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THE BRIN–THOMPSON GROUPS sV ARE OF TYPE F∞

MARTIN G. FLUCH, MARCO MARSCHLER,
STEFAN WITZEL AND MATTHEW C. B. ZAREMSKY

We prove that the Brin–Thompson groups sV , also called higher-dimen-
sional Thompson’s groups, are of type F∞ for all s ∈ N. This result was
previously shown for s ≤ 3, by considering the action of sV on a naturally
associated space. Our key step is to replace this space by a subspace sX that
is easier to analyze.

Recall that a group is of type F∞ if it admits a classifying space with finitely
many cells in each dimension. Well-known examples of groups of type F∞ include
Thompson’s groups F , T , and V . Some generalizations of V were introduced by
Brin [2004; 2005] and shown to be simple. We denote these groups sV , for s ∈ N,
with 1V = V . These groups are usually termed higher-dimensional Thompson’s
groups or Brin–Thompson groups. All of the groups sV are known to be finitely
presented [Hennig and Matucci 2012], and Kochloukova, Martínez-Pérez, and
Nucinkis [Kochloukova et al. 2013] showed that 2V and 3V are of type F∞. We
prove that this result extends to all dimensions.

Main Theorem. The Brin–Thompson group sV is of type F∞ for all s.

Fix some s. There is a natural poset P1 associated to sV . The realization |P1|

of this poset is contractible and the action of sV is proper but not cocompact. To
prove the Main Theorem it suffices to produce a cocompact filtration of |P1| whose
connectivity tends to infinity. The tool to study relative connectivity is discrete
Morse theory. This was carried out for s = 2, 3 in [Kochloukova et al. 2013].
However, for larger s this space quickly becomes cumbersome.

We therefore consider a subspace s X of |P1|, which we call the Stein space for
sV . As before, the Stein space is contractible and the action is not cocompact. The
advantage of the Stein space is that the Morse theory becomes easier to handle.

In Section 1 we recall the definition of sV . The Stein space s X is defined in
Section 2 and some basic properties are verified. In Section 3 we analyze the
connectivity of the subspaces in the filtration and deduce the Main Theorem.

The second author was formerly known as Marco Schwandt.
MSC2010: primary 20F65; secondary 57Q12.
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1. The Brin–Thompson groups

The elements of the Brin–Thompson group sV can be described as dyadic self-maps
of s-dimensional cubes. We will first give a brief intuition for these maps, and then
delve into some formalism.

To get an intuition for the elements of sV for arbitrary s, recall first that elements
of Thompson’s group V = 1V can be thought of as left-continuous, piecewise linear
maps from the unit interval [0, 1] to itself, where the slope of any linear piece is a
positive dyadic rational. An equivalent description of such an element is obtained
as follows: First divide the unit interval representing the domain into two halves
and iterate this procedure by further subdividing some of the resulting pieces. Then
similarly cut up the unit interval representing the codomain into the same number
of pieces as the domain, and finally identify the pieces of the domain and codomain
via a permutation. Note that the intervals identified in the last step will usually have
different lengths. For more details see [Cannon et al. 1996].

To describe elements of sV , we no longer think of the unit interval but the unit
s-cube [0, 1]s . The unit s-cube can be halved by dyadic hyperplanes in s different
directions, as can any iterated piece obtained this way. As with V , an element of
sV can be described as a sequence of halvings of the domain and codomain and an
identification of the resulting pieces by a permutation. Again the identification will
affinely deform the individual pieces. Alternatively we can describe an element by
a dyadic map from the s-cube to itself. A sequence of halvings of the s-cube will
be modeled by “dyadic coverings”. To get an intuition, the reader might want to
look at Figure 1 (the map f1 represents an element of 2V ). It may also be helpful to
read Section 1 of [Burillo and Cleary 2010], which additionally details the paired
trees model for elements of sV .

1A. Dyadic maps and the group sV . We now describe more formally the notions
needed to define the group sV , and also a certain poset P1, which will then be used
to define the space s X for our main argument.

A real number is called dyadic if it is of the form k/2l for some k ∈Z and l ∈N0.
We denote by I the subspace of [0, 1] of nondyadic numbers. By a dyadic interval
we mean a set of the form [k/2l, (k+1)/2l

]∩ I with k, l ∈N0, and the length of the
dyadic interval is defined to be 1/2l . A bijection A→ B between dyadic intervals
is called a simple dyadic map if it is affine of positive slope. Note that this slope
will necessarily be a power of two.

In general we consider the unit s-cube I s (or rather, the set of nondyadic points
in the unit s-cube), which is the s-fold product of I . A brick is a subset C of I s

that is a product of s dyadic intervals, called the edges of C , and the volume of C
is the product of the lengths of its edges. Note that the volume of a brick is always
a power of two. A dyadic covering is a finite set of bricks that disjointly cover I s .
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Note that by our definition the set I does not contain any dyadic numbers.
For a natural number m, denote by I s(m) the disjoint union

I s(m) := B1 t · · · t Bm,

where each Bi is a copy of I s . Note that I s is the same as I s(1). We call Bi the
i -th block of I s(m). A covering U of I s(m) is called dyadic if it is a disjoint union
U=U1 t · · · tUm , where Ui is a dyadic covering of the block Bi . We denote by
Tm := {B1, . . . , Bm} the trivial dyadic covering of I s(m), in which the bricks are
just the blocks themselves.

Observation 1.1. The set of dyadic coverings of I s(m) is a lattice with respect to
the refinement relation.

Proof. Existence of joins (that is, coarsest common refinements) as well as existence
of a unique minimum (namely, Tm) are clear. The statement now follows from
standard order theory. �

Let U and V be dyadic coverings of I s(m) and I s(n), respectively, and let
f : I s(m)→ I s(n) be a map. We say that the pair of dyadic coverings (U,V) is
compatible with f if for every C ∈U, f |C is a product of simple dyadic maps and
f (C) ∈ V. Less formally, this means that every brick in the domain maps in an
affine way to a brick in the codomain. If such a pair of dyadic coverings exists,
then we say that f is a dyadic map. It is easy to see that composition of two dyadic
maps is again a dyadic map, that every dyadic map is invertible, and that the inverse
of a dyadic map is dyadic.

There is a combinatorial description of dyadic maps. If f : I s(m)→ I s(n) is
a dyadic map and (U1,U2) is a compatible covering, then f induces a bijection
of dyadic coverings U1→ U2. Conversely, every bijection of dyadic coverings
U1→U2 induces a dyadic map I s(m)→ I s(n).

Note that two bijections U1→V1 and U2→V2 induce the same map I s(m)→
I s(n) if and only if there are common refinements U and V such that the induced
bijections U→ V coincide.

Definition 1.2. The Brin–Thompson group sV is the group of all dyadic self maps
of I s with the multiplication given by composition, gh := g ◦ h.

1B. The poset P1. In order to define the poset P1 on which sV acts we need some
more notation.

Denote by P̃m,n the set of all dyadic maps f : I s(m)→ I s(n), so for example
P̃1,1 = sV . Let P̃ be the union of the P̃m,n , where m and n range over all positive
integers. Also denote by P̃m the subset of P̃ where the domain of the maps consists
of m blocks.
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Figure 1. An example of a dyadic map f1 : I 2(1)→ I 2(1) and
a dyadic map f2 : I 2(1)→ I 2(2), obtained from f1 by splitting
along a horizontal line. The map f2 is equivalent in P1 to the one
where the blocks on the right are interchanged.

There is a natural action of sV on P̃1 given by precomposition: f g
:= f ◦ g for

g ∈ sV and f ∈ P̃1. For each positive n there is also an action of the symmetric
group Sn on P̃m,n by permuting the blocks of the codomain. We denote the quotient
P̃m,n/Sn by Pm,n . In other words, an element of Pm,n is obtained from P̃m,n by
forgetting the order of the blocks in the codomain. We set

P :=
⋃

n,m≥1

Pm,n and P1 :=
⋃
n≥1

P1,n.

Note that P̃1,n is an sV -invariant subset of P̃1, and the action of sV on P̃1,n

commutes with the action of the symmetric group Sn , so we get an action of sV on
P1,n for every n. In particular the sV -action on P̃1 induces an action of sV on P1.

Definition 1.3. The function t : P→N assigns to each x ∈P the number of blocks
in the codomain of x , that is, if x ∈ Pm,n for some m, then t (x)= n.

Next we define a poset structure on P using the notion of “splitting”. A dyadic
map z : I s(m)→ I s(n) is called a splitting (along U) if z is compatible with a
pair of dyadic coverings of the form (U,Tn). The splitting z is called nontrivial if
n > m. Colloquially then, as the name suggests, a nontrivial splitting is given by
splitting up some cubes (and then not sticking any resulting cubes together). The
inverse of a splitting (along U) is called a merging (along U).

We define an order ≤ on P̃ by saying that x < y if there exists a nontrivial
splitting z such that y = z ◦ x , that is, if y is obtained from x by nontrivial splitting.
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We also denote the induced order on P by ≤. In particular, P1 is ordered by ≤.
See Figure 1 for an example of dyadic maps and splitting.

The poset P1 is filtered by the t-sublevel sets

P≤n
1 =

⋃
1≤k≤n

P1,k .

We make the following easy observations:

Observation 1.4. The poset P̃1 is directed (that is, any two elements have a com-
mon upper bound). Therefore, |P̃1| and |P1| are contractible.

Observation 1.5. The action of sV on P̃1 is free. Thus, for any vertex x in |P1|,
the stabilizer StabsV (x) is finite. Hence all cell stabilizers are finite and of type F∞.

Observation 1.6. The action of sV on P≤1
1 is transitive, and for each n ≥ 1 the

sublevel set |P≤n
1 | is locally finite. Hence |P≤n

1 | is finite modulo sV .

These observations suggest that the filtration (|P≤n
1 |)n of |P1| could be used to

show that sV is of type F∞, using Brown’s criterion.

Brown’s criterion [Brown 1987, Corollary 3.3]. Let G be a group and X a con-
tractible G-CW-complex such that the stabilizer of every cell is of type F∞. Let
{X j } j≥1 be a filtration of X such that each X j is finite mod G. Suppose that the
connectivity of the pair (X j+1, X j ) tends to ∞ as j tends to ∞. Then G is of
type F∞.

It would suffice now to show that the connectivity of the pair (|P≤n+1
1 |, |P≤n

1 |)

tends to∞ as n tends to∞. This was proved for the cases s = 2, 3 [Kochloukova
et al. 2013]. However, it becomes increasingly difficult to verify for higher s. The
main difference of our approach here is that we consider a certain subcomplex
s X of |P1|. Analyzing the relative connectivity in s X turns out to be substantially
easier than in |P1|.

2. The Stein space for sV

The idea of passing to what we are calling a “Stein space” was first introduced by
Stein [1992], and in particular was used to obtain a new proof that F is of type F∞.
This construction generalizes nicely to deal with some more complicated versions
of Thompson’s groups. For example Stein spaces were used in [Bux et al. 2012]
to prove that braided Thompson’s groups are of type F∞. The key idea is that the
splitting establishing a relation x ≤ y can be obtained from “elementary splittings”
that give rise to elementary relations x � x1� · · ·� xr � y, and these small steps are
much easier to understand locally. Heuristically, an elementary splitting amounts
to halving an s-cube at most once in any given direction. We now describe more
rigorously the construction of the Stein space.
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Definition 2.1. Call a brick C elementary if every edge of C has length at least
1
2 . Call an elementary brick very elementary if it has volume at least 1

2 . A dyadic
covering U is called (very) elementary if every brick in U has this property. Likewise,
a splitting or merging along U is (very) elementary if U is.

For x, y ∈ P, if y can be obtained from x by an elementary splitting, write
x � y; if moreover x 6= y then we write x ≺ y. If y is obtained from x by a very
elementary splitting, write x v y; if moreover x 6= y, then we write x @ y. Note
that the relations � and v are not transitive. In particular, the length of a chain
of very elementary splittings is bounded by the number of blocks. However, if
x1 ≤ x2 ≤ x3 and x1 � x3 then x1 � x2 and x2 � x3, and analogously for v. It is
clear that the action of sV respects the relations ≤, � and v.

Clearly I s(m) has a unique maximal elementary covering E by m · 2s bricks all
of which have volume 2−s . A covering is elementary if and only if E is a refinement
of it.

The closed interval [x, y] in P1 is defined to be [x, y] := {w ∈P1 | x ≤w ≤ y};
the open and half-open intervals are defined analogously. Call an interval [x, y] in
|P1| elementary if x � y, and very elementary if x v y. A simplex of |P1| is (very)
elementary if there is a (very) elementary interval that contains all of its vertices.

Definition 2.2. The Stein space for sV , denoted s X , is the subcomplex of |P1|

consisting of elementary simplices.

The following statement is the key to showing the contractibility of the Stein
space:

Lemma 2.3. Let x, y ∈ P1 with x ≤ y. There exists a unique y0 ∈ [x, y] such that
x � y0 and for any x � w ≤ y, we have w ≤ y0. If x < y, then x < y0.

Proof. Set m := t (x) and n := t (y). Let x̃ be a representative in P̃1 for x . Let
U be the dyadic covering of I s(m) such that y is obtained from x̃ by splitting
along U. Let E be the maximal elementary covering of I s(m). The element y0

is obtained from x̃ by splitting along the finest common coarsening E∧U. The
desired properties follow from Observation 1.1. �

For x ≤ y, call the y0 from the lemma the elementary core of y with respect to x ,
and denote it corex(y) := y0. When x is understood we omit the subscript. Observe
that if y1 ≤ y2 then core(y1)≤ core(y2), that is, taking elementary cores respects
the poset relation. Figure 2 gives an example of an elementary core.

Lemma 2.4. For x < y with x 6≺ y, |(x, y)| is contractible.

The proof is essentially the same as the proof of the lemma in Section 4 of
[Brown 1992].
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Figure 2. A nonelementary dyadic covering, for s = 2. The thick
lines indicate the elementary core.

Proof. If w ∈ (x, y], then core(w) ∈ [x, y) because x 6≺ y, and core(w) ∈ (x, y]
because x < w. So in fact core(w) ∈ (x, y). Also, core(w) ≤ core(y) by the
previous discussion. The inequalities w ≥ core(w)≤ core(y) provide a contraction
of |(x, y)|, by Section 1.5 of [Quillen 1978]. �

As was done in [Brown 1992] for the Stein space of V , we can build up from
s X to |P1| to show that s X is contractible.

Corollary 2.5. The Stein space s X is contractible for all s.

Proof. By Observation 1.4, |P1| is contractible. We build up from s X to |P1|

without changing the homotopy type.
Given a closed interval [x, y], define r([x, y]) := t (y)− t (x). We attach the

contractible subcomplexes |[x, y]| for x 6≺ y to s X in increasing order of r-value.
In particular, when we attach |[x, y]|, we attach it along |[x, y)| ∪ |(x, y]|. But this
is the suspension of |(x, y)|, and so is contractible by the previous lemma. We
conclude that attaching |[x, y]| does not change the homotopy type, and since |P1|

is contractible, so is s X . �

For each n≥ 1 let s X≤n be the full subcomplex of s X spanned by vertices x with
t (x)≤ n. Similarly define s X<n , and let s X=n be the set of vertices x with t (x)= n.
Note that all of these sets are invariant under the action of sV . We will show that
the filtration (s X≤n)n of s X satisfies the assumptions of Brown’s criterion.

Thanks to Observations 1.5 and 1.6 and to Corollary 2.5, the only remaining
feature of the filtration (s X≤n)n of s X that we need to verify is that the connectivity
of the pair (s X≤n+1, s X≤n) tends to∞ as n tends to∞. This is exactly the condition
that proved difficult to verify for the filtration of |P1| in [Kochloukova et al. 2013].

We will verify the relative connectivity in the next section using discrete Morse
theory. The idea is to treat t as a height function on s X and inspect descending links.

3. Connectivity of the descending links and proof of the Main Theorem

We will use the following Morse-theoretic tools: Fix a vertex x in s X , say with
t (x)= n, and call n the height of x . The descending link lk↓(x) of x is defined to
be the intersection of lk(x) with s X<n . The fact that vertices with equal heights
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cannot share an edge means that we can obtain s X≤n from s X<n by “gluing in”
each vertex at height n along its descending link. This is made rigorous by the
Morse lemma (compare Corollary 2.6 of [Bestvina and Brady 1997]):

Lemma 3.1. Let X be a simplicial complex and let f : X (0)
→ Z be such that

f (x) 6= f (y) for adjacent vertices x and y of X. If lk↓(x) is (k−1)-connected
for every vertex x ∈ X=n , then the pair (X≤n, X<n) is k-connected, that is, the
inclusion X<n ↪→ X≤n induces an isomorphism in π j , j < k and an epimorphism
in πk .

Fix a vertex x in s X and consider L(x) := lk↓(x). As a subcomplex of |P1|,
L(x) is the collection of simplices given by chains yk < · · ·< y0 < x with yk ≺ x .
We first consider the subcomplex L0(x) of L(x) consisting of such chains with
yk @ x .

The complex L0(x) naturally projects onto a matching complex.

Definition 3.2. Let 0 be a graph. The matching complex M(0) of 0 is the simplicial
complex with a k-simplex for every collection {e0, . . . , ek} of k+1 pairwise disjoint
edges, with the face relation given by inclusion. If we regard every edge as consisting
of two oriented edges (effectively doubling each edge), we get the oriented matching
complex Mo(0).

The specific graphs that we will need are generalizations of complete graphs.
For s ∈N, let sKn be the graph with n nodes and s edges between any two distinct
nodes. In particular 1Kn is just Kn , the complete graph on n nodes. Color the edges
from 1 to s so that any two distinct nodes have precisely one edge of each color
between them. For a fixed labeling 1 through n of the nodes of each sKn , we have
a projection sπ : sKn→ Kn for each s, given by sending an edge with endpoints i
and j to the unique edge of Kn with endpoints i and j . Since disjoint edges map to
disjoint edges, this induces a map M(sπ) : M(sKn)→M(Kn).

For any l ∈ Z, define ν(l) := b(l − 2)/3c.

Lemma 3.3. M(sKn) is (ν(n)−1)-connected, as is Mo(sKn).

Proof. It is well known that M(Kn) is (ν(n)−1)-connected; see for example
[Athanasiadis 2004; Bux et al. 2012; Björner et al. 1994]. For any k-simplex
σ in M(Kn), the fiber M(sπ)−1(σ ) is the join of the fibers of the vertices of σ , so
it is homotopy equivalent to a wedge of spheres of dimension k. It is clear also that
links in M(Kn) are themselves matching complexes of complete graphs. Therefore
the hypotheses of Theorem 9.1 in [Quillen 1978] are satisfied, and we conclude that
M(sKn) is (ν(n)−1)-connected. We also have an obvious map Mo(sKn)�M(sKn)

obtained by forgetting the orientation on the edges. The fibers of this map are
similarly spherical of the right dimension, so again using Theorem 9.1 of [Quillen
1978] we conclude that Mo(sKn) is (ν(n)−1)-connected. �
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Figure 3. An example of π : V En → Mo(sKn) in the case n =
5 and s = 2. The solid arrow corresponds to a merge along a
vertical face, and the dashed arrow corresponds to a merge along a
horizontal face.

Every vertex y ∈ L0(x), say with t (y) = m, is obtained from x by applying a
nontrivial very elementary merging. The merging is given by a very elementary
covering U of m blocks whose n bricks are indexed by the blocks of x . Two such
mergings define the same element y if and only if they differ by a permutation of the
blocks. Consequently, denoting by V En the set of very elementary coverings by n
labeled bricks up to permutation of the blocks, we get a one-to-one correspondence
between L0(x) and V En . We obtain a partial order V En from the partial order on
P1 via this identification.

Corollary 3.4. V En , and therefore L0(x), is isomorphic to Mo(sKn). Hence, both
are (ν(n)−1)-connected.

Proof. Consider a nontrivial very elementary dyadic covering U of I s(m) with n
bricks labeled 1 to n. Since U is very elementary, each block consists of at most
two bricks. If it does consist of two bricks, then it defines an oriented edge in the
graph sKn as follows. The two bricks are

I k−1
×
(
I ∩

[
0, 1

2

])
× I s−k and I k−1

×
(
I ∩

[ 1
2 , 1

])
× I s−k

for some 1≤ k ≤ s. Say the first brick is labeled i and the second brick is labeled
j . Then the edge in sKn defined by this block points from i to j and has color k.
See Figure 3 for an example.

This procedure defines an isomorphism of ordered sets V En→Mo(sKn). The
connectivity statement now follows from Lemma 3.3. �

The next step is to show that L(x) is highly connected by building up from
L0(x) to L(x) along highly connected links. If s = 1, then L0(x) = L(x) so we
may assume s > 1 in what follows.

We start by giving a combinatorial description of L(x) similar to the one given for
L0(x) before. Every vertex in L(x) is obtained from x via a nontrivial elementary
merging. We can therefore replace “very elementary” by “elementary” in the
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discussion of V En above. We get that the poset En of elementary mergings of n
labeled bricks up to permutation of blocks is isomorphic to L(x).

We now describe the Morse function that determines in which order we build up
from L0(x) to L(x). For any U ∈ En , the volume of any brick in U is at least 1/2s .
For each 0≤ i ≤ s define ci to be the number of bricks in U with volume 1/2i . Then
define c to be the lexicographically ordered function c= (cs, cs−1, . . . , c3, c2). Note
that we do not include c1 or c0 in this tuple; this will be crucial to our arguments.
Denote by b the number of blocks of U. The height h of U is now defined to be
h = (c, b), ordered lexicographically.

Observation 3.5. Let X and Y be vertices in En with X< Y. Then c(X) ≥ c(Y)
and b(X) < b(Y), so in particular h(X) < h(Y) if and only if c(X) = c(Y), and
h(X) > h(Y) if and only if c(X) > c(Y).

Fix a vertex U in En \ V En . The descending link of U with respect to h will
be denoted lk↓h(U). There are two types of vertices V in lk↓h(U). First, we
could have U> V and h(U) > h(V), which by the above observation implies that
c(U) = c(V). The full subcomplex of lk↓h(U) spanned by such vertices will be
called the (descending) down-link. Second, we could have U<V and h(U)> h(V),
which implies that c(U) > c(V). The full subcomplex of lk↓h(U) spanned by these
vertices will be called the (descending) up-link.

Observation 3.6. Vertices V in the down-link and W in the up-link automatically
satisfy V<W. Therefore lk↓h(U) is a join of the down-link and the up-link.

This allows us to study the up-link and the down-link separately.

Lemma 3.7. If U has a block with precisely two bricks, then the up-link of U is
contractible, and hence so is lk↓h(U).

Proof. Let B be a block in U with two bricks. Note that splitting only B does not
yield a vertex with lower height. For a vertex V of the up-link we define a vertex
V0 as follows (see Figure 4): Since V is in the up-link, it is obtained from U by
splitting. Let V0 be the covering obtained from U by doing all the same splittings
as for V, except that B is not split (whether or not it was split for V). Then V0 >U,
since V was obtained by splitting more than just B, as observed above. It is also
clear that c(V0) < c(U), and so V0 is again in the up-link of U. Now let ZB be
the maximal elementary splitting of U that does not split B. Then for all V in the
up-link, we have V0 ≤ ZB . Hence we have the inequalities V≥ V0 ≤ ZB , which
provide a contraction of the up-link of U, by Section 1.5 of [Quillen 1978]. �

For l ∈ Z, define η(l) := b(l − 2)/2s
c. Note that, for a fixed s, as n→∞, η(n)

increases monotonically to∞.

Lemma 3.8. If U has no block with precisely two bricks, then lk↓h(U) is at least
(η(n)−2)-connected.
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Figure 4. A step in building up from V E6 to E6 as described in
the proof of Lemma 3.7. The block B of the covering U and its
images under the various splittings are highlighted.

Proof. Call a block in U with more than two bricks big, and a block with only one
brick small. Let kb be the number of big blocks and ks the number of small blocks.
By assumption kb+ ks is the number m of blocks in U.

The up-link of U is clearly at least (kb−2)-connected, since splitting a big block
in any way produces a vertex with lower height, and so each big block contributes
a nonempty join factor to the up-link. The down-link of U is isomorphic to V Eks ,
and therefore is (ν(ks)−1)-connected by Corollary 3.4. This implies that lk↓h(U)

is (kb+ν(ks)−1)-connected. Also, n is the number of bricks in U, so n ≤ 2skb+ks .
Since s > 1, 2s > 3, so we have

kb+ ν(ks)− 1≥ kb+

⌊ks−2
2s

⌋
− 1≥ kb+

ks−2
2s − 2

=
2skb+ks−2

2s − 2≥ n−2
2s − 2≥ η(n)− 2.

We conclude that lk↓h(U) is at least (η(n)−2)-connected. �

Corollary 3.9. If s = 1 then En , and hence L(x) is (ν(n)−1)-connected. If s > 1,
then En , and hence L(x) is (η(n)−1)-connected.

Proof. The s = 1 case is already done, since then En = V En . Now suppose
s > 1. Then η≤ ν, so V En is at least (η(n)−1)-connected. Also, for U∈ En \V En ,
lk↓h(U) is (η(n)−2)-connected by Lemmas 3.7 and 3.8. It follows from Lemma 3.1
that En is at least (η(n)−1)-connected. �

Proposition 3.10. For each n ≥ 1, the pair (s X≤n, s X<n) is η(n)-connected for
s > 1, and the pair (1X≤n, 1X<n) is ν(n)-connected.
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Proof. Let x be a vertex in s X=n . By Corollary 3.9, the descending link lk↓(x) of
x in s X is at least (η(n)−1)-connected for s > 1, or (ν(n)−1)-connected for s = 1.
The result now follows from Lemma 3.1. �

We are now in a position to apply Brown’s criterion.

Proof of Main Theorem. Consider the action of sV on s X . By Corollary 2.5,
s X is contractible, by Observation 1.5, the stabilizer of every cell is finite, and
by Observation 1.6, each s X≤n is finite modulo sV . By Proposition 3.10, the
connectivity of the pairs (s X≤n, s X<n) tends to∞ as n tends to∞. Hence, sV is
of type F∞ by Brown’s criterion. �
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