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ON COMMENSURABILITY OF FIBRATIONS ON
A HYPERBOLIC 3-MANIFOLD

HIDETOSHI MASAI

We discuss fibered commensurability of fibrations on hyperbolic 3-mani-
folds, a notion introduced by Calegari, Sun, and Wang (Pacific J. Math.
250:2 (2011), 287–317). We construct manifolds with nonsymmetric but
commensurable fibrations on the same fibered face, and prove that if a
given manifold M does not have hidden symmetries, then M does not admit
nonsymmetric but commensurable fibrations.

It was also proved by Calegari et al that every hyperbolic fibered com-
mensurability class contains a unique minimal element. Here we provide a
detailed discussion on the proof of the theorem in the cusped case.

1. Introduction

In this paper, we are mainly interested in fibered hyperbolic 3-manifolds with the
first Betti number greater than or equal to 2. Thurston [1986] showed that such
a manifold admits infinitely many distinct fibrations (see also Section 4). It is an
interesting question to investigate the relationship between such fibrations.

Calegari, Sun, and Wang defined the notion of fibered commensurability, which
gives rise to an equivalence relation on fibrations. An automorphism on a surface
is an isotopy class of self-homeomorphisms of the surface. For any fibration on
a 3-manifold, we have the pair .F; �/ of the fiber surface F , and the monodromy
automorphism �. Since the monodromy is determined up to conjugacy in the
mapping class group of F , we use the notation .F; �/ to denote the conjugacy class.
Then commensurability of fibrations is defined as follows.

Definition 1.1 [Calegari et al. 2011]. A pair . zF ; z�/ covers .F; �/ if there is a finite
cover � W zF ! F and representative homeomorphisms zf of z� and f of � so that
� zf D f � as maps zF ! F .

Definition 1.2 [Calegari et al. 2011]. Two pairs .F1; �1/ and .F2; �2/ are commen-
surable if there is a surface zF , automorphisms z�1 and z�2, and nonzero integers k1
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and k2, so that . zF ; z�i/ covers .Fi ; �i/ for i D 1; 2 and if z�k1

1
D z�

k2

2
as automor-

phisms of zF .

For the remainder of the paper, we consider fibrations on hyperbolic 3-manifolds.
In this case, the monodromy of each fibration is always pseudo-Anosov (see
Definition 2.5 for the definition). The normalized entropy of a conjugacy class
.F; �/ is defined as �.F / log�.�/, where �.F / is the Euler characteristic of F and
�.�/ is the dilatation of �. In Section 2, we observe that the normalized entropies
of commensurable fibrations on the same hyperbolic 3-manifold agree. Then we
offer an example of a manifold such that two of its fibrations are commensurable if
and only if they share the same normalized entropy. We also give an example of a
manifold with two noncommensurable fibrations of the same normalized entropy.

In this paper, we study commensurable fibrations on a hyperbolic 3-manifold
in the context of a fibered face. A fibered face is a face of the Thurston norm ball
whose rational points correspond to fibrations of the 3-manifold and a fibered cone
is a cone over a fibered face (see Section 3 for details). Two fibrations on M are
said to be symmetric if there exists a self-homeomorphism ' WM !M that maps
one to the other. In [Calegari et al. 2011, Remark 3.9], Calegari, Sun, and Wang
asked if there is an example of two fibrations on the same closed manifold, which
are commensurable but have fibers distinguished by their genera. The following
theorem provides such a construction in the cusped case. In this theorem fibers are
distinguished by their Euler characteristics (see Section 4 for a proof).

Theorem 1.3. There are hyperbolic 3-manifolds with nonsymmetric but commensu-
rable fibrations whose corresponding elements in H 1.M IZ/ are in the same fibered
cone.

On the other hand, if M has no hidden symmetries, then such fibrations do not
exist. Here, a (finite-volume) hyperbolic 3-manifold M D H3=� is said to have
hidden symmetries if ŒCC.�/ W NC.�/� > 1, where CC.�/ and NC.�/ are the
commensurator and normalizer of �; see Section 4 for details.

Theorem 1.4. Suppose that M is a hyperbolic 3-manifold that does not have
hidden symmetries. Then, any pair of fibrations of M is either symmetric or
noncommensurable, but not both.

Theorems 1.3 and 1.4 are motivated by the fact that up to isotopy, there are only
finitely many commensurable fibrations on a hyperbolic 3-manifold. This fact is a
corollary of the following:

Theorem 1.5 (see also Theorem 3.1 of [Calegari et al. 2011]). Every commen-
surability class of hyperbolic fibered pairs contains a unique (orbifold) minimal
element.
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Here the notion of a fibered pair is a generalization of the notion of a pair .F; �/,
see Section 2 for details. The proof in [Calegari et al. 2011] works for the closed
case. In Section 2 we extend it to the case where the manifolds have boundary
(Theorem 2.6). Further, as a corollary of this extension, we show examples of
manifolds such that every fibration is the minimal element in its commensurability
class (Corollary 2.8).

Commensurability classes are defined using the transitive hull of the relation in
Definition 1.2. In Section 2 we also discuss the transitivity of commensurability. We
show that if the automorphisms are pseudo-Anosov (that is to say, in the hyperbolic
case), then commensurability is transitive.

2. Preliminaries

In this section, we recall the definitions and basic facts about commensurability of
fibrations. Most of the contents in this section are discussed in [Calegari et al. 2011].
In this paper, unless otherwise stated, by a surface and a hyperbolic 3-manifold,
we mean a compact connected orientable 2-manifold possibly with boundary and
of negative Euler characteristic, and a connected, orientable, complete hyperbolic
3-manifold of finite volume respectively.

Fibered pairs. Given a homeomorphism f W F ! F , the mapping torus of f is
the 3-manifold

M D F � Œ0; 1�=
�
.f .x/; 0/� .x; 1/

�
:

Mapping tori of conjugate automorphisms are homeomorphic, so if � is a conjugacy
class of homeomorphisms we obtain a homeomorphism class of mapping tori,
which we denote by ŒF; ��. We call F the fiber and � the monodromy of ŒF; ��.

We will focus on fibrations of a fixed hyperbolic 3-manifold M . Each fibration
on M over the circle determines an element of H 1.M IZ/, and if ! 2H 1.M IZ/

corresponds to a fibration, then there is an associated pair .F; �/, in the sense that
ŒF; �� is homeomorphic to M . This correspondence of ! and .F; �/ is well defined
up to the conjugation of .F; �/.

Later in this section (page 317), we discuss Theorem 3.1 of [Calegari et al. 2011]
for the case of fibered manifolds with boundary. To state the theorem it is convenient
to define a fibered pair which is a generalization of a pair of type .F; �/. We also
enlarge our attention to orbifolds. An n-orbifold is a space that is locally modeled
on a quotient of an open ball in Rn by a finite group. See [Walsh 2011] and Chapter
13 of [Thurston 1979] for more details.

Definition 2.1 [Calegari et al. 2011]. A fibered pair is a pair .M;F/, where M

is a compact 3-manifold with boundary a union of tori and Klein bottles, and F

is a foliation by compact surfaces. More generally, an orbifold fibered pair is a
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pair .O;G/, where O is a compact 3-orbifold, and G is a foliation of O by compact
2-orbifolds.

Definition 2.2 [Calegari et al. 2011]. A fibered pair . zM ; zF/ covers .M;F/ if there
is a finite covering of manifolds � W zM !M such that ��1.F/ is isotopic to zF.
Two fibered pairs .M1;F1/ and .M2;F2/ are (fibered) commensurable if there is
a third fibered pair . zM ; zF/ that covers both.

For a given pair .F; �/, the mapping torus ŒF; �� has a foliation F by surface
leaves, which are homeomorphic to F and hence there is a corresponding fibered
pair .ŒF; ��;F/.

Unlike the case of commensurability in Definition 1.2, it is easy to see that com-
mensurability of fibered pairs is transitive. Suppose .Mi ;Fi/ and .MiC1;FiC1/ are
commensurable for i D 1; 2 and . zM12; zF12/ (resp. . zM23; zF23/) is a common cover-
ing pair of .M1;F1/ and .M2;F2/ (resp. .M2;F2/ and .M3;F3/). Then there is a
covering p W zN !M2 that corresponds to p12

� �1. zM12/\p23
� �1. zM23/ < �1.M2/,

where p12 W zM12 ! M2 and p23 W zM23 ! M2 are the covering maps. Then
. zN ;p�1.F2// covers both .M1;F1/ and .M3;F3/. Thus we see that fibered
commensurability is a transitive relation.

We define another equivalence relation on fibered pairs so that the covering
relation will be a partial order.

Definition 2.3 [Calegari et al. 2011]. We say that two fibered pairs .M;F/ and
.N;G/ are covering equivalent if each covers the other. We call a covering equiv-
alence class minimal if no representative covers any element of another covering
equivalence class.

Remark 2.4 (see also Remark 2.9 of [Calegari et al. 2011]). Each covering equiva-
lence class of the fibered pair associated to .F; �/ contains exactly one fibered pair
unless � is periodic. Therefore, when we consider pseudo-Anosov automorphisms,
by abusing notation, we use the word “element” for each covering equivalent class.

Pseudo-Anosov automorphisms. The automorphisms on a compact surface are
classified into three types: periodic, reducible, and pseudo-Anosov [Thurston 1988;
Casson and Bleiler 1988]. By a result of Thurston, the (interior of the) mapping torus
ŒF; �� admits a hyperbolic metric of finite volume if and only if the automorphism
� is pseudo-Anosov (see [Thurston 1988], and compare [Otal 1996]).

Definition 2.5. A homeomorphism f WF!F is a pseudo-Anosov homeomorphism
if there is a pair of transverse measured singular foliations .Fs; �s/ and .Fu; �u/ on
F and a positive real number � so that f .Fu/D Fu; f .�u/D ��u and f .Fs/D

Fs; f .�s/ D .1=�/�s . We call .Fs; �s/ and .Fu; �u/ the stable and unstable
measured singular foliations associated to f .
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Figure 1. A shape of a singularity of degree 4 at the boundary.

See Figure 1 for a shape of the singularities of .Fs; �s/ and .Fu; �u/. An
automorphism � is said to be pseudo-Anosov if it has a pseudo-Anosov homeo-
morphism as a representative. We call the positive real number � the dilatation of
pseudo-Anosov automorphism � and denote it by �.�/.

In some cases, it is convenient to consider the restriction of automorphisms
on the interior Int.F / of F . By considering �jInt.F /, we get a pseudo-Anosov
automorphism on Int.F / and by abusing the notation we also denote it by �.
Note that Int.F / can be regarded as a surface with finitely many punctures, each
corresponding to a boundary component of F . Then the singularities of Fs and Fu

lie on Int.F / or the punctures. We denote the set of points and punctures that
correspond to the singular points of associated singular foliations by Sing.�).

Uniqueness of the minimal element. In this subsection, we give a detailed discus-
sion of Theorem 1.5 for the case where manifolds have boundary. By passing to a
finite covering we may assume F to be co-orientable and hence M fibers over the
circle; that is, M is the mapping torus ŒF; �� of some surface F and pseudo-Anosov
map �. Since we are dealing with commensurability classes, it suffices to discuss
the case where the foliations are co-orientable. The proof in [Calegari et al. 2011]
assumes that all singular points of the singular foliations associated to � lie on the
interior of F . We prove this result for the case where some of the singular points
lie on the boundary. This corresponds to the case where Sing.�) contains some
punctures, by restricting the automorphism on the interior Int.F / of F .

Theorem 2.6 (see also [Calegari et al. 2011]). Let .M;F/ be a hyperbolic co-
orientable fibered pair and let .F; �/ be the pair associated to .M;F/. Then the
commensurability class of .M;F/ contains a unique minimal (orbifold) element.
Moreover, if Int.F /\Sing.�/D∅, then the minimal element is a manifold.

Proof. First, we recall the argument in [Calegari et al. 2011], since we will need
it here. The stable and unstable singular foliations Fs and Fu associated to �
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determine a unique singular Sol metric on Int.M /. Pulling back this metric to the
universal cover � W zM ! Int.M /, zM becomes a simply connected singular Sol
manifold. Each fiber of zM is a singular Euclidean plane. Let ƒ be the full isometry
group of the singular Sol metric. By appealing to the local Sol metric of zM , it can
be verified that each element of ƒ preserves the foliation by the singular Euclidean
planes. Since �1.M / < ƒ, we have the covering . zM ; zF/=�1.M /! . zM ; zF/=ƒ.
We see that for any pair .M 0;F0/ commensurable with .M;F / the group �1.M

0/

embeds into ƒ and hence .M 0;F0/ covers . zM ; zF/=ƒ. Thus the theorem will be
proved if we establish the following claim.

Claim 2.7. ƒ is discrete with respect to the compact open topology.

For the proof of this claim, the condition Sing.�/� Int.F / is assumed in [Calegari
et al. 2011]. We prove this claim without the assumption. Note that if Sing.�/ 6�
Int.F /, the singular Sol metric is not necessarily complete. Let ƒ0 < ƒ be the
subgroup consisting of isometries that preserve each fiber of zM setwise. We first
prove that the subgroupƒ0 is discrete. Let S be a fiber of zM and NS be its completion
with respect to the singular Euclidean metric. We will extend pD�jS WS! Int.F /
to a local isometry Np W NS! Int.F /[Sing.�/. Let fxig be a Cauchy sequence in S .
Then fp.xi/g is a Cauchy sequence in Int.F / and it converges to either an interior
point of F or a point in Sing.�/. Since NS consists of the equivalence classes of
Cauchy sequences in S , we can define Np W Œ.xi/� 7! lim p.xi/. Since p is a local
isometry, Np is well defined and a local isometry. Therefore we get E WD NS nS D

Np�1.Sing.�// for the natural extension Np of p. Any isometry ' W S ! S extends
to an isometry N' W NS ! NS and by construction we get N'.E/DE. Suppose there is
a sequence f N'ig of isometries such that N'i! id. Since the distances between two
distinct points in E are bounded from below by a positive constant, for large enough
i , N'i must fix E pointwise. Suppose that N' W NS! NS is an isometry which preserves
E pointwise. Since NS is a singular Euclidean plane, we may find two points e1; e2

in E which can be joined by a unique geodesic 
 . By appealing to the distance from
e1 and e2, it follows that N' preserves 
 pointwise. Note that every isometry on NS
leaves the set of leaves of p�1.Fs/ and p�1.Fu/ invariant. This implies that every
leaf that intersects with 
 is preserved by N'. Let l be one of such leaves. Since N'
is a local isometry of Sol metric, it locally acts as a translation on NS . Therefore
N' fixes l pointwise. Since each leaf of Fs or Fu is dense in Int.F /, the orbit of l

under the action of the deck transformation group associated to p is also dense in NS .
Hence N' is identity on a dense subset of NS and since it is an isometry, we get N'D id.
Therefore for large enough i , we get N'i D id. This proves the discreteness of ƒ0.

The discreteness of the dynamical direction of ƒ follows from exactly the
same argument in [Calegari et al. 2011]. We include the proof for completeness.
Note that each isometry ' 2 ƒ extends to the metric completion NM of zM . We
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Figure 2. The fibered link associated to a braid � 2 B3.

may parametrize each fiber by real numbers t in such a way that for any two
fixed flow lines a.t/; b.t/ 2 E.t/ � NS.t/, the distance between a.t/ and b.t/ isp

e2tx2C e�2ty2 for some fixed x and y when jt j is small enough. For small jt j
the distance between any two points in E.t/ are bounded from below by a constant
which does not depend on t . Therefore since

p
e2tx2C e�2ty2 is not a locally

constant function, an isometry ' 2ƒ close enough to the identity must fix each fiber
of the foliation by the singular Euclidean planes. Thus we see that ƒ is discrete.

Since isometries may fix only singular points, if Int.F /\ Sing.�/D∅, then ƒ
has no fixed point in zM and the last assertion holds. �

Corollary 2.8. All the fibrations of M1 D S3 n 62
2

and the magic 3-manifold M2

are minimal elements.

Proof. M1 (resp. M2) is homeomorphic to the complement of the fibered link
associated to �1�

�1
2
2 B3 (resp. �1�

�1
2
�1 2 B3), where B3 is the braid group on

3 strands (see Figure 2). It is well known that for every pseudo-Anosov element
of B3, all singularities are on the punctures. Therefore it suffices to prove that
M1 and M2 are minimal manifolds (not orbifolds) with respect to usual covering
relation. M1 has volume 4V0, where V0�1:01 : : : is the volume of the ideal regular
tetrahedron (see for example [Gehring et al. 1998]). By [Cao and Meyerhoff 2001],
M1 can only cover the figure-eight knot complements or its sister (m004 or m003 in
SnapPea notation). However, SnapPy [Culler et al. 2013] can enumerate all double
covers of m003 and m004 and none of them are homeomorphic to M1. Similarly,
the magic 3-manifold M2 has volume � 5:33 : : : and if it covers a manifold with
degree 2, then its volume is � 2:66 : : : , which is less than the volume of the ideal
regular octahedron (� 3:66 : : : ). By [Agol 2010], such a manifold has only one
cusp and cannot be doubly covered by M2, which has 3 cusps. Moreover, since
Vol.M2/=3 � 1:77 � � � < 2V0, again by [Cao and Meyerhoff 2001], M2 cannot
cover any manifold with degree greater than 2. Now the result follows from the
last assertion of Theorem 2.6. �

Remark 2.9. For a fixed surface, there exists a pseudo-Anosov automorphism with
the smallest dilatation [Ivanov 1988]. It is interesting to compute the smallest dilata-
tion for a given surface. Hironaka [2010] and Kin and Takasawa [2011] computed
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dilatations of the monodromy of each fiber of S3 n 62
2

and the magic 3-manifold
respectively. It turns out that many small dilatation pseudo-Anosov automorphisms
appear as the monodromies of fibrations of those manifolds. Corollary 2.8 shows
that all such fibrations are minimal and hence their monodromies can be candidates
for the smallest dilatation pseudo-Anosov maps.

Transitivity of commensurability in Definition 1.2. In this subsection, we discuss
the subtle difference between fibered commensurability and commensurability in
the sense of Definition 1.2. Here, two pairs of type .F; �/ are said to be fibered
commensurable if associated fibered pairs are commensurable. It is easy to see that if
two pairs .F1; �1/ and .F2; �2/ are fibered commensurable, they are commensurable
in the sense of following definition.

Definition 2.10 [Carlson 2010]. Two pairs .F1; �1/ and .F2; �2/ are commensu-
rable if there is a surface zF , an automorphism z�, and nonzero integers k1 and k2,
so that . zF ; z�/ covers .Fi ; �

ki

i / for i D 1; 2.

In [Calegari et al. 2011], it is claimed without proof that two pairs .F1; �1/ and
.F2; �2/ are fibered commensurable if and only if they are commensurable in the
sense of Definition 1.2. Since a map cannot always be lifted even if a power of it
can be lifted, the claim is not trivial. The claim would follow from the transitivity
of commensurability in the sense of Definition 1.2, because taking powers of an
automorphism is tantamount to a covering. In this subsection, we will prove that
the transitivity of commensurability in Definition 1.2 is valid if the automorphisms
are pseudo-Anosov.

Proposition 2.11. Suppose that .Fi ; �i/ and .FiC1; �iC1/ are commensurable in
the sense of Definition 1.2 for i D 1; 2. Suppose further that �i are pseudo-Anosov
for i D 1; 2; 3. Then there exists a pair .F123; z�i/ that covers .Fi ; �i/ for each
i D 1; 2; 3 such that z�k1

1
D z�

k2

2
D z�

k3

3
for some k1; k2; k3 2 Z n f0g. In particular,

commensurability in the sense of Definition 1.2 is transitive.

Proof. In Theorem 2.6 we proved that each hyperbolic fibered commensurability
class contains a unique minimal element. Let M D ŒF1; �1�. Recall that ƒ is
the group of isometries of the singular Sol metric on the universal cover zM (see
the proof of Theorem 2.6). By considering the subgroup ƒC that consists of
isometries which preserve the orientation of zM and the orientation of the leaf space
of zM . By taking MC

min WD
zM =ƒC, we get a unique minimal element among all

commensurable fibered pairs both orientable and co-orientable. Although there is a
natural extension of this proof in the case where zM =�C is an orbifold, such a proof
would require more terminology and could obfuscate the key ideas of the proof.
Therefore, we only present the case where zM =�C is a manifold. In this case we
get an associated pair .Fmin; �min/ since MC

min is orientable and co-orientable. Each
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.Fi ; �i/ covers .Fmin; �
li

min/ for some li 2Znf0g .i D 1; 2; 3/. Note that �min is not
always lifted to Fi . Let Hi <�1.Fmin/ be a subgroup which is the image of �1.Fi/

by the covering map for each i D 1; 2; 3. Further let d D Œ�1.Fmin/ WH1\H2\H3�,
and take H123 WD

T
fH <�1.Fmin/ j Œ�1.Fmin/ WH �Ddg. Recall that for a group G,

a subgroup H <G is called characteristic if for every isomorphism f WG!G, we
get f .H /DH . H123 is a characteristic subgroup and hence every homeomorphism
on Fmin lifts to the covering F123 that corresponds to H123 <�1.Fmin/. Since each
�i W Fi ! Fi is a lift of �li

min, it can be lifted to z�i W F123 ! F123. Let l be the
least common multiple of li’s, then by putting ki D l= li , we get z�k1

1
D z�

k2

2
D z�

k3

3

on F123. �
Remark 2.12. We do not know if the transitivity or the equivalence of fibered
commensurability and commensurability in the sense of Definition 1.2 holds for
the case where the automorphisms are periodic or reducible.

3. Thurston norm and normalized entropy

Thurston norm. Let M be a fibered hyperbolic 3-manifold. In this subsection we
recall briefly the Thurston norm on H 1.M IR/ and discuss the relationship between
fibered commensurability of fibrations on a fixed manifold M and the normalized
entropy. For more details about the Thurston norm, see [Thurston 1986; Kapovich
2001; Kin and Takasawa 2011]. For any (possibly disconnected) compact surface
F D F1 t F2 t � � � t Fn, let ��.F / be the sum of the absolute values of Euler
characteristics j�.Fi/j of components with negative Euler characteristics. For a
given ! 2H 1.M IZ/�H 1.M IR/, we define k!k to be

min
˚
��.F / j F is an embedded orientable surface .F; @F /� .M; @M /, and

ŒF � 2H2.M; @M IZ/ is the Poincaré dual of ! 2H 1.M IZ/
	
:

If F realizes the minimum, we call F a minimal representative of !. We can
extend this norm to H 1.M IQ/ by k!k D kr!k=r . It turns out that k�k extends
continuously to H 1.M IR/. Further, this k�k turns out to be seminorm on H 1.M IR/

and the unit ball U D f! 2 H 1.M IR/ j k!k � 1g is a compact convex polygon
[Thurston 1986]. The seminorm k�k is called the Thurston norm on H 1.M IR/. We
need some more terminologies to explain the relationship between k�k and fibrations
on M . We denote

� the cone over a top-dimensional face � of the unit ball U by C�,

� the set of integral classes on Int.C�/ by Int.C�.Z//, and

� the set of rational classes on a top-dimensional face � by �.Q/.

Theorem 3.1 [Thurston 1986]. Let M be a fibered hyperbolic 3-manifold and F

the fiber. Then there is a top-dimensional face � of U such that
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� the dual of ŒF � 2H2.M; @M IZ/ belongs to Int.C�.Z//, and

� for every primitive class ! in Int.C�.Z//, a minimal representative of ! is the
fiber of a fibration on M .

We call the face � in Theorem 3.1 a fibered face and the cone over a fibered
face a fibered cone.

As a corollary, we see that if the first Betti number b1.M / > 1 and M is
fibered, then M has infinitely many distinct fibrations. We will discuss fibered
commensurability of fibrations of a hyperbolic fibered 3-manifold.

Normalized entropy. The normalized entropy is shared by commensurable fibra-
tions on a fixed hyperbolic 3-manifold.

Proposition 3.2. Suppose that ŒF1; �1�D ŒF2; �2� and their interior admit hyper-
bolic metrics. If .F1; �1/ is commensurable to .F2; �2/, then

�.F1/ log�.�1/D �.F2/ log�.�2/:

Proof. There are pairs . zF ; z�i/ that cover .Fi ; �i/ and ki 2 Zn f0g for i D 1; 2 such
that z�k1

1
D z�

k2

2
. Then the mapping torus Œ zF ; z�ki

i � covers ŒFi ; �i � and the degree
of this cover is ki�. zF /=�.Fi/. Since ŒF1; �1� D ŒF2; �2�, we get k1=�.F1/ D

k2=�.F2/. Since �.�/D �.z�/,

�. zF / log�.z�ki

i /D
�. zF /

�.F1/
�.F1/k1 log�.�1/D

�. zF /

�.F2/
�.F2/k2 log�.�2/:

Putting them all together, we get �.F1/ log�.�1/D �.F2/ log�.�2/. �
Each primitive integral class in C�.Z/ corresponds to a rational class in Int.�/.

The normalized entropy defines a function ent W�.Q/! R. In [Fried 1982], the
function 1=ent is shown to be concave and therefore it extends to Int.�/. Moreover:

Theorem 3.3 [McMullen 2000]. The function 1=ent W Int.�/! R is strictly con-
cave.

In Example 3.12 of [Calegari et al. 2011], it is remarked that some fibrations on
S3 n 62

2
are not commensurable. In Corollary 2.8, it is proved that all fibrations on

S3n62
2

are minimal elements and since each minimal element is unique, we see that
two fibrations of S3 n62

2
are either symmetric or noncommensurable. Here, we give

an alternative proof of this fact in terms of the normalized entropy. In [Hironaka
2010; McMullen 2000], the unit ball of the Thurston norm on H 1.S3 n 62

2
/ is

computed to be a square. Further, the symmetries of the square all come from the
symmetries of the manifold (see Example 4.5 for more details about the symmetries
of S3 n 62

2
). Therefore the function 1=ent is invariant under the action of the

symmetries of the unit ball. Since 1=ent is strictly concave, this proves that any two
fibrations that correspond to distinct elements in H 1.M IZ/ are either symmetric
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or noncommensurable. In other words, the normalized entropy determines the
commensurability class of a fibration on S3 n 62

2
up to symmetry.

On the other hand, in [Kin et al. 2012, §2], it is observed that for the magic
3-manifold N there are rational points on a fibered face which share the same
normalized entropy but which are not symmetric to each other. However, again by
Corollary 2.8, we also see that any two distinct fibrations of N are either symmetric
or noncommensurable. Hence for the magic 3-manifold, the commensurability
classes of fibrations are not determined by the normalized entropies. We do not
know for what kind of hyperbolic 3-manifolds the commensurability classes of
fibrations on the same hyperbolic 3-manifold are determined by the normalized
entropy up to symmetry.

4. Commensurability of fibrations on a hyperbolic 3-manifold

In this section we prove Theorems 1.4 and 1.3.

Manifolds without hidden symmetries. We start with some definitions. A Kleinian
group is a discrete subgroup of PSL.2;C/. Two Kleinian groups �1 and �2 are
said to be commensurable if �1\�2 is a finite-index subgroup of both �1 and �2.
Let � be a Kleinian group. The commensurator CC.�/ of � is

CC.�/D fh 2 PSL.2;C/ j � and h�h�1 are commensurableg;

and the normalizer NC.�/ is

NC.�/D fh 2 PSL.2;C/ j � D h�h�1
g:

Note that NC.�/ < CC.�/.
Let M be a hyperbolic 3-manifold and � W �1.M / ! � < PSL.2;C/ a ho-

lonomy representation of �1.M /. By the Mostow–Prasad rigidity theorem, any
self-homeomorphism ' WM !M corresponds to a conjugation of � . Therefore we
get N.�/=� Š Isom.M /, where Isom.M / is the group of self-homeomorphisms
of M . If CC.�/ nNC.�/ 6D ∅, each nontrivial element h 2 CC.�/ nNC.�/

is said to be a hidden symmetry. Then M is said to have no hidden symmetries
if � has no hidden symmetries. Note that by the Mostow–Prasad rigidity theorem,
the holonomy representations of �1.M / are related by a conjugation. Hence the
definition does not depend on the choice of a holonomy representation.

Proof of Theorem 1.4. Let .M;F1/ and .M;F2/ be commensurable fibered pairs
that correspond to two distinct fibrations on M . By Theorem 2.6 we have a
unique minimal element .N;G/ in the commensurability class. Let � W �1.N /!

PSL.2;C/ be a holonomy representation and � WD �.�1.N //. Since .M;F1/ and
.M;F2/ cover .N;G/, there are two corresponding coverings p1;p2 WM ! N .
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Let �i D �pi�.�1.M // for i D 1; 2. By the Mostow–Prasad rigidity theorem,
there is h 2 PSL.2;C/ such that h�1h�1 D �2. Further, since �2 < � \ h�h�1,
h 2 CC.�/D CC.�1/DNC.�1/. The last equality holds since M has no hidden
symmetries. It follows that �1 D �2 and hence there exists a homeomorphism
' WM !M such that p1' D p2. Therefore !1 and !2 are symmetric. �

Remark 4.1. Hyperbolic 3-manifolds with hidden symmetries are “rare” among
all nonarithmetic hyperbolic 3-manifolds (see for example, [Goodman et al. 2008]).
Hence we may expect that “most” hyperbolic 3-manifolds have no hidden symme-
tries and therefore have no nonsymmetric but commensurable fibration.

Remark 4.2. As mentioned above, there are no nonsymmetric but commensurable
fibrations on S3 n 62

2
and the magic 3-manifold. However, S3 n 62

2
and the magic

3-manifold are arithmetic and by a result of Margulis [1991], they have lots of
hidden symmetries. Therefore even though a manifold has hidden symmetries, it
might not have any nonsymmetric but commensurable fibrations.

Nonsymmetric and commensurable fibrations. We now prove Theorem 1.3 by
constructing examples of manifolds that have nonsymmetric but commensurable
fibrations.

Lemma 4.3. Let M be a fibered hyperbolic 3-manifold. Suppose two primitive
elements !1 6D ˙!2 2H 1.M IZ/ correspond to fibrations with the fibers and the
monodromies .F1; �1/ and .F2; �2/ respectively. We suppose further .F1; �1/D

.F2; �2/ (that is, conjugate to each other). Then, for all large enough n 2N, there
exists a degree n covering space pn W Mn ! M such that p�n.!1/ and p�n.!2/

correspond to commensurable but nonsymmetric fibrations.

Proof. Note that by the universal coefficient theorem, we have

H 1.M IZ/Š Hom.H1.M /=Tor;Z/;

where Tor is the torsion part. This isomorphism is determined by a choice of a basis
of H1.M IZ/=Tor. Let Ai D ab.�1.Fi//=Tor, where ab W �1.M /!H1.M / is the
abelianization and �1.Fi/ ,! �1.M / is an injection induced by the fiber bundle
structure of M associated to .Fi ; �i/ for i D 1; 2. The fiber bundle structure of M

gives the exact sequence

0! �1.Fi/! �1.M /
�i
�! �1.S

1/Š Z! 0:

The map �i factors through the abelianization since �1.S
1/Š Z is abelian. Hence

we get Ai DKer.!i/Š Zb�1, where b is the first Betti number of M . We consider
the dynamical covering pn WMn!M of degree n with respect to !1 (that is, the
covering corresponding to .F1; �

n
1
/). This is the covering corresponding to the
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π-rotation

tu

Figure 3. An involution map h on the 4-holed sphere.

surjective map

�1.M /
ab
�!H1.M /

!1
��!Z! Z=nZ:

For sufficiently large n, there exists a 2A2 such that a maps to a nonzero element
by the above surjective map. This means that each component of p�1

n .F2/ is not
homeomorphic to F2. �

Example 4.4. The 3-manifold S3 n 62
2

and the magic manifold have symmetries
that permute cusps, and therefore they do have two distinct elements in their first
cohomology with homeomorphic fibers and conjugate monodromies.

Example 4.5. In this example we observe that M WD S3 n 62
2

has two symmetric
fibrations in the same fibered cone in H 1.M /. Although this fact can be checked by
computing the symmetry group by SnapPy [Culler et al. 2013], we give a geometric
proof. The first half of the following argument is due to Eriko Hironaka, see also
[Hironaka 2010].

Let u; t be the generators of H1.M;Z/ that correspond to the meridians of 62
2

(see
the left picture of Figure 3). Let U;T 2H 1.M IZ/ be the dual of u; t respectively.
Then U corresponds to the fibration of M with monodromy f that corresponds
to �1�

�1
2
2 B3. Let h be a �-rotation, which is depicted in Figure 3. We can see

that f �1 D �2�
�1
1
D hf h, that is f and f �1 are conjugate to each other. Then

we take the mirror image of 62
2
. By isotopy and above conjugacy, we see that 62

2
is

amphicheiral. The induced map on H 1.M IZ/ of the symmetry on M that gives
amphicheirality satisfies U 7! �U and T 7! T . This symmetry preserves the
fibered face � WD faU C bT j �1< a< 1; b D 1g. By this symmetry, we see that
fibrations on the cone C� over� of the form nU CmT and �nU CmT (n;m2Z)
are symmetric.

Proof of Theorem 1.3. Putting Lemma 4.3 and Example 4.5 together, we have a
proof. �
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