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RATE OF ATTRACTION FOR A SEMILINEAR WAVE
EQUATION WITH VARIABLE COEFFICIENTS
AND CRITICAL NONLINEARITIES

FAGNER DIAS ARARUNA AND FLANK DAVID MORAIS BEZERRA

We study the rate of convergence of global attractors and eigenvalues of the
family of dissipative semilinear wave equations with variable coefficients
Uy + Acu + Alu, = f(u), where A, is the elliptic operator —div(a.(x)V)
with € € [0, 1] and sufficiently smooth coefficients a., and where § € (1, 1)
and the nonlinearity f is a continuously differentiable function satisfying
suitable growth conditions. We show that the rate of convergence, as e - 0F,
of the global attractors of these problems, as well as of their eigenvalues, is
proportional to the distance of the coefficients ||ac — ayll L~ (g)-

1. Introduction and main result

In many theoretical and applied problems, it is important to understand what happens
when the solutions varies parameters in the model, and wave equations with variable
coefficients arise naturally in mathematical modeling of inhomogeneous media
(for example, functionally graded materials or materials with damage induced
inhomogeneity) in solid mechanics, electromagnetism, fluid flows through porous
media (for example, modeling traveling waves in a inhomogeneous gas; see [Egorov
and Shubin 1988; Suggs 2009]), and other areas of physics and engineering.

Nonlinear wave equations arise in quantum mechanics, whereas variants of the
form

M[[ —_— diV(aVM) +g(u, l/l[) = O

appear in the study of vibrating systems with or without damping, and with or
without forcing terms.

The first author was partially supported by INCTMat, CAPES and CNPq (Brasil), grants 307893/2011-
1, 552758/2011-6 and 477124/2012-7. The second author was partially supported by FAPESP grant
11/04166-5, CAPES, and CNPq (Brasil) grant 552758/2011-6.
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In this work, € € [0, 1], and we consider the following problem associated with
a semilinear dissipative wave equation with variable coefficients:

U+ Aeu+ Alu, = f(u), t>0,xeQ,
(1-1) u(0, x) =uo(x), u: (0, x) =vo(x), xe€L,
u(t,x) =0, t >0, x €02,
where @ c RN, N > 3, is a bounded domain with boundary 9€2 sufficiently regular,
A¢ = —div(ac(x)V), and ac is a real function defined in €2 satisfying
(1-2) 0<my<acx) <My forall x € Q.

Moreover, the functions a, € L (2) converge uniformly to ag € L (), as € — 0.
Also, we will assume that a, is smooth for all € € [0, 1]. For the system (1-1), let
us consider § € (%, 1).

The operators AS := (A7%)~! denote the fractional power operators associated
with Ac. Provided that A, with domain D(A¢) = H*(Q) N Hy (Q) is a sectorial
operator with Reo (A¢) > 0, for any « € (0, 1), it follows by Theorem 1.4.2 in
[Henry 1981] that

sin T«

(1-3) AZY = f AT 4+ A dh.
T 0

On the nonlinearity f : R — R, which is continuously differentiable and bounded,
we will give conditions under which the problem (1-7) is globally well posed in
H(} (Q) x L*(RQ) and it has global attractors, in the terminology of [Hale 1988]
(following closely Theorem 1.1 and Theorem 1.2 in [Carvalho and Cholewa 2002a];
see also [Carvalho and Cholewa 2002b]): if p < (N 4+ 2)/(N — 2), there exists a
constant C > 0, independent of ¢, such that

-4 [ f(s1) — f(s2)| < Clsy —s2/(|s1 |'0_1 + |s2|p—1 1)
and
(1-5) lim sup S(s) < Mo

|s|->4oc0 S

with g 1 being the first eigenvalue of the A in 2.

In the rest of this paper, we will use C to denote a generic positive constant
which may change from line to line (unless otherwise stated).

Since the wave equation does not have dissipative character, we have added a
“damping” characterized by the term A%u¢ with § € (%, 1). This additional term
turns problem (1-1) into a sectorial structure (see [Chen and Triggiani 1989]),
however, this gives us an extra difficulty, because it is necessary to perform an
analysis of the rate of convergence of fractional derivatives. Although the sectorial
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structure for (1-1) is preserved when the dissipative term presents the optimal power
8= % (see [Chen and Triggiani 1989]), the convergence (with rate) of attractors is
an open problem for this case.

Related to this issue, in [Arrieta et al. 2013] the authors proved that the difference
lae —aoll L~ () can be used to show the rate of convergence of attractors in the con-
text of the heat equation. Nonlinear absorption problems with variable coefficients
have been considered by many authors; see [Wu and Li 2011; Suggs 2009] and
the references therein. For damped wave equations, several authors have studied
existence of global attractors; see [Babin and Vishik 1989; Bruschi et al. 2006;
Carvalho and Cholewa 2002a; 2002b; Cholewa and Dlotko 2006; Hale 1988; Webb
1980] and the references therein. We can still cite [Bruschi et al. 2006], where the
convergence of attractors was shown, but without explicit rate.

In this work, we will investigate the relationship between the convergence of
functions a. € L>°(£2), which converge uniformly to ag € L*°(R2), as ¢ — 0T, and
the proximity between the perturbed and limit attractors, as well as the convergence
of the eigenvalues of the operators associated with the problems in (1-1). The
difference ||ac — aop|| L~ () Will be our measure.

To better explain the results in the paper, we introduce some terminology. Let
us consider the Hilbert spaces ¥ = Y% := L*(Q), Y'/?:= H}(Q), Y :== D(A() :=
{u € HO1 () : Acu € L*()} and the Hilbert energy space X = X0=yV2xy
equipped with the inner product

([i] [Hx ::fQ“e@)VWWXwL/Qw@dx.

We define the operator A : D(A¢) C X — X by
afy]=la wllel=laartsro]
‘Lo Ac ALy ALATP + )

D(A,) = {[Z] YD yl2 Al 4 e Y‘S} _. x!.

and

with Y? denoting the domain of the fractional power operators associated with
A, that is, Y% := D(Ag). Let us consider Y? endowed with the graph norm
llx]lys = [[ASx||y. Notice that

(1-6) Ae[z]z[Ae¢_—|—¢)A§<p]’ [ﬁ]eylxya’

where Y! x Y? is a dense subset of D(A,).
Notice that the operator A, with domain ¥! x ¥? is not a closed operator, unless
8= %; see [Chen and Triggiani 1989].
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Problem (1-1) can be written as

{wt—l—Aew =F(w), t>0,

(-7 w0)=wpe X

with w = [ u,]7 and the nonlinear map F : X — Y x Y defined by

F[Zﬂ = fe(z@ J

where £¢: H} () — H~/?(Q) is the Nemytskif operator associated with f.

We will show that these equations define on the space X a nonlinear semigroup
{Tc(¢) : t >0} having global attractors s, € € [0, 1], and that the rate of convergence
of the attractors in the sense of the symmetric Hausdorff distance is given by the
order of [|ac — o[l o, With 6 € (0, 3).

It is worth noting that the dependence of regular attractors on parameters is a very
well-studied and well-understood topic nowadays, especially for the case when the
perturbation is also regular (like in our case). Basically, all the necessary technique
to handle such perturbations can be found already in the monograph of Babin and
Vishik [1989]. However, the problem considered has some interesting peculiarities
in a sense unusual for the attractor theory, namely, the presence of the fractional
powers of the elliptic operator A as well as the necessity to control the dependence
of these powers on the parameter €.

The main purpose of this paper is to give a proof of the following result.

Theorem 1.1. Let {T(t) : t > 0} be the gradient nonlinear semigroup associated
with (1-7) and let A in X be its global attractor, € € [0, 1]. Then there are constants
C>0andgp € (0, %), independent of €, such that

dist(ste. o) +dist(slo, s1e) < Cllac — aollSn -
where
dist(A, B) :=sup inf |[x —y||lx, A,BCX
xeAYEB

is the Hausdorff semidistance between A and B in X.

We observe that the Hausdorff semidistance between A and B, dist(A, B), ex-
amines how the set A is contained in the set B. For example, if dist(A, B) = 0 then
A is contained in the closure of the set B.

The rest of this paper is organized as follows. In Section 2 we show that the
linear semigroups of contractions associated to the problems (1-7) are analytic and
compact, and that their nonlinear semigroups have global attractors s, in X. In
Section 3 we see that the distance between the semigroups are proportional to a
power of the distance between coefficients a. € L°°(£2). We study the convergence
of the operators A;l to Ay ! We also make a spectral analysis and we prove that the
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convergence of the eigenvalues of the operators associated to (1-7) is proportional
to measure ||ac — ao||L=(@). In Section 4 we analyze the convergence of equilibria.
In Section 5 we study some important properties of the Nemytskii operators F'. We
also study the convergence of the operators A, — F’'(w,), as w, converges to wy
in X. In Section 6 we analyze the rate of convergence of equilibria. In Section 7
we study the rate of convergence and attraction of local unstable manifolds of an
equilibrium. Finally, in Section 8 we prove the main result of this paper.

2. Functional setting and background results

Our main goal in this section is to prove the well-posedness of problem (1-7)
in X and to ensure that the nonlinear semigroup generated by (1-7) has global
attractor with uniform bounds in X. Our approach is inspired by a similar idea
from [Carvalho and Cholewa 2002a].

Under the assumption above, it is well known that the operator A, is a positive,
self-adjoint operator with domain D(A.) = Y!. Let us denote by {e =< : ¢ > 0}
the analytic linear semigroup generated by —A. on Y, for all € € [0, 1].

According to [Henry 1981], we still have

(2-1) IO + A Mgy < Cmax{1, [A]71)

for some C > 0 independent of .

Since A is a sectorial operator with ||e= "< vy < C, C independent of €, as a
consequence of the moment inequality (see Theorem 1.4.4 in [Henry 1981]), there
exists a constant C > 0 such that

(2-2) IA%x|ly < CllAex|$lx]ly ™, xe¥!,

with O < @ < 1. The constant C can be chosen uniform with respect to € and «.

In this way, since all operators are selfadjoint, we have that o (A¢) C (—o0, «]
for some o < 0 and, in particular, the set Xy = {A € C: |argA| < ¢}, ¢ € (7/2, 7),
is contained in the resolvent sets of A, for all € € [0, 1]. Consequently,

(2-3) IAe( T +A) gy <C, A€ Ty,

for some C > 1 independent of €.
We will show that (1-7) is defined on the phase space X, an analytic semigroup.
Proposition 2.1. Let € € [0, 1]. The following conditions hold:
(1) The operator A is closed.

(i1) A is a maximal accretive operator, or equivalently, — A, is maximal dissipa-
tive.

(iii) 0 € p(A¢) and A¢ has compact resolvent for each € € [0, 1].
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(iv) The semigroup linearly generated by —A, on X, {e™4<' 1t > 0}, is a C°
semigroup of contractions on X.

(v) Ac¢ is a sectorial operator in X with Re o (A¢) > 0. The semigroup of contrac-
tions {e=4<! . t > 0} is analytic and compact.

Proof. Note that (i) is immediate from the closedness of A, and Ag. For (ii) notice
that, given [¢ ¢]7 € X!, we have

@ (a[g][5]

= —(p, Phy1 + (Acp + Alg, )y
= (A0, APp)y + (AN p +0), 0)y

1/2 1/2
= —(A2g, A2¢)y + (A0, AP@)y + (0220, AV 2g)y,

and hence

LS -t [Sen

which proves accretivity of A..
Furthermore, for each [¢ ¢]7 € X, the linear equation

29 a+a0[?]=[?]

is equivalent to the system
{¢ —p= (5’
Acp+9+ Ao =0,

or to the equation
(2-6) Acp+ A+ =G+¢+Ald.

By elliptic theory, it follows that there exists a unique function ¢ € Y/ with
Ac¢ €Y satisfying (2-6) and, therefore, for each € € [0, 1], there exists a unique
[¢ ¢]" € X! solving (2-5).

Concerning 0 € p(A¢), we recall that there exists a bounded inverse operator
AZ': X — X given by

—(1=8) ,_
A_lzl:Ae(l ) Ael
0

: ., | ecwom,

where A% are bounded inverse operators of A%. Thus, the resolvent operator A_!
is compact, because it takes bounded subsets of X into bounded subsets of X 1
which is compactly embedded in X. This shows (iii).
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The property (iv) that —A, € € [0, 1], generates a C° semigroup of contrac-
tions on X follows from the Lummer—Phillips theorem (see [Pazy 1983]) and the
observations concerning powers of maximal accretive operators (see [Kato 1976]).

Part (v) follows as a consequence of Theorem 1.1 in [Chen and Triggiani 1989].
Finally, compactness of {e‘Aft .t = 0}, € € [0,1], is then a consequence of
compactness of the resolvent operators of A, and the proof is complete. |

Let us denote by I' the boundary of 4. The following statements are valid:

1
2-7) e At = — | MOT+ A,
271 Jr
(2-8) le™ < lgx1.x) < Ct 2, 1> 0,

for some C > 0 independent of €.
Also, we have

(2-9) [ 4+ A ™ e < rE Ty,

C
L+

(2-10) IO+ A g < A E Ty,

14l
where C = C(¢) > 0 independent of €.

Under the assumptions (1-4), problem (1-7) is locally well posed in X; see
Theorem 1 in [Carvalho and Cholewa 2002b]. Moreover, under standard dissipative
conditions like (1-5), we have the following result.

Theorem 2.2. Assume (1-4) and (1-5) hold. The nonlinear semigroup {T(t) :t > 0}
associated with (1-7) is well defined in X and has a global attractor A, in X.
Furthermore,
sup sup ||w|x < oo.
e€l0,1] wed,
Proof. Problem (1-7) is globally well posed in X due to Theorem 1.1 in [Carvalho
and Cholewa 2002a], namely, for any wy, € X, there exists a unique

w(, wh) € C([0, 00), X) N C'((0, 00), X)
with we(z, wg) € D(A,), for all ¢ > 0, which satisfies (1-7) and

t
w(t, w§) = e < w§ —I—f e A= f(w(s, w))ds, t=0.
0

Thus Te(Hwy = u(t, wg), t > 0. To simplify the notation we will denote the
solution wO(z, wg) by w(t, wo).

The existence of global attractors &, in X for semigroups {T¢(¢) : ¢t > 0} and
uniform bounds are also established in Theorem 1.2 in [Carvalho and Cholewa
2002a]. O
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3. Resolvent convergence

In this section we will show the convergence of the resolvent operators AZ! to Ay Y
as € — 07, and we will establish that the rate of this convergence is ||a. — ag ||2/£ @

We recall the convergence of the resolvent operators A ! to Ay I ase — 0T, in
terms of the difference |lae — ap|~(g). This was proved in [Arrieta et al. 2013],

however, for the sake of completeness, we will sketch a proof.
Lemma 3.1. For h € Y and € € [0, 1], let us consider u¢ € Y' a solution of the

problem

3-1) {— div(ac()Vu) =h inQ,

u=20 on 0%2.

Then there is a constant C > 0, independent of €, such that

(3-2) lu€llyi2 < Cllhlly
and
(3-3) lu€ —ullyr2 < Clihllyllae — aollco-

Proof. The estimate (3-2) follows from uniform boundedness of a. and Poincaré’s
inequality.

The solution of problem (3-1) can be obtained by a minimization procedure.
That is, if we define

Ac := min {l/ a€|Vu|2dx—/ hudx},
uey12 | 2 Q Q

then A, is attained at u€. Therefore,

)\ézl/aGWbtelzdx—/ hu€ dx
2 Q Q

:l/a€|VuE—Vu0+Vu0|2dx—/h(ué—uo—i-uo)dx,
2 Jq Q

(3-4)

and, evaluating this expression, using that u€ solves Lemma 3.1, we easily obtain

(3-5) ,\€=,\0—%/ ae(x)|Vue—Vu0|2dx+%/(ae(x)—ao(x))|Vu0|2dx,
Q Q

which implies

(3-6) he —ho < % / (ac(x) — ap(x))|Vu®|* dx.
Q
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On the other hand

Ao := min {l/ ao(x)|Vu|2dx—f hudx}
uey12| 2 Jq Q
glf ao(x)|Vu€|2dx—/ hu® dx
2 Jq Q
1
et [ @)~ acto)lvuPar.
Q
With this, we obtain
re=t0> =5 [ (@0 -t vuPar,
Q

which combined with (3-2) and (3-6) gives us

(3-7)  |he — ol <llae —aollz=@) sup [u€l}i. < ClAlFllae — aoll o)
€€[0,1]
Finally, the estimate (3-3) is obtained by combining (3-5) and (3-7). O

Corollary 3.2. The operators Ae_1 .Y — Y'Y2 are uniformly bounded and converge
uniformly to Aal Y = YV2 as € — OF. Furthermore, there exists a positive
constant C > 0, independent of €, such that

(3-8) IAZ Mgy yey < C
and
(3-9) IAZY = Ay gy < Cllae — aoll (g

The uniform convergence of the operators A_! (see Corollary 3.2 in [Arrieta
et al. 2013]) implies the convergence of their spectrum. As a matter of fact, the
following result holds.

Proposition 3.3 [Carvalho and Piskarev 2006; Kato 1976]. The following state-
ments hold:

(i) If mo € 0 (—Ao), there exists a sequence €, — 0 and {j,}, with p, € 0 (—A,),
n € N, such that i, — Lo, as n — o0;

(ii) If for some sequences €, — 0% and ., — o, as n — 0o, with w, € o(—Ag,),
n eN, then ng € o (—Ayp).

Moreover, from Lemma 3.4 in [Arrieta et al. 2013], there exists C > 0, indepen-
dent of ¢, such that

(3-10) I+ A) ™ = O + Ao) Mgy yr2y < Cllae — aoll (g,

for each A € Xy.
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Proposition 3.4. The operators A¢ U= y172 5 Y172 gre uniformly bounded and
converge uniformly to Aa(l_s) :YV?2 5 Y12 as € — 0. Furthermore, there exists
a positive constant C > 0, independent of €, such that

(3-11) IAZ PNy < C
and

1—- 1/2
(3-12) A7 = AT Py < Cllae — aoll % q)-

Proof. Notice that, using (2-2), we get

6— 1/2)” ”5 172

IAZ D ullyie = [AZ Pully < CIA'u e

||y1

where C > 0 is uniform with respect to € and 8. Thus (3-11) follows by (3-8).
Before we prove (3-12), let us observe that (2-2) and (3-11) imply

3-13) (A7 — A )y
= [APAY = A Dhlly
SCIAATI™D = AF a2 1A 70D — A )ny?
< CIAAZ ™D — Ag N2 a0 5)h||”2+||A CDn)/2)
< CIAAZI™D — A a2,

for some C > 0 independent of €, and forany h € Y.
To prove (3-12), it follows by (3-13) that it is sufficient to obtain an estimate for
the norm || A (A7 — Ag““”) ller). In fact, it follows by (1-3) that

_ sm(mx)

(3-14) AT — A AT+ A~ = I+ Ag)~dn.

Using (3-14) (with « = 1 — §), we can deduce
(3-15)  1AAZD™D — AT gy

< / AU AL + A0 — Gl + A0) " gy d 12
Notice that the resolven(i identity
(3-16) (A +A) "= I+ Ay~ !
=00+ M) = OI+ A+ Ag) ']
=+ A) (A + Ag) — (M + A)IOT + Ag) ™!
= +A) 7 [Ag— AT + Ag)™!
= AT+ M)A = A TAQM + Ag) !
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holds, and, by sectoriality of A, we have
(3-17) AT 4+ A gy) < C, foralle €0, 1],

where C > 0 is independent of €.
Substituting (3-16) into (3-15), we get

(3-18)  IAAZI™D — AT gy

o0
< / IV AAT+ AT TAT = A TAGT + Ao) ™l eryd 2]
0
> 1
< / TENAY T+ AT AT AT = A TAGOT + Ao) e ryd Al
0

where y € (1, 2) is a constant to be chosen.
Since Y12 is continuously embedded in Y I+=y), by estimates (3-9) and (3-17),
we can deduce from (3-18) that

(3-19)  1AAZ™D — AT gy

o0
< Cllac —aoll~) / MDY AY T AT G + A~ g dIA,
0

where r € (y — 1, 1) is a constant to be chosen.
From (2-2) and the fact that Y is continuously embedded in Y”, it follows by
(3-19) that

(3200 IAAZID — AT gy

C||ae—a0||L°0(Q)/ MO NAALOT+ A 1y,
XNALRT A gy d1a]

o0
< Cllac —aolle(Q)/ AN AT+ A) T I G T+ A gy dIAl
0
Using (2-1) and (3-17), we get by (3-20) that
321 AcA7 " = AT )

o0
< Cllac=anllimey [ WOPIGT+ A0l
0

o0
< Cllae — aoll L~ / AT max (1, (A7) T Td| A
0

1 00
<C||ae—aol|L00(sz)</ APl + f |x|—2+‘”y—’d|x|).
0 1
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Taking y and r sufficiently close to 1 such that 6 +y —r < 1, we can conclude
by (3-21) the existence of a positive constant C, independent of ¢, such that

(3-22) 1AM = ATy < Cllae = aoll = co)-
Finally, combining (3-13) and (3-22) we obtain the desired estimate (3-12). [J

Before we prove analogous result of the last proposition with A, instead of A,
we present the following general version of the moment inequality (see [Sobolevskii
1961]):

1—
(3-23) lAcwlx < Cllwly PeA%wl?*,  we DY),

where the constant C > 0 is independent of €.

Proposition 3.5. The operators A7': X — X! are uniformly bounded and converge
in the uniform topology to Aal : X — X!, as € — 0F. Furthermore, there exists a
positive constant C > 0, independent of €, such that

(3-24) 1A Megpex.xn < C
and
(3-25) AT — AZY) < Cllae — aol¥?
€ 0 PX, X X ||a6 aO”Loo(Q)-

Proof. For g, h € L*(Q) and € € [0, 1], let [¢c @17 be the solution of the problem

W[81=[5]) oo

By (1-6), there exists C > 0, independent €, such that
Lo =Ll <<l ]-T ]
Pe @o 1l x! Pe Yo
and by (3-23), we get

“I: €:| [ :H|Y Y
Pe %o Ixys
”1‘6 (1 a)g 1‘0(1 (S)g”fl ||1&e lh’ 1‘0]‘1”)5

—(1— —(1-6 —(1— —(1-6
<CIAPAZ e — A V) ly + 1A 0 — A n]y.

Yixys’

Thus, by Corollary 3.2, we conclude that

I5 -]

1/2
o S CUgly + kI lac = aollZ o

1/2
3 [
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where C > 0 is independent of €. (Il
The next result ensures convergence of the spectrum of operators —A..

Proposition 3.6 [Carvalho and Piskarev 2006; Kato 1976]. The following state-
ments hold:

(i) If no € o (—Ay), there exists a sequence €, — 0" and {, }, with u, € 0 (—A,,),
n € N such that (1, — o as n — oo.

(ii) If for some sequences €, — 0" and j, — o as n — oo, with u, € o(—A,,),
n €N, then ng € o(—Ap).

Now let us establish the result which treats convergence for resolvent operators.

Proposition 3.7. For each ¢ € (;w/2, i), there exists a constant C = C(¢) > 0 such
that

_ — 1/2
sup [|(M + A ™ = I + A0) " llgx.x1) < Cllae — aoll < q-
)\62(1,

Proof. We can see that
(3-26) (M +A)™' = (I =AY = +A) T ALA; = AT A + Ag) ™!
=AW+ A) A — AT A + Ag) .
Notice that, for A € ¥4 C p(—A¢), we have
AcQI+A) ™ =[O +A)A T =pA =117,
and, therefore,
(3-27) IAcOI +A)  Nlgx1y < C, & € Zg,

for some C > 0 independent of €.
By (3-25)—(3-27), we have the existence of a constant C > 0 (independent of ¢
and of A € Xy) such that

_ _ 1/2
IO + A ™" = (M + A0)  llwx x1) < Cllae — aoll % q)- O

To finish this section, we will make a spectral analysis, where we will give a
characterization, as well as a rate of convergence, as € — 0, for the eigenvalues
associated with the operators A..

Let y be a closed, rectifiable, simple and oriented counterclockwise curve in
p(—Ap) around pg € 0(Ap) which has index 1 relative to . From part (ii) of
Proposition 3.6, it is easy to see that there is an €, > 0 such that the trace of y is in
p(Ae), for € € [0, €, ]. We define the spectral projection in X

Oc (o) = i. / W+ A)" dn,
271 y
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and, for u € C such that (1/(2ri)) fy (A — )~ dxr =1, we define the generalized
eigenspace associated with u, W(u, —A¢) = Qc(10)(X), € € [0, €, ]. Furthermore,
Q¢ (p) is compact and dim W (, —A¢) = rank(Qc(up)) < o0.

Related to the rate of convergence, the following result holds.

Proposition 3.8. The family of operators Q¢ (o) : X — X converges uniformly to
Qo(o) : X — X, as € — 0%. Moreover,

(3-28) 1Qe(1t0) — Qo(uo)llsecx) < Cllae — aoll = g
and
(3-29) 1A Qe (120) — A0 Qo(10) ll#x) < Cllae — aoll g

where C > 0 independent of €.

Proof. Since
1
0cu0) = Qo) = 5 [ 101+ 47 = G+ 401,
1
we can use Proposition 3.7 to guarantee the estimate (3-28).
To prove (3-29), it is sufficient to use (3-26) and (3-28). U

Remark 3.9. If u is an isolated eigenvalue for Ay, we may define Q. (o) as above
and it follows from Proposition 3.6 that there exists we, which is an eigenvalue of
A such that pe — g, as € — 0. Hence Q. (o) = Qc(1te). We still have from
Proposition 3.8 that

| Qe (1) Qu(10) — Qo(k0) lscx) < Cllae —aoll}=

and that Q¢ (i) Qo(o) is an isomorphism between R(Qo(io)) and R(Q¢(ite)).

The next result deals with the characterization and rate of convergence of the
eigenvalues associated to operators Ac.

Theorem 3.10. For each € € [0, 1], the eigenvalues of the operator A¢ are given
by
S /4'u _ MZ(S
+ W N . €n €,n
(3-30) A, = ; +i 3 ,
where lie n, n € N, denotes the eigenvalues of the operator A.. Furthermore, if
Ker(Ay,I — Ao) = R(Qo(rg ). then

neN,

+ + 1/2
|)\'€s" _ko,nl < Cn”ae _aO”L/oc(Q), ne N,

for some constant C,, > 0, independent of €.



RATE OF ATTRACTION FOR A SEMILINEAR WAVE EQUATION 271

Proof. To study the spectral problem for the operator A, we consider the equation

(3-31) Ae[z]zk[ﬁ],
that is,
(3-32) Mo —AAp+ Acp =0,

whose solutions are the eigenvectors {¢. ,} of Ac:

(3-33) Moten — W Aben + tenPen = 0.

In this way, the corresponding eigenvalues {)\;t’n} of A, are the solutions of the
equation
)"2 - :u'g,n)" + MHen = 0

and they are given by (3-30).

Moreover, by the above remark and Proposition 3.8, we have that, for each
€ > 0, there exists [¢ ¢]7 € R(Qo), ||[¢ <p]T||X1 =1, such that Q.[¢ ¢]7 is an
eigenvector of A, associated to A and

A, — 2ol
+ ¢ + ¢ + ¢ + ¢
(34 <|ad,0 ; |-t ’ ..+ e ’ |20 ’ 1.
(3-35) < Cllac —aoll % g,
and the proof is completed. (I

4. Rate of convergence of resolvents of linearized operators

In this section we will study the rate of convergence of the resolvents of operators
which corresponds to linearizations of (1-7) around equilibria.

It is known that the Nemytskii map f¢(u) := f(u), u € Y 172" is Fréchet
continuously differentiable. Moreover, if {u} converges to ug in Y 172 and 0 ¢
o (Mo — (f9) (up)), then ((f‘?)’(ue))A;1 converges to ((f‘e)’(uo))Aa1 in the uni-
form operator topology of £(Y); see, for instance, [Arrieta et al. 2013]. Hence the
Nemytskii map F is Fréchet continuously differentiable. Moreover, if u — ug in
X and 0 € o (Ag — F'(ug)), then

(4-1) (F’(ue))Agl — (F/(uo))Aa1 in £(X).

Lemma 4.1. We assume ue — ugin X and 0 & o (Ag — F'(ug)). Then there exists
€o > 0 such that the net of operators

(AL )2(Ac = F'(ue)) ' e €0, 17
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is uniformly bounded in £(X) and
IAL/2(Ac = F/(ue)) ™ — Ab/2(A0 — F'(uo) ™ lucx) < Cllac —aoll % -
where C > 0 is independent of €.
Proof. The proof follows from the identity
AV A= Fu)) ' = AT2U - Fluo) A7) ™!
and by (4-1). (]

5. Rate of convergence of the linear and nonlinear semigroups

Since the operators A, € € [0, 1], are self-adjoint and AZ! converges uniformly to
Ay lase — 0T, for each o < )‘(1) (A? the first eigenvalue of Ay), there exists C > 0,
independent of € € [0, 1], such that

(5-1) le™*llgx) < Ce™'t7'2, 1>0, e €0, 1].
(X)
Theorem 5.1. If6 € (0, %] and o < )»(1), there exists C > 0, independent of €, such
that
(5-2) lle™<" — e[l gx) < Ce™ flae — aoll Tyt~ /**7

forallt > 0ande € [0, 1].

Proof. Considering the linear semigroup

1
e_Ael = — / ekt()\.l +Ae)_l d)"y €€ [Ov 1]7
2mwi Jr

where I' is the boundary of sector ¥_, 4 = {A € C : |arg(A + w)| < ¢} with
/2 < ¢ < m, oriented in such a way that the imaginary part of A increases as A
runs in .

The estimate

—Ae —A —A. —A — —1/2
(5-3) le™ A" — ™| qxy < lle™ A ||y + le™ " [y < Ce™ ™Y

follows by (5-1).
On the other hand, using Proposition 3.7, we have

_ _ — 1/2 _
(5-4) lle™<" — e |l yx) < Ce™ [lac — aol eyt ™"
Therefore, for 6 € (0, %], we obtain

||€_A5t o e—AOt < Ce—a(l—Z@)tt—1/2(1—29)e—o{(26)t 260

20 —
e < llac _aOHLOC(Q)t
— 20 —(1/246

< Ce ¥ lac _QOHLDO(Q)I 17246

where C > 0 is independent of €. U
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Theorem 5.2. Let [u. v ]',[u v]F € X,and 0 € (O, %) Then there are positive
constants C and L such that

|

forallt > 0.

Te(n[ e ]—Tom[ “ ]H < Ce“z—“/2+9>(H [ e ]— [ “ ]H +llac—aoll g
Ve vdlix Ve vdlix

Proof. For t > 0 and [u, ve]” € X we have

Te(t)[Z: ] :e—Aff[”e]+/Ote—f‘f<’—s>f(n(s)[i‘; D ds, ¢elo,1],

Ve

and therefore

55) |

ol ][]

e I,

<l l=em Tl [ler sl ])

- e_AO(t_S)f(To(s)[ “ ]) H ds.
v X
From (5-1) and (5-2) we get
&6 ferly J=e V]l
Ve vdlix

< Ct—(1/2+9)H [ Ue ] . [ u ]H +Clla _aonzeoo (/246

= Ve v lllx € L)
We still have

5 /Oz He_Ae(t—s)f<T€ (s)[ ’:}: ]) _ e—Ao(t—s)f(TO(S)[ Z ]) Hx ds

t
< CLf/ (t _s)—1/2e—a(t—x)
0

LTRETA R

t
+ Cllac — a0l (g f (1 =)~ 1/2HDeme =) g,
0
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Substituting (5-6) and (5-7) in (5-5), it follows that

|

o[ ]-mo ]

I

u u
<Ol 1= Lol e coiem e
X Ve v X+” € O”L ()

1
+CLy / (t —5) 12eml=9)
0

Sl G| P

Thus the singular Gronwall inequality (see Lemma 7.1.1 in [Henry 1981]) guarantees
the existence of a constant L > 0 such that

ol ]-nel L

< Celrty (1/2+9)<H[ e]_[ }H +||aé_a0||§oo(m), O
Ve v X

6. Rate of convergence of the equilibria and of the linearizations

Now we will work to control the behavior of equilibria in terms of ||a. — ag ||‘L{.§ @
First, we will give the definition of equilibrium of problem (1-7).

Definition 6.1. The equilibrium solutions of (1-7) are the functions that solve the
stationary

(6-1) Acw® = F(w®), €€][0,1].

For each € € [0, 1], we denote by €, the set of the equilibrium solutions of (1-7). We
say that an equilibrium w¢ of (1-7) is hyperbolic if the spectrum o (A — F'(wY))
of Ac — F'(wY) is disjoint from the imaginary axis.

We start by proving the upper semicontinuity of the family of equilibria.
Proposition 6.2. The family {€. : € € [0, 1]} is upper semicontinuous at € = Q.

Proof. Since €. is contained in o, sup{||w€| x : w® €€, € €[0, 1]} < oo. Using the
fact that F': X — Y x Y is bounded, for each w¢ € €., we have that w¢ = A;lF(wf),
and the result follows from the uniform convergence of A_! to Ay L U

The proof of lower semicontinuity requires additional assumptions. We need
to assume that the equilibrium points of (1-7) are stable under perturbation. This
stability under perturbation will be given by the hyperbolicity.

Proposition 6.3. Any hyperbolic point of € is isolated.
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Proof. We note that w, € € is a solution of (6-1) if and only if w, is a fixed point
of

W (w) := (Ag— F'(wy) " (F(w) — F' (w)w).

If we show that, for some r > 0, ¥ : B,(w,) — B,(w,) is a contraction, where
B, (wy) := {we X:|lw—ws|x <r}, then w, is a unique element in B, (wy) N€
and, consequently, is isolated. In fact, letting r > 0 and u, v € B +(uy), we observe
by (4-1) that

W @) — W W)llx < II(Ao— F'(w)) oo I (F () — F(v) — F'(w,) @ —v) I x

Criu—v|x.

NN

Thus, choosing r such that Cr < 1, we have W is a contraction. We can see that,
if v € B, (wy), then [[W(v) —wyllx = [V () = W(w,)|x < Cllv—wyllx <r, for
some constant C € [0, 1). Then W (B, (wy)) C B,(w,). This implies that ¥ has a
unique fixed point in B, (w,) and the proof is complete. U
Corollary 6.4. The set € has at most a finite number of hyperbolic points.

Proof. It follows directly of the compactness of €. U

Now we are going to study the convergence properties of resolvent operators of
the form (A + V.)~!, with V. € £(X!, X). This is because we are interested in
comparing the resolvent operators of the linearization around equilibrium.

The convergence of resolvents of A, 4 V) follows from the convergence of resol-
vents of A, (see Proposition 3.5) and the lemma below, whose proof is immediate.

Lemma 6.5. The operator A¢ + Vy, € € [0, 1], satisfies the identity
(6-2) (Ac+Vo) ™' — (Ag+ Vo) ™!
=[I — (Ac + Vo) "Vol(AZ' — AgHIT — Vo(Ao + Vo) 1.

Theorem 6.6. Let us consider w, a hyperbolic of €y with 0 & o (Ao — f'(wy)).
Then there exist €| > 0 and r > 0 such that problem (1-7) has exactly one equilibrium
solution w¢ in B,(w*) ={w e X : ||lw—wil|x <r}fore €0, €] Furthermore,
lw$ — willx < Cllae —apll = g, for some C > 0 independent of .

Proof. The hyperbolicity of w, means that o (Ac — f'(w,)) is disjoint from the
imaginary axis. Thus, by Lemma 4.1, we can guarantee the existence of a constant
C > 0 such that

I(Ae = F'(w) " g < C, € €10, 1],
We have that w€ is a solution of (6-1) if and only if it is a fixed point of the map

Ve (@) := (A — F'(w)) " (F(w) — F'(wa)w).
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From Lemma 4.1, we get that Ai/z(A6 — F'(w,))~! converges uniformly to
A)*(Ag — F'(w,))~", which implies
U, (wy) > Yo(w,) in X.
Now we will prove the existence of r > 0 and €; € [0, 1] such that W, is a
contraction of B, (wy) = {w € X : |lw — w||x < r} into itself, uniformly in [0, €1].

In fact, first we will see that W, is a contraction map. For this, we take u€ and v€ in
B, (wy). In this way,

[We () — W (v)llx

= I(Ac = F'(w) " [F ) = F(v°) = F'(wo) (u® —v)]lIx

< N(Ae = F'(wa) ™ lgex, xn IIF ) = F () — F () (u€ — v°) | x

= 1AZ' U = F'(w) T AT D g x) |1 F @) = F (o) = F' () (u€ — vl
and, according to Proposition 3.5 and (4-1), there exist C > 0 and €; > 0 such that
(6-3) [|We(u®) — W (v)|Ix1 < Cllu¢ —v€|x, forallé>0andalle€l[0,e¢].

Therefore, choosing § such that C§ < a < 1, it follows that W, is a contraction as
claimed.

Let us show now that W, (B, (w,)) C B, (wy). Taking u€ € B, (w,), we obtain
by (6-3) that

(6-4) | Ve (”e) —Wyllx < ||1p€(u€) — W (wi)llx + Ve (wy) — wyll x
< a”u€ — Wyl x + [We(wy) — wyll x
<ar+ ||Ve(wy) —wy|lx, foralle e (0,¢€].

It follows from Lemma 4.1 that there exists €; > 0 such that
(6-5) [We(wy) —wyllx <r/2, forall e €[0,e].
Combining (6-4) and (6-5), and considering a < 1/2, we deduce that
|We () —wyl|lx <r, foralleel0,e],

and, therefore, W, : E,(w*) — B,(w,) is a contraction, for all € € [0, ¢;]. Hence,
there exists a fixed point of ¥, in B, (w,), which we will call ws.
Finally, we will find an estimate of the difference wi — w, in terms of |a. —

2
aO“;‘/OO(Q)'
Observe that wé = W (wS) and w, = Wo(w,). If we denote F'(w,) = Vp, we
have
6-6) [wS —willx < [((Ac + Vo) ™' = (Ao + Vo) " HIF (w$) + Vows]
+ (Ao + Vo) "' [F (w) — F(w,) + Vo(w§ — wy)]llx.
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Identity (6-2) and Proposition 3.5 give us
(67) 1(Ac+Vo) ™ = (Ao+V0) Mlsx) < CIAZ = Ag ) < Cllae—aoll = g

where the constant C > 0 is independent of €.

On the other hand, denoting z{ = F(wg) — F (w,) + Vo(w; — w,) and using the
differentiability of the map F : X — Y x Y (see (4-1)), we get that, for every r > 0,
lzellx < rllwg —wsl x. Hence,

(6-8) 1(Ao+ Vo) 25 lx < rll(Ao+ Vo) e lws — willx.
Substituting (6-7) and (6-8) in (6-5) and choosing r > 0 such that r|[(Ag +

Vo) ¢y < 1/2, we obtain

1/2
IS — willx < CIF ) + Vows llxllae — aoll}Z gy + 1 1ws —wilx.

which, combined with the fact that f and its derivative are limited, allows us to
conclude

172
lws — willx < Cllae — aoll /% - O
Remark 6.7. Notice that, by assuming that elements of €y = {wl;o, R w:’o} are
hyperbolic, we have that the points of €, = {wi’é, ., wp€), with € € (0, 1], satisty

the estimate ||w’¢ — wi*0|| x < Cllac —a0||1L/£ @) We still have by (4-1) that, writing
Ve = F/(wf) with w¢ € €., Ve converges to Vj in the uniform topology.

Lemma 6.8. There exists a constant C > 0, independent of €, such that
IVeAZ = VoAg e < Cllae — aoll 2 -
Proof. The estimate follows by the decomposition
VeAZ = VoA = Ve(AT = ATH + (Ve = W) A
(3-25), and Theorem 6.6. U

The next result shows an analogous property found in Proposition 3.5 with
A¢ + Ve instead of A.. This will be important in the analysis in the next section.

Proposition 6.9. Let us consider Ac=A + V. foralle €[0,1]. If O € p(Ag), then
0e ,o(Ae),for all € € (0, 1], and the following identity holds:

6-9) A7'—Ay!
= (A =AU +VoATH T =AU+ ATH T (VeA = VoA HUT+VeAH ™
Furthermore
- - 1/2
(6-10) 1AZ = A5 ) < Cllae — aoll /< g

for some C > 0 independent of €.
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Proof. The first part follows from Proposition 2.1. The identity (6-9) is immediate,
and (6-10) follows using (6-9), Proposition 3.5, and Lemma 6.8. U

The last proposition enables us to prove similar results as Proposition 3.6,
Proposition 3.7, Theorem 5.1 and Theorem 5.2 for A + V instead of Ae.

7. Rate of convergence and attraction of local unstable manifolds

The main aim of this section is the proof of the existence unstable local manifolds
as a graph of a Lipschitz function, its convergence, and exponential attraction.

For each € € [0, €], let us consider wj to be an equilibrium solution for (1-7). We
assume the existence of a constant C > 0 such that |w{ —wy| x < Cllac —ao ||1L(.%(Q),
for all € € [0, €], and that w, := w? is hyperbolic. To deal with a neighborhood of
the equilibrium point w§, we rewrite the problems (1-7) as

(7-1) £+ At = Fu +w) — F(ws) — F'(wé)u®,

where z¢ =u—wj and Ac=A.— F'(w). With this, one can look for Proposition 3.7
with A, instead of A..

Let y be a smooth, closed, simple, rectifiable curve in {z € C : Rez > 0}, oriented
counterclockwise and such that the bounded connected component of C\{y} (here
{y} denotes the trace of y) contains {z € o(—Ag) : Rez > 0}. From part (ii) of
Proposition 3.6, there exists €; > 0 such that {y} C p(—Ae) forall € € [0, €;]. We
define Q. by

_ 1 _
Qc=— /(,\1 —A)'dn, foralle €0, ¢].
27 y

The operator A, is self-adjoint and there exist 8 > 0 and C > 1 such that

le= 4 Ocllwcxy < Ce™P!,  forall 7 >0 and all € € [0, ]
and _
”e—Aet(I _ Qe)”ig(X) < Ct—l/ze—ﬂf’ t>0.

Using the decomposition X = 0. X & (I — Q)X (the solution z€ of (7-1) can
be decomposed as z€ = Q.z€ + (I — Qc)z¢), we rewrite (7-1) as

d — _ _ _ _

—(Qez )+ A0z = Ho(Qez, (I — Q)25),
(7-2) <

E[(I — 0]+ Al — Q)7 = Ge(Qez, (I — Q)2°),
where

(7-3)  He(Qez, (I — 06)Z°)
= Q[ F(Qezf +(I— Q) +ws) — F(wS) — F' (w)(Qezt + (I — Q)z)],
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and
(7-4)  Ge(Qezt, (I — 0)Z°)
== QI[F(Qezf+ (I — Q) +w) — F(ws) — F'(w)(Qez® + (I — 0)z)].
The functions H, and G are continuously differentiable with
H:(0,0) = G¢(0,0)=0

and H!(0, 0)=0= G~ (0, 0) € £(X). For simplicity of notation, we write ®* = Q. z¢
and 9¢ = (I — Q.)z¢. Hence, given p > 0, there exist €] > 0 and r > 0 such that if
||a)€||QEX + ||19€||(1_QE)X <r and € € [0, €], then

(7-5) ||He(a)€, ﬂe)llégx <p and “Ge(we, 196)“(17@0)( <0,

(7-6) |1 He (0, 99) — H (@, 9 g,y < (It — &g, x + 1195 = 31 1_g.1)
and

(T-T) 1Ge (@, 9) =G (@, 3y g.rx <pUI = I x+13 =T 1 g.,0)-

Considering the coupled system (7-2), we can show an unstable manifold theorem
using similar arguments to those in the results of Chapter 6 in [Henry 1981].

Theorem 7.1. There exists a map s : 0. X — (I — Q)X such that the unstable
manifold of wg, is given by

W' we) ={(w,9) € X: 9 =sS(0), w e Q:X}.
The map s; satisfies

sl == sup lsz(@)llx <C, lsi(w) —sg@)lx < Clo—allg, y.
weQX

where C > 0 is a constant independent of €, and for 6 € (O, %) there exists a C > 0,
independent of €, such that

0 26
(7-8) sy — s, lll < Cllae — aoll 7o (q)-

Furthermore, there exists p; > 0, C > 0 (independent of €), and to > 0 such that,
for any solution (0 (t), V€(t)) € X, t € [tg, 00), of (7-2), we have

(7-9) 19€(1) —sE(@ (1)l x < Ce P 9(19) —sE (0 (o))l x.  forall t >1o.
Proof. We consider the set
Te={s5:0X'—> (= 0I)X :Isll C, [Is(@) —s@)]x < Cllo—l g x}-

It is not difficult to see that (X, || - ||) is a complete metric space.
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Given s € X, and 1 € Q. X, we denote by w¢(t) = ¥ (¢, 7, n, s) the solution of

{a)f(t) + B (t) = H (0 (1), s(@(1))), t<Tt
w(t) =1n.
We define ¥, : ¥, — X, by

e (s)n = / e A TOG (0f (8), s (0° (8))) dE.

o0

According to Theorem 7.1 in [Arrieta et al. 2013], we can deduce that W, is a
contraction. Therefore, there is a fixed point s; = W(s;) in X..

Now we shall prove that the graph of s {(®°, s5(0%)) : € € Q. X} is invariant
for (7-2), in the sense that initial data for (7-2) in {(o€, s (0°)) : @¢ € Q X} lead
to solutions in this space. In fact, we take (wy, 75) € W*(wg) (95 = s5(wp)). We
denote by ¢ (¢) the solution of the initial value problems

d — _ _
E(Qeze) + A QeZ6 = He(wea Si(a)e))»
¢ (0) = o,

where 7€ = 0 +9€ € 0. X ® (I — Q) X. This defines a curve (0S(2), sS(w5(2))) €
W*(wy), t € R. Also, the unique solution of

d _ - _
E[(I — Q)2 1+ Ac(l — Q)2 = G (o, 55 (),

which remains bounded as t — —o00, is

t
950 = = 0)Z5(D) = / A=CNIG (g (8), 55 (@5(8))) dE = s (@5 (1)).
—0Q

Therefore (wS(t), ss(wS(¢))) is a solution of the system (7-2) through the point
(), V), proving the invariance of the graph of s.

To show (7-8), we can proceed as in the proof of Proposition 6.1 in [Arrieta et al.
2009].

Finally, the proof that the graph of s is the unstable manifold that attracts
exponentially, uniformly in €, that is, the inequality (7-9) holds, follows by similar
arguments to those in the proof of (A.8) in [Bruschi et al. 2006]. U

Now we are able to prove our main result.

8. Proof of Theorem 1.1

The purpose of this section is to emphasize the proof of our main result. For this,
we return to Theorem 1.1 to establish its proof.
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Proof of Theorem 1.1. This proof follows by Theorem 5.2, Theorem 6.6, and
Theorem 7.1 jointly with Theorems 2.1 and 2.2, and Corollary 2.1 in Chapter 8 of
[Babin and Vishik 1989]. O
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THE BRIN-THOMPSON GROUPS sV ARE OF TYPE F

MARTIN G. FLUCH, MARCO MARSCHLER,
STEFAN WITZEL AND MATTHEW C. B. ZAREMSKY

We prove that the Brin—-Thompson groups sV, also called higher-dimen-
sional Thompson’s groups, are of type F, for all s € N. This result was
previously shown for s < 3, by considering the action of sV on a naturally
associated space. Our key step is to replace this space by a subspace s X that
is easier to analyze.

Recall that a group is of fype F if it admits a classifying space with finitely
many cells in each dimension. Well-known examples of groups of type F, include
Thompson’s groups F, T, and V. Some generalizations of V were introduced by
Brin [2004; 2005] and shown to be simple. We denote these groups sV, for s € N,
with 1V = V. These groups are usually termed higher-dimensional Thompson’s
groups or Brin—Thompson groups. All of the groups sV are known to be finitely
presented [Hennig and Matucci 2012], and Kochloukova, Martinez-Pérez, and
Nucinkis [Kochloukova et al. 2013] showed that 2V and 3V are of type F,. We
prove that this result extends to all dimensions.

Main Theorem. The Brin—Thompson group sV is of type Fo for all s.

Fix some s. There is a natural poset % associated to s V. The realization |P|
of this poset is contractible and the action of sV is proper but not cocompact. To
prove the Main Theorem it suffices to produce a cocompact filtration of |%| whose
connectivity tends to infinity. The tool to study relative connectivity is discrete
Morse theory. This was carried out for s = 2, 3 in [Kochloukova et al. 2013].
However, for larger s this space quickly becomes cumbersome.

We therefore consider a subspace s X of |%|, which we call the Stein space for
sV. As before, the Stein space is contractible and the action is not cocompact. The
advantage of the Stein space is that the Morse theory becomes easier to handle.

In Section 1 we recall the definition of sV. The Stein space sX is defined in
Section 2 and some basic properties are verified. In Section 3 we analyze the
connectivity of the subspaces in the filtration and deduce the Main Theorem.

The second author was formerly known as Marco Schwandt.
MSC2010: primary 20F65; secondary 57Q12.
Keywords: Thompson’s groups, finiteness properties.
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1. The Brin-Thompson groups

The elements of the Brin—-Thompson group sV can be described as dyadic self-maps
of s-dimensional cubes. We will first give a brief intuition for these maps, and then
delve into some formalism.

To get an intuition for the elements of sV for arbitrary s, recall first that elements
of Thompson’s group V = 1V can be thought of as left-continuous, piecewise linear
maps from the unit interval [0, 1] to itself, where the slope of any linear piece is a
positive dyadic rational. An equivalent description of such an element is obtained
as follows: First divide the unit interval representing the domain into two halves
and iterate this procedure by further subdividing some of the resulting pieces. Then
similarly cut up the unit interval representing the codomain into the same number
of pieces as the domain, and finally identify the pieces of the domain and codomain
via a permutation. Note that the intervals identified in the last step will usually have
different lengths. For more details see [Cannon et al. 1996].

To describe elements of sV, we no longer think of the unit interval but the unit
s-cube [0, 1]°. The unit s-cube can be halved by dyadic hyperplanes in s different
directions, as can any iterated piece obtained this way. As with V, an element of
sV can be described as a sequence of halvings of the domain and codomain and an
identification of the resulting pieces by a permutation. Again the identification will
affinely deform the individual pieces. Alternatively we can describe an element by
a dyadic map from the s-cube to itself. A sequence of halvings of the s-cube will
be modeled by “dyadic coverings”. To get an intuition, the reader might want to
look at Figure 1 (the map f represents an element of 2V). It may also be helpful to
read Section 1 of [Burillo and Cleary 2010], which additionally details the paired
trees model for elements of sV.

1A. Dyadic maps and the group sV. We now describe more formally the notions
needed to define the group sV, and also a certain poset %, which will then be used
to define the space s X for our main argument.

A real number is called dyadic if it is of the form k /2 for some k € Z and I € N.
We denote by I the subspace of [0, 1] of nondyadic numbers. By a dyadic interval
we mean a set of the form [k/21, (k+ 1)/21] N1 with k, [ € Ny, and the length of the
dyadic interval is defined to be 1/2'. A bijection A — B between dyadic intervals
is called a simple dyadic map if it is affine of positive slope. Note that this slope
will necessarily be a power of two.

In general we consider the unit s-cube /° (or rather, the set of nondyadic points
in the unit s-cube), which is the s-fold product of /. A brick is a subset C of I*®
that is a product of s dyadic intervals, called the edges of C, and the volume of C
is the product of the lengths of its edges. Note that the volume of a brick is always
a power of two. A dyadic covering is a finite set of bricks that disjointly cover I°.
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Note that by our definition the set / does not contain any dyadic numbers.
For a natural number m, denote by /°(m) the disjoint union

I!(m):=ByU---UB,,

where each B; is a copy of I°. Note that /* is the same as /°(1). We call B; the
i-th block of I°(m). A covering U of [°(m) is called dyadic if it is a disjoint union
U=y ---1U,, where U; is a dyadic covering of the block B;. We denote by
Im:={B1, ..., By} the trivial dyadic covering of I°(m), in which the bricks are
just the blocks themselves.

Observation 1.1. The set of dyadic coverings of I°(m) is a lattice with respect to
the refinement relation.

Proof. Existence of joins (that is, coarsest common refinements) as well as existence
of a unique minimum (namely, J,,) are clear. The statement now follows from
standard order theory. (Il

Let AU and V" be dyadic coverings of I°(m) and I°(n), respectively, and let
f: I°(m) — I°(n) be a map. We say that the pair of dyadic coverings (U, V) is
compatible with f if for every C € AU, f|c is a product of simple dyadic maps and
f(C) € V. Less formally, this means that every brick in the domain maps in an
affine way to a brick in the codomain. If such a pair of dyadic coverings exists,
then we say that f is a dyadic map. It is easy to see that composition of two dyadic
maps is again a dyadic map, that every dyadic map is invertible, and that the inverse
of a dyadic map is dyadic.

There is a combinatorial description of dyadic maps. If f: I*(m) — I°(n) is
a dyadic map and (U, U;) is a compatible covering, then f induces a bijection
of dyadic coverings U; — %U,. Conversely, every bijection of dyadic coverings
Uy — Uy induces a dyadic map I°(m) — I°(n).

Note that two bijections U; — V1 and U, — ¥, induce the same map I°(m) —
I° (n) if and only if there are common refinements U and " such that the induced
bijections U — V" coincide.

Definition 1.2. The Brin—Thompson group sV is the group of all dyadic self maps
of I¥ with the multiplication given by composition, gh := g o h.

1B. The poset 1. In order to define the poset | on which sV acts we need some
more notation.

Denote by 975,“,, the set of all dyadic maps f: I°(m) — I°(n), so for example
@’1,1 —sV. Let P be the union of the @m,n, where m and n range over all positive
integers. Also denote by %, the subset of P where the domain of the maps consists
of m blocks.
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1 4
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2|3 fi L
5 2
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> % 2| 35 2 |67
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Figure 1. An example of a dyadic map f;: I>(1) — I%(1) and
a dyadic map f»: I*(1) — I?(2), obtained from f; by splitting
along a horizontal line. The map f, is equivalent in % to the one
where the blocks on the right are interchanged.

There is a natural action of sV on %, given by precomposition: f8 := f og for
gesVand f € %,. For each positive n there is also an action of the symmetric
group S, on 9’,,, » by permuting the blocks of the codomain. We denote the qu0t1ent

Prn/Sn bY Py In other words, an element of &, ,, is obtained from 9]’,,, n by
forgetting the order of the blocks in the codomain. We set

= U Pmn and Py :=U97’1,n-

n,m>1 n>1

Note that % 1.» 1s an sV-invariant subset of %1, and the action of sV on @31,,,
commutes with the action of the symmetric group S, so we get an action of sV on
%1, for every n. In particular the sV -action on % induces an action of sV on P;.

Definition 1.3. The function ¢: % — N assigns to each x € % the number of blocks
in the codomain of x, that is, if x € ®,, ,, for some m, then 7 (x) = n.

Next we define a poset structure on & using the notion of “splitting”. A dyadic
map z: I°(m) — I°(n) is called a splitting (along W) if z is compatible with a
pair of dyadic coverings of the form (U, 7). The splitting z is called nontrivial if
n > m. Colloquially then, as the name suggests, a nontrivial splitting is given by
splitting up some cubes (and then not sticking any resulting cubes together). The
inverse of a splitting (along W) is called a merging (along U).

We define an order < on & by saying that x < y if there exists a nontrivial
splitting z such that y = z o x, that is, if y is obtained from x by nontrivial splitting.
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We also denote the induced order on % by <. In particular, ?; is ordered by <.
See Figure 1 for an example of dyadic maps and splitting.
The poset P is filtered by the ¢-sublevel sets

27" = e

I<k<n
We make the following easy observations:

Observation 1.4. The poset P, is directed (that is, any two elements have a com-
mon upper bound). Therefore, |%;| and || are contractible.

Observation 1.5. The action of sV on & is free. Thus, for any vertex x in |%P|,
the stabilizer Stabyy (x) is finite. Hence all cell stabilizers are finite and of type Fn.

Observation 1.6. The action of sV on @’151 is transitive, and for each n > 1 the
sublevel set [?7"] is locally finite. Hence |27"| is finite modulo s V.

These observations suggest that the filtration (|9’15" D of |P1] could be used to
show that sV is of type F, using Brown’s criterion.

Brown’s criterion [Brown 1987, Corollary 3.3]. Let G be a group and X a con-
tractible G-CW-complex such that the stabilizer of every cell is of type Foo. Let
{X;}j=1 be a filtration of X such that each X ; is finite mod G. Suppose that the
connectivity of the pair (X 11, X ;) tends to 0o as j tends to co. Then G is of
type Foc.

It would suffice now to show that the connectivity of the pair (|97f’15'”rl RERE))
tends to co as n tends to co. This was proved for the cases s = 2, 3 [Kochloukova
et al. 2013]. However, it becomes increasingly difficult to verify for higher s. The
main difference of our approach here is that we consider a certain subcomplex
sX of |2?|. Analyzing the relative connectivity in s X turns out to be substantially
easier than in |%q|.

2. The Stein space for sV

The idea of passing to what we are calling a “Stein space” was first introduced by
Stein [1992], and in particular was used to obtain a new proof that F is of type Fno.
This construction generalizes nicely to deal with some more complicated versions
of Thompson’s groups. For example Stein spaces were used in [Bux et al. 2012]
to prove that braided Thompson’s groups are of type Fo.. The key idea is that the
splitting establishing a relation x < y can be obtained from “elementary splittings’
that give rise to elementary relations x <x; <--- <x, <y, and these small steps are
much easier to understand locally. Heuristically, an elementary splitting amounts
to halving an s-cube at most once in any given direction. We now describe more
rigorously the construction of the Stein space.

’
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Definition 2.1. Call a brick C elementary if every edge of C has length at least
%. Call an elementary brick very elementary if it has volume at least % A dyadic
covering U is called (very) elementary if every brick in AU has this property. Likewise,
a splitting or merging along U is (very) elementary if U is.

For x,y € %, if y can be obtained from x by an elementary splitting, write
x < y; if moreover x # y then we write x < y. If y is obtained from x by a very
elementary splitting, write x C y; if moreover x # y, then we write x C y. Note
that the relations < and C are not transitive. In particular, the length of a chain
of very elementary splittings is bounded by the number of blocks. However, if
x1 <xp <x3 and x; < x3 then x; < x; and x; < x3, and analogously for C. It is
clear that the action of sV respects the relations <, < and C.

Clearly I°(m) has a unique maximal elementary covering € by m - 2* bricks all
of which have volume 27°. A covering is elementary if and only if € is a refinement
of it.

The closed interval [x, y] in P is defined to be [x, y] :={w € P |x <w < y};
the open and half-open intervals are defined analogously. Call an interval [x, y] in
|P1| elementary if x <y, and very elementary if x € y. A simplex of |2 ] is (very)
elementary if there is a (very) elementary interval that contains all of its vertices.

Definition 2.2. The Stein space for sV, denoted s X, is the subcomplex of ||
consisting of elementary simplices.

The following statement is the key to showing the contractibility of the Stein
space:

Lemma 2.3. Let x, y € P with x < y. There exists a unique yg € [x, y] such that
x <X ypandforany x <w <y, we have w < yy. If x <y, then x < yq.

Proof. Set m :=t(x) and n :=t(y). Let X be a representative in 9751 for x. Let
U be the dyadic covering of I°(m) such that y is obtained from x by splitting
along AU. Let € be the maximal elementary covering of /°(m). The element yq
is obtained from X by splitting along the finest common coarsening € A AU. The
desired properties follow from Observation 1.1. U

For x <y, call the yg from the lemma the elementary core of y with respect to x,
and denote it core, (y) := yp. When x is understood we omit the subscript. Observe
that if y; < y, then core(y;) < core(y»), that is, taking elementary cores respects
the poset relation. Figure 2 gives an example of an elementary core.

Lemma 2.4. For x <y withx £y, |(x, y)| is contractible.

The proof is essentially the same as the proof of the lemma in Section 4 of
[Brown 1992].
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Figure 2. A nonelementary dyadic covering, for s = 2. The thick
lines indicate the elementary core.

Proof. If w € (x, y], then core(w) € [x, y) because x £ y, and core(w) € (x, y]
because x < w. So in fact core(w) € (x, y). Also, core(w) < core(y) by the
previous discussion. The inequalities w > core(w) < core(y) provide a contraction
of |(x, y)|, by Section 1.5 of [Quillen 1978]. ]

As was done in [Brown 1992] for the Stein space of V, we can build up from
sX to |9]| to show that s X is contractible.

Corollary 2.5. The Stein space s X is contractible for all s.

Proof. By Observation 1.4, |?| is contractible. We build up from sX to |P|
without changing the homotopy type.

Given a closed interval [x, y], define ([x, y]) := ¢t(y) — t(x). We attach the
contractible subcomplexes |[x, y]| for x £ y to s X in increasing order of r-value.
In particular, when we attach |[x, y]|, we attach it along |[x, y)| U |(x, y]|. But this
is the suspension of |(x, y)|, and so is contractible by the previous lemma. We
conclude that attaching |[x, y]| does not change the homotopy type, and since ||
is contractible, so is s X. O

For each n > 1 let s X=" be the full subcomplex of s X spanned by vertices x with
t(x) <n. Similarly define s X =", and let s X=" be the set of vertices x with ¢ (x) =n.
Note that all of these sets are invariant under the action of s V. We will show that
the filtration (s X="), of s X satisfies the assumptions of Brown’s criterion.

Thanks to Observations 1.5 and 1.6 and to Corollary 2.5, the only remaining
feature of the filtration (s X="),, of s X that we need to verify is that the connectivity
of the pair (s X="*1, s X=") tends to oo as n tends to co. This is exactly the condition
that proved difficult to verify for the filtration of |%;| in [Kochloukova et al. 2013].

We will verify the relative connectivity in the next section using discrete Morse
theory. The idea is to treat ¢ as a height function on s X and inspect descending links.

3. Connectivity of the descending links and proof of the Main Theorem

We will use the following Morse-theoretic tools: Fix a vertex x in s X, say with
t(x) = n, and call n the height of x. The descending link 1k (x) of x is defined to
be the intersection of 1k(x) with s X =". The fact that vertices with equal heights
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cannot share an edge means that we can obtain s X=" from s X <" by “gluing in”
each vertex at height n along its descending link. This is made rigorous by the
Morse lemma (compare Corollary 2.6 of [Bestvina and Brady 1997]):

Lemma 3.1. Let X be a simplicial complex and let f: X© — 7 be such that
fx) # f(y) for adjacent vertices x and y of X. If 1k (x) is (k—1)-connected
for every vertex x € X=", then the pair (X=", X=") is k-connected, that is, the
inclusion X" < X=" induces an isomorphism in 7;, j < k and an epimorphism
in .

Fix a vertex x in s X and consider L(x) := 1k (x). As a subcomplex of ||,
L(x) is the collection of simplices given by chains y; < --- < yg < x with y; < x.
We first consider the subcomplex Ly(x) of L(x) consisting of such chains with
e Ex.

The complex Ly(x) naturally projects onto a matching complex.

Definition 3.2. Let I' be a graph. The matching complex M(I") of T is the simplicial
complex with a k-simplex for every collection {eg, . .., e} of k+ 1 pairwise disjoint
edges, with the face relation given by inclusion. If we regard every edge as consisting
of two oriented edges (effectively doubling each edge), we get the oriented matching
complex M°(T).

The specific graphs that we will need are generalizations of complete graphs.
For s e N, let s K,, be the graph with n nodes and s edges between any two distinct
nodes. In particular 1K, is just K,,, the complete graph on n nodes. Color the edges
from 1 to s so that any two distinct nodes have precisely one edge of each color
between them. For a fixed labeling 1 through n of the nodes of each s K,,, we have
a projection sz : sK, — K, for each s, given by sending an edge with endpoints i
and j to the unique edge of K, with endpoints i and j. Since disjoint edges map to
disjoint edges, this induces a map M(s7): M(sK,) — M(K}).

For any [ € Z, define v(l) := [ (I —2)/3].

Lemma 3.3. M(sK,) is (v(n)—1)-connected, as is M°(sK,,).

Proof. Tt is well known that M(K,) is (v(n)—1)-connected; see for example
[Athanasiadis 2004; Bux et al. 2012; Bjorner et al. 1994]. For any k-simplex
o in M(K,), the fiber M(s7)~' (o) is the join of the fibers of the vertices of o, so
it is homotopy equivalent to a wedge of spheres of dimension k. It is clear also that
links in M (K,) are themselves matching complexes of complete graphs. Therefore
the hypotheses of Theorem 9.1 in [Quillen 1978] are satisfied, and we conclude that
M(sK},) is (v(n)—1)-connected. We also have an obvious map M’ (s K,,) = M(s K},)
obtained by forgetting the orientation on the edges. The fibers of this map are
similarly spherical of the right dimension, so again using Theorem 9.1 of [Quillen
1978] we conclude that M°(sK},) is (v(n)—1)-connected. U
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Figure 3. An example of 7: VE, — M°(sK,) in the case n =
5 and s = 2. The solid arrow corresponds to a merge along a
vertical face, and the dashed arrow corresponds to a merge along a
horizontal face.

Every vertex y € Lo(x), say with #(y) = m, is obtained from x by applying a
nontrivial very elementary merging. The merging is given by a very elementary
covering AU of m blocks whose n bricks are indexed by the blocks of x. Two such
mergings define the same element y if and only if they differ by a permutation of the
blocks. Consequently, denoting by V E,, the set of very elementary coverings by n
labeled bricks up to permutation of the blocks, we get a one-to-one correspondence
between Lo(x) and V E,. We obtain a partial order V E,, from the partial order on
9% via this identification.

Corollary 3.4. V E,, and therefore Lo(x), is isomorphic to M°(sK,). Hence, both
are (v(n)—1)-connected.

Proof. Consider a nontrivial very elementary dyadic covering AU of /°(m) with n
bricks labeled 1 to n. Since AU is very elementary, each block consists of at most
two bricks. If it does consist of two bricks, then it defines an oriented edge in the
graph s K, as follows. The two bricks are

71 x (Iﬂ [0, %]) x I % and 1% x (Iﬂ [%, 1]) x 157k

for some 1 <k <s. Say the first brick is labeled i and the second brick is labeled
Jj- Then the edge in sK,, defined by this block points from i to j and has color k.
See Figure 3 for an example.

This procedure defines an isomorphism of ordered sets V E,, — M°(sK},). The
connectivity statement now follows from Lemma 3.3. (I

The next step is to show that L(x) is highly connected by building up from
Lo(x) to L(x) along highly connected links. If s = 1, then Lo(x) = L(x) so we
may assume s > 1 in what follows.

We start by giving a combinatorial description of L (x) similar to the one given for
Lo(x) before. Every vertex in L(x) is obtained from x via a nontrivial elementary
merging. We can therefore replace “very elementary” by “elementary” in the
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discussion of V E,, above. We get that the poset E, of elementary mergings of n
labeled bricks up to permutation of blocks is isomorphic to L(x).

We now describe the Morse function that determines in which order we build up
from Lo(x) to L(x). For any U € E,, the volume of any brick in U is at least 1/2°.
For each 0 <i < s define ¢; to be the number of bricks in U with volume 1/ 2/, Then
define c to be the lexicographically ordered function ¢ = (cs, c5—1, - . ., €3, ¢2). Note
that we do not include ¢ or cg in this tuple; this will be crucial to our arguments.
Denote by b the number of blocks of AU. The height h of U is now defined to be
h = (c, b), ordered lexicographically.

Observation 3.5. Let ¥ and % be vertices in E,, with X < %Y. Then ¢(X) > c(Y)
and b(¥) < b(Y), so in particular h(X) < h(Y) if and only if c¢(¥) = c(¥), and
h(®) > h(Y) if and only if ¢(¥) > c(Y).

Fix a vertex U in E, \ V E,. The descending link of U with respect to 7 will
be denoted lk|,(W). There are two types of vertices V" in 1k, (U). First, we
could have U > V" and A (W) > h(V"), which by the above observation implies that
c(U) = c¢(V'). The full subcomplex of k|, (W) spanned by such vertices will be
called the (descending) down-link. Second, we could have U <" and A(W) > h(V),
which implies that ¢(U) > ¢(V"). The full subcomplex of 1k, (U) spanned by these
vertices will be called the (descending) up-link.

Observation 3.6. Vertices 7" in the down-link and W' in the up-link automatically
satisfy V" < W. Therefore lk| (W) is a join of the down-link and the up-link.

This allows us to study the up-link and the down-link separately.

Lemma 3.7. If U has a block with precisely two bricks, then the up-link of U is
contractible, and hence so is 1k, (W).

Proof. Let B be a block in U with two bricks. Note that splitting only B does not
yield a vertex with lower height. For a vertex V" of the up-link we define a vertex
Vo as follows (see Figure 4): Since V' is in the up-link, it is obtained from U by
splitting. Let Vg be the covering obtained from U by doing all the same splittings
as for V', except that B is not split (whether or not it was split for V°). Then V¢ > U,
since V" was obtained by splitting more than just B, as observed above. It is also
clear that ¢(79) < c(W), and so V' is again in the up-link of U. Now let #p be
the maximal elementary splitting of AU that does not split B. Then for all V" in the
up-link, we have ¥y <% 5. Hence we have the inequalities V' > ¥y < %p, which
provide a contraction of the up-link of U, by Section 1.5 of [Quillen 1978]. ([

Forl € Z, define n(l) := | (I —2)/2%]. Note that, for a fixed s, as n — 00, n(n)
increases monotonically to co.

Lemma 3.8. If U has no block with precisely two bricks, then 1k| , (W) is at least
(n(n)—2)-connected.
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1|2
u 5|6
314
Vo [1[2|[3|4]]5]|6
vV o(112(]3]4 5 6
Zp | 1 2 3 4 5|6

Figure 4. A step in building up from V E to E¢ as described in
the proof of Lemma 3.7. The block B of the covering AU and its
images under the various splittings are highlighted.

Proof. Call a block in U with more than two bricks big, and a block with only one
brick small. Let k; be the number of big blocks and k; the number of small blocks.
By assumption kj + k; is the number m of blocks in AU.

The up-link of AU is clearly at least (k,—2)-connected, since splitting a big block
in any way produces a vertex with lower height, and so each big block contributes
a nonempty join factor to the up-link. The down-link of U is isomorphic to V Ey,
and therefore is (v(k;)—1)-connected by Corollary 3.4. This implies that 1k{  (U)
is (kp +v(k;)—1)-connected. Also, n is the number of bricks in U, so n < 2k, + k.

Since s > 1, 2° > 3, so we have

kp +v(ks) —1>kp + Lk‘ZTZJ 1>kt kgz—v2 _5
2kp+ks—2 )
:192—“'S_2Z n2s —2=n(n) -2
We conclude that 1k, (W) is at least (17(n)—2)-connected. 0

Corollary 3.9. Ifs =1 then E,, and hence L(x) is (v(n)—1)-connected. If s > 1,
then E,, and hence L(x) is (n(n)—1)-connected.

Proof. The s = 1 case is already done, since then E, = VE,. Now suppose
s > 1. Then n <v, so VE, is at least (n(n)—1)-connected. Also, forU € E,\V E,,
k|, (W) is (n(n)—2)-connected by Lemmas 3.7 and 3.8. It follows from Lemma 3.1
that E,, is at least (n(n)—1)-connected. U

Proposition 3.10. For each n > 1, the pair (sX=", sX~") is n(n)-connected for
s > 1, and the pair (1X=",1X<") is v(n)-connected.
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Proof. Let x be a vertex in s X~=". By Corollary 3.9, the descending link 1k| (x) of
x in s X is at least (n(n)—1)-connected for s > 1, or (v(n)—1)-connected for s = 1.
The result now follows from Lemma 3.1. U

We are now in a position to apply Brown’s criterion.

Proof of Main Theorem. Consider the action of sV on sX. By Corollary 2.5,
s X is contractible, by Observation 1.5, the stabilizer of every cell is finite, and
by Observation 1.6, each sX=" is finite modulo sV. By Proposition 3.10, the
connectivity of the pairs (s X=", s X=") tends to co as n tends to co. Hence, sV is
of type Fo, by Brown’s criterion. U
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IDEAL DECOMPOSITIONS OF A TERNARY RING
OF OPERATORS WITH PREDUAL

MASAYOSHI KANEDA

We show that any TRO (ternary ring of operators) with predual can be
decomposed into the direct sum of a two-sided ideal, a left ideal, and a right
ideal in some von Neumann algebra using an extreme point of the unit ball
of the TRO.

Recall that an operator space X is called a triple system or a ternary ring of
operators (TRO for short) if there exists a complete isometry ¢ from X into a
C*-algebra such that ¢(x)t(y)*t(z) € «(X) for all x, y, z € X. Our main result is
that any TRO with predual can be decomposed into the direct sum of a two-sided
ideal, a left ideal, and a right ideal in some von Neumann algebra:

Theorem. Let X be a TRO which is also a dual Banach space. Then X can be
decomposed into the direct sum of TROs X7, X, and X,

X=X7r&X. & Xg,

so that there is a complete isometry t from X into a von Neumann algebra in
which ((X7), 1(X1), and ((XR) are a weak™-closed two-sided, left, and right ideal,
respectively, and
xQ Q0
LX) =u(X7) D u(XL) & L(XR).

In the special case that the TRO is finite-dimensional, the decomposition is into a
direct sum of rectangular matrices, as first proved essentially by R. R. Smith [2000].
In the Appendix we give a short proof of that result. The following lemma is
a version of Kadison’s theorem [1951, Theorem 1] as found in [Pedersen 1979,
Proposition 1.4.8] or [Sakai 1971, Proposition 1.6.5]. Together with the idea of
embedding an off-diagonal corner into a diagonal corner developed in [Blecher and
Kaneda 2004, Section 2] (see also [Kaneda 2003, Section 2.2]), it plays a key role
in the proof of our theorem.
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Lemma (Kadison’s theorem). Let A be a C*-algebra, and let p, q be orthogonal
projections in A. Then an element x € pAq is an extreme point of Ball(p.Aq) if
and only if (p — xx™) A(qg — x*x) = {0}. In this case, x is a partial isometry.

Proof of the Theorem. By [Effros et al. 2001, Theorem 2.6], we may regard X
as a weak*-closed subspace of B(XC, H) for some Hilbert spaces H and K such
that XX*X C X. We may assume that [XK] = H and [X*H] = K. We also
identify B(/C, H) with the (1, 2)-corner of B(H & K), and let 14y € B(H & K) and
1 € B(H & K) denote the orthogonal projections on H and K. Then
XX x
L(X):= |: P ]

is the linking von Neumann algebra, 14, lx € £(X), and X = 14 L(X)1x. Since
Ball(X) is weak*-closed in B(/C, H), there is an extreme point ¢ € Ball(X). By
Kadison’s theorem above,

ey (I3 —ee)X (1x — e*e) = {0},

and e is a partial isometry. Let p € X (1xc — e*e)X*W* and g € X*(1y4 — ee*)XW*
be the identities of these two von Neumann algebras. Then by the adjoint of (1), it
follows that

2 pXq ={0},
3) p=pee =ee'p=pec*p and ¢q=c"eq=qge*e=qe’eq.
Noting that pxy* € X (1 — e*e)X*W* and gx*y € X*(1y4 — ee*)XW*, we also get
4@ pxy*=pxy*p=xy*p and ¢gx*y=¢gx*yqg=x*yq forall x,ye X.
Put
qi:=e"(Iy—ple(lc—q) and g2:=1x—q—q.
We claim that ¢; and ¢, are orthogonal projections. Indeed, (4) and the fact that
pe € X yield
g7 = (g —q)e* (15 — ple =e*e —e*pe —qe*e +qe*pe
=e'e—e*pe—e*eq+e*peq =q
and
g = e*(lu—pe(lx —q)e* (I — ple(lx —q) = e* (1 — peg{ (lc —¢)

=e"(Iy—pleqi(lx —q) = " (1yy — p)ee* (13 — ple(lx —q)(1x —q)

=e*ee* (13— p)(ly —ple(lx —q)(1x —q) = e*(13y — ple(1x —q)

= ql_
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Noting that g;q = 0, we have q% =q=q;.
To see that

(&) (I —p)X (1 —e"e) = {0},

let {1y} be an approximate identity of the C*-algebra X*X. Then for each x € X,
px(1x —e*e)uy, = x(1x — e*e)u,. Taking the limit ¢ — oo yields that

px(lx —e*e) = x(1x —e*e)
for x € X, and hence (5) holds. Similarly,

(6) (13 —ee") X (1x — q) = {0}
also holds.
Let x, y € X. Then
qix*y =e*(lyy — ple(lx —q)x*y

=e"(ly — plexy(lx —q) by (4)
=e"ex* (13— p)y(lc —q) by 4
=x*(ly — p)y(x—q) by the adjoint of (5)
=x"(13 — p)ye*e(lx —q) by (5)
=x*ye*(ly — ple(lx —q) by (4)
=x"yqu,

and so we have
(7 qix*y =x"yq = q1x*yq) forall x,y e X.

Put X7 := Xq1, X1 := Xq, and X := X¢». Then these are weak*-closed TROs,
and X = X7 & X; & Xg. Using (4) and (7) and noting that ¢;, ¢, and ¢, are
mutually disjoint, we have

X;XL = X;XR = XZXT = XzXR = XzXT = X;XL = {0}
and
X*X=X3Xr XX, & XEXg.

This proves that X = X % Xy % Xkr.
Define
X - XXV XX
by

t(x):=(xr +xp)e* De*xg,
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where x = x7 + x + xg is the unique decomposition of x € X such that x; € X7,
x1 € X1, and xg € Xg. First note that «(X7) N¢(X ) = {0}. Indeed, assume that
t(x7) +t(xp) =0, that is, xgje* 4+ xge* = 0. Then by multiplying both sides by e
on the right and using (3) and (7), we obtain that xe*eq; + xg = 0. Multiplying
both sides by g on the right noting that g;g = 0 yields that xg = 0, and hence
xqie* =xge* =0, thatis, t(x7) =t(xz) =0. Since t(X7)*1(X1) =eX} X e* ={0}
and ((X7)*1(X1) = eX] X7e* = {0}, we obtain

((X7) @ (X)) (X7) B (X)) = L(X7)*t(X7) B e(X1)"1(X)

noting that t(X7)*1(X7) =q1 X7 X7q1 and 1(X1)*1(X1) =¢X; X1q. Thus «(X) =
L(XT) & ((Xr) 3 t(Xg). To show that ¢ is a complete isometry, it suffices to show
that each of ¢|x,, t|x,, and ¢|x, is a complete isometry. Since e*eq| = g1,

leGer)? = )|l = lIxqie*eqix®|| = llxqix*|l = llxqil1* = llxr|*.

A similar calculation works at the matrix level, which concludes that ¢x, is a
complete isometry. Similarly, (3) yields that ¢|x, is a complete isometry.

leGer)1? = le(xrr)*e(xr) | = lg2x*ee*xqall = llgax*ee* x(1x — g — 1)l

= llgax*x(Ix — )|l = lg2x*x(Ix — g —q)|l = lgax*xqall = lIxr %,

where we used (6) and (7) as well as the fact that g,g; = 0 in the fourth equality,
and (7) together with the fact that go¢; =0 in the fifth equality. A similar calculation
works at the matrix level, which concludes that ¢|x, is a complete isometry.

By [Blecher 2001, Lemma 1.5(3)] or [Blecher and Le Merdy 2004, Theo-
rem A.2.5(3)] for example, ((X7), t(Xr), and ((X) are weak*-closed. Clearly,
t(Xr) and (X 1) are left ideals and ¢(Xg) is a right ideal in the von Neumann
algebra WW*§ XX ™. To see that t(Xr) is a right ideal as well, it suffices to
show that ¢(X7)* C «(X7), in which case necessarily «(X7)* = ¢«(X7). To show
this, first note that it follows from the adjoint of (6) that

qx*=e*(ly—ple(lx—q)x*=e*(1y—ple(lx—q)x ee* =qx*ee* forall xeX.
Therefore, together with (7), we obtain
t(x7)* =eqix* = eqix*ee* = ex*eqie* € Xqie* =1(X7) forall xe X. O

Definition. We call the decomposition X = X7 % Xy % X obtained in the proof
of Theorem the ideal decomposition of the TRO X with predual with respect to an
extreme point e of Ball(X).
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Remarks. (A) The reader should distinguish ideal decompositions from Peirce
decompositions in the literature of Jordan triples. In fact, a TRO can be regarded
as a Jordan triple with the canonical symmetrization of the triple product. How-
ever, an ideal decomposition and a Peirce decomposition give totally different
decompositions.

(B) It is also possible to define ¢ : X — XX*W*% xx" by

t(x):=xe* ®e*(xg +x7) for x € X.

(C) Simpler expressions for X7 and Xg are Xr = {x — px —xq | x € X} and
Xr = pX, which would be more helpful in understanding what is going on in the
decomposition. To see the equivalences of expressions, let x € X. Then, using
@), (5), and (2), we have

xr i =xq1 =xe" (I3 — ple(lx —q) = (1 — p)xe*e(lx — q)
=y —px(lx —q) =x — px —xq.
Accordingly, it follows that

xr=xq2=x(Ig—q—q1) =x(Ix—q) —xq1 =x(1x —q) — (x — px —xq) = px.

(D) The ideal decomposition highly depends on the extreme point chosen. Indeed,
let X be a von Neumann algebra, u € X be a unitary element, and w € X be an
isometry which is not unitary. Then the ideal decomposition with respect to u is
just X = X, while the one with respect to w is X = X7 % Xr.

Appendix: A short proof of Smith’s result

The following theorem was proved in [Smith 2000] (also see [Effros and Ruan
2000, Lemma 6.1.7 and Corollary 6.1.8]). We observed it independently in 2000,
together with Corollary A.2. Since these results are a special case of this paper’s
Theorem, and our proof is short enough to understand the essence of the results
transparently, it seems worthwhile to present them here. The key to the shortness
of the proof is the obvious fact that if a TRO X is finite-dimensional, then so are
the C*-algebras X X* and X*X.

Theorem A.1 [Smith 2000]. If X is a finite-dimensional TRO, then there exist a
finite-dimensional C*-algebra A and an orthogonal projection p € A such that
X = pAp* completely isometrically.

Proof. Let X C B(IC, H) be a finite-dimensional TRO and {x;, ..., x,} C X be
its base. We may assume that [XK] = H and [X*H] = K. Then the C*-algebra
X X* :=span{xy* | x, y € X} is equal to the set span{xix;.k | 1 <i, j<n}, and the
latter is obviously a finite-dimensional vector space. Similarly, X*X := span{x*y |
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X,y € X} is a finite-dimensional C*-algebra. Let £(X) be the linking C*-algebra
for X, that is,
XX* X

L(X) :=[ e X*X}(c BH®K)).

Let e, f be the identities of the C*-algebras X X* and X* X, respectively, and let

p:=|:eo:|€E(X).

00
Then
00
1 _
"o [0 f }
and X = pL(X)p* completely isometrically. O

Corollary A.2. A finite-dimensional TRO is completely isometric to the direct sum
of rectangular matrices: My, , (C) & & My, k,, (C).

Proof. Let X be a finite-dimensional TRO. By Theorem A.1, we may assume that
X = p (P, M,,(C)) p*, where p is an orthogonal projection in @', M, (C).
For each 1 <i <m, let us denote by 1; the identity of M, (C) which is identified
with an element of EB;":l M, (C) in the obvious way, and let p; := p1;. Then
X =6, piM,, (C) pl.L. By a unitary transform which is a complete isometry, we

may assume that

[; times  (n;—[;) times [; times  (n;—[;) times
. —— —— n . —— ——
p; =diag{l,...,1,0,...,0} and p;- =diag{0,...,0,1,...,1}
foreach 1 <i <m. O
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A STUDY OF REAL HYPERSURFACES
WITH RICCI OPERATORS
IN 2-DIMENSIONAL COMPLEX SPACE FORMS

DoNG Ho LiM, WoON HA SOHN AND HYUNJUNG SONG

We prove that a real hypersurface M in complex projective space P»(C)
or complex hyperbolic space H,(C), whose Ricci operator is n-parallel and
commutes with the structure tensor on the holomorphic distribution, is a
Hopf hypersurface. We also give a characterization of this hypersurface.

1. Introduction

A complex n-dimensional Kihlerian manifold of constant holomorphic sectional
curvature c is called a complex space form, which is denoted by M, (c). As is
well known, a complete and simply connected complex space form is complex
analytically isometric to a complex projective space P,(C), a complex Euclidean
space C" or a complex hyperbolic space H, (C), according to ¢ > 0, c =0 or ¢ < 0.

In this paper we consider a real hypersurface M in a complex space form
M;(c), ¢ # 0. Then M has an almost contact metric structure (¢, g, &, ) induced
from the Kihler metric and complex structure J on M, (c). The structure vector
field & is said to be principal if A& = o€ is satisfied, where A is the shape operator
of M and o = n(A¢). In this case, it is known that « is locally constant [Ki and
Suh 1990] and that M is called a Hopf hypersurface.

Takagi [1973] classified homogeneous real hypersurfaces in P,(C) into six
model spaces Ay, Az, B, C, D and E of Hopf hypersurfaces with constant principal
curvatures. Berndt [1989] classified all homogeneous Hopf hypersurfaces in H,,(C)
as four model spaces, which are said to be Ag, Aj, A2 and B. A real hypersurface M
of type A or A, in P,(C) or type Ag, A or A, in H,(C) is said to be of type A
for simplicity.

As a typical characterization of real hypersurfaces of type A, the following is
due to Okumura [1975] for ¢ > 0, and Montiel and Romero [1986] for ¢ < O.

Theorem A [Montiel and Romero 1986; Okumura 1975]. Let M be a real hyper-
surface of M, (c), ¢ # 0, n > 2. It satisfies Ap —pA =0 on M if and only if M is
locally congruent to one of the model spaces of type A.

MSC2010: primary 53C40; secondary 53C15.
Keywords: real hypersurface, n-parallel Ricci operator, Hopf hypersurface.
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The Ricci operator of M will be denoted by S, and the shape operator or the
second fundamental tensor field of M by A. The holomorphic distribution 7 of a
real hypersurface M in M, (c) is defined by

(1-1) To(p) ={X € T,(M) | g(X,§), =0},

where T),(M) is the tangent space of M at p € M. The Ricci operator S is said to
be n-parallel if

(1-2) g((Vx$)Y,Z2)=0
for any vector fields X, Y and Z in Ty.

Theorem B [Kimura and Maeda 1989; Suh 1990]. Let M be a real hypersurface
in a complex space form M, (c), ¢ # 0. Then the Ricci operator of M is n-parallel
and the structure vector field & is a principal if and only if M is locally congruent
to one of the model spaces of type A or type B.

L.-B. Kim, K. H. Kim and one of the present authors [Kim et al. 2006; 2007]
studied real hypersurfaces with certain conditions related to the Ricci operator and
the structure tensor field ¢ in M, (c). As for the Ricci operator and structure tensor
field ¢, one of the present authors proved the following.

Theorem C [Sohn 2007]. Let M be a real hypersurface with n-parallel Ricci
operator in a complex space form M, (c), c #0,n > 3. If M satisfies

(1-3) g8((Sp—99X,¥Y)=0

forany X and Y in Ty, then M is locally congruent to one of the model spaces of
type A or type B.

The purpose of this paper is to complete the results of [Sohn 2007] and charac-
terize real hypersurfaces with n-parallel Ricci operator such that the Ricci operator
and structure tensor field commute in a complex space form M, (c), c #0, n > 2.
Namely, we prove:

Theorem. A real hypersurface in a complex space form M;(c), ¢ # 0 satisfies (1-2)
and (1-3) if and only if it is pseudo-Einstein.

The pseudo-Einstein hypersurfaces are classified by Kim and Ryan [2008] and
Ivey and Ryan [2009] and are described in detail in these papers. In view of their
results, we can state the following.

Corollary. Let M be a real hypersurface with an n-parallel Ricci operator in a
complex space form M;(c), ¢ #0. If M satisfies (1-3) then M is locally congruent to
either a Hopf hypersurface with A& = 0 or one of the model spaces of type A.
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2. Preliminaries

Let M be a real hypersurface immersed in a complex space form M,(c), and N
be a unit normal vector field of M. By V we denote the Levi-Civita connection
with respect to the Fubini—Study metric tensor g of M>(c). Then the Gauss and
Weingarten formulas are given respectively by

VxY =VyxY +g(AX,Y)N and VyN =—AX

for any vector fields X and Y tangent to M, where g denotes the Riemannian metric
tensor of M induced from g, and A is the shape operator of M in M;(c).
For any vector field X on M we put

JX=¢X+n(X)N, JN=-§,

where J is the almost complex structure of M,(c). Then we see that M induces an
almost contact metric structure (¢, g, &, 1), that is,

P*X =X +n(X)E, ¢E=0, nE) =1,
g(@X, ¢Y) =g(X,Y) —n(X)n(¥), n(X)=g(X, &)

for any vector fields X and Y on M. Since the almost complex structure J is
parallel, we can verify from the Gauss formula that

2-1) V& = pAX.

Since the ambient manifold is of constant holomorphic sectional curvature c, we
have the Gauss equation
(2-2) R(X,Y)Z
= g(gm Z)X—g(X, Z)Y+g(pY, Z)pX —g (X, Z)pY —28(¢ X, Y)$Z)
+g(AY, 2)AX — g(AX, Z)AY

for any vector fields X, Y and Z on M, where R denotes the Riemannian curvature
tensor of M.
From (1-3) the Ricci operator S of M is expressed by

(2-3) SX = %((2n+ DX —3n(X)§) +mAX — A%X,
where m = trace A is the mean curvature of M, and the covariant derivative of (2-3)
is given by

3c

(VxS)Y = —Z(g(d)AX, Y)E