e−δs(w′−w)‖C2,α(R×S1) ≤ Cκτ 1/2
‖ f ′− f ‖C2,α(S1),

where w (respectively w′) is the solution associated to f (respectively f ′).
To complete the result, we simply shrink the surface we have obtained by a factor

τ̃ to get a surface whose mean curvature is constant and equal to 1. The description
of this surface close to its boundary follows from the arguments already used in the
proof of Proposition 4.12. Observe that the solution of (4-20) is obtained through a
fixed-point theorem for contraction mappings, and it is classical to check that the
solution we obtain depends continuously on the parameters of the construction. In
particular, the constant mean curvature surface we obtain depends continuously on
τ̃ (in fact one can also prove that the surface depends smoothly on τ̃ , but we shall
not use this property).

To prove that, near its lower boundary, the surface we have obtained is a vertical
graph for some function which enjoys the decomposition (5-7), we make use of the
expansion in Lemma 5.1, and we follow the steps of the construction. Notice that
U �
τ̃ , f collects many remainders: the one coming from the expansion in Lemma 5.1,

the difference between F and F̃ , the solution w of the fixed-point problem. Also,
the change of coordinates which takes into account that the variable s does not
correspond to the cylindrical coordinates in R2

−{0}. �

6. The unit sphere

Notations and definitions. We denote by x1, x1, x3 the coordinates in R3, and by
Sj the symmetry with respect to the plane x j = 0. For all m ∈ N, we write Rm+1

for a rotation of angle 2π/(m+ 1) about the x3-axis. With slight abuse of notation,
we will keep the same notation to denote the restriction of these isometries to the
horizontal plane.

We define z0, . . . , zm ∈ S1 to be vertices of a regular polygon with m+ 1 edges
in the plane. Without loss of generality, we can choose

z0 := (1, 0)= e1 ∈ R2,

and, for j = 1, . . . ,m − 1, z j+1 ∈ R2 is the image of z j by Rm+1. Thus, if we
identify the horizontal plane with C, the vertices of the polygon are exactly the
(m+1)-th roots of unity. Recall that the dihedral group of symmetries of R2 leaving
this polygon fixed has been denoted by Dih(2)m+1. It is generated by Rm+1 and S2.

Let S2 be the unit sphere in R3. The upper half hemisphere of S2 can be
parametrized by

X �(x) := (x,
√

1− |x |2),
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while the lower hemisphere is parametrized by

X �(x) := (x,−
√

1− |x |2),

where, in both cases, x ∈ D(0, 1).
For all τ > 0 small enough, we set

B�
:= X �(D(0, τ 3/4)),

and, for all ρ > 0 satisfying

(6-1)
1
C
τ ≤ ρ2

≤ Cτ,

for some fixed constant C > 1, we define

B�
j := X �(D(ρz j , τ

3/4))

for j = 0, . . . ,m. We also define

p�
:= X �(0)

to be the north pole of S2, and, for j = 0, . . . ,m, we define the points

p�
j := X �(ρz j ),

which are m + 1 points arranged symmetrically near the south pole of S2. By
construction, p�

j+1 is the image of p�
j by Rm+1.

Definition 6.1. We define Sτ,ρ to be the surface obtained by excising from S2 the
sets B� and B�

j for j = 0, . . . ,m.

Observe that, provided τ is chosen small enough, the surface Sτ,ρ has m + 2
boundaries. Moreover, this surface has been constructed in such a way that it is
invariant under the action of the dihedral group Dih(2)m+1.

The mean curvature of vertical graphs. We recall some well-known facts about
the mean curvature of vertical graphs in R3. The mean curvature of the graph of
the function u ∈ C2

loc(R
2), namely, the surface parametrized by

X (x) := (x, u(x)) ∈ R3,

where x belongs to some open domain in R2, is given by

M(u) := 1
2 div

(
∇u√

1+|∇u|2

)
.

Recall that the mean curvature is defined to be the average of the principal curvatures;
this explains the factor 1

2 .



164 FRANK PACARD AND HAROLD ROSENBERG

It follows from this formula that the linearized mean curvature operator about
the graph of u is given by

DM(u)(v)=
1v

2W
+

3
2W 5 (∇u · ∇v)D2u[∇u,∇u]

−
1

2W 3

(
(∇u · ∇v)1u+ D2v[∇u,∇u] + 2D2u[∇u,∇v]

)
,

where

W :=
√

1+ |∇u|2,

and where D2 f [ · , · ] is the second order differential of the function f . One should
be aware that DM(u) is not the Jacobi operator Ju about the graph of the function
u, since nearby surfaces are not parametrized as normal graphs, but as vertical
graphs over the horizontal plane. As explained in Section 2, this operator and the
Jacobi operator are conjugate, and, in fact, assuming the vertical graph is oriented
so that the unit normal vector field points upward, we have the relation

X∗(Juw)= DM(u)(W X∗w)

for any function defined on the graph of u.
Of interest is the case where, for example,

u(x)=±
√

1− |x |2,

where x = (x1, x2) ∈ R2. According to the sign chosen, the graph of u is the lower
or the upper hemisphere of the sphere of radius 1 centered at the origin. In this
case, we have

∇u(x)=∓
x√

1− |x |2
, ∇2u(x)=∓

(1− |x |2) Id+x ⊗ x
(1− |x |2)3/2

and

1u(x)=∓
2− |x |2

(1− |x |2)3/2
.

Using these, we find that the explicit expression of DH(u) in D(0, 1) is

(6-2) DM(u)w = 1
2(1− |x |

2)1/2(1w−∇2w(x, x)− 4(x · ∇w)).

Green’s function. Let N0 denote the inward pointing unit normal vector field on
S2. We consider an inward pointing vector field N [

0 , which is equal to N0 close to
the (horizontal) equator of S2 and which is equal to a vertical unit vector field close
to the north and south pole of S2 (still pointing inward).
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We define L to be the linearized mean curvature operator using the vector field
N [

0 . According to the analysis in Section 2, we can write

(6-3) Lw := 1
2(1S2 + 2)(N0 · N

[

0w).

We let 0ρ be the unique solution of

(6-4) L0ρ =−πδp� −
π√

1− ρ2

1
m+ 1

(δp�0
+ · · ·+ δp�m

),

which satisfies the orthogonality conditions∫
S2

xi0ρ dvolS2 = 0

for i = 1, 2 and 3. Here δq is the Dirac mass at the point q . The existence of 0ρ is
guaranteed by the fact that the distribution on the right side of (6-4) is orthogonal
to the cokernel of L. Indeed, the Jacobi operator is selfadjoint and its kernel and
cokernel are equal and spanned by the restriction of the coordinate functions to the
unit sphere. Thanks to (6-3), we conclude that the cokernel of L is also spanned
by the restriction of the coordinate functions to the unit sphere, multiplied by the
factor N0 · N

[

0 . For the sake of simplicity, we define the functions

x̃i := xi N0 · N
[

0

for i = 1, 2, 3, which are obtained by multiplication of the coordinate functions by
N0 · N

[

0 .
Now

〈x1, δp�〉D,D′ = 〈x2, δp�〉D,D′ = 0,

since both x1 and x2 vanish at the north pole of S2 and

〈x1, δp�j
〉D,D′ = ρ cos

(
2π

m+1
j
)

and 〈x2, δp�j
〉D,D′ = ρ sin

(
2π

m+1
j
)
.

Since
m∑

j=0

cos
(

2π
m+1

j
)
=

m∑
j=0

sin
(

2π
m+1

j
)
= 0,

we conclude that the distribution on the right side of (6-4) is orthogonal to the
coordinate functions x1 and x2. Geometrically, this just follows from the fact that
the points p�

j are symmetrically arranged around the x3-axis. Finally, we have

〈x3, δp�〉D,D′ = 1 and 〈x3, δp�j
〉D,D′ =−

√
1− ρ2,

and, again, we conclude that the distribution on the right side of (6-4) is orthogonal
to the coordinate function x3 thanks to the choice of the constant in front of the Dirac
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masses at the points p�
j . Geometrically, this has some interesting consequences and

can be interpreted as a conservation of the vertical flux of the surfaces we try to
construct. We shall return to this point later on. Finally, observe that 0ρ is invariant
under the action of the elements of Dih(2)m+1.

We now turn to the expansion of the function 0ρ near the north pole of S2.

Lemma 6.2. The expansion

X �∗0ρ(x)=−log |x | + a�
+OC̊∞(|x |

2)

holds in a fixed neighborhood of 0, where the constant a�
∈ R depends smoothly on

ρ and is bounded as ρ tends to 0. Moreover, the estimate on OC̊∞(|x |
2) is uniform

as ρ tends to 0.

Proof. We define the function 00 on the upper hemisphere by

X �∗00(x)=−log |x |,

and, using (6-2), we compute

X �∗(L00+πδp�)=
3
2

√
1− |x |2.

This immediately implies that, close to p�, the function 0ρ − 00 is smooth. In
particular, this function can be expanded as

X �∗(0ρ −00)(x)= a�
+ b�
· x +OC̊∞(|x |

2),

where a�
∈ R and b�

∈ R2 depend smoothly on ρ and remain bounded as ρ tends
to 0. Since the function 0ρ is also invariant under the action of the elements of
Dih(2)m+1, we conclude that necessarily b�

= 0. This completes the proof. �

Near the other poles, the function 0ρ also has an expansion which we now
describe. As can be suspected, this description relies on the expansion of the
function

G(x) := −
m∑

j=0

log |x − ρz j |

at any of its singularities. Since this is a key point in our construction, we spend
some time deriving this expansion carefully. By symmetry, it is enough to expand
this function at ρz0. We change variables and write x = ρz0+ y. We then expand

log |y− ρ(z j − z0)| = log ρ+ log |z j − z0| +
1
ρ

z0− z j

|z0− z j |
2 · y+O

(
|y|2

ρ2

)
.

Hence we find

G(ρz0+y)=−log |y|−m log ρ−
m∑

j=1

log |z j−z0|−
1
ρ

m∑
j=1

z0− z j

|z0− z j |
2 ·y+O

(
|y|2

ρ2

)
.
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It is easy to check the identity
m∑

j=1

z0− z j

|z0− z j |
2 =

m
2

z0.

Setting

a�
0 :=

m∑
j=1

log |z j − z0|,

we can write

G(ρz0+ y)=−log |y| −m log ρ− a�
0−

m
2ρ

z0 · y+O

(
|y|2

ρ2

)
.

Similar estimates can be obtained for the partial derivatives of G. Finally, we have

1G =−2π(δρz0 + · · ·+ δρzm ).

We now prove that, at p�
j , the expansion of the function X �∗0ρ is (in some sense

to be made precise) close to the expansion of G near ρz j .

Lemma 6.3. The expansion

X �∗0ρ(ρz j + y)=− 1
m+1

(
log |y| +m log ρ+ a�

0,ρ +
m
2ρ

z j · y
)
+OC̊∞(τ

1/2)

holds for |y| ∈
[ 1

2τ
3/4, 2τ 3/4

]
. Here a�

0,ρ ∈ R smoothly depends on ρ > 0 and is
uniformly bounded as ρ tends to 0.

Proof. Thanks to the invariance with respect to the action of Dih(2)m+1, it is enough
to describe this expansion near the point p�

0. As in the proof of Lemma 6.2, we
show that, near the south pole of S2, the function X �∗0ρ is not too far from G. To
this end, we define 0̃ρ on the lower hemisphere of S2 by

X �∗0̃ρ = G,

and, thanks to (6-2), we can compute

X �∗(L0̃ρ +π
√

1− ρ2(δp�0
+ · · ·+ δp�m

))

=
1
2

√
1− |x |2

m∑
j=0

(
3− 2ρ

z j · (x − ρz j )

|x − ρz j |
2 +

ρ2

|x − ρz j |
2

(
1− 2

(z j · (x − ρz j ))
2

|x − ρz j |
2

))
.

Observe that the right side contains three terms which have different regularity
properties. The first one is a smooth function which depends smoothly on ρ and
which is invariant by rotation. The second function has a singularity of order 1 at
each ρz j and is bounded by a constant times ρ|x−ρz j |

−1. The third function has a
singularity of order 2 at each ρz j and is bounded by a constant times ρ2

|x−ρz j |
−2.
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As a consequence, X �∗(0̃ρ − 0ρ) can be decomposed into the sum of three
functions, which can be analyzed independently. The first one, f (1)ρ , is smooth in a
fixed neighborhood of 0 and depends smoothly on the parameter ρ. This implies
that, near each ρz j , this function has a Taylor expansion with coefficients smoothly
depending on ρ. Hence

f (1)ρ (x)= f (1)ρ (ρz0)+∇ f (1)ρ (ρz0) · (x − ρz0)+O(|x − ρz0|
2).

Observe that ∇ f (1)ρ (0) = 0, and hence |∇ f (1)ρ (ρz0)| ≤ Cρ. We conclude that
f (1)ρ (x)= f (1)ρ (ρz0)+O(τ 5/4) when |x − ρz0| ∈

[1
2τ

3/4, 2τ 3/4
]
.

Since
∑

j |z− z j |
−1
∈ L p

(
D
(
0, 1

2

))
for all p ∈ (1, 2), we find that the second

function
f (2)ρ ∈W 2,p(D(0, 1/3)),

and hence it is continuous near ρz0 and f (2)ρ (x) − f (2)ρ (ρz0) is bounded by a
constant times ρ

∑m
j=0 |x − ρz j |

ν for any given ν < 1. In particular, f (2)ρ (x) =

f (2)ρ (ρz0)+O(τ (2+3ν)/4) when |x − ρz0| ∈
[1

2τ
3/4, 2τ 3/4

]
.

Finally, using Proposition 6.6, the third function f (3)ρ is bounded by a constant
times ρ2∑m

j=0 |x − ρz j |
µ for any µ ∈ (−1, 0).

In particular, when |x − ρz0| ∈
[ 1

2τ
3/4, 2τ 3/4

]
, we find that the sum of these

functions can be decomposed as the sum of a constant function (smoothly depending
on ρ) and a function which is bounded by a constant times τ 1/2 (choose ν = 1

2 and
µ=− 1

2 ). The statement then follows at once. �

It is interesting to observe that 0ρ depends on ρ > 0 since the points p�
j do, and,

as ρ tends to 0, the sequence 0ρ converges on compact sets to the unique solution
of

L00 =−π(δp� + δp�),

which is L2-orthogonal to the smooth kernel of 1S2 + 2. Recall that p� denotes the
north pole of S2, and we now agree that p� denotes the south pole of S2.

Remark 6.4. If a solution to Lw = 0 is defined in S2
−{p�, p�

}, is invariant under
the action of Dih(2)m+1, and is bounded by a constant times dist( · , {p�, p�

})ν for
some ν ∈ (−1, 0), then it is a linear combination of x̃3 and 00. This will be useful
later.

We now summarize the above analysis. We set

u�(x) :=
√

1− |x |2 and u�(x) := −
√

1− |x |2.

Observe that, thanks to the previous results, near 0, the graph of the function

v� := u�
+ τ X �∗0ρ
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can be expanded as

v�(x)= 1+ τ(m log ρ+ a�)+ τ log |x | +OC̊∞(τ
3/2)

for |x | ∈ [(1/2)τ 3/4, 2τ 3/4
], where a�

∈ R smoothly depends on ρ. Moreover, we
see that, near ρz j , the graph of the function

v� := u�
+ τ X �∗0ρ

can be expanded as

v�(ρz j + y)

=−

√
1−ρ2−

τ

m+1
(m logρ+a�)−

τ

m+1
log |y|−

(
ρ−

m
m+1

τ

2ρ

)
z j ·y+OC̊∞(τ

3/2)

for |y| ∈ [(1/2)τ 3/4, 2τ 3/4
], where a�

∈ R depends smoothly on ρ. The key point
in our construction is that the constant in front of z j · y can be adjusted by choosing
ρ appropriately. Indeed, if we define ρ0 > 0 by the identity

2(m+ 1)ρ2
0 = mτ,

then, when ρ = ρ0, the constant in front of z j · y in the last expansion is exactly 0,
while choosing ρ 6= ρ0 slightly larger or smaller allows one to prescribe any value
of this constant, close enough to 0.

Mapping properties of the Jacobi operator about a punctured sphere. We first
define on S2 the distance function to the punctures p�, p�

0, . . . , p�
m by

d := distS2( · , {p�, p�
0, . . . , p�

m}).

Even though this is not apparent in the notation, the function d depends implicitly
on ρ, since it depends on the location of the points p�

j , which themselves depend
on ρ. We can define some weighted spaces on

S∗ := S2
−{p�, p�

0, . . . , p�
m}.

For ν ∈R and k ∈N, we define Ck,α
ν (S∗) to be the space of functionsw∈Ck,α

loc (S
∗)

for which the following norm is finite:

‖w‖Ck,α
ν (S∗) :=

k∑
j=0

sup
p∈S∗

d−ν+ j (p)‖∇ jw(p)‖gS2

+ sup
ζ∈(0,π/2)

sup
d(p),d(q)∈[ζ,2ζ ]

ζ−ν+k+α ‖∇
kw(p)−∇kw(q)‖gS2

distS2(p, q)α
.

We further assume that the functions in Ck,α
ν (S∗) are invariant under the action of

Dih(2)m+1. Again, the weighted spaces Ck,α
ν (S∗) do implicitly depend on ρ.
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We consider the operator

Lν : C
2,α
ν (S∗)→ C0,α

ν−2(S
∗),

w 7→ Lw.

It is easy to check that Lν is well defined.
Recall that L is conjugate to 1S2 +2. When acting on a smooth function defined

on S2, the mapping properties of 1S2 + 2 are well understood, and we recall that
the kernel of this operator is spanned by the restriction to S2 of the linear forms
on R3. Since we are assuming that the functions we consider are invariant under
the action of the dihedral group Dih(2)m+1, this implies that the bounded kernel of L

has dimension 1. We now investigate the mapping properties of L (or, alternatively,
1S2 + 2) when acting on functions belonging to the weighted spaces we have just
defined.

Proposition 6.5. Assume that ν ∈ (−1, 0). Then there exist constants C, ρ0 > 0,
only depending on ν, such that, for all ρ ∈ (0, ρ0), we have

‖w‖C2,α
ν (S∗) ≤ C‖Lw‖C0,α

ν (S∗),

for all functions w in the L2(S2)-orthogonal complement of the functions x̃3 and 0ρ .

Proof. As usual, thanks to Schauder’s estimates, it is enough to prove that

‖d−νw‖L∞(S∗) ≤ C‖d2−νLw‖L∞(S∗)

for all ρ small enough.
As usual, the proof of this estimate is by contradiction. Assume that the estimate

is not true. Then there exists a sequence ρn tending to 0 and a sequence of functions
wn such that

‖d−νwn‖L∞(S∗) = 1 and lim
n→∞
‖d2−νLwn‖L∞(S∗) = 0.

Moreover wn is invariant under the action of Dih(2)m+1 and is L2-orthogonal to x̃3

and 0ρn (recall that 0ρ = 0ρn depends on ρn). Hence

(6-5)
∫

S2
x̃3wn dvolS2 = 0

and

(6-6)
∫

S2
0ρnwn dvolS2 = 0.

We choose a point qn ∈ S∗ such that

|wn(qn)| ≥
1
2 dν(qn),
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and we distinguish various cases according to the behavior of the sequence d(qn).
In each case, we rescale coordinates (using the exponential map) by 1/d(qn), and
we use elliptic estimates together with the Ascoli–Arzelà theorem to extract from
the sequence w̃n := d−ν(qn)wn convergent subsequences. Finally, we pass to the
limit in the equation satisfied by w̃n . If, for some subsequence, d(qn) remains
bounded away from 0, we get in the limit a nontrivial solution of

Lw = 0,

which is defined in S2
−{p�, p�

}, where we recall that p� and p� denote the north and
south poles of S2. Moreover, w is bounded by a constant times (dist(p, {p�, p�

}))ν

and w is invariant under the action of Dih(2)m+1. Finally, we can pass to the limit in
(6-5) and (6-6) and check that w is L2-orthogonal to x̃3 and 00 := limn→∞ 0ρn . It is
easy to check (see Remark 6.4) that this implies that w≡ 0, which is a contradiction.

The second case we have to consider is the case where limn→∞ d(qn)= 0 and
limn→∞ d(qn)/ρn =+∞ or the case where limn→∞ d(qn)/ρn = 0. In either case,
we obtain a nontrivial solution of

1w = 0

in R2
−{0}, which is bounded by a constant times dist( · , {0})ν . It is easy to check

that w ≡ 0 since δ /∈ Z, which is again a contradiction.
Finally, we consider the case where limn→∞ d(qn)/ρn exists. In this case,

we obtain a nontrivial solution of 1w = 0 in R2
− {r0z0, . . . , r0zm} for some

r0 > 0. Moreover, we know that this solution is bounded by a constant times
(dist( · , {r0z0, . . . , r0zm}))

ν and w is also invariant under the action of Dih(2)m+1.
Inspection of the behavior of w at the points r0z j together with the fact that ν >−1
and w is invariant with respect to the action of Dih(2)m+1 implies that w is a solution
in the sense of distributions of

1w = a
m∑

j=0

δr0z j

for some a ∈ R. Then inspection of w at infinity together with the fact that ν < 0
implies that a = 0, and hence w ≡ 0. This is again a contradiction. �

Thanks to the previous result, we can prove:

Proposition 6.6. Assume that ν ∈ (−1, 0) is fixed. Then the operator Lν is surjective
and has a 2-dimensional kernel spanned by the functions x̃3 and 0ρ . Moreover,
the right inverse of Lν , which is chosen so that its image is in the L2-orthogonal
complement of the kernel of Lν , has a norm which is bounded independently of ρ
small enough.
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Proof. The existence of a right inverse follows from the general theory developed,
for example, in [Pacard 2008]. Nevertheless, we give a self-contained proof.

Let us assume that we are given a function f ∈ C0,α(S∗) which has compact
support in S∗. Recall that the functions we are interested in are invariant under the
action of Dih(2)m+1. We choose a ∈ R so that f − aδp� is orthogonal to the function
x̃3. In particular, this implies that we can solve

Lw̃ = f − aδp�,

and, choosing the constant b ∈ R appropriately, we can assume that w := w̃− b0ρ
is L2-orthogonal to the function x̃3 and 0ρ . Observe that

Lw = f

in S∗, and also that w ∈C2,α
ν (S∗). In particular Proposition 6.5 applies and we have

‖w‖C2,α
ν (S∗) ≤ C‖Lw‖C0,α

ν (S∗).

The general result, when f is not assumed to have compact support in S∗, can
be handled as usual, using a sequence of functions having compact support and
converging on compact sets to a given function in C0,α

ν (S∗). �

A third fixed-point argument. Assume that we are given τ, τ̃ > 0 small enough
and satisfying

(6-7) |τ̃ − τ | ≤ κτ 3/2,

where the constant κ > 0 is large enough (it will be fixed in Section 7). We also
assume that ρ > 0 satisfies

(6-8)
∣∣∣∣ρ− m

m+1
τ

2ρ

∣∣∣∣≤ κτ 3/4.

We prove the existence of an infinite-dimensional family of constant mean
curvature surfaces which are close to Sτ,ρ and are parametrized by their boundary
values described by two functions f � : S1

→ R and f � : S1
→ R. The surfaces also

depend on τ̃ and ρ satisfying the above estimates.

Proposition 6.7. Assume we are given κ >0 large enough (to be fixed later). For all
τ, τ̃ > 0 small enough satisfying (6-7) and for all functions f � which are invariant
under the action of the dihedral group Dih(2)m+1 and f �, which are invariant under
the action of S2, satisfying both (H1) and

‖ f ‖C2,α(S1) ≤ κτ
3/2,

there exists a constant mean curvature surface Sτ̃ ,ρ, f �, f � which is a graph over
Sτ,ρ , has m + 2 boundaries (one boundary close to the north pole and m + 1
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boundaries close to the south pole), and is invariant under the action of the dihedral
group Dih(2)m+1. Close to the upper boundary, the surface Sτ̃ ,ρ, f �, f � is a vertical
graph over the annulus

{x ∈ R2
: τ 3/4

≤ |x | ≤ 2τ 3/4
},

for some function x 7→ V �
τ̃ ,ρ, f �, f �(τ

−3/4x) which can be expanded as

(6-9) V �
τ̃ ,ρ, f �, f �(x)

=1+τ̃ (m log ρ+a�
τ̃ ,ρ, f �, f �)+

3
4 τ̃ log τ+τ̃ log |x |−W out

f � (x)+V �
τ̃ ,ρ, f �, f �(x),

where a�
∈ R, W out

f denotes the bounded harmonic extension of f in R2
− D(0, 1),

and

(6-10) ‖V �
τ̃ ,ρ,0,0‖C2,α(D(0,2)−D(0,1)) ≤ Cτ 3/2,

and, given ν ∈ (−1, 0),

(6-11) ‖V �
τ̃ ,ρ, f �, f � − V̂ �

τ̃ ,ρ, f �′,′, f �′‖C2,α
(

D(0,1)−D
(

0,12

))
≤ Cτ (1+ν)/4(‖ f �′− f �‖C2,α(S1)+‖ f �′− f �‖C2,α(S1))

for some constant C > 0 independent of κ , τ̃ , and f �, f �, f �′, f �′.
Near one of the lower boundaries, the surface Sτ̃ ,ρ, f �, f � is a vertical graph over

the annulus

{x ∈ R2
: τ 3/4

≤ |x − ρz0| ≤ 2τ 3/4
}

for some function x 7→ V �
τ̃ ,ρ, f �, f �(τ

3/4(x − ρz0)), which can be expanded as

(6-12) V �
τ̃ ,ρ, f �, f �(x)

=−

√
1− ρ2−

τ̃

m+1
(m logρ+a�

τ̃ ,ρ, f �, f �)−
3τ̃

4(m+1)
logτ− τ̃

m+1
log |x |

−τ 3/4
(
ρ−

m
m+1

τ̃

2ρ

)
z0 · x +W out

f � (x)+ V �
τ̃ , f �, f �(x),

where V �
τ̃ ,ρ, f �, f � enjoys properties similar to those described above for V �

τ̃ ,ρ, f �, f � .
Moreover, both depend continuously on τ̃ and ρ.

Proof. Again the arguments of the proof are similar to those in the previous sections.
The equation we must solve can be written formally as

(6-13) L(τ̃0ρ + F̂ +w)= Q(τ̃0ρ + F̂ +w),
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where Q collects all the nonlinear terms. Here F̂ is a function which can be
described as follows: near the north pole p�,

X �∗ F̂(x)= χW out
f � (τ

−3/4x),

where χ is a cutoff function identically equal to 1 in D(0, 1/4) and identically
equal to 1 outside D

(
0, 1

2

)
. Near the south pole, p�

X �∗ F̂(x)=
m∑

j=0

χ̄

(
x − ρz j

ρ

)
W out

f � (x − ρz j ),

where χ̄ is a cutoff function identically equal to 1 in D(0, c) and identically equal to
1 outside D(0, c/2). Here c = sin(π/(m+ 1)) so that the balls of radius c centered
at the points z j for j = 0, . . . ,m are disjoint.

We choose an extension operator

Êτ : C
0,α(Sτ,ρ)→ C0,α(S∗)

such that

Êτ (ψ)=

{
ψ in Sτ,ρ,

0 in X �(D(0, τ 3/4/2))∪
⋃m

j=0 X �(D(ρz j , τ
3/4/2)),

and
‖Êτ (ψ)‖C0,α

ν (S∗) ≤ C‖ψ‖C0,α
ν (Sτ,ρ)

.

By definition, the norm in the space C0,α
ν (Sτ,ρ) is defined exactly as the norm in

C0,α
ν (S∗), but points are restricted to Sτ,ρ instead of S∗.
We rewrite (6-13) as

(6-14) Lw = Êτ (−LF̂ + Q(τ̃0ρ + F̂ +w)).

Observe that, by construction, L(τ̃0ρ)= 0 away from the singular points.
Again, on the right side, it is understood that we consider the image by Êτ of

the restriction of the functions to Sτ,ρ .
We assume that ν ∈ (−1, 0) is fixed. It is easy to check that there exists a constant

c > 0 (independent of κ) and a constant cκ > 0 (depending on κ) such that

‖Êτ (Q(τ̃0ρ))‖C2,α
ν−2(S

∗)
≤ cτ (6−3ν)/4,

‖Êτ (LF̂)‖C2,α
ν−2(S

∗)
≤ cτ (1−2ν)/4(‖ f �‖C2,α(S1)+‖ f �‖C2,α(S1)),

and

‖Êτ (Q(τ̃0ρ + F̂ ′+w′)− Q(τ̃0ρ + F̂ +w))‖C2,α
ν−2(S

∗)

≤ cκ(τ‖w′−w‖C2,α
ν (S∗)+ τ

(4−3ν)/4(‖ f �′− f �‖C2,α(S1)+‖ f �′− f �‖C2,α(S1))),



ATTACHING HANDLES TO DELAUNAY NODOIDS 175

provided w and w′ satisfy

‖w‖C2,α
ν (S∗)+‖w

′
‖C2,α

ν (S∗) ≤ Cτ (6−3ν)/4

for some fixed constant C > 0 independent of κ . Here F̂ and F̂ ′ are associated to
the harmonic extensions of the boundary data f �, f � and f �′, f �′, respectively.

Now we make use of Proposition 6.6 to rephrase the problem as a fixed-point
problem, and the previous estimates are precisely enough to solve this nonlinear
problem using a fixed-point argument for contraction mappings in the ball of radius
Cκτ (6−3ν)/4 in C2,α

ν (S∗), where Cκ is fixed large enough. Then, for all τ > 0 small
enough, we find that there exists a constant Cκ > 0 (depending on κ) such that, for
all functions f �, f � satisfying the above hypothesis, there exists a solution w of
(6-13) satisfying

‖w‖C2,α
ν (S∗) ≤ Cτ (6−3ν)/4.

In addition, we have the estimate

‖w′−w‖C2,α
ν (S∗) ≤ Cκτ (1−2ν)/4(‖ f �′− f �‖C2,α(S1)+‖ f �′− f �‖C2,α(S1))

for some constant C > 0, which does not depend on κ or τ , where w (respectively
w′) is the solution associated to f �, f � (respectively f �′, f �′).

The solution of (6-13) is obtained through a fixed-point theorem for contraction
mappings, and it is classical to check that the solution we obtain depends con-
tinuously on the parameters of the construction. In particular, the constant mean
curvature surface we obtain depends continuously on τ̃ and ρ. �

7. Connecting the pieces together

We keep the notation of the previous sections. We assume that κ > 0 is large enough
(to be chosen shortly) and assume that τ > 0 is chosen small enough so that all the
results proven so far apply.

For all x̃ ∈ R2, we define the annuli

Aout
τ (x̃) := {x ∈ R2

: τ 3/4
≤ |x − x̃ | ≤ 2τ 3/4

},

Ains
τ (x̃) := {x ∈ R2

:
1
2τ

3/4
≤ |x − x̃ | ≤ τ 3/4

}.

Recall from page 137 the conditions (H1) and (H2). Also recall that a function f
defined on S1 is invariant under the action of Dih(2)m+1 if

f
(
θ +

2π
m+1

)
= f (θ) for all θ ∈ S1,

and f is invariant under the action of the symmetry S2 if

f (−θ)= f (θ) for all θ ∈ S1.
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We now describe the different pieces of constant mean curvature surfaces we
have at hand.

(i) Assume that we are given f � ∈ C2,α(S1), which is invariant under the action of
Dih(2)m+1 and satisfies (H1) and

‖ f �‖C2,α(S1) ≤ κτ
3/2.

Proposition 4.12 provides a constant mean curvature (equal to 1) surface D+τ, f which
is invariant under the action of the dihedral group Dih(2)m+1, has one end asymptotic
to the end of D+τ , and which, close to its boundary, can be parametrized as the
vertical graph of x 7→U �(τ−3/4x) over Ains

τ (0), where

U �(x)= c�+ τ log |x | −W ins
f (x)+U �(x),

where
c� := τ log 2

τ 1/4 ∈ R,

and where U � satisfies (4-17) and (4-18). To simplify the notation we have not
mentioned the data τ, f in the notation for U � and U �.

(ii) Next, we assume that we are given τ1 > 0 satisfying

|τ1− τ | ≤ κτ
3/2,

and ρ1 > 0 satisfying ∣∣∣∣ρ1−
m

m+1
τ

2ρ1

∣∣∣∣≤ κτ 3/4.

Further assume that we are given a function f �1 ∈ C2,α(S1) invariant under the
action of the dihedral group Dih(2)m+1 and a function f �1 ∈ C2,α(S1) invariant under
the action of the symmetry S2, both satisfying (H1) and

‖ f �1 ‖C2,α(S1) ≤ κτ
3/2 and ‖ f �1 ‖C2,α(S1) ≤ κτ

3/2.

Proposition 6.7 provides a constant mean curvature (equal to 1) surface Sτ1,ρ1, f �1 , f �1
which is invariant under the action of the dihedral group Dih(2)m+1 and which, close
to its upper boundary, can be parametrized as the vertical graph of x 7→ V �(τ−3/4x)
over Aout

τ (0), where

V �(x)= 1+ d�
+ τ1 log |x | −W out

f �1
(x)+ V �(x),

d�
: = τ1(m log ρ1+ a�

τ1,ρ, f �1 , f �1
+

3
4 log τ) ∈ R,

and where V � satisfies (6-10) and (6-11). Close to one of its lower boundaries, this
surface can be parametrized as a vertical graph for some function

x 7→ V �(τ−3/4(x − ρ1z0))
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over Aout
τ (ρ1z0) which can be expanded as

V �(x)= −1+c�−
τ1

m+1
log|x |−τ 3/4

(
ρ1−

m
m+1

τ1

2ρ

)
z0 · x+W out

f �1
(x)+V �(x),

c� := 1−
√

1−ρ2
1−

τ1

m+1
(m logρ1+a�

τ1,ρ1, f �1 , f �1
−

3
4 logτ) ∈ R,

and where V � satisfies estimates of the form (6-10) and (6-11). Again, to simplify
the notation we have not mentioned the parameters τ1, ρ1, f �1 , f �1 in the notation
for V �, V �, V �, and V �.

(iii) Assume that we are given τ2 > 0 satisfying∣∣∣∣τ2−
τ

m+1

∣∣∣∣≤ κτ 3/2,

and a function f �2 ∈ C2,α(S1) which satisfies (H1), (H2), and

‖ f �2 ‖C2,α(S1) ≤ κτ
3/2.

Proposition 5.5 provides a constant mean curvature (equal to 1) surface Cτ2, f �2 which
is invariant under the action of S3, the symmetry with respect to the horizontal
plane x3= 0, and is also invariant under the action of S2, the symmetry with respect
to the plane x2 = 0. Moreover, close to its lower boundary, this surface can be
parametrized as the vertical graph of x 7→U �(τ−3/4x) over Ains

τ (0), where

U �(x)= d�
− τ2 log |x | +W ins

f �2
(x)+U �(x),

where

d�
:= −τ2 log 2τ 3/4

τ2
∈ R,

and where U � satisfies (5-8) and (5-9). To simplify the notation we have not
mentioned the data τ2, f �2 in the notation for U � and U �.

Let us emphasize that the functions f �1 , f �2 and f �, f �1 are all assumed to satisfy
(H1). Hence they have no constant term in their Fourier series. The function f �2
is also assumed to satisfy (H2). Now, the functions f � and f �1 are assumed to
be invariant under the action of the dihedral group Dih(2)m+1, and, as was already
mentioned, this implies that both functions also satisfies (H2) since its Fourier series
does not contain any term of the form z ·x . Therefore, f �1 is the only function which
does not satisfy (H2). Since f �1 is assumed to be invariant under the action of S2,
we can decompose it as

f �1 = λ1z0 · x + f �,⊥1 ,

where λ1 ∈ R and where f �,⊥1 satisfies both (H1) and (H2).
We denote by C(0)τ2, f �2 ,ρ1

the surface Cτ2, f �2 translated by ρ1z0. For j = 1, . . . ,m,
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C(0)τ2, f �2 ,ρ1
:= Cτ2, f �2 + ρ1z0.

We denote the image of C(0)τ2, f �2 ,ρ1
under the rotation (Rm+1)

j by

C
( j)
τ2, f �2 ,ρ1

:= (Rm+1)
j (C(0)τ2, f �2 ,ρ1

).

In particular, the collection of surfaces C(0)τ2, f �2 ,ρ1
, . . . ,C(m)τ2, f �2 ,ρ1

constitute m + 1
constant mean curvature surfaces which are symmetric with respect to the dihedral
group Dih(3)m+1.

Given t1 ∈ R small enough, we denote by Sτ1,ρ1, f �1 , f �1 ,t1 the surface Sτ1,ρ1, f �1 , f �1
translated in the vertical direction by (1− c�+ d�

+ t1)e3:

Sτ1,ρ1, f �1 , f �1 ,t1 :=Sτ1,ρ1, f �1 , f �1 + (1− c�+ d�
+ t1)e3.

This is a constant mean curvature surface which is symmetric with respect to the
dihedral group Dih(2)m+1. Observe that the lower boundaries of C(0)τ2, f �2 ,ρ1

, . . . ,C(m)τ2, f �2 ,ρ1

are close to the lower boundaries of Sτ1,ρ1, f �1 , f �1 ,t1 .
Finally, given t ∈ R small enough, we denote by D+τ, f,t the surface D+τ, f,t trans-

lated in the vertical direction by (2− c�+ d�
− c�+ d�

+ t1+ t)e3:

D+τ, f,t :=D+τ, f + (2− c�+ d�
− c�+ d�

+ t1+ t)e3.

This is a constant mean curvature surface which is symmetric with respect to the
dihedral group Dih(2)m+1. Observe that the boundary of D+τ, f,t is close to the upper
boundary of Sτ1,ρ1, f �1 , f �1 ,t1 .

To complete the proof of the main theorem, it remains to adjust the free parameters
of our construction, namely, t, t1, τ1, τ2, ρ1 ∈ R, and the functions f �1 , f �2 , f � and
f �1 defined on S1, so that

C(0)τ2, f �2 ,ρ1
t · · · tC(m)τ2, f �2 ,ρ1

tSτ1,ρ1, f �1 , f �1 ,t1 tD
+

τ, f,t

constitute a C1 surface which can be extended by reflection through the horizontal
plane as a C1 surface which is complete, noncompact, and has two ends of Delaunay
type (asymptotic to a nodoid end). Observe that the surface is invariant under the
action of the dihedral group Dih(3)m+1 and that there is still one free parameter,
namely, τ , which determines the Delaunay type end and hence the vertical flux of
the surface.

This surface is in fact piecewise smooth and has constant mean curvature equal
to 1 away from the boundaries where the connected sum is performed. Since all
pieces have constant mean curvature identically equal to 1, elliptic regularity theory
then implies that this surface is in fact a smooth surface. Indeed, near one of
the boundaries where the connected sum is performed the surface is a graph of a
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function, say uins defined over Ains
τ and another function, say uout defined over Aout

τ .
The functions uins and uout are C2,α and solve the mean curvature equation

(7-1) 1
2 div

(
∇u√

1+|∇u|2

)
= 1

on their respective domains of definition (for the sake of simplicity, we assume that
the mean curvature vector is upward pointing near the boundary we are interested
in). Moreover, uins

= uout and ∂r uins
= ∂r uout on ∂Ains

τ ∩ ∂Aout
τ . This implies that

the function u defined on Ains
τ ∪ Aout

τ by u := uins on Ains
τ and u := uout on Aout

τ

belongs to C1,1 and is a weak solution of (7-1) on Ains
τ ∪ Aout

τ . Elliptic regularity
implies that u is C2,α , and hence the surface we have obtained is a smooth constant
mean curvature surface.

Therefore, to complete the proof, it remains to explain how to find the parameters
t , t1, τ1, τ2, ρ1 ∈ R, and the functions f �1 , f �2 , f �, and f �1 defined on S1, so that the
following system of equations on S1 is fulfilled:

U �
− c�+ t = V �

− 1− d� and ∂r (V �
−U �)= 0,(7-2)

V �
+ 1− c�+ t1 =U �

− d� and ∂r (V �
−U �)= 0.(7-3)

Recall that, even though this is not apparent in the notations, all functions and
constants depend on the parameters and boundary data. The rest of this section is
devoted to the proof that the above system does have a solution, provided τ is small
enough.

Proposition 7.1. There exists κ > 0 such that, for all τ > 0 small enough, there
exist parameters t , t1, τ1, τ2, ρ1, and functions f �1 , f �2 , f �, f �1 defined on S1 and
satisfying the above symmetries and estimates such that the system (7-2) and (7-3)
is satisfied.

Proof. First we make use of Propositions 4.12, 5.5, and 6.7 to get the expansion
of the functions U �, V �, U � and V �. Recalling that we have to restrict all those
functions to S1, it is easy to check, using (4-16) and (6-9), that the first two equations
of the system we have to solve read

(7-4)
t + f �1 − f � = V �

−U �,

(τ1− τ)+ ∂r (W out
f �1
−W ins

f � )= ∂r (V �
−U �),

while, using (5-7) and (6-12), we see that the next two equations are given by

(7-5)

t1− τ 3/4
(
ρ1−

m
m+ 1

τ1

2ρ1

)
z0 · x + f �1 − f �2 =U �

− V �,

−

(
τ1

m+ 1
− τ2

)
− τ 3/4

(
ρ1−

m
m+ 1

τ1

2ρ1

)
z0 · x + ∂r (W out

f �1
−W ins

f �2
)

= ∂r (U �
− V �).
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In writing this system one has to be a bit careful about the invariance of the functions
we are interested in. Indeed, in (7-4), all functions are invariant under the action of
Dih(2)m+1, while in (7-5), all functions are invariant under the action of the symmetry
S2.

Let us denote by 50 the L2(S1)-orthogonal projection over the space of constant
functions, by 51, the L2(S1)-orthogonal projection over the space spanned by
the function x 7→ z0 · x , and by 5⊥, the L2(S1)-orthogonal projection over the
orthogonal complement of the space spanned by the constant function and the
function x 7→ z0 · x .

We project this system over the L2(S1)-orthogonal complement of the constant
function and the function x 7→ z0 · x . We obtain the coupled system

(7-6)

f �1 − f � =5⊥(V �
−U �),

∂r (W out
f �1
−W ins

f � )=5
⊥∂r (V �

−U �),

f �,⊥1 − f �2 =5
⊥(U �

− V �),

∂r (W out
f �,⊥1
−W ins

f �2
)=5⊥∂r (U �

− V �),

where we recall that we have decomposed f �1 = λ1z0 · x + f �,⊥1 .
The projection of the system (7-4)–(7-5) over the space of constant functions

leads to the coupled system

(7-7)

t =50(V �
−U �),

τ1− τ =5
0∂r (V �

−U �),

t1 =50(U �
− V �),

τ2−
τ1

m+ 1
=50∂r (U �

− V �).

Finally, the projection of the system (7-4)–(7-5) over the space of functions
spanned by x 7→ z0 · x leads to the coupled system

(7-8)

(
λ1− τ

3/4
(
ρ1−

m
m+ 1

τ1

2ρ1

))
z0 · x =51(U �

− V �),(
−λ1− τ

3/4
(
ρ1−

m
m+ 1

τ1

2ρ1

))
z0 · x =51∂r (U �

− V �).

To obtain the second equation, we have used the fact that

W out
f �1
= λ1

z0 · x
|x |2
+W out

f �,⊥1
.

Observe that the right sides of (7-6), (7-7), and (7-8) do not depend on t and t1.
Hence the first and third equations in (7-7) give us the values of t and t1, once the
rest of the equations are solved.
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For all τ small enough, we solve (7-6) using a fixed-point theorem for contraction
mappings to obtain a solution ( f �, f �1 , f �,⊥1 , f �2 ) continuously depending on the
parameters τ1, τ2, ρ1, λ1 (and τ ). Then we introduce the corresponding solution in
(7-7) and (7-8) to get a nonlinear system in τ1, τ2, and ρ1, which we solve using
Browder’s fixed-point theorem.

To begin with, we explain how (7-6) can be rewritten in diagonal form. This
makes use of the following result, whose proof can be found, for example, in
[Mazzeo and Pacard 2001]:

Proposition 7.2. The operator

C2,α(S1)⊥ 3 f 7→ ∂r (W ins
f −W out

f )|r=1 ∈ C1,α(S1)⊥

is an isomorphism. Here Ck,α(S1)⊥ denotes the image of Ck,α(S1) under 5⊥.

Proof. The Fourier decomposition of a function f ∈ Ck,α(S1)⊥ is given by

f (θ)=
∑

n 6=0,±1

fneinθ ,

in which case

W out
f =

∑
n 6=0,±1

fnr−|n|einθ and W ins
f =

∑
n 6=0,±1

fnr |n|einθ .

Therefore,
∂r (W ins

f −W out
f )|r=1 = 2

∑
n 6=0,±1

fn|n|einθ

is equal to twice the Dirichlet to Neumann map for the Laplace operator in the
unit disc. This is a well-defined, selfadjoint, first order elliptic operator which is
injective, and elliptic regularity theory implies that it is an isomorphism. �

Using this result, the system (7-6) can be rewritten as

( f �, f �1 , f �,⊥1 , f �2 )= N⊥τ1,τ2,ρ1,λ1
( f �, f �1 f �,⊥1 , f �2 ),

where the nonlinear operator N⊥τ1,τ2,ρ1,λ1
satisfies

(7-9) ‖N⊥τ1,τ2,ρ1,λ1
( f �, f �1 , f �,⊥1 , f �2 )‖(C2,α(S1))4 ≤ Cτ 3/2

for some constant C > 0 independent of κ > 0, provided τ is chosen small enough.
This last estimate follows directly from (4-17), (5-8) and (6-10). Moreover, thanks
to (4-18), (5-9), and (6-11), provided κ > 0 is fixed larger than the constant C
which appears in (7-9), we can use a fixed-point theorem for contraction mappings
in the ball of radius κτ 3/2 in

(
5⊥C2,α(S1)

)4 to get the existence of a solution of
(7-9) for all τ > 0 small enough. This solution depends continuously on τ1, τ2,
ρ1, and λ1, since N⊥τ1,τ2,ρ1,λ1

does (observe that N⊥τ1,τ2,ρ1,λ1
depends implicitly on
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τ ). We now insert this solution in (7-7) and (7-8). With simple manipulations, we
conclude that it remains to solve the nonlinear system

(7-10)
(
τ1− τ, τ2−

τ

m+1
, τ 3/4

(
ρ1−

m
m+1

τ

2ρ1

)
, λ1

)
= N0(τ1, τ2, ρ1, λ1),

where N0 satisfies
‖N0(τ1, τ2, ρ1, λ1)‖R4 ≤ Cτ 3/2

for some constant C > 0 independent of κ > 0, provided τ is chosen small enough.
Moreover, N0 depends continuously on the parameters τ1, τ2, ρ1, and λ1 (observe
that N0 depends implicitly on τ ). Equation (7-10) can then be solved using a simple
degree argument (Browder’s fixed-point theorem). �

Appendix

We discuss the elementary result in the theory of second order ordinary differential
equations which is used at the end of the proof of Proposition 4.8. Assume that
we are given a function s 7→ p(s) which is periodic (say of period S > 0). Further
assume that the homogeneous problem (∂2

s + p)w+ = 0 has a nontrivial periodic
solution of period S. Without loss of generality, we can assume that w+(0) = 1
and ∂sw

+(0)= 0 (just choose the origin so that 0 coincides with a point where w+

achieves its maximum). Let w− be the unique solution of (∂2
s + p)w− = 0 such

that w−(0)= 0 and ∂sw
−(0)= 1. The Wronskian of w+ and w− being constant,

we conclude that

∂sw
−(S)= ∂sw

−(S)w+(S)− ∂sw
+(S)w−(S)

= ∂sw
−(0)w+(0)− ∂sw

+(0)w−(0)

= 1.
We define

v(s) := w−(S+ s)−w−(S)w+(s).

It is clear that v is a solution of (∂2
s + p)v = 0. Further, observe that ∂sv(0) = 1

and v(0)= 0. Therefore, v = w−. This proves that

w−(S+ s)= w−(s)+w−(S)w+(s),

and hence w− is at most growing linearly in the sense that |w−(s)| ≤ C(1+ |s|)
for some constant C > 0.
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