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IDEAL DECOMPOSITIONS OF A TERNARY RING
OF OPERATORS WITH PREDUAL

MASAYOSHI KANEDA

We show that any TRO (ternary ring of operators) with predual can be
decomposed into the direct sum of a two-sided ideal, a left ideal, and a right
ideal in some von Neumann algebra using an extreme point of the unit ball
of the TRO.

Recall that an operator space X is called a triple system or a ternary ring of
operators (TRO for short) if there exists a complete isometry ι from X into a
C∗-algebra such that ι(x)ι(y)∗ι(z) ∈ ι(X) for all x, y, z ∈ X . Our main result is
that any TRO with predual can be decomposed into the direct sum of a two-sided
ideal, a left ideal, and a right ideal in some von Neumann algebra:

Theorem. Let X be a TRO which is also a dual Banach space. Then X can be
decomposed into the direct sum of TROs XT , X L , and X R ,

X = XT ⊕
∞

X L ⊕
∞

X R,

so that there is a complete isometry ι from X into a von Neumann algebra in
which ι(XT ), ι(X L), and ι(X R) are a weak∗-closed two-sided, left, and right ideal,
respectively, and

ι(X)= ι(XT )⊕
∞

ι(X L)⊕
∞

ι(X R).

In the special case that the TRO is finite-dimensional, the decomposition is into a
direct sum of rectangular matrices, as first proved essentially by R. R. Smith [2000].
In the Appendix we give a short proof of that result. The following lemma is
a version of Kadison’s theorem [1951, Theorem 1] as found in [Pedersen 1979,
Proposition 1.4.8] or [Sakai 1971, Proposition 1.6.5]. Together with the idea of
embedding an off-diagonal corner into a diagonal corner developed in [Blecher and
Kaneda 2004, Section 2] (see also [Kaneda 2003, Section 2.2]), it plays a key role
in the proof of our theorem.

The author was supported by a research fund from Department of Mathematics, University of
California, Irvine.
MSC2010: primary 46L45, 47L20; secondary 46L07, 47L25, 47L50, 47L07.
Keywords: extreme points, dual operator spaces, von Neumann algebras, ideals, ternary rings of

operators.

297

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2013.266-2
http://dx.doi.org/10.2140/pjm.2013.266.297


298 MASAYOSHI KANEDA

Lemma (Kadison’s theorem). Let A be a C∗-algebra, and let p, q be orthogonal
projections in A. Then an element x ∈ pAq is an extreme point of Ball(pAq) if
and only if (p− xx∗)A(q − x∗x)= {0}. In this case, x is a partial isometry.

Proof of the Theorem. By [Effros et al. 2001, Theorem 2.6], we may regard X
as a weak∗-closed subspace of B(K,H) for some Hilbert spaces H and K such
that X X∗X ⊂ X . We may assume that [XK] = H and [X∗H] = K. We also
identify B(K,H) with the (1, 2)-corner of B(H⊕K), and let 1H ∈ B(H⊕K) and
1K ∈ B(H⊕K) denote the orthogonal projections on H and K. Then

L(X) :=
[

X X∗w∗ X
X∗ X∗X w∗

]
is the linking von Neumann algebra, 1H, 1K ∈ L(X), and X = 1HL(X)1K. Since
Ball(X) is weak∗-closed in B(K,H), there is an extreme point e ∈ Ball(X). By
Kadison’s theorem above,

(1) (1H− ee∗)X (1K− e∗e)= {0},

and e is a partial isometry. Let p ∈ X (1K− e∗e)X∗w∗ and q ∈ X∗(1H− ee∗)X w∗

be the identities of these two von Neumann algebras. Then by the adjoint of (1), it
follows that

pXq = {0},(2)

p = pee∗ = ee∗ p = pee∗ p and q = e∗eq = qe∗e = qe∗eq.(3)

Noting that pxy∗ ∈ X (1K− e∗e)X∗w∗ and qx∗y ∈ X∗(1H− ee∗)X w∗ , we also get

(4) pxy∗ = pxy∗ p = xy∗ p and qx∗y = qx∗yq = x∗yq for all x, y ∈ X.

Put
q1 := e∗(1H− p)e(1K− q) and q2 := 1K− q − q1.

We claim that q1 and q2 are orthogonal projections. Indeed, (4) and the fact that
pe ∈ X yield

q∗1 = (1K− q)e∗(1H− p)e = e∗e− e∗ pe− qe∗e+ qe∗ pe

= e∗e− e∗ pe− e∗eq + e∗ peq = q1

and

q2
1 = e∗(1H− p)e(1K−q)e∗(1H− p)e(1K−q)= e∗(1H− p)eq∗1 (1K−q)

= e∗(1H− p)eq1(1K−q)= e∗(1H− p)ee∗(1H− p)e(1K−q)(1K−q)

= e∗ee∗(1H− p)(1H− p)e(1K−q)(1K−q)= e∗(1H− p)e(1K−q)

= q1.
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Noting that q1q = 0, we have q2
2 = q2 = q∗2 .

To see that

(5) (1H− p)X (1K− e∗e)= {0},

let {uα} be an approximate identity of the C∗-algebra X∗X . Then for each x ∈ X ,
px(1K− e∗e)uα = x(1K− e∗e)uα. Taking the limit α→∞ yields that

px(1K− e∗e)= x(1K− e∗e)

for x ∈ X , and hence (5) holds. Similarly,

(6) (1H− ee∗)X (1K− q)= {0}

also holds.
Let x, y ∈ X . Then

q1x∗y = e∗(1H− p)e(1K− q)x∗y

= e∗(1H− p)ex∗y(1K− q) by (4)

= e∗ex∗(1H− p)y(1K− q) by (4)

= x∗(1H− p)y(1K− q) by the adjoint of (5)

= x∗(1H− p)ye∗e(1K− q) by (5)

= x∗ye∗(1H− p)e(1K− q) by (4)

= x∗yq1,

and so we have

(7) q1x∗y = x∗yq1 = q1x∗yq1 for all x, y ∈ X.

Put XT := Xq1, X L := Xq , and X R := Xq2. Then these are weak∗-closed TROs,
and X = XT ⊕ X L ⊕ X R . Using (4) and (7) and noting that q1, q, and q2 are
mutually disjoint, we have

X∗T X L = X∗T X R = X∗L XT = X∗L X R = X∗R XT = X∗R X L = {0}

and
X∗X = X∗T XT ⊕

∞

X∗L X L ⊕
∞

X∗R X R.

This proves that X = XT ⊕
∞

X L ⊕
∞

X R .
Define

ι : X→ X X∗w∗
⊕
∞

X∗X w∗

by
ι(x) := (xT + xL)e∗⊕ e∗xR,
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where x = xT + xL + xR is the unique decomposition of x ∈ X such that xT ∈ XT ,
xL ∈ X L , and xR ∈ X R . First note that ι(XT )∩ ι(X L)= {0}. Indeed, assume that
ι(xT )+ ι(xL)= 0, that is, xq1e∗+ xqe∗ = 0. Then by multiplying both sides by e
on the right and using (3) and (7), we obtain that xe∗eq1+ xq = 0. Multiplying
both sides by q on the right noting that q1q = 0 yields that xq = 0, and hence
xq1e∗= xqe∗= 0, that is, ι(xT )= ι(xL)= 0. Since ι(XT )

∗ι(X L)= eX∗T X Le∗={0}
and ι(X L)

∗ι(XT )= eX∗L XT e∗ = {0}, we obtain

(ι(XT )⊕ ι(X L))
∗(ι(XT )⊕ ι(X L))= ι(XT )

∗ι(XT )⊕
∞

ι(X L)
∗ι(X L)

noting that ι(XT )
∗ι(XT )= q1 X∗T XT q1 and ι(X L)

∗ι(X L)= q X∗L X Lq . Thus ι(X)=
ι(XT )⊕

∞

ι(X L)⊕
∞

ι(X R). To show that ι is a complete isometry, it suffices to show
that each of ι|XT , ι|X L , and ι|X R is a complete isometry. Since e∗eq1 = q1,

‖ι(xT )‖
2
= ‖ι(xT )ι(xT )

∗
‖ = ‖xq1e∗eq1x∗‖ = ‖xq1x∗‖ = ‖xq1‖

2
= ‖xT ‖

2.

A similar calculation works at the matrix level, which concludes that ι|XT is a
complete isometry. Similarly, (3) yields that ι|X L is a complete isometry.

‖ι(xR)‖
2
= ‖ι(xR)

∗ι(xR)‖ = ‖q2x∗ee∗xq2‖ = ‖q2x∗ee∗x(1K− q − q1)‖

= ‖q2x∗x(1K− q)‖ = ‖q2x∗x(1K− q − q1)‖ = ‖q2x∗xq2‖ = ‖xR‖
2,

where we used (6) and (7) as well as the fact that q2q1 = 0 in the fourth equality,
and (7) together with the fact that q2q1= 0 in the fifth equality. A similar calculation
works at the matrix level, which concludes that ι|X R is a complete isometry.

By [Blecher 2001, Lemma 1.5(3)] or [Blecher and Le Merdy 2004, Theo-
rem A.2.5(3)] for example, ι(XT ), ι(X L), and ι(X R) are weak∗-closed. Clearly,
ι(XT ) and ι(X L) are left ideals and ι(X R) is a right ideal in the von Neumann
algebra X X∗w∗

⊕
∞

X∗X w∗ . To see that ι(XT ) is a right ideal as well, it suffices to
show that ι(XT )

∗
⊂ ι(XT ), in which case necessarily ι(XT )

∗
= ι(XT ). To show

this, first note that it follows from the adjoint of (6) that

q1x∗=e∗(1H−p)e(1K−q)x∗=e∗(1H−p)e(1K−q)x∗ee∗=q1x∗ee∗ for all x∈X.

Therefore, together with (7), we obtain

ι(xT )
∗
= eq1x∗ = eq1x∗ee∗ = ex∗eq1e∗ ∈ Xq1e∗ = ι(XT ) for all x ∈ X. �

Definition. We call the decomposition X = XT ⊕
∞

X L ⊕
∞

X R obtained in the proof
of Theorem the ideal decomposition of the TRO X with predual with respect to an
extreme point e of Ball(X).
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Remarks. (A) The reader should distinguish ideal decompositions from Peirce
decompositions in the literature of Jordan triples. In fact, a TRO can be regarded
as a Jordan triple with the canonical symmetrization of the triple product. How-
ever, an ideal decomposition and a Peirce decomposition give totally different
decompositions.

(B) It is also possible to define ι : X→ X X∗w∗
⊕
∞

X∗X w∗ by

ι(x) := xLe∗⊕ e∗(xR + xT ) for x ∈ X.

(C) Simpler expressions for XT and X R are XT = {x − px − xq | x ∈ X} and
X R = pX , which would be more helpful in understanding what is going on in the
decomposition. To see the equivalences of expressions, let x ∈ X . Then, using
(4), (5), and (2), we have

xT : = xq1 = xe∗(1H− p)e(1K− q)= (1H− p)xe∗e(1K− q)

= (1H− p)x(1K− q)= x − px − xq.

Accordingly, it follows that

xR := xq2= x(1K−q−q1)= x(1K−q)−xq1= x(1K−q)−(x− px−xq)= px .

(D) The ideal decomposition highly depends on the extreme point chosen. Indeed,
let X be a von Neumann algebra, u ∈ X be a unitary element, and w ∈ X be an
isometry which is not unitary. Then the ideal decomposition with respect to u is
just X = XT , while the one with respect to w is X = XT ⊕

∞

X L .

Appendix: A short proof of Smith’s result

The following theorem was proved in [Smith 2000] (also see [Effros and Ruan
2000, Lemma 6.1.7 and Corollary 6.1.8]). We observed it independently in 2000,
together with Corollary A.2. Since these results are a special case of this paper’s
Theorem, and our proof is short enough to understand the essence of the results
transparently, it seems worthwhile to present them here. The key to the shortness
of the proof is the obvious fact that if a TRO X is finite-dimensional, then so are
the C∗-algebras X X∗ and X∗X .

Theorem A.1 [Smith 2000]. If X is a finite-dimensional TRO, then there exist a
finite-dimensional C∗-algebra A and an orthogonal projection p ∈ A such that
X ∼= pAp⊥ completely isometrically.

Proof. Let X ⊂ B(K,H) be a finite-dimensional TRO and {x1, . . . , xn} ⊂ X be
its base. We may assume that [XK] =H and [X∗H] = K. Then the C∗-algebra
X X∗ := span{xy∗ | x, y ∈ X} is equal to the set span{xi x∗j | 1≤ i, j ≤ n}, and the
latter is obviously a finite-dimensional vector space. Similarly, X∗X := span{x∗y |
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x, y ∈ X} is a finite-dimensional C∗-algebra. Let L(X) be the linking C∗-algebra
for X , that is,

L(X) :=
[

X X∗ X
X∗ X∗X

]
(⊂ B(H⊕K)) .

Let e, f be the identities of the C∗-algebras X X∗ and X∗X , respectively, and let

p :=
[

e 0
0 0

]
∈ L(X).

Then

p⊥ =
[

0 0
0 f

]
and X ∼= pL(X)p⊥ completely isometrically. �

Corollary A.2. A finite-dimensional TRO is completely isometric to the direct sum
of rectangular matrices: Ml1,k1(C)⊕

∞

· · ·⊕
∞

Mlm ,km (C).

Proof. Let X be a finite-dimensional TRO. By Theorem A.1, we may assume that
X = p

(⊕m
i=1 Mni (C)

)
p⊥, where p is an orthogonal projection in

⊕m
i=1 Mni (C).

For each 1≤ i ≤ m, let us denote by 1i the identity of Mni (C) which is identified
with an element of

⊕m
i=1 Mni (C) in the obvious way, and let pi := p1i . Then

X =
⊕m

i=1 pi Mni (C)p
⊥

i . By a unitary transform which is a complete isometry, we
may assume that

pi = diag{

li times︷ ︸︸ ︷
1, . . . , 1,

(ni−li ) times︷ ︸︸ ︷
0, . . . , 0} and p⊥i = diag{

li times︷ ︸︸ ︷
0, . . . , 0,

(ni−li ) times︷ ︸︸ ︷
1, . . . , 1}

for each 1≤ i ≤ m. �
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