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A STUDY OF REAL HYPERSURFACES
WITH RICCI OPERATORS

IN 2-DIMENSIONAL COMPLEX SPACE FORMS

DONG HO LIM, WOON HA SOHN AND HYUNJUNG SONG

We prove that a real hypersurface M in complex projective space P2(C)

or complex hyperbolic space H2(C), whose Ricci operator is η-parallel and
commutes with the structure tensor on the holomorphic distribution, is a
Hopf hypersurface. We also give a characterization of this hypersurface.

1. Introduction

A complex n-dimensional Kählerian manifold of constant holomorphic sectional
curvature c is called a complex space form, which is denoted by Mn(c). As is
well known, a complete and simply connected complex space form is complex
analytically isometric to a complex projective space Pn(C), a complex Euclidean
space Cn or a complex hyperbolic space Hn(C), according to c> 0, c= 0 or c< 0.

In this paper we consider a real hypersurface M in a complex space form
M2(c), c 6= 0. Then M has an almost contact metric structure (φ, g, ξ, η) induced
from the Kähler metric and complex structure J on Mn(c). The structure vector
field ξ is said to be principal if Aξ = αξ is satisfied, where A is the shape operator
of M and α = η(Aξ). In this case, it is known that α is locally constant [Ki and
Suh 1990] and that M is called a Hopf hypersurface.

Takagi [1973] classified homogeneous real hypersurfaces in Pn(C) into six
model spaces A1, A2, B, C , D and E of Hopf hypersurfaces with constant principal
curvatures. Berndt [1989] classified all homogeneous Hopf hypersurfaces in Hn(C)

as four model spaces, which are said to be A0, A1, A2 and B. A real hypersurface M
of type A1 or A2 in Pn(C) or type A0, A1 or A2 in Hn(C) is said to be of type A
for simplicity.

As a typical characterization of real hypersurfaces of type A, the following is
due to Okumura [1975] for c > 0, and Montiel and Romero [1986] for c < 0.

Theorem A [Montiel and Romero 1986; Okumura 1975]. Let M be a real hyper-
surface of Mn(c), c 6= 0, n ≥ 2. It satisfies Aφ−φA = 0 on M if and only if M is
locally congruent to one of the model spaces of type A.
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The Ricci operator of M will be denoted by S, and the shape operator or the
second fundamental tensor field of M by A. The holomorphic distribution T0 of a
real hypersurface M in Mn(c) is defined by

(1-1) T0(p)= {X ∈ Tp(M) | g(X, ξ)p = 0},

where Tp(M) is the tangent space of M at p ∈ M . The Ricci operator S is said to
be η-parallel if

(1-2) g((∇X S)Y, Z)= 0

for any vector fields X , Y and Z in T0.

Theorem B [Kimura and Maeda 1989; Suh 1990]. Let M be a real hypersurface
in a complex space form Mn(c), c 6= 0. Then the Ricci operator of M is η-parallel
and the structure vector field ξ is a principal if and only if M is locally congruent
to one of the model spaces of type A or type B.

I.-B. Kim, K. H. Kim and one of the present authors [Kim et al. 2006; 2007]
studied real hypersurfaces with certain conditions related to the Ricci operator and
the structure tensor field φ in Mn(c). As for the Ricci operator and structure tensor
field φ, one of the present authors proved the following.

Theorem C [Sohn 2007]. Let M be a real hypersurface with η-parallel Ricci
operator in a complex space form Mn(c), c 6= 0, n ≥ 3. If M satisfies

(1-3) g((Sφ−φS)X, Y )= 0

for any X and Y in T0, then M is locally congruent to one of the model spaces of
type A or type B.

The purpose of this paper is to complete the results of [Sohn 2007] and charac-
terize real hypersurfaces with η-parallel Ricci operator such that the Ricci operator
and structure tensor field commute in a complex space form Mn(c), c 6= 0, n ≥ 2.
Namely, we prove:

Theorem. A real hypersurface in a complex space form M2(c), c 6= 0 satisfies (1-2)
and (1-3) if and only if it is pseudo-Einstein.

The pseudo-Einstein hypersurfaces are classified by Kim and Ryan [2008] and
Ivey and Ryan [2009] and are described in detail in these papers. In view of their
results, we can state the following.

Corollary. Let M be a real hypersurface with an η-parallel Ricci operator in a
complex space form M2(c), c 6= 0. If M satisfies (1-3) then M is locally congruent to
either a Hopf hypersurface with Aξ = 0 or one of the model spaces of type A.
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2. Preliminaries

Let M be a real hypersurface immersed in a complex space form M2(c), and N
be a unit normal vector field of M . By ∇̃ we denote the Levi-Civita connection
with respect to the Fubini–Study metric tensor g̃ of M2(c). Then the Gauss and
Weingarten formulas are given respectively by

∇̃X Y =∇X Y + g(AX, Y )N and ∇̃X N =−AX

for any vector fields X and Y tangent to M , where g denotes the Riemannian metric
tensor of M induced from g̃, and A is the shape operator of M in M2(c).

For any vector field X on M we put

J X = φX + η(X)N , J N =−ξ,

where J is the almost complex structure of M2(c). Then we see that M induces an
almost contact metric structure (φ, g, ξ, η), that is,

φ2 X =−X + η(X)ξ, φξ = 0, η(ξ)= 1,

g(φX, φY )= g(X, Y )− η(X)η(Y ), η(X)= g(X, ξ)

for any vector fields X and Y on M . Since the almost complex structure J is
parallel, we can verify from the Gauss formula that

(2-1) ∇Xξ = φAX.

Since the ambient manifold is of constant holomorphic sectional curvature c, we
have the Gauss equation

(2-2) R(X, Y )Z

=
c
4
(
g(Y, Z)X−g(X, Z)Y+g(φY, Z)φX−g(φX, Z)φY−2g(φX, Y )φZ

)
+ g(AY, Z)AX − g(AX, Z)AY

for any vector fields X , Y and Z on M , where R denotes the Riemannian curvature
tensor of M .

From (1-3) the Ricci operator S of M is expressed by

(2-3) SX = c
4
(
(2n+ 1)X − 3η(X)ξ

)
+m AX − A2 X,

where m = trace A is the mean curvature of M , and the covariant derivative of (2-3)
is given by

(∇X S)Y =−3c
4
(
g(φAX, Y )ξ + η(Y )φAX

)
+ (Xm)AY +m(∇X A)Y − (∇X A)AY − A(∇X A)Y.
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Let U be a unit vector field on M with the same direction of the vector field
−φ∇ξξ , and let β be the length of the vector field −φ∇ξξ if it does not vanish. It
is not possible to define U without specifying that β 6= 0. Then it is easily seen
from (2-1) that

(2-4) Aξ = αξ +βU,

where α = η(Aξ). We notice here that U is orthogonal to ξ .
We put

�= {p ∈ M | β(p) 6= 0}.

Then � is an open subset of M .

3. η-parallel Ricci operators

In this section, we assume that � is not empty. Then there are scalar fields γ , ε
and δ and a unit vector field U and φU orthogonal to ξ such that

(3-1) AU = βξ + γU + εφU, AφU = εU + δφU

and

(3-2) m = trace A = α+ γ + δ

in M2(c).
We shall prove the following lemmas.

Lemma 3.1. Let M be a real hypersurface in a complex space form M2(c), c 6= 0.
If M satisfies (1-3), then we have AU = βξ+γU , AφU = δφU and β2

= α(γ −δ).

Proof. If we put X = ξ into (2-3), we have

(3-3) Sξ =
(c

2
+αγ +αδ−β2

)
ξ +βδU −βεφU.

Putting X =U into (2-3) and taking account of (3-1) yields

(3-4) SU = βδξ +
(5c

4
+αγ + γ δ−β2

− ε2
)
+αεφU.

Putting X = φU into (2-3) and using (3-1), we obtain

(3-5) SφU =−βεξ +αεU +
(5c

4
+αδ+ γ δ− ε2

)
φU.

If we apply φ to (3-4), then we have

(3-6) (Sφ−φS)U =−βεξ + 2αεU + (αδ−αγ +β2)φU.

From condition (1-3), we have, for all X ∈ T0,

(3-7) (Sφ−φS)X =−βg(εU + δφU, X)ξ
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If we substitute X =U into (3-7), then we obtain

(3-8) (Sφ−φS)U =−βεξ.

Comparing (3-6) and (3-8), we get ε = 0 and β2
= α(γ − δ). It follows that AU

is expressed in terms of ξ and U only and AφU is given by φU . �

It follows from (2-3) and (3-1) that

Sξ =
(c

2
+ 2αδ

)
ξ +βδU,(3-9)

SU = βδξ +
(5c

4
+ γ δ+αδ

)
U,(3-10)

SφU =
(5c

4
+ γ δ+αδ

)
φU.(3-11)

Lemma 3.2. Under the assumptions of Lemma 3.1, if M has the η-parallel Ricci
operator S, then we have AU = βξ + γU , AφU = 0 and β2

= αγ .

Proof. Differentiating (3-10) covariantly along vector field X in T0, we obtain

(∇X S)U =
((5c

4
+γ δ+αδ

)
I−S

)
∇XU+βδφAX+X (βδ)ξ+X

(5c
4
+γ δ+αδ

)
U.

Taking the inner product of this equation with U and φU and making use of
(3-9)–(3-11) and Lemma 3.1, we obtain

(3-12) (α+ γ )∇δ+ δ(∇γ +∇α)= 2βδ2φU

and
δγ = 0.

If we differentiate this along the vector field X in T0, then (3-12) is reduced to

(3-13) α∇δ+ δ∇α = 2βδ2φU.

Differentiating (3-11) covariantly along vector field X in T0, we obtain

(3-14) (∇X S)φU =
((5c

4
+ γ δ+αδ

)
I − S

)
∇XφU +

(
X
(5c

4
+ γ δ+αδ

))
φU.

If we take the inner product of (3-14) with φU and use (3-9)–(3-11), then we
have

(3-15) α∇δ+ δ∇α = 0.

Comparing (3-13) and (3-15), we obtain δ = 0 and β2
= αγ from Lemma 3.1.

From this and Lemma 3.1 we conclude that AU is expressed in terms of ξ and U
only and AφU = 0. �
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4. Proof of the main theorem

Assume that M satisfies (1-2) and (1-3). We first show that M is Hopf. If the
open set � is not empty, then Lemma 3.2 yields δ = 0. Thus the Ricci operator, as
expressed in (3-9)–(3-11), has the property that ξ , U and φU are eigenvectors and
that U and φU have the same eigenvalue. That is, M is pseudo-Einstein with

SX = 5c
4

X − 3c
4

g(X, ξ)ξ.

This contradicts a result from [Kim and Ryan 2008]. Thus we conclude that any
hypersurface satisfying (1-2) and (1-3) must be Hopf.

Since M is Hopf, condition (1-3) yields α(γ − δ) = 0 and that the criteria for
Proposition 2.21 in [Kim and Ryan 2008] are satisfied. Thus M is pseudo-Einstein.

Conversely, if M is pseudo-Einstein, observe that (1-2) and (1-3) must be satisfied.
�
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