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SOME NEW CANONICAL FORMS FOR POLYNOMIALS

BRUCE REZNICK

We give some new canonical representations for forms over C. For exam-
ple, a general binary quartic form can be written as the square of a qua-
dratic form plus the fourth power of a linear form. A general cubic form in
(x1, . . . , xn) can be written uniquely as a sum of the cubes of linear forms
l i j (xi, . . . , x j ), 1 ≤ i ≤ j ≤ n. A general ternary quartic form is the sum
of the square of a quadratic form and three fourth powers of linear forms.
The methods are classical and elementary.

1. Introduction and overview

Introduction. Let Hd(C
n) denote the vector space of complex forms of degree d

in n variables, or n-ary d-ic forms; it has dimension N (n, d) :=
(n+d−1

d

)
. One of

the major accomplishments of 19th century algebra was the discovery of canonical
forms for certain classes of n-ary d-ics, especially as the sum of d-th powers of
linear forms. By a canonical form we mean a polynomial F(t; x) in two sets of
variables, t ∈ CN (n,d) and x ∈ Cn , with the property that, for general p ∈ Hd(C

n),
there exists t so that p(x)= F(t; x). Put another way, the set {F(t; x) : t ∈CN (n,d)

}

is a Zariski open set in Hd(C
n).

In this paper, we present some new canonical forms, whose main novelty is
that they involve intermediate powers of forms of higher degree, or forms with a
restricted set of monomials. (These variations have been suggested by Hilbert’s
study of ternary quartics [1888], which led to his 17th problem, as well as by a
remarkable theorem of B. Reichstein [1987] on cubic forms.) These expressions
are less susceptible to apolarity arguments than the traditional canonical forms, and
lead naturally to (mostly open) enumeration questions.

To take a simple, yet familiar, example,

(1-1) F(t1, t2, t3; x, y)= (t1x + t2 y)2+ (t3 y)2

is a canonical form for binary quadratic forms. By the usual completion of squares,
p(x, y) = ax2

+ 2bxy + cy2 can be put into (1-1) for t1 =
√

a, t2 = b/t1 and
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t2
3 = c− t2

2 . Many of the examples in this paper can be viewed as imperfect attempts
to generalize (1-1).

Sylvester [1851a; 1851b] presented a family of canonical forms for binary forms
in all degrees.

Theorem 1.1 (Sylvester’s theorem). (i) A general binary form p of odd degree
2s− 1 can be written as

(1-2) p(x, y)=
s∑

j=1

(α j x +β j y)2s−1.

(ii) A general binary form p of even degree 2s can be written as

(1-3) p(x, y)= λx2s
+

s∑
j=1

(α j x +β j y)2s

for some λ ∈ C.

The somewhat unsatisfactory nature of the asymmetric summand in (1-3) has
been the inspiration for other canonical forms for binary forms of even degree.

Another familiar canonical form is the generalization of (1-1) into the upper-
triangular expression for quadratic forms, found by repeated completion of the
square:

Theorem 1.2. A general quadratic form p ∈ H2(C
n) can be written as

(1-4) p(x1, . . . , xn)=

n∑
k=1

(tk,k xk + tk,k+1xk+1+ · · ·+ tk,nxn)
2, tk,l ∈ C.

The expression in (1-4) is unique, up to the signs of the linear forms.
There are two ways to verify that a candidate expression F(t; x) is, in fact, a

canonical form. One is the classical nonconstructive method based on the existence
of a point at which the Jacobian matrix has full rank. (See Corollary 2.3, and see
Theorem 3.2 for the apolar version.) Lasker [1904] attributes the underlying idea to
Kronecker and Lüroth — see [Wakeford 1920, p. 208].

Ideally, however, a canonical form can be derived constructively, and the number
of different representations can thereby be determined. The convention in this paper
will be that two representations are the same if they are equal, up to a permutation
of like summands and with the identification of f k and (ζ f )k when ζ k

= 1. The
representation in (1-2) is unique in this sense, even though there are s! · (2s− 1)s

different 2s-tuples (α1, β1, . . . , αs, βs) for which (1-2) is valid.
In addition to Theorem 1.1, another motivational example for this paper is a

remarkable canonical form for cubic forms found in [Reichstein 1987], which can
be thought of as a “completion of the cube”.
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Theorem 1.3 (Reichstein). A general cubic p ∈ H3(C
n) can be written uniquely as

(1-5) p(x1, . . . , xn)=

n∑
k=1

l3
k (x1, . . . , xn)+ q(x3, . . . , xn),

where lk ∈ H1(C
n) and q ∈ H3(C

n−2).

This is a canonical form, provided q is viewed as a t-linear combination of the
monomials in (x3, . . . , xn); since N (n, 3)= n2

+N (n−2, 3), the constant count is
right. Iteration (see (6-1)) gives p as a sum of roughly n2/4 cubes. The minimum
from constant-counting, which is justified by the Alexander–Hirschowitz theorem
[1995], is roughly n2/6. We give Reichstein’s constructive proof of Theorem 1.3 in
Section 6.

Here are some representative examples of the new canonical forms in this paper.

Theorem 1.4. A general cubic form p ∈ H3(C
n) has a unique representation

(1-6) p(x1, . . . , xn)=
∑

1≤i≤ j≤n

(t{i, j},i xi + · · ·+ t{i, j}, j x j )
3,

where t{i, j},k ∈ C.

Theorem 1.5. A general binary sextic p ∈ H6(C
2) can be written as p(x, y) =

f 2(x, y) + g3(x, y), where f ∈ H3(C
2) is a cubic form and g ∈ H2(C

2) is a
quadratic form.

Theorem 1.4 has a constructive proof. Theorem 1.5 is, in fact, a very special case
of much deeper recent results of Várilly-Alvarado [2008, especially Theorem 1.2
and Remark 4.5; 2011, Section 1.2]). We include it because our proof, in the next
section, is very short.

Theorems 1.1 and 1.5 are both special cases of a more general class of canonical
forms for Hd(C

2), which is a corollary of [Ehrenborg and Rota 1993, Theorem 4.4]
(see Theorem 3.4), but not worked out explicitly there.

Theorem 1.6. Suppose d ≥ 1, {l j : 1 ≤ j ≤ m} is a fixed set of pairwise non-
proportional linear forms, and suppose ek | d, d > e1 ≥ · · · ≥ er , 1 ≤ k ≤ r ,
and

(1-7) m+
r∑

k=1

(ek + 1)= d + 1.

Then a general binary d-ic form p ∈ Hd(C
2) can be written as

(1-8) p(x, y)=
m∑

j=1

t j ld
j (x, y)+

r∑
k=1

f d/ek
k (x, y),

where t j ∈ C and deg fk = ek .
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The condition ek < d excludes the vacuous case m = 0, r = 1, e1 = d. If each
ek = 1 and r =b(d+1)/2c, then m= d+1−2b(d+1)/2c ∈ {0, 1} and Theorem 1.6
becomes Theorem 1.1; Theorem 1.5 is Theorem 1.6 in the special case d = 6, m= 0,
r = 2, e1 = 3, e2 = 2. As an example of a canonical form that is unlikely to find a
constructive proof: for a general p∈ H84(C

2), there exist f ∈ H42(C
2), g ∈ H28(C

2)

and h ∈ H12(C
2) so that p = f 2

+ g3
+ h7.

By taking d = 2s, e1 = 2, e2 = · · · = es−1 = 1 and m = 0, in Theorem 1.6, we
obtain an alternative to the dangling term λx2s in (1-3).

Corollary 1.7. A general binary form p of even degree 2s can be written as

(1-9) p(x, y)= (α0x2
+β0xy+ γ0 y2)s +

s−1∑
j=1

(α j x +β j y)2s .

A different generalization of Theorem 1.1 focuses on the number of summands.

Theorem 1.8. A general binary form of degree uv can be written as a sum of
d(uv+ 1)/(u+ 1)e v-th powers of binary forms of degree u.

Cayley proved that, after an invertible linear change of variables (x, y) 7→ (X, Y ),
a general binary quartic can be written as X4

+6λX2Y 2
+Y 4. There are two natural

ways to generalize this to higher even degree, and, almost 100 years ago, Wakeford
[1913; 1920] did both.

Theorem 1.9 (Wakeford’s theorem). After an invertible linear change of variables,
a general p ∈ Hd(C

n) can be written so that the coefficient of each xd
i is 1 and the

coefficient of each xd−1
i x j is 0.

There are N (n, d)− n2 unmentioned monomials above, and, when combined
with the n2 coefficients in the change of variables, the constant count is correct
for a canonical form. Wakeford was also interested in knowing which sets of
n(n− 1) monomials can be eliminated by a change of variables, and we are able
to settle this for binary forms in Theorem 2.4. (Theorem 1.9 was independently
discovered in [Guazzone 1975], as an attempt to generalize the canonical form
X3
+ Y 3

+ Z3
+ 6λXY Z for H3(C

3). Babbage [1976] subsequently observed that
this can be proved by the Lasker–Wakeford theorem, without noting that Wakeford
[1920] had already done so.)

The second generalization of X4
+ 6λX2Y 2

+ Y 4 will not be pursued here; see
[Ehrenborg and Rota 1993, Corollary 4.11]. A canonical form for binary forms of
even degree 2s is given by

(1-10)
s∑

k=1

l2s
k (x, y)+ λ

s∏
k=1

l2
k (x, y), lk(x, y)= αk x +βk y.
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This construction is due to Sylvester [1851b] for 2s = 4, 8. His methods failed for
2s = 6, but Wakeford [1913] was able to prove it. The full version of (1-10) is
proved in [Wakeford 1920, p. 408], where he notes that “the number of ways this
reduction can be performed is interesting”, citing “3, 8, 5” for 2s = 4, 6, 8.

The nontrivial study of canonical forms was initiated by Clebsch’s discovery
[1861] (see, e.g., [Geramita 1996, pp. 50–51; Reznick 1992a, pp. 59–60]) that,
despite the fact that N (3, 4) = 5× N (3, 1), a general ternary quartic cannot be
written as a sum of five fourth powers of linear forms. This was early evidence that
constant-counting can fail. But N (3, 4) is also equal to 1× N (3, 2)+ 3× N (3, 1),
and ternary quartics do satisfy an alternative canonical form as a mixed sum of
powers.

Theorem 1.10. A general ternary quartic p ∈ H4(C
3) can be written as

(1-11) p(x1, x2, x3)= q2(x1, x2, x3)+

3∑
k=1

l4
k (x1, x2, x3),

where q ∈ H2(C
3) and lk ∈ H1(C

3).

As an alternative generalization of canonical forms, one might also consider poly-
nomial maps F : S 7→ Hd(C

n), where S is an N -dimensional subspace of some CM .
In the simplest case, for binary quadratic forms, observe that the coefficient of x2 in

(1-12) (t1x + t2 y)2+ (i t1x + t3 y)2

is 0, so (1-12) is not canonical. This is essentially the only kind of exception.

Theorem 1.11. Suppose (c1, c2, c3, c4) ∈ C4, and it is not true that c3 = εc1 and
c4= εc2 for ε ∈ {±i}. Then, for general p ∈ H2(C

2), there exists (t1, t2, t3, t4)∈C4

satisfying
4∑

j=1

c j t j = 0

and such that

(1-13) p(x, y)= (t1x + t2 y)2+ (t3x + t4 y)2.

In the exceptional case, there exists (x0, y0) so that, for all feasible choices of t j ,
p(x0, y0)= 0.

Another alternative version of (1-3) is the following conjecture, which can be
verified up to degree 8.

Conjecture 1.12. A general binary form p of even degree 2s can be written as

(1-14) p(x, y)=
s+1∑
j=1

(α j x +β j y)2s, where
s+1∑
j=1

(α j +β j )= 0.
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Outline. Here is an outline of the paper. In Section 2, we introduce notation and
definitions. The definition of canonical form is the classical one and roughly parallels
that in [Ehrenborg and Rota 1993], an important updating of this subject about
20 years ago. Our point of view is considerably more elementary in many respects
than [Ehrenborg and Rota 1993], but uses the traditional criterion: a polynomial
map F :CN

7→ Hd(C
n) is a canonical form if a general p ∈ Hd(C

n) is in the range;
this occurs if and only if there is at least one point u ∈ CN so that {∂F/∂t j (u)}
spans Hd(C

n). (See Corollary 2.3.) This leads to immediate nonconstructive proofs
of Theorems 1.2, 1.5, 1.9 and 1.10, and a somewhat more complicated proof of
Theorem 2.4, which answers Wakeford’s question about missing monomials for
binary forms.

In Section 3, we discuss classical apolarity and its implications for canonical
forms. (Apolarity methods become more complicated when a component of a
canonical form comes from a restricted set of monomials.) A generalization of the
classical fundamental theorem of apolarity from [Reznick 1996] allows us to identify
a class of bases for Hd(C

n) which give a nonconstructive proof of Theorem 1.6, and
hence Theorem 1.1. A similar argument yields the proof of Theorem 1.8. We also
present Sylvester’s algorithm, Theorem 3.8, allowing for a constructive proof of
Theorem 1.1. We conclude with a brief summary of connections with the theorems
of Alexander and Hirschowitz and recent work on the rank of forms.

In Section 4 we discuss some special cases of Theorem 1.6. Sylvester’s algorithm
is used in constructive proof of Theorem 1.6 when ek ≡ 1, in which case the
representation is unique. We give some other constructive proofs for d ≤ 4, and
present numerical evidence regarding the number of representations in Corollary 1.7
and a few other cases. Using elementary number theory, we show that, for each r ,
there are only finitely many canonical forms (1-8) with m = 0, and, up to degree N ,
there are N +O(N 1/2) such canonical forms in which the ek are equal.

Section 5 discusses some familiar results on sums of two squares of binary forms
and canonical representations of quadratic forms as a sum of squares of linear forms.
This includes a constructive proof of Theorem 1.2, which provides the groundwork
for the proof of Theorem 1.4. We also give a short proof of a canonical form
which illustrates the classical result that a general ternary quartic is the sum of three
squares of quadratic forms.

In Section 6, we turn to forms in more than two variables and low degree,
give constructive proofs of Theorems 1.3 and 1.4, as well as the noncanonical
Theorem 6.2, which shows that every cubic in H3(C

n) is a sum of at most n(n+1)/2
cubes of linear forms. Theorem 1.3 can be “lifted” to an ungainly canonical form
for quartics as a sum of fourth powers (see Corollary 6.3), but not further to quintics.
Number theoretic considerations rule out a Reichstein-type canonical form for
quartics in 12 variables; see Proposition 6.4 for other instances of this phenomenon.
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In Section 7, we offer a preliminary discussion of canonical forms in which the
domain of a polynomial map F : CM

7→ Hd(C
n) is restricted to an N -dimensional

subspace of CM , of which Theorem 1.11 and Conjecture 1.12 are examples.

2. Basic definitions, and proofs of Theorems 1.2, 1.5, 1.9 and 1.10

Let I(n, d) denote the index set of monomials in Hd(C
n):

(2-1) I(n, d)=
{
(i1, . . . , in) : 0≤ ik ∈ Z,

∑
k

ik = d
}
.

Let x i
= x i1

1 · · · x
in
n and c(i) = d!/

(∏
ik !
)

denote the multinomial coefficient. If
p ∈ Hd(C

n), then we write

(2-2) p(x1, . . . , xn)=
∑

i∈I(n,d)

c(i)a(p; i)x i , a(p; i) ∈ C.

We say that two forms are distinct if they are nonproportional, and a set of forms
is honest if the forms are pairwise distinct. For later reference, recall Biermann’s
theorem; see [Reznick 1992a, p. 31].

Theorem 2.1 (Biermann’s theorem). If p ∈ Hd(C
n) and p 6= 0, then there exists

i ∈ I(n, d) so that p(i) 6= 0.

The easy verification of whether a formula is a canonical form for Hd(C
n) relies

on a crucial alternative. A self-contained accessible proof is in [Ehrenborg and Rota
1993, Theorem 2.4], for which Ehrenborg and Rota thank M. Artin and A. Mattuck.
For further discussion of the underlying algebraic geometry, see Section 9.5 in [Cox
et al. 2007].

Theorem 2.2. Suppose M ≥ N and F : CM
→ CN is a polynomial map; that is,

F(t1, . . . , tM)=
(

f1(t1, . . . , tM), . . . , fN (t1, . . . , tM)
)
,

where each f j ∈ C[t1, . . . , tM ]. Then either (i) or (ii) holds:

(i) The N polynomials { f j : 1≤ j ≤ N } are algebraically dependent and F(CM)

lies in some nontrivial variety {P = 0} in CN .

(ii) The N polynomials { f j : 1≤ j ≤ N } are algebraically independent and F(CM)

is dense in CN .

The second case occurs if and only there is a point u ∈CM at which the Jacobian
matrix [∂ fi/∂t j (u)] has full rank.

When M = N = N (n, d), we may interpret such an F as a map from CN to
Hd(C

n) by indexing I(n, d) as {i(k) : 1≤ k ≤ N } and making the interpretation in
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an abuse of notation that

(2-3) F(t; x)=
N∑

k=1

c(i(k)) fk(t1 . . . , tN )x i(k).

Definition. A canonical form for Hd(C
n) is any polynomial map F : CN (n,d)

7→

Hd(C
n) in which F satisfies Theorem 2.2(ii).

That is, F is a canonical form if and only if N = N (n, d) and, for a general
p ∈ Hd(C

n), there exists t ∈ CN so that p(x) = F(t; x). The significance of this
choice of N is that it is the smallest possible value. In the rare cases where F is
surjective, we say that the canonical form is universal.

By translating the definitions and using (2-1) and (2-3), we obtain an immediate
corollary of Theorem 2.2:

Corollary 2.3. The polynomial map F : CN
7→ Hd(C

n) is a canonical form if and
only if there exists u ∈ Cn so that {∂F/∂t j (u)} spans Hd(C

n).

We shall let J := J (F; u) denote the span of the forms {∂F/∂t j (u)}. In any par-
ticular case, the determination of whether J = Hd(C

n) amounts to the computation
of the determinant of an N (n, d)× N (n, d) matrix. As much as possible in this
paper, we give proofs which can be checked by hand, by making a judicious choice
of u and ordering of the monomials in Hd(C

n), showing sequentially that they all
lie in J .

Classically, the use of the term “canonical form” has been limited to cases in
which F(t; x) has a natural interpretation as a combination of forms in Hd(C

n),
such as a sum of powers of linear forms, or as a result of a linear change of variables.
It seems odd that canonical forms are perceived as rare, since a “general” polynomial
map from CN

7→ Hd(C
n) is a canonical form. (This is an observation which goes

back at least to [Richmond 1902].) For example, if { f j (x)} is a basis for Hd(C
n),

then

(2-4) F(t; x)=
N∑

j=1

t j f j (x)

should be (but usually isn’t) considered a canonical form. In particular, (2-2) with
f j (x)= c(i j )x i j is itself a canonical form.

The following computation will occur repeatedly. If es = d , then

(2-5) g =
∑

i j∈I(n,e)

t j x i j =⇒
∂gs

∂t j
= sx i j gs−1.

If g is specialized to be a monomial, then all these partials will also be monomials.
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Nonconstructive proof of Theorem 1.2. Given (1-4), let

lk(x)=
n∑

m=k

tk,m xm, F(x)=
n∑

k=1

l2
k (x).

Then ∂F/∂tk,m = 2xmlk . Set tk,m = δk,m , so that lk = xk and ∂F/∂tk,m = 2xk xm .
Since 1≤ k ≤ m ≤ n, all monomials from H2(C

n) appear in J . �

Nonconstructive proof of Theorem 1.5. Suppose

(2-6) p(x, y)= f 2(x, y)+ g3(x, y),

with

f (x, y)= t1x3
+ t2x2 y+ t3xy2

+ t4 y3, g(x, y)= t5x2
+ t6xy+ t7 y2.

Then, by (2-5), the partials with respect to the t j are

2x3 f, 2x2 y f, 2xy2 f, 2y3 f ; 3x2g2, 3xyg2, 3y2g2.

Upon specializing at f = x3, g = y2, these become

2x6, 2x5 y, 2x4 y2, 2x3 y3
; 3x2 y4, 3xy5 , 3y6.

It is then evident that J = H6(C
2). �

Nonconstructive proof of Theorem 1.9. Let L⊂I(n, d) consist of all n-tuples except
the permutations of (d, 0, . . . , 0) and (d − 1, 1, . . . , 0) and let X i =

∑n
j=1 αi j x j .

The assertion is that, with the
(
N (n, d)− n −

(n
2

))
+ n2
= N (n, d) parameters tl

and αi j ,

(2-7)
n∑

i=1

Xd
i +

∑
l∈L

tl X l1
1 · · · X

ln
n

is a canonical form. Evaluate the partials at the point where X i = xi and tl = 0:
they are dx j xd−1

i (for αi j ) and x l (for tl). Taking 1 ≤ i, j ≤ n and l ∈ L, we see
that J contains all monomials in Hd(C

n). �

As a special case (used later in Theorem 4.6), we obtain the familiar result
that, after appropriate linear changes of variable, a general binary quartic may
be written as x4

+ 6λx2 y2
+ y4. It is classically known (see [Elliott 1913, Sec-

tion 211]) that the choice of λ is not unique: in fact, after appropriate linear
changes of variable, x4

+ 6λx2 y2
+ y4 can be written as x4

+ 6µx2 y2
+ y4 for

µ ∈ {±λ,±(1− λ)/(1+ 3λ),±(1+ λ)/(1− 3λ)}.
Wakeford asserts that Theorem 1.9 is also true with xd−1

i x j replaced by xd−r
i xr

j
(evidently when r 6= d/2), but his proof seems sketchy. He also gives necessary
conditions for sets of n(n−1) monomials which may be omitted, and these are hard
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to follow as well. Below, we answer his question in the binary case: in the only
two excluded cases below, (2-8) has a square factor, and so cannot be canonical.

Theorem 2.4. Let B = (m1,m2, n1, n2) be four distinct integers in {0, . . . , d} so
that {m1,m2} 6= {0, 1}, {d−1, d}. Then, after an invertible linear change of variable,
a general binary form p of degree d can be written as

(2-8) p(x, y)= xd−n1 yn1 + xd−n2 yn2 +

∑
k /∈B

tk xd−k yk for some {tk} ⊂ C.

Proof. Writing (x, y) 7→ (α1x +α2 y, α3x +α4 y) := (X, Y ), we have

(2-9) F = Xd−n1Y n1 + Xd−n2Y n2 +

∑
k /∈B

tk Xd−kY k .

Evaluate the partials of (2-9) at (α1, α2, α3, α4) = (1, 0, 0, 1) (so X = x , Y = y)
and tk = 1 (note the difference with the previous proof, in which tk = 0). The d− 3
partials with respect to the tk are simply xd−k yk , k /∈B, so these are in J . Further,

(2-10)
∂F
∂α1
=

∑
j 6=m1,m2

(d − j)xd− j y j ,
∂F
∂α4
=

∑
j 6=m1,m2

j xd− j y j .

Since most monomials used in (2-10) are already in J , it follows that J also contains

(2-11) (d − n1)xd−n1 yn1 + (d − n2)xd−n2 yn2, n1xd−n1 yn1 + n2xd−n2 yn2,

and since (d − n1)n2 6= (d − n2)n1, (2-11) implies that xd−n j yn j ∈ J for j = 1, 2.
To this point, we have shown that J contains all monomials from Hd(C

2) except
for xd−m j ym j , where m1 < m2. The two remaining partial derivatives are

(2-12)
∂F
∂α2
=

∑
j 6=m1,m2

(d − j)xd− j−1 y j+1,
∂F
∂α3
=

∑
j 6=m1,m2

j xd− j+1 y j−1,

and so J contains as well the forms in (2-12) of the shape c1xd−m1 ym1+c2xd−m2 ym2 .
We need to distinguish a number of cases. If m1 = 0, m2 = d, then these forms
are yd , xd . If m1 = 0 and 2≤m2 ≤ d− 1, then these forms are (d−m2)xd−m2 ym2

and xd
+ (m2 + 1)xd−m2 ym2 , and similarly when 1 ≤ m1 ≤ d − 2 and m2 = d.

(Recall that we have excluded the cases (m1,m2)= (0, 1) and (d − 1, d)). In the
remaining cases, 1 ≤ m1 < m2 ≤ d − 1. If m2 = m1 + 1, then these forms are
(d − (m1− 1))xd−m1 ym1 and (m2+ 1)xd−m2 ym2 . Finally, if m2 > m1+ 1, then all
four terms appear, and the forms are

(2-13) (d −m1+ 1)xd−m1 ym1 + (d −m2+ 1)xd−m2 ym2,

(m1+ 1)xd−m1 ym1 + (m2+ 1)xd−m2 ym2 .

In each of the cases, linear combinations of the forms produce the missing mono-
mials, so J = Hd(C

2). �
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Remark. By writing p(x, y) =
∏

k(x + αk y), it follows from Theorem 1.9 that,
for a general set of d complex numbers αk , there exists a Möbius transformation T
so that

(2-14)
d∑

k=1

T (αk)= 0,
d∑

k=1

T
(

1
αk

)
= 0,

d∏
k=1

T (αk)= 1.

Nonconstructive proof of Theorem 1.10. Write (1-11) as F(x; t), where

q(x1, x2, x3)= t1x2
1 + t2x2

2 + t3x2
3 + t4x1x2+ t5x1x3+ t6x2x3,

lk(x1, x2, x3)= tk1x1+ tk2x2+ tk3x3.

Evaluate the partials at q = x1x2+ x1x3+ x2x3 and (l1, l2, l3)= (x1, x2, x3). Then
∂F/∂tkl = 4xl x3

k , so x4
i , x3

i x j ∈ J ; since ∂F/∂t1= 2x2
1q = 2x2

1(x1x2+x1x3+x2x3),
it follows that x2

1 x2x3 ∈ J . Similarly, by considering ∂F/∂t2 and ∂F/∂t3, it follows
that x1x2

2 x3, x1x2x2
3 are in J . Finally, ∂F/∂t4=2x1x2q=2x1x2(x1x2+x1x3+x2x3),

and so now x2
1 x2

2 ∈ J . Similarly, by considering ∂F/∂t5 and ∂F/∂t6, it follows that
x2

1 x2
3 , x2

2 x2
3 are also in J , and this accounts for all monomials in H4(C

3). �

Other applications of Corollary 2.3 to canonical forms can be found in [Ehrenborg
and Rota 1993], including interpretations of the older results in [Richmond 1902;
Turnbull 1960, pp. 265–269].

3. Apolarity and proofs of Theorems 1.1, 1.6 and 1.8

Using the notation of (2-1) and (2-2), for p, q ∈ Hd(C
n), define the following

bilinear form:

(3-1) [p, q] =
∑

i∈I(n,d)

c(i)a(p; i)a(q; i).

Recall two basic notations. For α ∈ Cn , define (α · )d ∈ Hd(C
n) by

(3-2) (α · )d(x)= (α · x)d =
( n∑

j=1

α j x j

)d

=

∑
i∈I(n,d)

c(i)αi x i .

Define the differential operator f (D) for f ∈ He(C
n) in the usual way by

(3-3) f (D)=
∑

i∈I(n,e)

c(i)a( f ; i)
(
∂

∂x1

)i1

· · ·

(
∂

∂xn

)in

.

It follows immediately that, for α ∈ Cn ,

(3-4) [p, (α · )d ] =
∑

i∈I(n,d)

c(i)a(p; i)αi
= p(α).
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If i 6= j ∈I(n, d), then ik > jk for some k, so Di x j
=0; otherwise Di x i

=
∏

k(ik)!=

d!/c(i). Suppose p, q ∈ Hd(C
n). Bilinearity and (3-3) imply the classical result

that

(3-5) p(D)q =
∑

i∈I(n,d)

c(i)a(p; i)Di
( ∑

j∈I(n,d)

c( j)a(q; j)x j
)

=

∑
i∈I(n,d)

∑
j∈I(n,d)

c(i)c( j)a(p; i)a(q; j)Di x j

=

∑
i∈I(n,d)

c(i)c(i)a(p; i)a(q; i)Di x i

=

∑
i∈I(n,d)

c(i)2a(p; i)a(q; i)
d!

c(i)
= d! [p, q] = d! [q, p] = q(D)p.

Definition. If p ∈ Hd(C
n) and q ∈ He(C

n), then p and q are apolar if p(D)q =
q(D)p = 0.

Note that, if d = e, then p and q are apolar if and only if [p, q] = 0, and, if
d > e, say, then the equation p(D)q = 0 is automatic, so only q(D)p = 0 need be
checked. By (3-4), p is apolar to (α · )d if and only if p(α)= 0.

The following lemma is both essential and trivial.

Lemma 3.1. Suppose X = span({h j })⊆ Hd(C
n). Then X = Hd(C

n) if and only if
there is no 0 6= p ∈ Hd(C

n) which is apolar to each of the h j .

From this point of view, Theorem 3.2 is a direct consequence of Corollary 2.3:

Theorem 3.2 (Lasker–Wakeford). If F :CN
→ Hd(C

n), then F is a canonical form
if and only if there is a point u so that there is no nonzero form q ∈ Hd(C

n) which
is apolar to all N forms {∂F/∂tk(u)}.

The attribution “Lasker–Wakeford” (for [Lasker 1904; Wakeford 1920]) is taken
from [Turnbull 1960]: H. W. Turnbull (1885–1961) was one of the last practicing
invariant theorists who had been trained in the pre-Hilbert approach; see [Fisher
1967, pp. 231–232]. (His text [Turnbull 1960] is a Rosetta Stone for understanding
the 19th century approach to algebra in more modern terminology.) Turnbull
referred to Theorem 3.2 as “paradoxical and very curious”. E. Lasker (1868–1941)
received his Ph.D. under M. Noether at Göttingen in 1902. He is probably better
known for being the world chess champion for 27 years (1894–1921), spanning the
life of E. K. Wakeford (1894–1916). J. H. Grace, Wakeford’s professor at Oxford,
edited the second half of his thesis into [Wakeford 1920] and also wrote a memorial
article [Grace 1918] for him in 1918:

“He [EKW] was slightly wounded early in 1916, and soon after coming
home was busy again with Canonical Forms. . . [H]e discovered a paper
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of Hilbert’s which contained the very theorem he had long been in want
of — first vaguely, and later quite definitely. This was in March; April
found him, full of the most joyous and reverential admiration for the great
German master, working away in fearful haste to finish the dissertation. . .
He returned to the front in June and was killed in July. . . He only needed
a chance, and he never got it.”

The following properties are easily established; see, e.g., [Reznick 1992a; 1996]
for proofs.

Theorem 3.3. (i) If e≤ d and f ∈ He(C
n), g ∈ Hd−e(C

n) and p ∈ Hd(C
n), then

(3-6) d! [ f g, p] = ( f g)(D)p = f (D)g(D)p = e! [ f, g(D)p].

Thus, p is apolar to every multiple of g in Hd(C
n) if and only if p and g are

apolar.

(ii) If p ∈ Hd(C
n), then (1/d)∂p/∂x j (α) = [p, x j (α · )

d−1
]. Thus, p is apolar

to (α · )d−1 if and only if p is singular at α. More generally, p is apolar to
(α · )d−e if and only if p vanishes to e-th order at α.

(iii) If e ≤ d and g ∈ Hd−e(C
n), then g(D)(α · )d = (d!/e!)g(α)(α · )e.

Suppose F(t; x) contains hs as a summand, where h(x) =
∑

l∈I(n,e) tl x l , and
suppose that no tl occurs elsewhere in F(t; x). If p is apolar to each partial of F ,
then it will be apolar to ∂F/∂tl = sx lhs−1 by (2-5). Since this is true for every
l ∈ I(n, e), it follows from (i) that p is apolar to hs−1. It is critical to note that this
observation requires that each of the monomials of degree e appear in h, and does
not apply if h is defined as a sum from a restricted set of monomials.

We are now able to give a short proof of the “second main theorem on apolarity”
from [Ehrenborg and Rota 1993], which was not concerned with preserving the
constant count.

Theorem 3.4. Suppose jl = ( jl,1, . . . , jl,m), 1≤ l ≤ r , are m-tuples of nonnegative
integers, and suppose positive integers dk , 1≤ k ≤ m, and d are chosen so that

(3-7) ul := d −
m∑

k=1

jl,kdk ≥ 0

for each l. Fix forms ql ∈ Hul (C
n) and, for fk ∈ Hdk (C

n), define

(3-8) F( f1, . . . , fm)=

r∑
l=1

ql(x) f jl,1
1 · · · f jl,m

m .

Let F j := ∂F/∂ f j . Then a general p ∈ Hd(C
n) can be written as (3-8) if and

only if there exists a specific f̄ = ( f̄k) so that no nonzero p ∈ Hd(C
n) is apolar to
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each F j ( f̄ ), 1≤ j ≤ m. If , in addition,

(3-9)
m∑

k=1

N (n, dk)= N (n, d),

then (3-8) is a canonical form.

Proof. Let

(3-10) f j (x)=
∑

iv∈I(n,d j )

t j,vx iv .

By Theorem 2.2, (3-7) and Lemma 3.1, (3-8) represents general p ∈ Hd(C
n) if and

only if there is some f̄ so that there is no nonzero form in p ∈ Hd(C
n) which is

apolar to each ∂F/∂t j,v( f̄ ) = dk x iv F j ( f̄ ), or, by Theorem 3.3(i), to each F j ( f̄ ).
The constant count is checked by (3-9). �

By Theorem 3.3(ii) and Theorem 3.4,

F =
r∑

k=1

(αk · )
d

is a canonical form if and only if there exist r points ᾱk ∈ Cn at which no nonzero
form p ∈ Hd(C

n) is singular. This result is classical, and goes back to [Clebsch
1861]; see also [Ehrenborg and Rota 1993, Theorem 4.2]. A particularly deep
result of Alexander and Hirschowitz [1995] states that a general form in Hd(C

n),
d ≥ 3, may be written as a sum of dN (n, d)/ne d-th powers of linear forms, except
when (n, d) = (5, 3), (3, 4), (4, 4), (5, 4), when an extra summand is needed.
(For much more on this, see [Geramita 1996, Lecture 7; Iarrobino and Kanev
1999, Corollary 1.62; Landsberg 2012, Chapter 15; Ranestad and Schreyer 2000,
Theorem 0.2]; for a brief exposition of the proof, see [Landsberg 2012, Chapter 15].)
These references also discuss the exceptional examples, which were all known in
the 19th century. The expression of forms as a sum of powers of forms is currently
a very active area of interest; see the references above as well as [Carlini et al. 2012;
Fröberg et al. 2012; Landsberg and Teitler 2010].

The fundamental theorem of apolarity (see [Reznick 1996] for a history) states
that, if f is irreducible and p ∈ Hd(C

n), then f and p are apolar if and only if p
can be written as a sum of terms of the form (α j · )

d , where f (α j )= 0. This was
generalized as follows:

Theorem 3.5 [Reznick 1996, Theorem 4.1]. Suppose q ∈ He(C
n) factors as∏r

j=1 qm j
j into a product of powers of distinct irreducible factors and suppose

p ∈ Hd(C
n). Then q(D)p = 0 if and only if there exist α jk ⊂ {q j (α) = 0} and

φ jk ∈ Hm j−1(C
n) such that

p =
r∑

j=1

n j∑
k=1

φ jk(α jk · )
d−(m j−1).
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The application of apolarity to binary forms is particularly simple, because zeros
correspond to factors. If e = d+ 1, then q(D)p = 0 for every p ∈ Hd(C

n), and we
obtain the following result, also found in [Ehrenborg and Rota 1993, Theorem 4.5].

Corollary 3.6. Suppose {α j x+β j y : 1≤ j ≤ r} is honest and suppose
∑r

j=1 m j =

d + 1. Then the following set is a basis for Hd(C
2):

(3-11) S=
{

xk ym j−1−k(β j x −α j y)d−m j+1
: 0≤ k ≤ m j − 1, 1≤ m j ≤ r

}
.

Proof. If p is apolar to each term in (3-11), then (α j x+β j y)m j | p by Theorem 3.3(ii).
Thus p = 0 by degree considerations, and S has d + 1 elements, so it is a basis. �

If each m j = 1, then Corollary 3.6 states that an honest set S= {(α j x +β j y)d}
of d + 1 forms is a basis for Hd(C

2). This is easily proved directly, since the repre-
sentation of S with respect to the basis

{(d
j

)
xd− j y j

}
, [αd−k

j βk
j ], has Vandermonde

determinant

(3-12)
∏

1≤i< j≤n

(αiβ j −α jβi ).

Each product in (3-12) is nonzero because {(α j x+β j y)d} is honest. One implication
of this independence is found in [Reznick 2013, Corollary 4.3].

Lemma 3.7. If p(x, y) ∈ Hd(C
2) has two honest representations

(3-13) p(x, y)=
m∑

i=1

(αi x +βi y)d =
n∑

j=1

(γ j x + δ j y)d

and m+ n ≤ d + 1, then the representations are permutations of each other.

Proof. If (3-13) holds, then {(αi x + βi y)d , (γ j x + δ j y)d} is linearly dependent,
which is impossible unless the dependence is trivial. �

It follows immediately from Lemma 3.7 that the representations (1-2) and (1-3),
if they exist for p, are unique. When n ≥ 3, the linear dependence of a set {(α j · )

d
}

depends on the geometry of the points as well as the number (see the discussion
of Serret’s theorem in [Reznick 1992a, p. 29].) Even for powers of binary forms
of degree e ≥ 2, there are singular cases. It is not hard to show that a general set
of (2k + 1) k-th powers of quadratic forms is linearly independent; however, for
example, (x2

− y2)2+ (2xy)2 = (x2
+ y2)2. For much more on this, see [Reznick

≥ 2013].

Nonconstructive proof of Theorem 1.6. For 1≤ k ≤ r , write

fk(x, y)=
ek∑

l=0

tk,l xek−l yl .



200 BRUCE REZNICK

By Corollary 2.3 and (2-5), (1-8) is a canonical form in the variables {t j , tk,l}
provided there is a point at which the partials

{ld
j , 1≤ j ≤ m} ∪

{
xek−l yl f d/ek−1

k , 1≤ l ≤ ek, 1≤ k ≤ r
}

span Hd(C
2). Let fk = l̃ek

k , where {l1, . . . , lm, l̃1, . . . , l̃r } is chosen to be honest.
Then, by (1-7), the desired assertion follows immediately from Corollary 3.6. �

Nonconstructive proof of Theorem 1.8. Write uv+ 1= r(u+ 1)+ s. If s = 0, then
Theorem 1.8 is simply a special case of Theorem 1.6 with m = 0, d = uv and
ek ≡ u. Otherwise, 1≤ s ≤ u, so that r + 1= d(uv+ 1)/(u+ 1)e. Let

F({αi j })=

r+1∑
i=1

f vi (x, y), fi (x, y)=
u∑

j=0

αi j xu− j y j .

This is not a canonical form, as there are too many constants. As before,

∂F
∂αi j
= vxu− j y j f v−1

i .

We now specialize to fi (x, y)= (i x − y)u and use the apolarity argument to show
that J = Huv(C

2). Suppose q ∈ Huv(C
2) is apolar to each partial. Then, by

Theorem 3.3, it is apolar to f v−1
i = (i x − y)uv−u , and so q vanishes to u-th order

at (i,−1) for 1≤ i ≤ r +1. It follows that q is a multiple of
∏r+1

i=1 (x+ iy)u+1, and
so q = 0 by degree considerations.

It is an exercise to show that F can be converted to an canonical form by requiring,
say, that fr+1 only contain monomials xu− jv j for 0≤ j ≤ s− 1. �

We present now Sylvester’s algorithm. For modern discussions of this, along
with Gundelfinger’s generalization [1887], which is not included here, see [Kung
and Rota 1984, Section 5; Kung 1986; 1987; 1990; Reznick 1996; 2013].

Theorem 3.8 (Sylvester’s algorithm). Let

p(x, y)=
d∑

j=0

(
d
j

)
a j xd− j y j

be a given binary form and suppose {α j x +β j y} is honest. Let

h(x, y)=
r∑

t=0

ct xr−t yt
=

r∏
j=1

(β j x −α j y).

Then there exist λk ∈ C so that

p(x, y)=
r∑

k=1

λk(αk x +βk y)d
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if and only if

(3-14)


a0 a1 · · · ar

a1 a2 · · · ar+1
...

...
. . .

...

ad−r ad−r+1 · · · ad

 ·


c0

c1
...

cr

=


0
0
...

0

 .
Theorem 3.8 can be put in the context of our previous discussion. Let Ar (p)

denote the (d − r + 1)× (r + 1) Hankel matrix on the left-hand side of (3-14). If
h(D)=

∏r
j=1(β j∂/∂x −α j∂/∂y), then a direct computation shows that

(3-15) h(D)p =
d−r∑
m=0

d!
(d − r −m)!m!

( d−r∑
i=0

ai+mci

)
xd−r−m ym .

It follows from (3-15) that the coefficients of h(D)p are thus, up to multiple,
the rows of the matrix product, so (3-14) is equivalent to h(D)p = 0. In this
way, Theorem 3.8 follows from Theorem 3.5. Sylvester’s algorithm can also be
visualized as seeking constant-coefficient linear recurrences satisfied by {ak} and
looking for the shortest one whose characteristic equation has distinct roots; this is
the proof given in [Reznick 2013]. In this case, Gundelfinger’s results handle the
case when the roots are not distinct.

Constructive proof of Theorem 1.1. Suppose d = 2s− 1 is odd. The matrix As(p)
is s× (s+ 1) and has a nontrivial null-vector. The corresponding h (which can be
given in terms of the coefficients of p) has distinct factors unless its discriminant
vanishes. Thus, for general p ∈ H2s−1(C

2), Theorem 3.8 gives p as a sum of s
(2s− 1)-st powers of linear forms.

If d = 2s, the matrix As(p) is square, and if p is a sum of s 2s-th powers,
then det As(p) = 0. Conversely, if det As(p) = 0 and the corresponding h has
distinct factors (which is generally true), then p is a sum of s 2s-th powers. If M1

and M2 are two square matrices and rank(M2) = k, then det(M1 + λM2) is a
polynomial in λ of degree k. In particular, if q = (αx+βy)2s , then rank(Hs(q))= 1.
Thus, in general, there is a unique value of λ and some matrix M so that 0 =
det As(p−λ(αx+βy)2s)=det As(p)−λ det M . (When αx+βy= x , M is the (1, 1)-
cofactor of As(p).) In the special case αx +βy = x , this proves Theorem 1.1(ii).
The same argument shows that, for general q ∈ H2s(C

2), there exist s+ 1 values
of λ so that p− λq is a sum of s 2s-th powers. �

Sylvester [1870] recalled his discovery of this algorithm and its consequences.

“I discovered and developed the whole theory of canonical binary forms
for odd degrees, and, as far as yet made out, for even degrees too, at one
evening sitting, with a decanter of port wine to sustain nature’s flagging
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energies, in a back office in Lincoln’s Inn Fields. The work was done,
and well done, but at the usual cost of racking thought — a brain on fire,
and feet feeling, or feelingless, as if plunged in an ice-pail. That night we
slept no more.”

Example 3.1. This example of Sylvester’s algorithm will be used in Example 4.1.
Let

p(x, y)= 2x3
+ 3x2 y− 21xy2

− 41y3

=
(3

0

)
· 2 x3

+
(3

1

)
· 1 x2 y+

(3
2

)
· (−7) xy2

+
(3

3

)
· (−41) y3.

Since (
2 1 −7
1 −7 −41

)
·

(
6
−5

1

)
=

(
0
0
0

)
,

we have h(x, y) = 6x2
− 5xy + y2

= (2x − y)(3x − y). It now follows that
p(x, y)= λ1(x+2y)3+λ2(x+3y)3, and a simple computation shows that λ1 = 5,
λ2 =−3.

Lemma 3.1, when applied to Theorem 2.1, yields the following corollary.

Corollary 3.9. A basis for Hd(C
n) is given by {(i · )d : i ∈ I(n, d)}.

This in turn gives a very weak version of the Alexander–Hirschowitz theorem:

Corollary 3.10. A general form in Hd(C
n) is a sum of

N (n, d − 1)=
nd

n+ d − 1
·

1
n

N (n, d)

d-th powers of linear forms.

Proof. Consider the sum

N (n,d−1)∑
l=1

(tl,1x1+ · · ·+ tl,nxn)
d ,

and apply Corollary 2.3 with tl specialized to il ∈ I(n, d − 1). Then J contains
xk(il · )

d−1 for each k, l and hence xk Hd−1(C
n)⊆ J for each k, so J = Hd(C

n). �

4. Examples of binary canonical forms and the proof of Theorem 1.6

This section is devoted to special cases of Theorem 1.6. First, in the special case
ek = 1, we give a constructive proof showing uniqueness, which gives a kind of
interpolation between Sylvester’s theorem and the representations of Hd(C

2) by
(2-4) with a fixed basis consisting of d-th powers, as in Corollary 3.6.
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Corollary 4.1. Suppose d ≥ 1, and {l j (x, y)= α j x +β j y} is a fixed honest set of
m = d + 1− 2r linear forms. Then a general binary d-ic form p ∈ Hd(C

2) can be
written uniquely as

(4-1) p(x, y)=
m∑

j=1

t j l j (x, y)d +
r∑

k=1

(tk1x + tk2 y)d

for suitable tk1, tk2 ∈ C.

Proof. Let

f (x, y)=
m∏

j=1

(β j x −α j y).

Then f (D)p has degree d−m = 2r−1 and by Theorem 3.8 generally has a unique
representation as a sum of r (2r − 1)-st powers of linear forms, say

(4-2) f (D)p =
r∑

k=1

(uk1x + uk2 y)2r−1.

Further, it is generally true that f (uk1, uk2) 6= 0. Let

(4-3) q(x, y)=
(2r − 1)!

d!

r∑
k=1

(uk1x + uk2 y)d

f (uk1, uk2)
.

It follows from Theorem 3.3(iii), (4-2) and (4-3) that f (D)p = f (D)q. Since f
has distinct factors, it then follows from Theorem 3.8 that there exist t j ∈ C so that

p(x, y)− q(x, y)=
m∑

j=1

t j (α j x +β j y)d .

Conversely, suppose p has two different representations:

(4-4)
m∑

j=1

t j ld
j (x, y)+

r∑
k=1

(tk1x + tk2 y)d =
m∑

j=1

t̃ j ld
j (x, y)+

r∑
k=1

(t̃k1x + t̃k2 y)d .

By combining the first sum on each side, (4-4) becomes a linear dependence
with m + 2r = d + 1 summands, which by Lemma 3.7 must be trivial; thus, the
representations in (4-4) are essentially the same. �

Example 4.1. Let l1(x, y)= x + y and l2(x, y)=−x + 3y and let

p(x, y)=−x5
+ 15x4 y− 170x3 y2

+ 390x2 y3
− 505x2 y3

+ 483y5.

In an application of the last proof, f (x, y) = (x − y)(3x + y) = 3x2
− 2xy− y2,
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and

3
∂2 p
∂x2 − 2

∂2 p
∂x∂y

−
∂2 p
∂y2 = 160x3

+ 240x2 y− 1680xy2
− 3280y3.

Example 3.1 implies that this expression equals 400(x+2y)3−240(x+3y)3. Since
f (1, 2)=−5 and f (1, 3)=−12, it follows that

p(x, y)=
3! ·400

5! ·(−5)
(x+2y)5+

3! ·(−240)
5! ·(−12)

(x+3y)5+ t1(x+ y)5+ t2(−x+3y)5

=−4(x+2y)5+(x+3y)5+ t1(x+ y)5+ t2(−x+3y)5

and it can be readily be computed that t1 = 7
2 and t2 = 3

2 .

If each ek = 2 in Theorem 1.6 and m is as small as possible, then we obtain an
analogue of Sylvester’s theorem for forms of even degree.

Corollary 4.2. (i) A general binary form of degree d = 6s can be written as

(4-5) λx6s
+

2s∑
j=1

(α j x2
+β j xy+ γ j y2)3s for some λ ∈ C.

(ii) A general binary form of degree d = 6s+ 2 can be written as

(4-6)
2s+1∑
j=1

(α j x2
+β j xy+ γ j y2)3s+1.

(iii) A general binary form of degree d = 6s+ 4 can be written as

(4-7) λ1x6s+4
+ λ2 y6s+4

+

2s+1∑
j=1

(α j x2
+β j xy+ γ j y2)3s+2 for some λi ∈ C.

We have not been able to find an analogue to Sylvester’s algorithm for determining
the representations (4-5), (4-6), (4-7) in Corollary 4.2. In the linear case, (αx+βy)d

is killed by β∂/∂x −α∂/∂y, and two operators of this shape commute. Although
each (αx2

+2βxy+γ y2)d is killed by the nonconstant-coefficient (βx+γ y)∂/∂x−
(αx +βy)∂/∂y, two operators of this kind do not usually commute. The smallest
constant-coefficient differential operator which kills (αx2

+ 2βxy + γ y2)d has
degree d + 1; the product of any two of these would kill every form of degree 2d
and so provide no information.

Let us say that (1-8) is a neat canonical form if m = 0, and of Sylvester-type if it
is neat and if ek = e for 1≤ k ≤ r . Counting the numbers of neat and Sylvester-type
canonical forms leads to some number theory. The first lemma is standard.

Lemma 4.3. Given 0 < p/q ∈ Q and 0 < n ∈ N, there exist only finitely many
choices of m j ∈ Z, 0< m1 ≤ m2 · · · ≤ mn , such that p/q =

∑n
j=1 1/m j .
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Proof. If n = 2, then p/q > 1/m1 ≥ p/(2q) implies that there are finitely many
integral choices for m1, each of which determines m2= (p/q−1/m1)

−1. Supposing
the lemma valid for n− 1, we have p/q > 1/m1 ≥ p/(nq), and each choice of m1

implies the equation p/q − 1/m1 =
∑n

j=2 1/m j . This has finitely many solutions
by the induction hypothesis. �

Theorem 4.4. For a fixed value of r , there are only finitely many neat canonical
forms (1-8) with r summands.

Proof. Suppose m = 0 in Theorem 1.6. Write d = ekmk ; then, by (1-7),

d + 1=
r∑

k=1

(
d

mk
+ 1

)
,

which implies

(4-8) 1=
r∑

k=1

1
mk
+

r − 1
d
=

r∑
k=1

1
mk
+

r−1∑
l=1

1
d
.

Now apply Lemma 4.3 with p/q = 1 and n = 2r − 1: there are only finitely many
expressions of 1 as a sum of 2r − 1 unit fractions, of which only a subset satisfy
the additional restrictions of (4-8). �

It is not hard to work out that, for r = 2, there are three neat canonical forms:
(d, e1, e2)= (3, 1, 1), (4, 2, 1) and (6, 3, 2). The first is Theorem 1.1(i) with d = 3,
the second is Corollary 1.7 with d = 4 (see Theorem 4.6 below), and the third is
Theorem 1.5. When r = 3, there are twenty-two neat canonical forms.

Let s(d) denote the number of neat Sylvester-type canonical forms of degree d .
Suppose ek = e for all k in one of these. Then e | d and, by (1-7), r(e+ 1)= d+ 1,
so (e+1) | (d+1). Since d ≡ 0 (mod e) and d ≡−1 (mod (e+1)), it follows from
the Chinese remainder theorem that d ≡ e (mod e(e+1)); that is, d = e+ue(e+1),
u ≥ 1, so that e <

√
d .

Theorem 4.5. Let S(N ) :=
∑N

d=1 s(d). Then S(N )= N+O(N 1/2), supd s(d)=∞.

Proof. The generating function for the sequence (s(d)) is

(4-9)
∞∑

n=1

s(d)xd
=

∞∑
e=1

∞∑
u=1

xe+ue(e+1)
=

∞∑
e=1

xe2
+2e

1− xe2+e
=

∞∑
N=e

⌊
N − e
e2+ e

⌋
X N .

Let T = bN 1/2
c. It follows from (4-9) that

(4-10) S(N )=
N∑

n=1

sn =

∞∑
e=1

⌊
N − e
e2+ e

⌋
=

T∑
e=1

⌊
N − e
e2+ e

⌋
.
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Thus, using the telescoping sum for
∑ 1

e(e+1)
, (4-10) implies that

(4-11) S(N )≤
T∑

e=1

N − e
e2+ e

= N
T∑

e=1

1
e2+ e

−

T∑
e=1

1
e+ 1

≤ N
(

1−
1

T + 1

)
− log T +O(1)= N − N 1/2

+O(log N ).

The lower bound is the same, minus T , so (4-11) implies that S(N )= N+O(N 1/2).
Now, s(d) counts the number of e< d so that e divides d and e+1 divides d+1.

If d=2r
−1, then e+1 |2r implies that e+1=2t for some t < r . But 2t

−1 |2r
−1 if

and only if t | r ; hence s(2r
−1)= d(r)−1, where d(n) denotes the divisor function.

In particular, s(22t
− 1)= t , so the sequence (s(d)) is unbounded. More generally,

if e | d and e+ 1 | d + 1, then e | d2
+ 2d and e+ 1 | d2

+ 2d + 1, and since e = d
contributes to the count in s(d2

+ 2d) but not in s(d), s(d2
+ 2d)≥ s(d)+ 1. �

Half of the neat Sylvester forms come from Theorem 1.1(i), another sixth come
from Corollary 4.2(ii), etc. The smallest d for which s(d)= 2 is d = 15: (e, r)=
(1, 8), (3, 4), so a general binary form of degree 15 is a sum of eight linear forms
to the 15th power, or four cubics to the 5th power. Mathematica computations show
that the smallest d for which s(d)= 3 is d = 99: (e, r)= (1, 50), (3, 25), (9, 10).
For d < 107, the largest value of s(d) is s(7316000) = 12. Note that 2213

− 1 =
24096

− 1 ≈ 1.04× 101233, so the examples given in the proof are not likely to
describe the fastest growth. We conjecture as well that {s(d)} has an underlying
distribution.

If the degree d is prime, then Corollary 4.1 accounts for all canonical forms in
Theorem 1.6. The smallest d which is not covered by Corollary 4.1 is then d = 4,
and there are two such cases, one of which is neat: e1= 2, e2= 1, m = 0 and e1= 2,
m = 2. Both can be discussed constructively.

Theorem 4.6. A general binary quartic p ∈ H4(C
2) can be written as

(4-12) p(x, y)= (t1x2
+ t2xy+ t3 y2)2+ (t4x + t5 y)4

in six different ways. Further, the set of possible values for {t5/t4} is the image of
the set {0,∞, 1,−1, i,−i} under a Möbius transformation.

Proof. By Theorem 2.4, if p is a general binary quartic, then there exist ci , λ so that
p(c1x + c2 y, c3x + c4 y) = pλ(x, y) := x4

+ 6λx2 y2
+ y4. If (4-12) holds for pλ,

then

(4-13)
1= t2

1 + t4
4 , 0= 2t1t2+ 4t3

4 t5, 6λ= 2t1t3+ t2
2 + 6t2

4 t2
5 ,

0= 2t2t3+ 4t4t3
5 , 1= t2

3 + t4
5 .
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First suppose that t4 = 0. Then (4-13) implies that 1= t2
1 and 0= 2t1t2, so t1 = 1

(without loss of generality) and t2 = 0. The remaining equations imply that t3 = 3λ
and t4

5 = 1− 9λ2. A similar argument works if t5 = 0, giving two representations:

(4-14) pλ(x, y)= (x2
+ 3λy2)2+ (1− 9λ2)y4

= (3λx2
+ y2)2+ (1− 9λ2)x4.

Now suppose t4t5 6= 0, so t1t2t3 6= 0 and we get successively

t3
t1
=
−2t2t3
−2t1t2

=
4t4t3

5

4t3
4 t5
=

t2
5

t2
4
=⇒

1− t2
3

1− t2
1
=

t4
5

t4
4
=

t2
3

t2
1
=⇒ t2

1 = t2
3 .

It follows that t5 = ik t4 and t3 = (−1)k t1, and (4-13) can be completely solved:

t4
4 = 1− t2

1 , t2 = 2ik(t1− t−1
1 ), 2+ 6(−1)kλ= 4t−2

1 .

After some massaging of the algebra, this gives four representations:

(4-15) pλ(x, y)=
(

(−1)k2
3λ+ (−1)k

)(
x2
− i3k(3λ− (−1)k)xy+ (−1)k y2)2

+

(
3λ− (−1)k

3λ+ (−1)k

)
(x + ik y)4, k = 0, 1, 2, 3.

In order to find the six representations of p as (4-12), we start with the six rep-
resentations of pλ given in (4-14) and (4-15), in which t4x + t5 y is a multiple
of one of the six linear forms x , y, x + ik y. Apply the inverse of the map
(x, y) 7→ (c1x+c2 y, c3x+c4 y), which takes t4x+t5 y to a multiple of t4(c4x−c2 y)+
t5(−c3x + c1 y): t5/t4 7→ G(t5/t4), where G(z)= (c1z− c2)/(c4− c3z). �

Theorem 4.7. Given two fixed nonproportional binary linear forms l1, l2, a general
binary quartic in H4(C

2) has two representations as

(4-16) p(x, y)= (t1x2
+ t2xy+ t3 y2)2+ t4l1(x, y)4+ t5l2(x, y)4.

Proof. Given p, l1, l2, make an invertible linear change of variable taking (l1, l2) 7→

(x, y), and suppose p(x, y) 7→ q(x, y)=
∑

i ai x4−i yi . Then q has the shape (4-16)
if and only if the coefficients of x3 y, x2 y2, xy3 in (t1x2

+ t2xy+ t3 y2)2 and q agree.
Thus, we seek to solve the system

(4-17) a1 = 2t1t2, a2 = 2t1t3+ t2
2 , a3 = 2t2t3.

But (4-17) implies a1t2
2 − 2a2t1t2+ 2a3t2

1 = 0; hence, in general, there are exactly
two values of β so that t2 = βt1; in each case, t2

1 = a1/(2β). The two choices of
sign for t1 lead to the same square, and t3 = (a1/a3)t1, so (4-17) has these two
solutions. �

In the case of Theorem 1.6 let F(d; e1, . . . , er ) denote the number of different rep-
resentations that a general p∈ Hd(C

2) has, by our convention. We present in Table 1
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d e1, . . . , er m F(d; e) Source

any 1b(d+1)/2c 0 or 1 1 Theorem 1.1
any 1r d + 1− 2r 1 Corollary 4.1
4 2, 1 0 6 Theorem 4.6
4 2 2 2 Theorem 4.7
6 3, 2 0 40 [Várilly-Alvarado 2008; 2011]
6 2, 12 0 22 Experiment
6 3, 1 1 14 Experiment
6 22 1 9 Experiment
6 2, 1 2 12 Experiment
6 3 3 5 Experiment
6 2 4 5 Experiment
8 2, 13 0 62 Experiment

10 2, 14 0 147 Experiment
12 2, 15 0 308 Experiment
2s 2, 1s−1 0 2

(s+3
5

)
+
(s+2

3

)
Conjecture

Table 1. Proved and conjectural values of F(d; e).

a complete list of proved or conjectural values when d ≤ 6, reflecting numerical
experiments on Mathematica. (Recall that, if d is prime, then Corollary 4.1 presents
all possible canonical forms of this type.) The conjectural value of F(2s; 2, 1s−1)

is suggested by the given data for 2≤ s ≤ 6 and [OEIS 2013, A081282].
Várilly-Alvarado [2008; 2011] constructs explicitly all 240 representations of

x6
+ y6 as f 2

+ g3; he considers forms multiplied by roots of unity as different,
which explains the appearance of 240/(2 · 3) in the table above. This is also proved
to be the number of representations for a general sextic.

To describe the experiments for F(2s; 2, 1s−1) more precisely, we generate a
form

p(x, y)=
2s∑

k=0

(
2s
k

)
ak x2s−k yk,

where ak = t+iu for random integers t , u in [−100, 100]. In case s= 1, we assume
a change of variables so that the fixed linear forms are xd or yd ; for s ≥ 2 we choose
additional linear forms with random coefficients. Let h(x, y)=U x2

+V xy+W y2

for variables (U, V,W ) and let q(x, y)= p(x, y)−hs(x, y), and apply Sylvester’s
algorithm to q . That is, we construct the (s+2)×s matrix As−1(q), with polynomial
entries in (U, V,W ) of degree s and require that it have rank less than s. This is
done by counting the number of (U, V,W ) which are common zeros of all s× s
minors. This number is divided by s to account for hs

= (ζ k
s h)s . As a back of
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the envelope calculation, one might take the first s− 1 rows of As−1 and use the
cofactors to compute a nontrivial null-vector. Ignoring possible cancellation, the
components would be polynomials of degree s(s − 1) in (U, V,W ). Taking the
dot product with the last three rows of As−1 gives three polynomials of degree s2.
Ignoring cancellations and multiplicity, there should be (s2)3 common zeros, and
dividing by s gives an upper bound for F(2s; 2, 1s−1) of s5. The conjectural value
is asymptotically 1

60 s5, which shows the same order of growth.

5. Quadratic forms and the proof of Theorem 1.2

We begin this section with a constructive proof of Theorem 1.2 which will serve as
a template for constructive proofs involving cubic forms.

Constructive Proof of Theorem 1.2. Suppose p ∈ H2(C
n), and, specifically,

p(x1, . . . , xn)=

n∑
i=1

ai i x2
i + 2

∑
1≤i< j≤n

ai j xi x j .

Then ∂p/∂x1 = 2
∑n

j=1 a1 j x j . Since a11 6= 0 in general, we can define

q(x1, . . . , xn)= p(x1, . . . , xn)−
1

a11

( n∑
j=1

a1 j x j

)2

.

Observe that ∂q/∂x1 = 0, so q = q(x2, . . . , xn). Iterating this argument gives the
construction. There is only one linear form ±l so that ∂p/∂x1 = 2l∂l/∂x1, so the
representation is unique. �

Constant-counting for sums of squares is complicated by the action of the or-
thogonal group on a sum of t squares. If M ∈Matt(C) and M M t

= I , then

t∑
i=1

f 2
i =

t∑
i=1

( t∑
j=1

mi j f j

)2

.

When t = 2, choose θ ∈ C and let eiθ
= cos θ + i sin θ := (u, v), so that

(5-1) f 2
+ g2
= (u f − vg)2+ (v f + ug)2.

This means that we may safely remove one monomial from one of the summands.

Theorem 5.1. A general binary form p ∈ H2s(C
2) can be written as

(5-2)
( s∑

k=0

tk x s−k yk
)2

+

( s∑
k=1

ts+k x s−k yk
)2

in
(2s−1

s

)
different ways.
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Proof. The nonconstructive proof is a simple application of Corollary 2.3. Writ-
ing (5-2) as f 2

+ g2 gives the partials with respect to the t j as

{2x s−k yk f, 0≤ k ≤ s} ∪ {2x s−k yk g, 1≤ k ≤ s};

specializing to f = x s and g = ys above gives all monomials in H2s(C
2).

The more obvious expression

(5-3) p(x, y)= f 2(x, y)+ g2(x, y), g, h ∈ Hs(C
2)

is not a canonical form, because 2(s + 1) > 2s + 1. However, every sum of two
squares can be formally factored, and these behave nicely with respect to (5-1):

f 2
+ g2
= ( f + ig)( f − ig) ⇐⇒

(u f + vg)2+ (v f − ug)2 =
(
eiθ ( f + ig)

)(
e−iθ ( f − ig)

)
.

Suppose p(1, 0)= a0 6= 0 (true for general p) and (5-3) holds, where f (1, 0)= ρ
and g(1, 0)= τ . Then ρ2

+ τ 2
= a0, so that τ/ρ 6= ±i and the coefficient of x s in

v f +ug will be vρ+uτ = sin θρ+cos θτ , which is zero exactly when tan θ =−τ/ρ.
Thus, for precisely one value of tan θ , the right-hand side of (5-1) will be in the
form (5-2). This determines a pair (±u,±v); however, the squares in (5-2) will be
the same.

In other words, each distinct factorization of p (up to multiple) as a product of
two s-ic forms, when combined with the orthogonal action of (5-1), yields exactly
one representation as (5-2). A general p ∈ H2s(C

2) is a product of 2s distinct linear
factors; these can be organized into an unordered pair of products of s distinct linear
factors in 1

2

(2s
s

)
=
(2s−1

s

)
ways. �

The “lost” degree of freedom in a sum of squares never arises in Theorem 1.6
because 2(d/2+ 1) > d + 1. The missing monomial x s in the second summand
of (5-2) may be replaced by any specified monomial x s−k0 yk0 by a similar argument.

Another classical result is that a general ternary quartic is a sum of three squares
of quadratic forms, generally in 63 different ways up to the action of the orthog-
onal group (see [Powers et al. 2004]). Hilbert [1888] proved that every positive
semidefinite p ∈ H4(R

3) is a sum of three squares from H2(R
3). He then showed

that there exist psd forms in H6(R
3) and H4(R

4) which are not sums of squares
in H3(R

3) and H2(R
4), respectively, which ultimately led to his 17th problem. (See

[Reichstein 1987] for much more on this subject.)
A constructive discussion of Hilbert’s theorem on p ∈ H4(R

3) has recently been
given in [Powers and Reznick 2000; Powers et al. 2004; Pfister and Scheiderer
2012; Plaumann et al. 2011]. A nonconstructive proof (without the count) can
easily be given.
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Theorem 5.2. A general ternary quartic p ∈ H4(C
3) can be written as p =

q2
1 + q2

2 + q2
3 , where q j ∈ H2(C

3).

Proof. We take qi so that the monomial x2 only appears in q1 and the mono-
mial y2 only appears in q1 and q2, and so the number of coefficients in the q j is
6+5+4=15. Taking the partials where (q1, q2, q3)= (x2, y2, z2) shows that J con-
tains 2x2

{x2, y2, z2, xy, xz, yz}, 2y2
{y2, z2, xy, xz, yz} and 2z2

{z2, xy, xz, yz},
and so is equal to H4(C

3). �

Since 3
(m+2

2

)
− 3<

(2m+1
2

)
for m ≥ 3, this result does not generalize to ternary

forms of higher even degree.
The situation is somewhat simpler over R. A real version of Theorem 5.1 appears

in [Reznick 2000]. If p is real and positive definite and p= f 2
+g2, where f and g

are also real, then the factors of p consist of s conjugate pairs. In the factorization
p= ( f +ig)( f −ig), the pairs must be split between the conjugate factors, and if p
has distinct factors, this can be done in 2s−1 different ways. A real generalization of
Theorem 5.2 appears in [Choi et al. 1995, Corollary 2.12]. Suppose a real psd form
p ∈ H2s(R

n) is a sum of t squares and xβi ∈ Hs(R
n), 1≤ i ≤ t , is given. Then there

is a representation p =
∑t

j=1 g2
j , in which xβi does not occur in g j for j > i . This

argument can also be applied to a general sum of t squares over C, but it no longer
applies to all forms. For example, if xy = (ax +by)2+ (cx +dy)2, then abcd 6= 0.

6. Cubic forms and proofs of Theorems 1.3 and 1.4

In this section, we present three representations for forms in H3(C
n) as a sum of

cubes of linear forms. The first two are canonical; the third isn’t, but it represents
all cubics, not just general cubics.

We begin with Theorem 1.3, which first appeared in [Reichstein 1987]. At the
time of this writing, that paper has had no citations in MathSciNet. (It was discussed
in [Reznick 1992b] and, from there, in [Comon and Mourrain 1996]. The former
was never submitted for publication and the latter appeared in an unindexed journal.)
The original presentation and proof in [Reichstein 1987] were given for trilinear
forms (see Section 2); the theorem is applied to cubic forms there mainly in the
examples.

By iterating (1-5), we obtain a canonical form for p ∈ H3(C
n); see [Reichstein

1987, p. 98].

Corollary 6.1. A general n-ary cubic p ∈ H3(C
n) can be written uniquely as

(6-1) p(x1, . . . , xn)=

b(n−1)/2c∑
m=0

n−2m∑
k=1

(
t {k}m,1+2m x1+2m + · · ·+ t {k}m,nxn

)3

for some t {k}m, j ∈ C.
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This gives p as a sum of n+ (n− 2)+ · · · = b(n+ 1)2/4c cubes. Recall that,
by Alexander–Hirschowitz, for n 6= 5, a general cubic form in n variables can
be written as a sum of d(n+ 1)(n+ 2)/6e cubes. Thus (6-1) is a canonical form
which represents a general cubic as a sum of about 50% more cubes than the true
minimum; this is due to the large number of linear forms with restricted sets of
variables.

Reichstein’s proof of Theorem 1.3 requires the well-known “generalized eigen-
value problem” for pairs of symmetric matrices, as interpreted for quadratic forms:
if a general pair of quadratic forms f , g ∈ H2(C

n) is given, then there exist n
linearly independent forms L i (x)=

∑n
j=1 αi j x j and ci ∈ C so that

(6-2) f =
n∑

i=1

L2
i , g =

n∑
i=1

ci L2
i .

If M f , Mg are the matrices associated to f , g, then the ci are the n roots of the
determinantal equation det(Mg−λM f )= 0, which are generally distinct, so the L i

are uniquely determined up to multiple. We may also assume that the coefficients αi j

of the linear forms are generally nonzero; cf. Corollary 6.3.

Proof of Theorem 1.3. For general p ∈ H3(C
n), we simultaneously diagonalize

f = ∂p/∂x1 and g = ∂p/∂x2 as in (6-2). Since mixed partials are equal,

(6-3)
∂ f
∂x2
=
∂g
∂x1
=

n∑
i=1

2αi2L i =

n∑
i=1

2ciαi1L i ,

and since the L i are linearly independent, (6-3) implies that αi2 = ciαi1.
It is generally true that αi1 6= 0. Let

q(x1, . . . , xn)= p(x1, . . . , xn)−

n∑
i=1

1
3αi1

L3
i .

It follows that

∂q
∂x1
=
∂p
∂x1
−

n∑
i=1

3αi1

3αi1
L2

i =
∂p
∂x1
−

n∑
i=1

L2
i = 0,

∂q
∂x2
=
∂p
∂x2
−

n∑
i=1

3αi2

3αi1
L2

i =
∂p
∂x2
−

n∑
i=1

ci L2
i = 0.

Since ∂q/∂x1 = ∂q/∂x2 = 0, we have q = q(x3, . . . , xn).
For uniqueness, suppose (1-5) holds and lk(x1, . . . , xn)=

∑
j βk j x j . Then

∂p
∂x1
=

n∑
k=1

3βk1l2
k ,

∂p
∂x2
=

n∑
k=1

3βk2l2
k .
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Thus, after a scaling, ∂p/∂x1 and ∂p/∂x2 have already been simultaneously diago-
nalized (as in (6-2)), and the lk are, up to multiples, a rearrangement of the Lk . �

We now give a constructive proof of Theorem 1.4, which gives a different
canonical form for H3(C

n) requiring even more cubes.

Proof of Theorem 1.4. The constant-counting makes this a potential canonical form:
the variables are t{i, j},k with 1≤ i ≤ j ≤ k ≤ n, and there are

(n+2
3

)
= N (n, 3) such

triples (i, j, k). Given p ∈ H3(C
n), ∂p/∂xn is a quadratic form, so we can generally

complete the square by Theorem 1.2:

∂p
∂xn
=

n∑
j=1

(t j j x j + · · ·+ t jnxn)
2.

Then t jn 6= 0 for general p and if we let

q(x1, . . . , xn)= p(x1, . . . , xn)−

n∑
j=1

1
3t jn

(t j j x j + · · ·+ t jnxn)
3,

then ∂q/∂xn = 0, so q = q(x1, . . . , xn−1). Iterate this construction to get (1-6).
Uniqueness follows by working backwards. If (1-6) holds for a cubic p, then it

gives ∂p/∂xn in its (unique) upper-triangular diagonalization. This can be integrated
with respect to xn and subtracted from p, giving a cubic q(x1, . . . , xn−1). Again,
iterate. �

It is not hard to give nonconstructive proofs of Theorems 1.3 and 1.4 using
Corollary 2.3. These are left for the reader.

We first presented this next construction in [Reznick 1992b]; an outline of the
proof can be found in [Comon and Mourrain 1996]. This is not a canonical form,
but is included here because it gives an absolute upper bound for the length of cubic
forms.

Theorem 6.2. If p ∈ H3(C
n), then there exists an invertible linear change of

variables y j =
∑
λ jk xk and n linear forms l j so that, for some q ∈ H3(C

n−1),

(6-4) p(x1, . . . , xn)=

n∑
j=1

l3
j (x1, . . . , xn)+ q(y2, . . . , yn).

Thus every cubic in n variables is a sum of at most
(n+1

2

)
cubes of linear forms.

Proof. Define linear forms l j,m(y) for 1≤ j ≤ m+ 1 by

(6-5) l j,m(y1, . . . , yn)= y j +α

m∑
j=1

y j , 1≤ j ≤ m

and
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(6-6) lm+1,m(y1, . . . , yn)=−(1+mα)
m∑

j=1

y j , α =
−(m+ 1)+

√
m+ 1

m(m+ 1)
.

Then it can be easily checked that

(6-7)
m+1∑
j=1

l j,m(y)= 0 and
m+1∑
j=1

l2
j,m(y)=

m∑
k=1

y2
k .

Suppose 0 6= p ∈ H3(C
n). Use Biermann’s theorem to find a point u where

p(u) 6= 0, and, after an invertible linear change of variables, taking {x j } 7→ {u j },
we may assume that p(1, 0, . . . , 0)= 1 and so

(6-8) p = u3
1+ 3h1(u2, . . . , un)u2

1+ 3h2(u2, . . . , un)u1+ h3(u2, . . . , un),

where deg h j = j . Now let u1 = y1− h1(u2, . . . , un) to clear the quadratic term,
so

(6-9) p = y3
1 + 3y1h̃2(u2, . . . , un)+ h̃3(u2, . . . , un),

where again deg h̃ j = j . Diagonalize h̃2(u2, . . . , un) as a quadratic form into
y2

2 + · · ·+ y2
r , where r ≤ n, and make the accompanying change of variables. We

now have

(6-10) p = y3
1 + 3y1(y2

2 + · · ·+ y2
r )+ k3(y2, . . . , yn), r ≤ n,

where deg k3 = 3. Finally, using (6-5) and (6-7), we construct g, a sum of r ≤ n
cubes:

(6-11) g(y1, . . . , yn):=
1
r

r∑
j=1

(
y1+
√

r ·l j,r−1(y2, . . . , yr )
)3

=
1
r

r∑
j=1

y3
1+

3
√

r

r∑
j=1

y2
1 l j,r−1+3

r∑
j=1

y1l2
j,r−1+

√
r

r∑
j=1

l3
j,r−1

=y3
1+3y1(y2

2+·· ·+y2
r )+
√

r
r∑

j=1

l3
j,r−1(y2, . . . , yr ).

Then
q := p− g

is a cubic form in (y2, . . . , yn) as in (6-4). Iteration of this argument shows that
any cubic p ∈ H3(C

n) is a sum of at most n(n+ 1)/2 cubes. �

Equation (1-5) can be extended to a canonical form for quartics as a sum of
fourth powers of linear forms. Note that xn appears in each summand of (6-1), with,
generally, a nonzero coefficient.
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Corollary 6.3. For general p ∈ H4(C
n), there exist lk ∈ H1(C

n) and q ∈ H4(C
n−1)

so that, with a(n)= b(n+ 1)2/4c,

p(x1, . . . , xn)=

a(n)∑
k=1

lk(x1, . . . , xn)
4
+ q(x1, . . . , xn−1).

As a consequence, a general p ∈ H4(C
n) can be written as

p(x1, . . . , xn)=

b(n−1)/2c∑
m=0

n∑
r=1+2m

r−2m∑
k=1

(
t {k}m,r,1+2m x1+2m + · · ·+ t {k}m,r,r xr

)4
.

Proof. By Theorem 1.3 and (6-1), for general p ∈ H4(C
n), we can write

(6-12)
∂p
∂xn
=

b(n−1)/2c∑
m=0

n−2m∑
k=1

(
t {k}m,1+2m x1+2m + · · ·+ t {k}m,nxn

)3

=:

b(n−1)/2c∑
m=0

n−2m∑
k=1

(l{k}m (x))3.

As before, if q = p−
∑

k,m 1/(4t {k}m,n)l4
k,m , then ∂q/∂xn = 0, so q = q(x1, . . . , xn−1).

Repeat as before. There are N (n, 3) coefficients in (6-12), and, since N (n, 3)+
N (n− 1, 4)= N (n, 4), the count is correct for a canonical form. �

Note that there is no variable which appears in each linear form in (6-12), so the
argument can’t be extended to quintics. For the same reason, Theorem 1.4 does
not extend to quartics. By combining Theorems 1.3 and 6.3, we obtain canonical
forms as a sum of powers of linear forms in the four exceptional cases of Alexander–
Hirschowitz, of course at the expense of the number of summands. With regard to
ternary quartics and Theorem 1.10, Corollary 6.3 becomes the following canonical
form for H4(C

3) as a sum of seven fourth powers:

3∑
k=1

(tk1x1+ tk2x2+ tk3x3)
4
+ t10x4

3 +

2∑
l=1

(ul1x1+ ul2x2)
4
+ u5x4

1 .

There is an arithmetic obstruction to a “Reichstein-type” canonical form for
quartics, that is, one in which each linear form is allowed to involve each variable.
If

(6-13) p(x1, . . . , xn)=

r∑
k=1

(αk1x1+ · · ·+αknxn)
4
+ q(x1, . . . , xm)

were a canonical form for some n, then we would have N (n, 4)= rn+ N (m, 4).
However, for n = 12, there does not exist m < 12 so that 12 |

(15
4

)
−
(m+3

4

)
, so no

such canonical form can exist. More generally, let
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(6-14) Ad =
{
n : n 6 |

(n+d−1
d

)
−
(m+d−1

d

)
for 0≤ m < n

}
denote the set of n for which this argument rules out Reichstein-type canonical
forms. We present without proof a number of results about Ad . Note that there is
no obstacle for (6-13) in prime degree, such as d = 2, 3.

Proposition 6.4. (i) If 3 6 | k, then n = 22k
· 3 ∈ A4.

(ii) If p ≡ 1 (mod 144) is prime, then 12p ∈ A4.

(iii) If p is prime, then p |
(n+p−1

p

)
−
(n

p

)
; hence Ap =∅ for prime p.

(iv) The smallest elements of A6, A8, A10, A12, A14 and A15 are 10, 1792, 6, 242,
338 and 273, respectively. If A9 or A16 are nonempty, then their smallest
elements are at least 105.

7. Subspace canonical forms and the proof of Theorem 1.11

One natural generalization of the definition of canonical forms is to consider
maps F : X 7→ Hd(C

n) where X ⊂ CM is an N (n, d)-dimensional subspace of
CM . (Similar ideas can be found in [Wakeford 1920], though his approach is
different from ours.) These can be analyzed in the simplest nontrivial case: M = 4,
N (2, 2)= 3.

Proof of Theorem 1.11. Assume that some c j 6= 0. Without loss of generality,
we may assume that c4 6= 0 and divide through by c4 so that the equation is
t4 = a1t1 + a2t2 + a3t3, where ai = −ci/c4 for i = 1, 2, 3. Then (1-13) can be
parametrized as a map from C3

7→ H2(C
2) as

(7-1) F(t; x)= (t1x + t2 y)2+
(
t3x + (a1t1+ a2t2+ a3t3)y

)2
.

The partials with respect to the t j are

(7-2)

2x(t1x + t2 y)+ 2a1 y
(
t3x + (a1t1+ a2t2+ a3t3)y

)
,

2y(t1x + t2 y)+ 2a2 y
(
t3x + (a1t1+ a2t2+ a3t3)y

)
,

2(x + a3 y)
(
t3x + (a1t1+ a2t2+ a3t3)y

)
.

Now, (7-1) is a canonical form if and only if there exists a choice of ti so that the
three quadratics in (7-2) span H2(C

2). A computation shows that the determinant
of the forms in (7-2) with respect to the basis {x2, xy, y2

} is the cubic

(7-3) −8
(
(a1a2−a3)t1+(1+a2

2)t2+(a2a3+a1)t3
)
(a1t2

1 +a2t1t2+a3t1t3− t2t3).

The second factor in (7-3) always has the term −t2t3 and so never vanishes; hence
this determinant is not identically zero (and (7-1) is a canonical form), unless

(7-4) a1a2− a3 = 1+ a2
2 = a2a3+ a1 = 0.
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In the exceptional case where (7-4) holds, then a2 = ε, where ε =±i , and a3 = εa1.
Evaluating (7-1) at (x, y)= (a1, ε) yields

(a1t1+εt2)2+(a1t3+εa1t1+ε2t2+ε2a1t3)2

=(a1t1+εt2)2+
(
(1+ε2)a1t3+εa1t1+ε2t2

)2
=(a1t1+εt2)2+ε2(a1t1+εt2)2=0,

as claimed. �

It would be interesting to know how Theorem 1.11 generalizes to higher degrees.
Conjecture 1.12 is true for degree 2 by Theorem 1.11. We have verified it for

even degrees up to eight by Corollary 2.3 applied to random choices for α j , β j in
(1-14). We hold some hope that generalizations such as Conjecture 1.12 will have
applications in more than two variables as well.
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