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RATE OF ATTRACTION FOR A SEMILINEAR WAVE
EQUATION WITH VARIABLE COEFFICIENTS

AND CRITICAL NONLINEARITIES

FÁGNER DIAS ARARUNA AND FLANK DAVID MORAIS BEZERRA

We study the rate of convergence of global attractors and eigenvalues of the
family of dissipative semilinear wave equations with variable coefficients
ut t +3εu +3δεut = f (u), where 3ε is the elliptic operator −div(aε(x)∇)
with ε ∈ [0, 1] and sufficiently smooth coefficients aε , and where δ ∈

( 1
2 , 1

)
and the nonlinearity f is a continuously differentiable function satisfying
suitable growth conditions. We show that the rate of convergence, as ε→0+,
of the global attractors of these problems, as well as of their eigenvalues, is
proportional to the distance of the coefficients ‖aε − a0‖L∞(�).

1. Introduction and main result

In many theoretical and applied problems, it is important to understand what happens
when the solutions varies parameters in the model, and wave equations with variable
coefficients arise naturally in mathematical modeling of inhomogeneous media
(for example, functionally graded materials or materials with damage induced
inhomogeneity) in solid mechanics, electromagnetism, fluid flows through porous
media (for example, modeling traveling waves in a inhomogeneous gas; see [Egorov
and Shubin 1988; Suggs 2009]), and other areas of physics and engineering.

Nonlinear wave equations arise in quantum mechanics, whereas variants of the
form

ut t − div(a∇u)+ g(u, ut)= 0

appear in the study of vibrating systems with or without damping, and with or
without forcing terms.
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In this work, ε ∈ [0, 1], and we consider the following problem associated with
a semilinear dissipative wave equation with variable coefficients:

(1-1)


ut t +3εu+3δεut = f (u), t > 0, x ∈�,
u(0, x)= u0(x), ut(0, x)= v0(x), x ∈�,
u(t, x)= 0, t > 0, x ∈ ∂�,

where �⊂RN , N > 3, is a bounded domain with boundary ∂� sufficiently regular,
3ε =− div(aε(x)∇), and aε is a real function defined in � satisfying

(1-2) 0< m0 6 aε(x)6 M0 for all x ∈�.

Moreover, the functions aε ∈ L∞(�) converge uniformly to a0 ∈ L∞(�), as ε→ 0+.
Also, we will assume that aε is smooth for all ε ∈ [0, 1]. For the system (1-1), let
us consider δ ∈

( 1
2 , 1

)
.

The operators 3δε := (3
−δ
ε )
−1 denote the fractional power operators associated

with 3ε . Provided that 3ε with domain D(3ε) = H 2(�)∩ H 1
0 (�) is a sectorial

operator with Re σ(3ε) > 0, for any α ∈ (0, 1), it follows by Theorem 1.4.2 in
[Henry 1981] that

(1-3) 3−αε =
sinπα
π

∫
∞

0
λ−α(λI +3ε)−1 dλ.

On the nonlinearity f :R→R, which is continuously differentiable and bounded,
we will give conditions under which the problem (1-7) is globally well posed in
H 1

0 (�)× L2(�) and it has global attractors, in the terminology of [Hale 1988]
(following closely Theorem 1.1 and Theorem 1.2 in [Carvalho and Cholewa 2002a];
see also [Carvalho and Cholewa 2002b]): if ρ 6 (N + 2)/(N − 2), there exists a
constant C > 0, independent of ε, such that

(1-4) | f (s1)− f (s2)|6 C |s1− s2|(|s1|
ρ−1
+ |s2|

ρ−1
+ 1)

and

(1-5) lim sup
|s|→+∞

f (s)
s
6 µ0,1,

with µ0,1 being the first eigenvalue of the 30 in �.
In the rest of this paper, we will use C to denote a generic positive constant

which may change from line to line (unless otherwise stated).
Since the wave equation does not have dissipative character, we have added a

“damping” characterized by the term 3δεu
ε
t with δ ∈

( 1
2 , 1

)
. This additional term

turns problem (1-1) into a sectorial structure (see [Chen and Triggiani 1989]),
however, this gives us an extra difficulty, because it is necessary to perform an
analysis of the rate of convergence of fractional derivatives. Although the sectorial
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structure for (1-1) is preserved when the dissipative term presents the optimal power
δ = 1

2 (see [Chen and Triggiani 1989]), the convergence (with rate) of attractors is
an open problem for this case.

Related to this issue, in [Arrieta et al. 2013] the authors proved that the difference
‖aε−a0‖L∞(�) can be used to show the rate of convergence of attractors in the con-
text of the heat equation. Nonlinear absorption problems with variable coefficients
have been considered by many authors; see [Wu and Li 2011; Suggs 2009] and
the references therein. For damped wave equations, several authors have studied
existence of global attractors; see [Babin and Vishik 1989; Bruschi et al. 2006;
Carvalho and Cholewa 2002a; 2002b; Cholewa and Dlotko 2006; Hale 1988; Webb
1980] and the references therein. We can still cite [Bruschi et al. 2006], where the
convergence of attractors was shown, but without explicit rate.

In this work, we will investigate the relationship between the convergence of
functions aε ∈ L∞(�), which converge uniformly to a0 ∈ L∞(�), as ε→ 0+, and
the proximity between the perturbed and limit attractors, as well as the convergence
of the eigenvalues of the operators associated with the problems in (1-1). The
difference ‖aε − a0‖L∞(�) will be our measure.

To better explain the results in the paper, we introduce some terminology. Let
us consider the Hilbert spaces Y = Y 0

:= L2(�), Y 1/2
:= H 1

0 (�), Y 1
:= D(3ε) :=

{u ∈ H 1
0 (�) : 3εu ∈ L2(�)} and the Hilbert energy space X = X0

= Y 1/2
× Y

equipped with the inner product〈[
φ

ϕ

]
,
[
φ̄

ϕ̄

]〉
X
:=

∫
�

aε(x)∇φ∇φ̄ dx +
∫
�

ϕϕ̄ dx .

We define the operator Aε : D(Aε)⊂ X→ X by

Aε
[
φ

ϕ

]
=

[ 0 −I
3ε 3

δ
ε

][
φ

ϕ

]
:=

[
−ϕ

3δε(3
1−δ
ε φ+ϕ)

]
and

D(Aε)=
{[
φ

ϕ

]
∈ Y (3/2)−δ × Y 1/2

; 31−δ
ε φ+ϕ ∈ Y δ

}
=: X1,

with Y δ denoting the domain of the fractional power operators associated with
3ε , that is, Y δ := D(3δε). Let us consider Y δ endowed with the graph norm
‖x‖Y δ = ‖3δεx‖Y . Notice that

(1-6) Aε
[
φ

ϕ

]
=

[
−ϕ

3εφ+3
δ
εϕ

]
,

[
φ

ϕ

]
∈ Y 1
× Y δ,

where Y 1
× Y δ is a dense subset of D(Aε).

Notice that the operator Aε with domain Y 1
×Y δ is not a closed operator, unless

δ = 1
2 ; see [Chen and Triggiani 1989].
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Problem (1-1) can be written as

(1-7)
{
wt + Aεw = F(w), t > 0,
w(0)= w0 ∈ X

with w = [u ut ]
T and the nonlinear map F : X→ Y × Y defined by

F
[
φ

ϕ

]
:=

[ 0
f e(φ)

]
,

where f e
: H 1

0 (�)→ H−1/2(�) is the Nemytskiı̆ operator associated with f .
We will show that these equations define on the space X a nonlinear semigroup
{Tε(t) : t >0} having global attractors Aε , ε ∈ [0, 1], and that the rate of convergence
of the attractors in the sense of the symmetric Hausdorff distance is given by the
order of ‖aε − a0‖

θ
L∞(�) with θ ∈

(
0, 1

2

)
.

It is worth noting that the dependence of regular attractors on parameters is a very
well-studied and well-understood topic nowadays, especially for the case when the
perturbation is also regular (like in our case). Basically, all the necessary technique
to handle such perturbations can be found already in the monograph of Babin and
Vishik [1989]. However, the problem considered has some interesting peculiarities
in a sense unusual for the attractor theory, namely, the presence of the fractional
powers of the elliptic operator 3ε as well as the necessity to control the dependence
of these powers on the parameter ε.

The main purpose of this paper is to give a proof of the following result.

Theorem 1.1. Let {Tε(t) : t > 0} be the gradient nonlinear semigroup associated
with (1-7) and let Aε in X be its global attractor, ε ∈ [0, 1]. Then there are constants
C > 0 and ℘ ∈

(
0, 1

2

)
, independent of ε, such that

dist(Aε,A0)+ dist(A0,Aε)6 C‖aε − a0‖
℘

L∞(�),

where
dist(A, B) := sup

x∈A
inf
y∈B
‖x − y‖X , A, B ⊂ X

is the Hausdorff semidistance between A and B in X.

We observe that the Hausdorff semidistance between A and B, dist(A, B), ex-
amines how the set A is contained in the set B. For example, if dist(A, B)= 0 then
A is contained in the closure of the set B.

The rest of this paper is organized as follows. In Section 2 we show that the
linear semigroups of contractions associated to the problems (1-7) are analytic and
compact, and that their nonlinear semigroups have global attractors Aε in X . In
Section 3 we see that the distance between the semigroups are proportional to a
power of the distance between coefficients aε ∈ L∞(�). We study the convergence
of the operators A−1

ε to A−1
0 . We also make a spectral analysis and we prove that the
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convergence of the eigenvalues of the operators associated to (1-7) is proportional
to measure ‖aε − a0‖L∞(�). In Section 4 we analyze the convergence of equilibria.
In Section 5 we study some important properties of the Nemytskiı̆ operators F . We
also study the convergence of the operators Aε − F ′(wε), as wε converges to w0

in X . In Section 6 we analyze the rate of convergence of equilibria. In Section 7
we study the rate of convergence and attraction of local unstable manifolds of an
equilibrium. Finally, in Section 8 we prove the main result of this paper.

2. Functional setting and background results

Our main goal in this section is to prove the well-posedness of problem (1-7)
in X and to ensure that the nonlinear semigroup generated by (1-7) has global
attractor with uniform bounds in X . Our approach is inspired by a similar idea
from [Carvalho and Cholewa 2002a].

Under the assumption above, it is well known that the operator 3ε is a positive,
self-adjoint operator with domain D(3ε) = Y 1. Let us denote by {e−3ε t : t > 0}
the analytic linear semigroup generated by −3ε on Y , for all ε ∈ [0, 1].

According to [Henry 1981], we still have

(2-1) ‖(λI +3ε)−1
‖L(Y ) 6 C max{1, |λ|−1

}

for some C > 0 independent of ε.
Since 3ε is a sectorial operator with ‖e−3ε t‖L(Y ) 6 C , C independent of ε, as a

consequence of the moment inequality (see Theorem 1.4.4 in [Henry 1981]), there
exists a constant C > 0 such that

(2-2) ‖3αε x‖Y 6 C‖3εx‖αY‖x‖
1−α
Y , x ∈ Y 1,

with 06 α 6 1. The constant C can be chosen uniform with respect to ε and α.
In this way, since all operators are selfadjoint, we have that σ(3ε)⊂ (−∞, α]

for some α < 0 and, in particular, the set 6φ = {λ ∈ C : |argλ|6 φ}, φ ∈ (π/2, π),
is contained in the resolvent sets of 3ε , for all ε ∈ [0, 1]. Consequently,

(2-3) ‖3ε(λI +3ε)−1
‖L(Y 1/2) 6 C, λ ∈6φ,

for some C > 1 independent of ε.
We will show that (1-7) is defined on the phase space X , an analytic semigroup.

Proposition 2.1. Let ε ∈ [0, 1]. The following conditions hold:

(i) The operator Aε is closed.

(ii) Aε is a maximal accretive operator, or equivalently, −Aε is maximal dissipa-
tive.

(iii) 0 ∈ ρ(Aε) and Aε has compact resolvent for each ε ∈ [0, 1].
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(iv) The semigroup linearly generated by −Aε on X , {e−Aε t : t > 0}, is a C0

semigroup of contractions on X.

(v) Aε is a sectorial operator in X with Re σ(Aε) > 0. The semigroup of contrac-
tions {e−Aε t : t > 0} is analytic and compact.

Proof. Note that (i) is immediate from the closedness of 3ε and 3δε . For (ii) notice
that, given [φ ϕ]T ∈ X1, we have

(2-4)
〈
Aε
[
φ

ϕ

]
,
[
φ

ϕ

]〉
X

=−〈ϕ, φ〉Y 1/2 +〈3εφ+3
δ
εϕ, ϕ〉Y

=−〈31/2
ε ϕ,31/2

ε φ〉Y +〈3
δ
ε(3

1−δ
ε φ+ϕ), ϕ〉Y

=−〈31/2
ε ϕ,31/2

ε φ〉Y +〈3
1/2
ε ϕ,3

1/2
ε φ〉Y +〈3

δ/2
ε ϕ,3δ/2ε ϕ〉Y ,

and hence

Re
〈
Aε
[
φ

ϕ

]
,
[
φ

ϕ

]〉
X
= 〈3δ/2ε ϕ,3δ/2ε ϕ〉Y > 0,

[
φ

ϕ

]
∈ X1,

which proves accretivity of Aε .
Furthermore, for each [φ̄ ϕ̄]T ∈ X , the linear equation

(2-5) (I + Aε)
[
φ

ϕ

]
=

[
φ̄

ϕ̄

]
is equivalent to the system {

φ−ϕ = φ̄,

3εφ+ϕ+3
δ
εϕ = ϕ̄,

or to the equation

(2-6) 3εφ+3
δ
εφ+φ = ϕ̄+ φ̄+3

δ
εφ̄.

By elliptic theory, it follows that there exists a unique function φ ∈ Y 1/2 with
3εφ ∈ Y satisfying (2-6) and, therefore, for each ε ∈ [0, 1], there exists a unique
[φ ϕ]T ∈ X1 solving (2-5).

Concerning 0 ∈ ρ(Aε), we recall that there exists a bounded inverse operator
A−1
ε : X→ X given by

A−1
ε =

[
3
−(1−δ)
ε 3−1

ε

−I 0

]
, ε ∈ [0, 1],

where 3−αε are bounded inverse operators of 3αε . Thus, the resolvent operator A−1
ε

is compact, because it takes bounded subsets of X into bounded subsets of X1,
which is compactly embedded in X . This shows (iii).
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The property (iv) that −Aε , ε ∈ [0, 1], generates a C0 semigroup of contrac-
tions on X follows from the Lummer–Phillips theorem (see [Pazy 1983]) and the
observations concerning powers of maximal accretive operators (see [Kato 1976]).

Part (v) follows as a consequence of Theorem 1.1 in [Chen and Triggiani 1989].
Finally, compactness of {e−Aε t : t > 0}, ε ∈ [0, 1], is then a consequence of
compactness of the resolvent operators of Aε , and the proof is complete. �

Let us denote by 0 the boundary of 6φ . The following statements are valid:

e−Aε t =
1

2π i

∫
0

eλt(λI + Aε)−1dλ,(2-7)

‖e−Aε t‖L(X1,X) 6 Ct−1/2e−ωt , t > 0,(2-8)

for some C > 0 independent of ε.
Also, we have

‖(λI + Aε)−1
‖L(X) 6

C
1+ |λ|

, λ ∈6φ,(2-9)

‖(λI + Aε)−1
‖L(X1) 6

C
1+ |λ|

, λ ∈6φ,(2-10)

where C = C(φ) > 0 independent of ε.
Under the assumptions (1-4), problem (1-7) is locally well posed in X ; see

Theorem 1 in [Carvalho and Cholewa 2002b]. Moreover, under standard dissipative
conditions like (1-5), we have the following result.

Theorem 2.2. Assume (1-4) and (1-5) hold. The nonlinear semigroup {Tε(t) : t > 0}
associated with (1-7) is well defined in X and has a global attractor Aε in X.
Furthermore,

sup
ε∈[0,1]

sup
w∈Aε

‖w‖X <∞.

Proof. Problem (1-7) is globally well posed in X due to Theorem 1.1 in [Carvalho
and Cholewa 2002a], namely, for any wε0 ∈ X , there exists a unique

wε(·, wε0) ∈ C([0,∞), X)∩C1((0,∞), X)

with wε(t, wε0) ∈ D(Aε), for all t > 0, which satisfies (1-7) and

w(t, wε0)= e−Aε twε0 +

∫ t

0
e−Aε(t−s) f (w(s, wε0)) ds, t > 0.

Thus Tε(t)wε0 = uε(t, wε0), t > 0. To simplify the notation we will denote the
solution w0(t, w0

0) by w(t, w0).
The existence of global attractors Aε in X for semigroups {Tε(t) : t > 0} and

uniform bounds are also established in Theorem 1.2 in [Carvalho and Cholewa
2002a]. �
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3. Resolvent convergence

In this section we will show the convergence of the resolvent operators A−1
ε to A−1

0 ,
as ε→ 0+, and we will establish that the rate of this convergence is ‖aε − a0‖

1/2
L∞(�).

We recall the convergence of the resolvent operators 3−1
ε to 3−1

0 , as ε→ 0+, in
terms of the difference ‖aε − a0‖L∞(�). This was proved in [Arrieta et al. 2013],
however, for the sake of completeness, we will sketch a proof.

Lemma 3.1. For h ∈ Y and ε ∈ [0, 1], let us consider uε ∈ Y 1 a solution of the
problem

(3-1)
{
− div(aε(x)∇u)= h in �,
u = 0 on ∂�.

Then there is a constant C > 0, independent of ε, such that

(3-2) ‖uε‖Y 1/2 6 C‖h‖Y

and

(3-3) ‖uε − u‖Y 1/2 6 C‖h‖Y‖aε − a0‖∞.

Proof. The estimate (3-2) follows from uniform boundedness of aε and Poincaré’s
inequality.

The solution of problem (3-1) can be obtained by a minimization procedure.
That is, if we define

λε := min
u∈Y 1/2

{
1
2

∫
�

aε |∇u|2 dx −
∫
�

hu dx
}
,

then λε is attained at uε . Therefore,

(3-4)
λε =

1
2

∫
�

aε |∇uε |2 dx −
∫
�

huε dx

=
1
2

∫
�

aε |∇uε −∇u0
+∇u0

|
2 dx −

∫
�

h(uε − u0
+ u0) dx,

and, evaluating this expression, using that uε solves Lemma 3.1, we easily obtain

(3-5) λε = λ0−
1
2

∫
�

aε(x)|∇uε −∇u0
|
2 dx + 1

2

∫
�

(aε(x)− a0(x))|∇u0
|
2 dx,

which implies

(3-6) λε − λ0 6
1
2

∫
�

(aε(x)− a0(x))|∇u0
|
2 dx .
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On the other hand

λ0 := min
u∈Y 1/2

{
1
2

∫
�

a0(x)|∇u|2 dx −
∫
�

hu dx
}

6 1
2

∫
�

a0(x)|∇uε |2 dx −
∫
�

huε dx

= λε +
1
2

∫
�

(a0(x)− aε(x))|∇uε |2 dx .

With this, we obtain

λε − λ0 >−
1
2

∫
�

(aε(x)− a0(x))|∇uε |2 dx,

which combined with (3-2) and (3-6) gives us

(3-7) |λε − λ0|6 ‖aε − a0‖L∞(�) sup
ε∈[0,1]

‖uε‖2Y 1/2 6 C‖h‖2Y‖aε − a0‖L∞(�).

Finally, the estimate (3-3) is obtained by combining (3-5) and (3-7). �

Corollary 3.2. The operators3−1
ε : Y→ Y 1/2 are uniformly bounded and converge

uniformly to 3−1
0 : Y → Y 1/2, as ε → 0+. Furthermore, there exists a positive

constant C > 0, independent of ε, such that

(3-8) ‖3−1
ε ‖L(Y,Y 1/2) 6 C

and

(3-9) ‖3−1
ε −3

−1
0 ‖L(Y,Y 1/2) 6 C‖aε − a0‖L∞(�).

The uniform convergence of the operators 3−1
ε (see Corollary 3.2 in [Arrieta

et al. 2013]) implies the convergence of their spectrum. As a matter of fact, the
following result holds.

Proposition 3.3 [Carvalho and Piskarev 2006; Kato 1976]. The following state-
ments hold:

(i) Ifµ0∈σ(−30), there exists a sequence εn→0+ and {µn}, withµn ∈σ(−3εn ),
n ∈ N, such that µn→ µ0, as n→∞;

(ii) If for some sequences εn→ 0+ and µn→µ0, as n→∞, with µn ∈ σ(−3εn ),
n ∈ N, then µ0 ∈ σ(−30).

Moreover, from Lemma 3.4 in [Arrieta et al. 2013], there exists C > 0, indepen-
dent of ε, such that

(3-10) ‖(λI +3ε)−1
− (λI +30)

−1
‖L(Y,Y 1/2) 6 C‖aε − a0‖L∞(�),

for each λ ∈6φ .
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Proposition 3.4. The operators 3−(1−δ)ε : Y 1/2
→ Y 1/2 are uniformly bounded and

converge uniformly to 3−(1−δ)0 : Y 1/2
→ Y 1/2, as ε→ 0. Furthermore, there exists

a positive constant C > 0, independent of ε, such that

(3-11) ‖3−(1−δ)ε ‖L(Y 1/2) 6 C

and

(3-12) ‖3−(1−δ)ε −3
−(1−δ)
0 ‖L(Y 1/2) 6 C‖aε − a0‖

1/2
L∞(�).

Proof. Notice that, using (2-2), we get

‖3−(1−δ)ε u‖Y 1/2 = ‖3δ−1/2
ε u‖Y 6 C‖3−1

ε u‖1−(δ−1/2)
Y 1/2 ‖u‖δ−1/2

Y 1/2 ,

where C > 0 is uniform with respect to ε and δ. Thus (3-11) follows by (3-8).
Before we prove (3-12), let us observe that (2-2) and (3-11) imply

(3-13) ‖(3−(1−δ)ε −3
−(1−δ)
0 )h‖Y 1/2

= ‖31/2
ε (3−(1−δ)ε −3

−(1−δ)
0 )h‖Y

6 C‖3ε(3−(1−δ)ε −3
−(1−δ)
0 )h‖1/2Y ‖(3

−(1−δ)
ε −3

−(1−δ)
0 )h‖1/2Y

6 C‖3ε(3−(1−δ)ε −3
−(1−δ)
0 )h‖1/2Y (‖3−(1−δ)ε h‖1/2Y +‖3

−(1−δ)
0 h‖1/2Y )

6 C‖3ε(3−(1−δ)ε −3
−(1−δ)
0 )h‖1/2Y ,

for some C > 0 independent of ε, and for any h ∈ Y .
To prove (3-12), it follows by (3-13) that it is sufficient to obtain an estimate for

the norm ‖3ε(3
−(1−δ)
ε −3

−(1−δ)
0 )‖L(Y ). In fact, it follows by (1-3) that

(3-14) 3−αε −3
−α
0 =

sin(πα)
π

∫
∞

0
λ−α[(λI +3ε)−1

− (λI +30)
−1
] dλ.

Using (3-14) (with α = 1− δ), we can deduce

(3-15) ‖3ε(3−(1−δ)ε −3
−(1−δ)
0 )‖L(Y )

6
∫
∞

0

∥∥λ−(1−δ)3ε[(λI +3ε)−1
− (λI +30)

−1
]
∥∥

L(Y )d|λ|.

Notice that the resolvent identity

(3-16) (λI +3ε)−1
− (λI +30)

−1

= (λI +3ε)−1
[I − (λI +3ε)(λI +30)

−1
]

= (λI +3ε)−1
[(λI +30)− (λI +3ε)](λI +30)

−1

= (λI +3ε)−1
[30−3ε](λI +30)

−1

=3ε(λI +3ε)−1
[3−1

ε −3
−1
0 ]30(λI +30)

−1



RATE OF ATTRACTION FOR A SEMILINEAR WAVE EQUATION 267

holds, and, by sectoriality of 3ε , we have

(3-17) ‖3ε(λI +3ε)−1
‖L(Y ) 6 C, for all ε ∈ [0, 1],

where C > 0 is independent of ε.
Substituting (3-16) into (3-15), we get

(3-18) ‖3ε(3−(1−δ)ε −3
−(1−δ)
0 )‖L(Y )

6
∫
∞

0
‖λ−(1−δ)3ε3ε(λI +3ε)−1

[3−1
ε −3

−1
0 ]30(λI +30)

−1
‖L(Y )d|λ|

6
∫
∞

0
|λ|−(1−δ)‖3γε (λI +3ε)−131+(1−γ )

ε [3−1
ε −3

−1
0 ]30(λI +30)

−1
‖L(Y )d|λ|,

where γ ∈ (1, 2) is a constant to be chosen.
Since Y 1/2 is continuously embedded in Y 1+(1−γ ), by estimates (3-9) and (3-17),

we can deduce from (3-18) that

(3-19) ‖3ε(3−(1−δ)ε −3
−(1−δ)
0 )‖L(Y )

6 C‖aε − a0‖L∞(�)

∫
∞

0
|λ|−(1−δ)‖3γ−r

ε 3r
ε(λI +3ε)−1

‖L(Y )d|λ|,

where r ∈ (γ − 1, 1) is a constant to be chosen.
From (2-2) and the fact that Y 1 is continuously embedded in Y r , it follows by

(3-19) that

(3-20) ‖3ε(3−(1−δ)ε −3
−(1−δ)
0 )‖L(Y )

6 C‖aε−a0‖L∞(�)

∫
∞

0
|λ|−(1−δ)‖3ε3

r
ε(λI +3ε)−1

‖
γ−r
L(Y )

×‖3r
ε(λI +3ε)−1

‖
1−(γ−r)
L(Y ) d|λ|

6 C‖aε−a0‖L∞(�)

∫
∞

0
|λ|−(1−δ)‖3ε(λI +3ε)−1

‖
γ−r
L(Y )‖(λI +3ε)−1

‖
1−(γ−r)
L(Y ) d|λ|.

Using (2-1) and (3-17), we get by (3-20) that

(3-21) ‖3ε(3−(1−δ)ε −3
−(1−δ)
0 )‖L(Y )

6 C‖aε − a0‖L∞(�)

∫
∞

0
|λ|−(1−δ)‖(λI +3ε)−1

‖
1−(γ−r)
L(Y ) d|λ|

6 C‖aε − a0‖L∞(�)

∫
∞

0
|λ|−(1−δ)(max{1, |λ|−1

})1−(γ−r)d|λ|

6 C‖aε − a0‖L∞(�)

(∫ 1

0
|λ|δ−1d|λ| +

∫
∞

1
|λ|−2+δ+γ−r d|λ|

)
.
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Taking γ and r sufficiently close to 1 such that δ+ γ − r < 1, we can conclude
by (3-21) the existence of a positive constant C , independent of ε, such that

(3-22) ‖3ε(3
−(1−δ)
ε −3

−(1−δ)
0 )‖L(Y ) 6 C‖aε − a0‖L∞(�).

Finally, combining (3-13) and (3-22) we obtain the desired estimate (3-12). �

Before we prove analogous result of the last proposition with Aε instead of 3ε ,
we present the following general version of the moment inequality (see [Sobolevskii
1961]):

(3-23) ‖Aεw‖X 6 C‖w‖1−β/αX ‖Aαεw‖
β/α

X , w ∈ D(Aαε ),

where the constant C > 0 is independent of ε.

Proposition 3.5. The operators A−1
ε : X→ X1 are uniformly bounded and converge

in the uniform topology to A−1
0 : X→ X1, as ε→ 0+. Furthermore, there exists a

positive constant C > 0, independent of ε, such that

(3-24) ‖A−1
ε ‖L(X,X1) 6 C

and

(3-25) ‖A−1
ε − A−1

0 ‖L(X,X1) 6 C‖aε − a0‖
1/2
L∞(�).

Proof. For g, h ∈ L2(�) and ε ∈ [0, 1], let [φε ϕε]T be the solution of the problem

Aε
[
φ

ϕ

]
=

[ g
h

]
, t > 0.

By (1-6), there exists C > 0, independent ε, such that∥∥∥[ φε
ϕε

]
−

[
φ0

ϕ0

]∥∥∥
X1
6 C

∥∥∥[ φε
ϕε

]
−

[
φ0

ϕ0

]∥∥∥
Y 1×Y δ

,

and by (3-23), we get∥∥∥[ φε
ϕε

]
−

[
φ0

ϕ0

]∥∥∥
Y 1×Y δ

= ‖3−(1−δ)ε g−3−(1−δ)0 g‖Y 1 +‖3−1
ε h−3−1

0 h‖Y δ

6 C‖31/2
ε (3−(1−δ)ε g−3−(1−δ)0 g)‖Y +‖3−(1−δ)ε h−3−(1−δ)0 h‖Y .

Thus, by Corollary 3.2, we conclude that∥∥∥[ φε
ϕε

]
−

[
φ0

ϕ0

]∥∥∥
X1
6 C(‖g‖Y 1/2 +‖h‖Y )‖aε − a0‖

1/2
L∞(�)

= C
∥∥∥[ g

h

]∥∥∥
X
‖aε − a0‖

1/2
L∞(�),
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where C > 0 is independent of ε. �

The next result ensures convergence of the spectrum of operators −Aε .

Proposition 3.6 [Carvalho and Piskarev 2006; Kato 1976]. The following state-
ments hold:

(i) If µ0∈σ(−A0), there exists a sequence εn→0+ and {µn}, with µn ∈σ(−Aεn ),
n ∈ N such that µn→ µ0 as n→∞.

(ii) If for some sequences εn→ 0+ and µn→ µ0 as n→∞, with µn ∈ σ(−Aεn ),
n ∈ N, then µ0 ∈ σ(−A0).

Now let us establish the result which treats convergence for resolvent operators.

Proposition 3.7. For each φ ∈ (π/2, π), there exists a constant C =C(φ)> 0 such
that

sup
λ∈6φ

‖(λI + Aε)−1
− (λI + A0)

−1
‖L(X,X1) 6 C‖aε − a0‖

1/2
L∞(�).

Proof. We can see that

(3-26) (λI+ Aε)−1
−(λI− A0)

−1
= (λI+ Aε)−1 Aε[A−1

0 − A−1
ε ]A0(λI+ A0)

−1

= Aε(λI+ Aε)−1
[A−1

0 − A−1
ε ]A0(λI+ A0)

−1.

Notice that, for λ ∈6φ ⊂ ρ(−Aε), we have

Aε(λI + Aε)−1
= [(λI + Aε)A−1

ε ]
−1
= [λA−1

ε − I ]−1,

and, therefore,

(3-27) ‖Aε(λI + Aε)−1
‖L(X1) 6 C, λ ∈6φ,

for some C > 0 independent of ε.
By (3-25)–(3-27), we have the existence of a constant C > 0 (independent of ε

and of λ ∈6φ) such that

‖(λI + Aε)−1
− (λI + A0)

−1
‖L(X,X1) 6 C‖aε − a0‖

1/2
L∞(�). �

To finish this section, we will make a spectral analysis, where we will give a
characterization, as well as a rate of convergence, as ε→ 0, for the eigenvalues
associated with the operators Aε .

Let γ be a closed, rectifiable, simple and oriented counterclockwise curve in
ρ(−A0) around µ0 ∈ σ(A0) which has index 1 relative to γ . From part (ii) of
Proposition 3.6, it is easy to see that there is an εγ > 0 such that the trace of γ is in
ρ(Aε), for ε ∈ [0, εγ ]. We define the spectral projection in X

Qε(µ0)=
1

2π i

∫
γ

(λI + Aε)−1 dλ,
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and, for µ ∈ C such that (1/(2π i))
∫
γ
(λ−µ)−1 dλ= 1, we define the generalized

eigenspace associated with µ, W (µ,−Aε)= Qε(µ0)(X), ε ∈ [0, εγ ]. Furthermore,
Qε(µ0) is compact and dim W (µ,−Aε)= rank(Qε(µ0)) <∞.

Related to the rate of convergence, the following result holds.

Proposition 3.8. The family of operators Qε(µ0) : X→ X converges uniformly to
Q0(µ0) : X→ X , as ε→ 0+. Moreover,

(3-28) ‖Qε(µ0)− Q0(µ0)‖L(X) 6 C‖aε − a0‖
1/2
L∞(�),

and

(3-29) ‖AεQε(µ0)− A0 Q0(µ0)‖L(X) 6 C‖aε − a0‖
1/2
L∞(�),

where C > 0 independent of ε.

Proof. Since

Qε(µ0)− Q0(µ0)=
1

2π i

∫
γ

[(λI + Aε)−1
− (λI + A0)

−1
] dλ,

we can use Proposition 3.7 to guarantee the estimate (3-28).
To prove (3-29), it is sufficient to use (3-26) and (3-28). �

Remark 3.9. Ifµ0 is an isolated eigenvalue for A0, we may define Qε(µ0) as above
and it follows from Proposition 3.6 that there exists µε , which is an eigenvalue of
Aε such that µε→ µ0, as ε→ 0+. Hence Qε(µ0)= Qε(µε). We still have from
Proposition 3.8 that

‖Qε(µε)Q0(µ0)− Q0(µ0)‖L(X) 6 C‖aε − a0‖
1/2
L∞(�)

and that Qε(µε)Q0(µ0) is an isomorphism between R(Q0(µ0)) and R(Qε(µε)).

The next result deals with the characterization and rate of convergence of the
eigenvalues associated to operators Aε .

Theorem 3.10. For each ε ∈ [0, 1], the eigenvalues of the operator Aε are given
by

(3-30) λ±ε,n =
µδε,n

2
± i

√
4µε,n −µ2δ

ε,n

2
, n ∈ N,

where µε,n, n ∈ N, denotes the eigenvalues of the operator 3ε . Furthermore, if
Ker(λ±0,n I − A0)= R(Q0(λ

±

0,n)), then

|λ±ε,n − λ
±

0,n|6 Cn‖aε − a0‖
1/2
L∞(�), n ∈ N,

for some constant Cn > 0, independent of ε.
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Proof. To study the spectral problem for the operator Aε , we consider the equation

(3-31) Aε
[
φ

ϕ

]
= λ

[
φ

ϕ

]
,

that is,

(3-32) λ2φ− λ3δεφ+3εφ = 0,

whose solutions are the eigenvectors {φε,n} of 3ε :

(3-33) λ2φε,n −µ
δ
ε,nλφε,n +µε,nφε,n = 0.

In this way, the corresponding eigenvalues {λ±ε,n} of Aε are the solutions of the
equation

λ2
−µδε,nλ+µε,n = 0

and they are given by (3-30).
Moreover, by the above remark and Proposition 3.8, we have that, for each

ε > 0, there exists [φ ϕ]T ∈ R(Q0), ‖[φ ϕ]T ‖X1 = 1, such that Qε[φ ϕ]T is an
eigenvector of Aε associated to λε and

|λ±ε,n − λ
±

0,n|

6
∥∥∥λ±ε,n Q0

[
φ

ϕ

]
− λ±ε,n Qε

[
φ

ϕ

]∥∥∥
X1
+

∥∥∥λ±ε,n Qε

[
φ

ϕ

]
− λ±0,n Q0

[
φ

ϕ

]∥∥∥
X1

(3-34)

6 C‖aε − a0‖
1/2
L∞(�),(3-35)

and the proof is completed. �

4. Rate of convergence of resolvents of linearized operators

In this section we will study the rate of convergence of the resolvents of operators
which corresponds to linearizations of (1-7) around equilibria.

It is known that the Nemytskiı̆ map f e(u) := f (u), u ∈ Y 1/2, is Fréchet
continuously differentiable. Moreover, if {uε} converges to u0 in Y 1/2 and 0 6∈
σ(30− ( f e)′(u0)), then (( f e)′(uε))3−1

ε converges to (( f e)′(u0))3
−1
0 in the uni-

form operator topology of L(Y ); see, for instance, [Arrieta et al. 2013]. Hence the
Nemytskiı̆ map F is Fréchet continuously differentiable. Moreover, if uε→ u0 in
X and 0 6∈ σ(A0− F ′(u0)), then

(4-1) (F ′(uε))A−1
ε → (F ′(u0))A−1

0 in L(X).

Lemma 4.1. We assume uε→ u0 in X and 0 6∈ σ(A0− F ′(u0)). Then there exists
ε0 > 0 such that the net of operators

{A1
ε/2(Aε − F ′(uε))−1

: ε ∈ [0, 1]}
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is uniformly bounded in L(X) and

‖A1
ε/2(Aε − F ′(uε))−1

− A1
0/2(A0− F ′(u0))

−1
‖L(X) 6 C‖aε − a0‖

1/2
L∞(�),

where C > 0 is independent of ε.

Proof. The proof follows from the identity

A1/2
ε (Aε − F ′(uε))−1

= A−1/2
ε (I − F ′(uε)A−1

ε )
−1

and by (4-1). �

5. Rate of convergence of the linear and nonlinear semigroups

Since the operators Aε , ε ∈ [0, 1], are self-adjoint and A−1
ε converges uniformly to

A−1
0 as ε→ 0+, for each α < λ0

1 (λ0
1 the first eigenvalue of A0), there exists C > 0,

independent of ε ∈ [0, 1], such that

(5-1) ‖e−Aε t‖L(X) 6 Ce−αt t−1/2, t > 0, ε ∈ [0, 1].

Theorem 5.1. If θ ∈
(
0, 1

2

]
and α < λ0

1, there exists C > 0, independent of ε, such
that

(5-2) ‖e−Aε t − e−A0t
‖L(X) 6 Ce−αt

‖aε − a0‖
2θ
L∞(�)t

−(1/2+θ)

for all t > 0 and ε ∈ [0, 1].

Proof. Considering the linear semigroup

e−Aε t =
1

2π i

∫
0

eλt(λI + Aε)−1 dλ, ε ∈ [0, 1],

where 0 is the boundary of sector 6−ω,φ = {λ ∈ C : |arg(λ + ω)| 6 φ} with
π/2 < φ < π , oriented in such a way that the imaginary part of λ increases as λ
runs in 0.

The estimate

(5-3) ‖e−Aε t − e−A0t
‖L(X) 6 ‖e−Aε t‖L(X)+‖e−A0t

‖L(X) 6 Ce−αt t−1/2

follows by (5-1).
On the other hand, using Proposition 3.7, we have

(5-4) ‖e−Aε t − e−A0t
‖L(X) 6 Ce−αt

‖aε − a0‖
1/2
L∞(�)t

−1.

Therefore, for θ ∈
(
0, 1

2

]
, we obtain

‖e−Aε t − e−A0t
‖L(X) 6 Ce−α(1−2θ)t t−1/2(1−2θ)e−α(2θ)t‖aε − a0‖

2θ
L∞(�)t

−2θ

6 Ce−αt
‖aε − a0‖

2θ
L∞(�)t

−(1/2+θ).

where C > 0 is independent of ε. �
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Theorem 5.2. Let [uε vε]T , [u v]T ∈ X , and θ ∈
(
0, 1

2

)
. Then there are positive

constants C and L f such that

∥∥∥Tε(t)
[ uε
vε

]
−T0(t)

[ u
v

]∥∥∥
X
6CeLt t−(1/2+θ)

(∥∥∥[ uε
vε

]
−

[ u
v

]∥∥∥
X
+‖aε−a0‖

θ
L∞(�)

)
for all t > 0.

Proof. For t > 0 and [uε vε]T ∈ X we have

Tε(t)
[ uε
vε

]
= e−Aε t

[ uε
vε

]
+

∫ t

0
e−Aε(t−s) f

(
Tε(s)

[ uε
vε

])
ds, ε ∈ [0, 1],

and therefore

(5-5)
∥∥∥Tε(t)

[ uε
vε

]
− T0(t)

[ u
v

]∥∥∥
X

6
∥∥∥e−Aε t

[ uε
vε

]
− e−A0t

[ u
v

]∥∥∥
X
+

∫ t

0

∥∥∥e−Aε(t−s) f
(

Tε(s)
[ uε
vε

])
− e−A0(t−s) f

(
T0(s)

[ u
v

])∥∥∥
X

ds.

From (5-1) and (5-2) we get

(5-6)
∥∥∥e−Aε t

[ uε
vε

]
− e−A0t

[ u
v

]∥∥∥
X

6 Ct−(1/2+θ)
∥∥∥[ uε
vε

]
−

[ u
v

]∥∥∥
X
+C‖aε − a0‖

2θ
L∞(�)t

−(1/2+θ).

We still have

(5-7)
∫ t

0

∥∥∥e−Aε(t−s) f
(

Tε(s)
[ uε
vε

])
− e−A0(t−s) f

(
T0(s)

[ u
v

])∥∥∥
X

ds

6 C L f

∫ t

0
(t − s)−1/2e−α(t−s)

∥∥∥Tε(s)
[ uε
vε

]
− T0(s)

[ u
v

]∥∥∥
X

ds

+C‖aε − a0‖
2θ
L∞(�)

∫ t

0
(t − s)−(1/2+θ)e−α(t−s) ds.
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Substituting (5-6) and (5-7) in (5-5), it follows that∥∥∥Tε(t)
[ uε
vε

]
− T0(t)

[ u
v

]∥∥∥
X

6 C
(∥∥∥[ uε

vε

]
−

[ u
v

]∥∥∥
X
+‖aε − a0‖

2θ
L∞(�)

)
t−(1/2+θ)e−αt

+C L f

∫ t

0
(t − s)−1/2e−α(t−s)

∥∥∥Tε(s)
[ uε
vε

]
− T0(s)

[ u
v

]∥∥∥
X

ds.

Thus the singular Gronwall inequality (see Lemma 7.1.1 in [Henry 1981]) guarantees
the existence of a constant L > 0 such that∥∥∥Tε(t)

[ uε
vε

]
− T0(t)

[ u
v

]∥∥∥
X

6 CeL f t t−(1/2+θ)
(∥∥∥[ uε

vε

]
−

[ u
v

]∥∥∥
X
+‖aε − a0‖

θ
L∞(�)

)
. �

6. Rate of convergence of the equilibria and of the linearizations

Now we will work to control the behavior of equilibria in terms of ‖aε − a0‖
1/2
L∞(�).

First, we will give the definition of equilibrium of problem (1-7).

Definition 6.1. The equilibrium solutions of (1-7) are the functions that solve the
stationary

(6-1) Aεwε = F(wε), ε ∈ [0, 1].

For each ε ∈ [0, 1], we denote by Eε the set of the equilibrium solutions of (1-7). We
say that an equilibrium wε

∗
of (1-7) is hyperbolic if the spectrum σ(Aε − F ′(wε

∗
))

of Aε − F ′(wε
∗
) is disjoint from the imaginary axis.

We start by proving the upper semicontinuity of the family of equilibria.

Proposition 6.2. The family {Eε : ε ∈ [0, 1]} is upper semicontinuous at ε = 0.

Proof. Since Eε is contained in Aε , sup{‖wε‖X :w
ε
∈Eε, ε∈[0, 1]}<∞. Using the

fact that F : X→Y×Y is bounded, for eachwε ∈Eε , we have thatwε= A−1
ε F(wε),

and the result follows from the uniform convergence of A−1
ε to A−1

0 . �

The proof of lower semicontinuity requires additional assumptions. We need
to assume that the equilibrium points of (1-7) are stable under perturbation. This
stability under perturbation will be given by the hyperbolicity.

Proposition 6.3. Any hyperbolic point of E0 is isolated.
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Proof. We note that w∗ ∈ E0 is a solution of (6-1) if and only if w∗ is a fixed point
of

9(w) := (A0− F ′(w∗))−1(F(w)− F ′(w∗)w).

If we show that, for some r > 0, 9 : Br (w∗)→ Br (w∗) is a contraction, where
Br (w∗) := {w ∈ X : ‖w−w∗‖X 6 r}, then w∗ is a unique element in Br (w∗)∩E0

and, consequently, is isolated. In fact, letting r > 0 and u, v ∈ Br (u∗), we observe
by (4-1) that

‖9(u)−9(v)‖X 6 ‖(A0− F ′(w∗))−1
‖L(X)‖(F(u)− F(v)− F ′(w∗)(u− v))‖X

6 Cr‖u− v‖X .

Thus, choosing r such that Cr < 1, we have 9 is a contraction. We can see that,
if v ∈ Br (w∗), then ‖9(v)−w∗‖X = ‖9(v)−9(w∗)‖X 6 C‖v−w∗‖X < r , for
some constant C ∈ [0, 1). Then 9(Br (w∗))⊂ Br (w∗). This implies that 9 has a
unique fixed point in Br (w∗) and the proof is complete. �

Corollary 6.4. The set E0 has at most a finite number of hyperbolic points.

Proof. It follows directly of the compactness of Eε . �

Now we are going to study the convergence properties of resolvent operators of
the form (Aε + Vε)−1, with Vε ∈ L(X1, X). This is because we are interested in
comparing the resolvent operators of the linearization around equilibrium.

The convergence of resolvents of Aε+V0 follows from the convergence of resol-
vents of Aε (see Proposition 3.5) and the lemma below, whose proof is immediate.

Lemma 6.5. The operator Aε + V0, ε ∈ [0, 1], satisfies the identity

(6-2) (Aε + V0)
−1
− (A0+ V0)

−1

= [I − (Aε + V0)
−1V0](A−1

ε − A−1
0 )[I − V0(A0+ V0)

−1
].

Theorem 6.6. Let us consider w∗ a hyperbolic of E0 with 0 6∈ σ(A0 − f ′(w∗)).
Then there exist ε1>0 and r >0 such that problem (1-7) has exactly one equilibrium
solution wε

∗
in Br (w∗) := {w ∈ X : ‖w−w∗‖X 6 r} for ε ∈ [0, ε1]. Furthermore,

‖wε
∗
−w∗‖X 6 C‖aε − a0‖

1/2
L∞(�) for some C > 0 independent of ε.

Proof. The hyperbolicity of w∗ means that σ(Aε − f ′(w∗)) is disjoint from the
imaginary axis. Thus, by Lemma 4.1, we can guarantee the existence of a constant
C > 0 such that

‖(Aε − F ′(w∗))−1
‖L(X) 6 C, ε ∈ [0, 1].

We have that wε is a solution of (6-1) if and only if it is a fixed point of the map

9ε(ω) := (Aε − F ′(w∗))−1(F(w)− F ′(w∗)w).
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From Lemma 4.1, we get that A1/2
ε (Aε − F ′(w∗))−1 converges uniformly to

A1/2
0 (A0− F ′(w∗))−1, which implies

9ε(w∗)→90(w∗) in X.

Now we will prove the existence of r > 0 and ε1 ∈ [0, 1] such that 9ε is a
contraction of Br (w∗)= {w ∈ X : ‖w−w∗‖X < r} into itself, uniformly in [0, ε1].
In fact, first we will see that 9ε is a contraction map. For this, we take uε and vε in
Br (w∗). In this way,

‖9ε(uε)−9ε(vε)‖X

= ‖(Aε − F ′(w∗))−1
[F(uε)− F(vε)− F ′(w∗)(uε − vε)]‖X

6 ‖(Aε − F ′(w∗))−1
‖L(X,X1)‖F(u

ε)− F(vε)− F ′(u∗)(uε − vε)‖X

= ‖A−1
ε (I − F ′(w∗)−1 A−1

ε )‖L(X,X1)‖F(u
ε)− F(vε)− F ′(u∗)(uε − vε)‖X ,

and, according to Proposition 3.5 and (4-1), there exist C > 0 and ε1 > 0 such that

(6-3) ‖9ε(uε)−9ε(vε)‖X1 6 Cδ‖uε − vε‖X , for all δ > 0 and all ε ∈ [0, ε1].

Therefore, choosing δ such that Cδ 6 a < 1, it follows that 9ε is a contraction as
claimed.

Let us show now that 9ε(Br (w∗)) ⊂ Br (w∗). Taking uε ∈ Br (w∗), we obtain
by (6-3) that

(6-4) ‖9ε(uε)−w∗‖X 6 ‖9ε(uε)−9ε(w∗)‖X +‖9ε(w∗)−w∗‖X

6 a‖uε −w∗‖X +‖9ε(w∗)−w∗‖X

6 ar +‖9ε(w∗)−w∗‖X , for all ε ∈ (0, ε̄].

It follows from Lemma 4.1 that there exists ε1 > 0 such that

(6-5) ‖9ε(w∗)−w∗‖X 6 r/2, for all ε ∈ [0, ε1].

Combining (6-4) and (6-5), and considering a 6 1/2, we deduce that

‖9ε(uε)−w∗‖X 6 r, for all ε ∈ [0, ε1],

and, therefore, 9ε : Br (w∗)→ Br (w∗) is a contraction, for all ε ∈ [0, ε1]. Hence,
there exists a fixed point of 9ε in Br (w∗), which we will call wε

∗
.

Finally, we will find an estimate of the difference wε
∗
−w∗ in terms of ‖aε −

a0‖
1/2
L∞(�).

Observe that wε
∗
= 9ε(w

ε
∗
) and w∗ = 90(w∗). If we denote F ′(w∗) = V0, we

have

(6-6) ‖wε
∗
−w∗‖X 6 ‖((Aε + V0)

−1
− (A0+ V0)

−1)[F(wε
∗
)+ V0w

ε
∗
]

+ (A0+ V0)
−1
[F(wε

∗
)− F(w∗)+ V0(w

ε
∗
−w∗)]‖X .
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Identity (6-2) and Proposition 3.5 give us

(6-7) ‖(Aε+V0)
−1
−(A0+V0)

−1
‖L(X)6C‖A−1

ε −A−1
0 ‖L(X)6C‖aε−a0‖

1/2
L∞(�),

where the constant C > 0 is independent of ε.
On the other hand, denoting zε

∗
= F(wε

∗
)− F(w∗)+ V0(w

ε
∗
−w∗) and using the

differentiability of the map F : X→ Y ×Y (see (4-1)), we get that, for every r > 0,
‖zε‖X 6 r‖wε

∗
−w∗‖X . Hence,

(6-8) ‖(A0+ V0)
−1zε
∗
‖X 6 r‖(A0+ V0)

−1
‖L(X)‖w

ε
∗
−w∗‖X .

Substituting (6-7) and (6-8) in (6-5) and choosing r > 0 such that r‖(A0 +

V0)
−1
‖L(X) 6 1/2, we obtain

‖wε
∗
−w∗‖X 6 C‖F(wε

∗
)+ V0w

ε
∗
‖X‖aε − a0‖

1/2
L∞(�)+

1
2‖w

ε
∗
−w∗‖X ,

which, combined with the fact that f and its derivative are limited, allows us to
conclude

‖wε
∗
−w∗‖X 6 C‖aε − a0‖

1/2
L∞(�). �

Remark 6.7. Notice that, by assuming that elements of E0 = {w
1,0
∗
, . . . , wn,0

∗
} are

hyperbolic, we have that the points of Eε = {w
1,ε
∗
, . . . , wn,ε

∗
}, with ε ∈ (0, 1], satisfy

the estimate ‖wi,ε
∗
−wi,0

∗
‖X 6C‖aε−a0‖

1/2
L∞(�). We still have by (4-1) that, writing

Vε = F ′(wε
∗
) with wε

∗
∈ Eε , Vε converges to V0 in the uniform topology.

Lemma 6.8. There exists a constant C > 0, independent of ε, such that

‖Vε A−1
ε − V0 A−1

0 ‖L(X) 6 C‖aε − a0‖
1/2
L∞(�).

Proof. The estimate follows by the decomposition

Vε A−1
ε − V0 A−1

0 = Vε(A−1
ε − A−1

0 )+ (Vε − V0)A−1
0 ,

(3-25), and Theorem 6.6. �

The next result shows an analogous property found in Proposition 3.5 with
Aε + Vε instead of Aε . This will be important in the analysis in the next section.

Proposition 6.9. Let us consider Aε = Aε+Vε for all ε ∈ [0, 1]. If 0 ∈ ρ(A0), then
0 ∈ ρ(Aε), for all ε ∈ (0, 1], and the following identity holds:

(6-9) A−1
ε − A−1

0

=(A−1
ε −A−1

0 )(I+V0 A−1
0 )−1

−A−1
ε (I+V0 A−1

0 )−1(Vε A−1
ε −V0 A−1

0 )(I+Vε A−1
ε )
−1.

Furthermore

(6-10) ‖A−1
ε − A−1

0 ‖L(X) 6 C‖aε − a0‖
1/2
L∞(�),

for some C > 0 independent of ε.
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Proof. The first part follows from Proposition 2.1. The identity (6-9) is immediate,
and (6-10) follows using (6-9), Proposition 3.5, and Lemma 6.8. �

The last proposition enables us to prove similar results as Proposition 3.6,
Proposition 3.7, Theorem 5.1 and Theorem 5.2 for Aε + Vε instead of Aε .

7. Rate of convergence and attraction of local unstable manifolds

The main aim of this section is the proof of the existence unstable local manifolds
as a graph of a Lipschitz function, its convergence, and exponential attraction.

For each ε ∈ [0, ε1], let us considerwε
∗

to be an equilibrium solution for (1-7). We
assume the existence of a constant C > 0 such that ‖wε

∗
−w∗‖X 6C‖aε−a0‖

1/2
L∞(�),

for all ε ∈ [0, ε1], and that w∗ :=w0
∗

is hyperbolic. To deal with a neighborhood of
the equilibrium point wε

∗
, we rewrite the problems (1-7) as

(7-1) zεt + Aεzε = F(uε +wε
∗
)− F(wε

∗
)− F ′(wε

∗
)uε,

where zε=uε−wε
∗

and Aε= Aε−F ′(wε
∗
). With this, one can look for Proposition 3.7

with Aε instead of Aε .
Let γ be a smooth, closed, simple, rectifiable curve in {z ∈C :Rez> 0}, oriented

counterclockwise and such that the bounded connected component of C\{γ } (here
{γ } denotes the trace of γ ) contains {z ∈ σ(−A0) : Rez > 0}. From part (ii) of
Proposition 3.6, there exists ε1 > 0 such that {γ } ⊂ ρ(−Aε) for all ε ∈ [0, ε1]. We
define Qε by

Qε =
1

2π i

∫
γ

(λI − Aε)−1dλ, for all ε ∈ [0, ε1].

The operator Āε is self-adjoint and there exist β > 0 and C > 1 such that

‖e−Aε t Qε‖L(X) 6 Ce−βt , for all t > 0 and all ε ∈ [0, ε1]

and
‖e−Aε t(I − Qε)‖L(X) 6 Ct−1/2e−βt , t > 0.

Using the decomposition X = QεX ⊕ (I − Qε)X (the solution zε of (7-1) can
be decomposed as zε = Qεzε + (I − Qε)zε), we rewrite (7-1) as

(7-2)


d
dt
(Qεzε)+ AεQεzε = Hε(Qεzε, (I − Qε)zε),

d
dt
[(I − Qε)zε] + Aε(I − Qε)zε = Gε(Qεzε, (I − Qε)zε),

where

(7-3) Hε(Qεzε, (I − Qε)zε)

:= Qε[F(Qεzε+(I−Qε)zε+wε∗)−F(wε
∗
)−F ′(wε

∗
)(Qεzε+(I−Qε)zε)],
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and

(7-4) Gε(Qεzε, (I − Qε)zε)

:= (I −Qε)[F(Qεzε+ (I −Qε)zε+wε∗)− F(wε
∗
)− F ′(wε

∗
)(Qεzε+ (I −Qε)zε)].

The functions Hε and Gε are continuously differentiable with

Hε(0, 0)= Gε(0, 0)= 0

and H ′ε(0, 0)=0=G ′ε(0, 0)∈L(X). For simplicity of notation, we write ωε=Qεzε

and ϑε = (I − Qε)zε . Hence, given ρ > 0, there exist ε1 > 0 and r > 0 such that if
‖ωε‖QεX +‖ϑ

ε
‖(I−Qε)X < r and ε ∈ [0, ε1], then

‖Hε(ωε, ϑε)‖QεX 6 ρ and ‖Gε(ω
ε, ϑε)‖(I−Qε)X 6 ρ,(7-5)

‖Hε(ωε, ϑε)− Hε(ω̄ε, ϑ̄ε)‖QεX 6 ρ(‖ω
ε
− ω̄ε‖QεX +‖ϑ

ε
− ϑ̄ε‖(I−Qε)X )(7-6)

and

(7-7) ‖Gε(ω
ε,ϑε)−Gε(ω̄

ε,ϑ̄ε)‖(I−Qε)X 6ρ(‖ω
ε
−ω̄ε‖QεX+‖ϑ

ε
−ϑ̄ε‖(I−Qε)X ).

Considering the coupled system (7-2), we can show an unstable manifold theorem
using similar arguments to those in the results of Chapter 6 in [Henry 1981].

Theorem 7.1. There exists a map sε
∗
: QεX → (I − Qε)X such that the unstable

manifold of wε
∗

is given by

W u(wε
∗
)= {(ω, ϑ) ∈ X : ϑ = sε

∗
(ω), ω ∈ QεX}.

The map sε
∗

satisfies

|‖sε
∗
|‖ := sup

ω∈QεX
‖sε
∗
(ω)‖X 6 C, ‖sε

∗
(ω)− sε

∗
(ω̃)‖X 6 C‖ω− ω̃‖QεX ,

where C > 0 is a constant independent of ε, and for θ ∈
(
0, 1

2

)
there exists a C > 0,

independent of ε, such that

(7-8) |‖sε
∗
− s0
∗
|‖6 C‖aε − a0‖

2θ
L∞(�).

Furthermore, there exists ρ1 > 0, C > 0 (independent of ε), and t0 > 0 such that,
for any solution (ωε(t), ϑε(t)) ∈ X , t ∈ [t0,∞), of (7-2), we have

(7-9) ‖ϑε(t)−sε
∗
(ωε(t))‖X 6Ce−ρ1(t−t0)‖ϑε(t0)−sε

∗
(ωε(t0))‖X , for all t > t0.

Proof. We consider the set

6ε = {s : QεX1
→ (I − Qε)X : |‖s|‖6 C, ‖s(ω)− s(ω̃)‖X 6 C‖ω− ω̃‖QεX }.

It is not difficult to see that (6ε, ||| · |||) is a complete metric space.
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Given s ∈6ε and η ∈ QεX , we denote by ωε(t)= ψ(t, τ, η, s) the solution of{
ωεt (t)+ Bεωε(t)= Hε(ωε(t), s(ωε(t))), t < τ
ωε(τ )= η.

We define 9ε :6ε→6ε by

9ε(s)η =
∫ τ

−∞

e− Ãε(τ−ξ)Gε(ω
ε(ξ), s(ωε(ξ))) dξ.

According to Theorem 7.1 in [Arrieta et al. 2013], we can deduce that 9ε is a
contraction. Therefore, there is a fixed point sε

∗
=9(sε

∗
) in 6ε .

Now we shall prove that the graph of sε
∗
{(ωε, sε

∗
(ωε)) : ωε ∈ QεX} is invariant

for (7-2), in the sense that initial data for (7-2) in {(ωε, sε
∗
(ωε)) : ωε ∈ QεX} lead

to solutions in this space. In fact, we take (ωε0, ϑ
ε
0 ) ∈W u(wε

∗
) (ϑε0 = sε

∗
(ωε0)). We

denote by ωε
∗
(t) the solution of the initial value problems

d
dt
(Qεzε)+ AεQεzε = Hε(ωε, sε

∗
(ωε)),

ωε(0)= ωε0,

where zε =ωε+ϑε ∈ QεX⊕(I −Qε)X . This defines a curve (ωε
∗
(t), sε

∗
(ωε
∗
(t)))∈

W u(wε
∗
), t ∈ R. Also, the unique solution of

d
dt
[(I − Qε)zε] + Aε(I − Qε)zε = Gε(ω

ε, sε
∗
(ωε)),

which remains bounded as t→−∞, is

ϑε
∗
(t)= (I−Qε)zε∗(t)=

∫ t

−∞

eAε(I−Qε)(t−ξ)Gε(ω
ε
∗
(ξ), sε

∗
(ωε
∗
(ξ))) dξ = sε

∗
(ωε
∗
(t)).

Therefore (ωε
∗
(t), sε

∗
(ωε
∗
(t))) is a solution of the system (7-2) through the point

(ωε0, ϑ
ε
0 ), proving the invariance of the graph of sε

∗
.

To show (7-8), we can proceed as in the proof of Proposition 6.1 in [Arrieta et al.
2009].

Finally, the proof that the graph of sε
∗

is the unstable manifold that attracts
exponentially, uniformly in ε, that is, the inequality (7-9) holds, follows by similar
arguments to those in the proof of (A.8) in [Bruschi et al. 2006]. �

Now we are able to prove our main result.

8. Proof of Theorem 1.1

The purpose of this section is to emphasize the proof of our main result. For this,
we return to Theorem 1.1 to establish its proof.



RATE OF ATTRACTION FOR A SEMILINEAR WAVE EQUATION 281

Proof of Theorem 1.1. This proof follows by Theorem 5.2, Theorem 6.6, and
Theorem 7.1 jointly with Theorems 2.1 and 2.2, and Corollary 2.1 in Chapter 8 of
[Babin and Vishik 1989]. �
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