A STUDY OF REAL HYPERSURFACES WITH RICCI OPERATORS IN 2-DIMENSIONAL COMPLEX SPACE FORMS

DONG HO LIM, WOON HA SOHN AND HYUNJUNG SONG
A STUDY OF REAL HYPERSURFACES
WITH RICCI OPERATORS
IN 2-DIMENSIONAL COMPLEX SPACE FORMS

DONG HO LIM, WOON HA SOHN AND HYUNJUNG SONG

We prove that a real hypersurface M in complex projective space $\mathbb{P}_2(\mathbb{C})$ or complex hyperbolic space $\mathbb{H}_2(\mathbb{C})$, whose Ricci operator is η-parallel and commutes with the structure tensor on the holomorphic distribution, is a Hopf hypersurface. We also give a characterization of this hypersurface.

1. Introduction

A complex n-dimensional Kählerian manifold of constant holomorphic sectional curvature c is called a complex space form, which is denoted by $M_n(c)$. As is well known, a complete and simply connected complex space form is complex analytically isometric to a complex projective space $\mathbb{P}_n(\mathbb{C})$, a complex Euclidean space \mathbb{C}^n or a complex hyperbolic space $\mathbb{H}_n(\mathbb{C})$, according to $c > 0$, $c = 0$ or $c < 0$.

In this paper we consider a real hypersurface M in a complex space form $M_2(c)$, $c \neq 0$. Then M has an almost contact metric structure (ϕ, g, ξ, η) induced from the Kähler metric and complex structure J on $M_n(c)$. The structure vector field ξ is said to be principal if $A\xi = \alpha\xi$ is satisfied, where A is the shape operator of M and $\alpha = \eta(A\xi)$. In this case, it is known that α is locally constant [Ki and Suh 1990] and that M is called a Hopf hypersurface.

Takagi [1973] classified homogeneous real hypersurfaces in $\mathbb{P}_n(\mathbb{C})$ into six model spaces A_1, A_2, B, C, D and E of Hopf hypersurfaces with constant principal curvatures. Berndt [1989] classified all homogeneous Hopf hypersurfaces in $\mathbb{H}_n(\mathbb{C})$ as four model spaces, which are said to be A_0, A_1, A_2 and B. A real hypersurface M of type A_1 or A_2 in $\mathbb{P}_n(\mathbb{C})$ or type A_0, A_1 or A_2 in $\mathbb{H}_n(\mathbb{C})$ is said to be of type A for simplicity.

As a typical characterization of real hypersurfaces of type A, the following is due to Okumura [1975] for $c > 0$, and Montiel and Romero [1986] for $c < 0$.

Theorem A [Montiel and Romero 1986; Okumura 1975]. *Let M be a real hypersurface of $M_n(c)$, $c \neq 0$, $n \geq 2$. It satisfies $A\phi - \phi A = 0$ on M if and only if M is locally congruent to one of the model spaces of type A.*

MSC2010: primary 53C40; secondary 53C15.

Keywords: real hypersurface, η-parallel Ricci operator, Hopf hypersurface.
The Ricci operator of M will be denoted by S, and the shape operator or the second fundamental tensor field of M by A. The holomorphic distribution T_0 of a real hypersurface M in $M_n(c)$ is defined by

\begin{equation}
T_0(p) = \{ X \in T_p(M) \mid g(X, \xi)_p = 0 \},
\end{equation}

where $T_p(M)$ is the tangent space of M at $p \in M$. The Ricci operator S is said to be η-parallel if

\begin{equation}
g((\nabla_X S)Y, Z) = 0
\end{equation}

for any vector fields X, Y and Z in T_0.

Theorem B [Kimura and Maeda 1989; Suh 1990]. Let M be a real hypersurface in a complex space form $M_n(c)$, $c \neq 0$. Then the Ricci operator of M is η-parallel and the structure vector field ξ is a principal if and only if M is locally congruent to one of the model spaces of type A or type B.

I.-B. Kim, K. H. Kim and one of the present authors [Kim et al. 2006; 2007] studied real hypersurfaces with certain conditions related to the Ricci operator and the structure tensor field ϕ in $M_n(c)$. As for the Ricci operator and structure tensor field ϕ, one of the present authors proved the following.

Theorem C [Sohn 2007]. Let M be a real hypersurface with η-parallel Ricci operator in a complex space form $M_n(c)$, $c \neq 0, n \geq 3$. If M satisfies

\begin{equation}
g((S\phi - \phi S)X, Y) = 0
\end{equation}

for any X and Y in T_0, then M is locally congruent to one of the model spaces of type A or type B.

The purpose of this paper is to complete the results of [Sohn 2007] and characterize real hypersurfaces with η-parallel Ricci operator such that the Ricci operator and structure tensor field ϕ commute in a complex space form $M_n(c)$, $c \neq 0, n \geq 2$. Namely, we prove:

Theorem. A real hypersurface in a complex space form $M_2(c)$, $c \neq 0$ satisfies (1-2) and (1-3) if and only if it is pseudo-Einstein.

The pseudo-Einstein hypersurfaces are classified by Kim and Ryan [2008] and Ivey and Ryan [2009] and are described in detail in these papers. In view of their results, we can state the following.

Corollary. Let M be a real hypersurface with an η-parallel Ricci operator in a complex space form $M_2(c)$, $c \neq 0$. If M satisfies (1-3) then M is locally congruent to either a Hopf hypersurface with $A\xi = 0$ or one of the model spaces of type A.
2. Preliminaries

Let M be a real hypersurface immersed in a complex space form $M_2(c)$, and N be a unit normal vector field of M. By $\tilde{\nabla}$ we denote the Levi-Civita connection with respect to the Fubini–Study metric tensor \tilde{g} of $M_2(c)$. Then the Gauss and Weingarten formulas are given respectively by

$$\tilde{\nabla}_X Y = \nabla_X Y + g(A X, Y)N \quad \text{and} \quad \tilde{\nabla}_X N = -AX$$

for any vector fields X and Y tangent to M, where g denotes the Riemannian metric tensor of M induced from \tilde{g}, and A is the shape operator of M in $M_2(c)$.

For any vector field X on M we put

$$JX = \phi X + \eta(X)N, \quad JN = -\xi,$$

where J is the almost complex structure of $M_2(c)$. Then we see that M induces an almost contact metric structure (ϕ, g, ξ, η), that is,

$$\phi^2 X = -X + \eta(X)\xi, \quad \phi \xi = 0, \quad \eta(\xi) = 1,$$

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \quad \eta(X) = g(X, \xi)$$

for any vector fields X and Y on M. Since the almost complex structure J is parallel, we can verify from the Gauss formula that

(2-1) \hspace{1cm} \nabla_X \xi = \phi AX.$$

Since the ambient manifold is of constant holomorphic sectional curvature c, we have the Gauss equation

(2-2) \hspace{1cm} R(X, Y)Z = \frac{c}{4}(g(Y, Z)X - g(X, Z)Y + g(\phi Y, Z)\phi X - g(\phi X, Z)\phi Y - 2g(\phi X, Y)\phi Z)

+ g(AY, Z)AX - g(AX, Z)AY

for any vector fields X, Y and Z on M, where R denotes the Riemannian curvature tensor of M.

From (1-3) the Ricci operator S of M is expressed by

(2-3) \hspace{1cm} SX = \frac{c}{4}((2n+1)X - 3\eta(X)\xi) + mAX - A^2X,$$

where $m = \text{trace } A$ is the mean curvature of M, and the covariant derivative of (2-3) is given by

$$\nabla_X S = -\frac{3c}{4}(g(\phi AX, Y)\xi + \eta(Y)\phi AX)

+ (Xm)AY + m(\nabla_X A)Y - (\nabla_X A)AY - A(\nabla_X A)Y.$$
Let U be a unit vector field on M with the same direction of the vector field $-\phi \nabla_\xi \xi$, and let β be the length of the vector field $-\phi \nabla_\xi \xi$ if it does not vanish. It is not possible to define U without specifying that $\beta \neq 0$. Then it is easily seen from (2-1) that

\[(2-4) \quad A\xi = \alpha\xi + \beta U,\]

where $\alpha = \eta(A\xi)$. We notice here that U is orthogonal to ξ.

We put

\[\Omega = \{ p \in M \mid \beta(p) \neq 0 \}.\]

Then Ω is an open subset of M.

3. η-parallel Ricci operators

In this section, we assume that Ω is not empty. Then there are scalar fields γ, ϵ and δ and a unit vector field U and ϕU orthogonal to ξ such that

\[(3-1) \quad AU = \beta\xi + \gamma U + \epsilon \phi U, \quad A\phi U = \epsilon U + \delta \phi U\]

and

\[(3-2) \quad m = \text{trace } A = \alpha + \gamma + \delta\]

in $M_2(c)$.

We shall prove the following lemmas.

Lemma 3.1. Let M be a real hypersurface in a complex space form $M_2(c)$, $c \neq 0$. If M satisfies (1-3), then we have $AU = \beta \xi + \gamma U$, $A\phi U = \delta \phi U$ and $\beta^2 = \alpha(\gamma - \delta)$.

Proof. If we put $X = \xi$ into (2-3), we have

\[(3-3) \quad S\xi = (\frac{c}{2} + \alpha \gamma + \alpha \delta - \beta^2)\xi + \beta \delta U - \beta \epsilon \phi U.\]

Putting $X = U$ into (2-3) and taking account of (3-1) yields

\[(3-4) \quad SU = \beta \delta \xi + \left(\frac{5c}{4} + \alpha \gamma + \gamma \delta - \beta^2 - \epsilon^2\right) + \alpha \epsilon \phi U.\]

Putting $X = \phi U$ into (2-3) and using (3-1), we obtain

\[(3-5) \quad S\phi U = -\beta \epsilon \xi + \alpha \epsilon U + \left(\frac{5c}{4} + \alpha \delta + \gamma \delta - \epsilon^2\right) \phi U.\]

If we apply ϕ to (3-4), then we have

\[(3-6) \quad (S\phi - \phi S)U = -\beta \epsilon \xi + 2\alpha \epsilon U + (\alpha \delta - \alpha \gamma + \beta^2) \phi U.\]

From condition (1-3), we have, for all $X \in T_0$,

\[(3-7) \quad (S\phi - \phi S)X = -\beta g(\epsilon U + \delta \phi U, X)\xi.\]
If we substitute $X = U$ into (3-7), then we obtain

\[(S\phi - \phi S)U = -\beta \varepsilon \xi.\]

Comparing (3-6) and (3-8), we get $\varepsilon = 0$ and $\beta^2 = \alpha(\gamma - \delta)$. It follows that AU is expressed in terms of ξ and U only and $A\phi U$ is given by ϕU. \(\square\)

It follows from (2-3) and (3-1) that

\[(S\xi)(U) = \left(\frac{c}{2} + 2\alpha \delta\right)\xi + \beta \delta U,\]
\[(SU)(U) = \beta \delta \xi + \left(\frac{5c}{4} + \gamma \delta + \alpha \delta\right)U,\]
\[(S\phi U)(U) = \left(\frac{5c}{4} + \gamma \delta + \alpha \delta\right)\phi U.\]

Lemma 3.2. Under the assumptions of Lemma 3.1, if M has the η-parallel Ricci operator S, then we have $AU = \beta \xi + \gamma U$, $A\phi U = 0$ and $\beta^2 = \alpha \gamma$.

Proof. Differentiating (3-10) covariantly along vector field X in T_0, we obtain

\[\nabla_X S(U) = \left(\left(\frac{5c}{4} + \gamma \delta + \alpha \delta\right)I - S\right)\nabla_X U + \beta \delta \phi AX + X(\beta \delta)\xi + X\left(\frac{5c}{4} + \gamma \delta + \alpha \delta\right)U.\]

Taking the inner product of this equation with U and ϕU and making use of (3-9)–(3-11) and Lemma 3.1, we obtain

\[(\alpha + \gamma)\nabla \delta + \delta(\nabla \gamma + \nabla \alpha) = 2\beta \delta^2 \phi U\]
and
\[\delta \gamma = 0.\]

If we differentiate this along the vector field X in T_0, then (3-12) is reduced to

\[(\alpha + \gamma)\nabla \delta + \delta \nabla \alpha = 2\beta \delta^2 \phi U.\]

Differentiating (3-11) covariantly along vector field X in T_0, we obtain

\[(\nabla_X S)(\phi U) = \left(\left(\frac{5c}{4} + \gamma \delta + \alpha \delta\right)I - S\right)\nabla_X \phi U + \left(X\left(\frac{5c}{4} + \gamma \delta + \alpha \delta\right)\right)\phi U.\]

If we take the inner product of (3-14) with ϕU and use (3-9)–(3-11), then we have

\[\alpha \nabla \delta + \delta \nabla \alpha = 0.\]

Comparing (3-13) and (3-15), we obtain $\delta = 0$ and $\beta^2 = \alpha \gamma$ from Lemma 3.1. From this and Lemma 3.1 we conclude that AU is expressed in terms of ξ and U only and $A\phi U = 0$. \(\square\)
4. Proof of the main theorem

Assume that M satisfies (1-2) and (1-3). We first show that M is Hopf. If the open set Ω is not empty, then Lemma 3.2 yields $\delta = 0$. Thus the Ricci operator, as expressed in (3-9)–(3-11), has the property that ξ, U and ϕU are eigenvectors and that U and ϕU have the same eigenvalue. That is, M is pseudo-Einstein with

$$S X = \frac{5c}{4} X - \frac{3c}{4} g(X, \xi)\xi.$$

This contradicts a result from [Kim and Ryan 2008]. Thus we conclude that any hypersurface satisfying (1-2) and (1-3) must be Hopf.

Since M is Hopf, condition (1-3) yields $\alpha(\gamma - \delta) = 0$ and that the criteria for Proposition 2.21 in [Kim and Ryan 2008] are satisfied. Thus M is pseudo-Einstein.

Conversely, if M is pseudo-Einstein, observe that (1-2) and (1-3) must be satisfied. □

Acknowledgments

The authors would like to express their sincere gratitude to the referee who gave them valuable suggestions and comments.

References

Received September 20, 2012. Revised May 6, 2013.

DONG HO LIM
DEPARTMENT OF MATHEMATICS
HANKUK UNIVERSITY OF FOREIGN STUDIES
SEOUL 130-791
SOUTH KOREA
dhlnds@hufs.ac.kr

WOON HA SOHN
DEPARTMENT OF MATHEMATICS
CATHOLIC UNIVERSITY OF DAEGU
DAEGU 712-702
SOUTH KOREA
kumogawa@cu.ac.kr

HYUNJUNG SONG
DEPARTMENT OF MATHEMATICS
HANKUK UNIVERSITY OF FOREIGN STUDIES
SEOUL 130-791
SOUTH KOREA
hson@hufs.ac.kr
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate of attraction for a semilinear wave equation with variable coefficients and critical nonlinearities</td>
<td>257</td>
</tr>
<tr>
<td>Fágnér Dias Araruna and Flank David Morais Bezerra</td>
<td></td>
</tr>
<tr>
<td>The Brin–Thompson groups sV are of type F_∞</td>
<td>283</td>
</tr>
<tr>
<td>Martin G. Fluch, Marco Marschler, Stefan Witzel and Matthew C. B. Zaremsky</td>
<td></td>
</tr>
<tr>
<td>Ideal decompositions of a ternary ring of operators with predual</td>
<td>297</td>
</tr>
<tr>
<td>Masayoshi Kaneda</td>
<td></td>
</tr>
<tr>
<td>A study of real hypersurfaces with Ricci operators in 2-dimensional complex space forms</td>
<td>305</td>
</tr>
<tr>
<td>Dong Ho Lim, Woon Ha Sohn and Hyunjung Song</td>
<td></td>
</tr>
<tr>
<td>On commensurability of fibrations on a hyperbolic 3-manifold</td>
<td>313</td>
</tr>
<tr>
<td>Hidetoshi Masai</td>
<td></td>
</tr>
<tr>
<td>Multiplicative Dirac structures</td>
<td>329</td>
</tr>
<tr>
<td>Cristián Ortiz</td>
<td></td>
</tr>
<tr>
<td>On the finite generation of a family of Ext modules</td>
<td>367</td>
</tr>
<tr>
<td>Tony J. Puthenpurakal</td>
<td></td>
</tr>
<tr>
<td>Index formulae for Stark units and their solutions</td>
<td>391</td>
</tr>
<tr>
<td>Xavier-François Roblot</td>
<td></td>
</tr>
<tr>
<td>The short time asymptotics of Nash entropy</td>
<td>423</td>
</tr>
<tr>
<td>Guoyi Xu</td>
<td></td>
</tr>
<tr>
<td>Several splitting criteria for vector bundles and reflexive sheaves</td>
<td>449</td>
</tr>
<tr>
<td>Stephen S.-T. Yau and Fei Ye</td>
<td></td>
</tr>
<tr>
<td>The minimal volume orientable hyperbolic 3-manifold with 4 cusps</td>
<td>457</td>
</tr>
<tr>
<td>Ken’ichi Yoshida</td>
<td></td>
</tr>
<tr>
<td>On the Witten rigidity theorem for stringc manifolds</td>
<td>477</td>
</tr>
<tr>
<td>Jianqing Yu and Bo Liu</td>
<td></td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>509</td>
</tr>
</tbody>
</table>