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MULTIPLICATIVE DIRAC STRUCTURES

CRISTIÁN ORTIZ

We introduce multiplicative Dirac structures on Lie groupoids, providing a
unified framework to study both multiplicative Poisson bivectors (Poisson
groupoids) and multiplicative closed 2-forms such as symplectic groupoids.
We prove that for every source simply connected Lie groupoid G with Lie
algebroid AG, there exists a one-to-one correspondence between multiplica-
tive Dirac structures on G and Dirac structures on AG that are compatible
with both the linear and algebroid structures of AG. We explain in what
sense this extends the integration of Lie bialgebroids to Poisson groupoids
and the integration of Dirac manifolds. We explain the connection between
multiplicative Dirac structures and higher geometric structures such as LA-
groupoids and CA-groupoids.
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1. Introduction

Dirac structures were introduced by Courant and Weinstein [1988] as a common
generalization of Poisson bivectors, closed 2-forms and regular foliations. A Dirac
structure on a smooth manifold M consists of a vector subbundle L ⊆ TM :=
TM ⊕ T ∗M that is maximal isotropic with respect to the nondegenerate symmetric
pairing on TM ,

〈(X, α), (Y, β)〉 = α(Y )+β(X),

and that satisfies the integrability condition

[[0(L), 0(L)]] ⊆ 0(L),
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with respect to the Courant bracket [[ · , · ]] : 0(TM)×0(TM)→ 0(TM),

[[(X, α), (Y, β)]] = ([X, Y ],LXβ − iY dα).

The integrability in the sense of Courant unifies different integrability conditions,
including closed 2-forms, Poisson bivectors and regular foliations (see [Courant
1990b; Courant and Weinstein 1988]). More precisely, a 2-form ω on a smooth
manifold M induces a bundle map ω] : TM→ T ∗M, X 7→ ω(X, · ) whose graph
Lω = {(X, ω](X) | X ∈ TM)} is a Lagrangian subbundle of TM . In this case, the
Courant integrability of Lω is equivalent to ω being a closed 2-form. Similarly,
any bivector π on M defines a bundle map π ] : T ∗M→ TM, α 7→ π(α, · ) whose
graph Lπ = {(π ](α), α)} is a Lagrangian subbundle of TM . One checks that Lπ
satisfies the Courant integrability condition if and only if π is a Poisson bivector.
Also, if F ⊆ TM is a regular subbundle we denote by F◦ ⊆ T ∗M its annihilator.
Then the Lagrangian subbundle F⊕ F◦ ⊆ TM is integrable in the sense of Courant
if and only if F ⊆ TM is involutive with respect to the Lie bracket of vector fields.

The main objective of this paper is to study Dirac structures defined on Lie
groupoids, satisfying a suitable compatibility condition with the groupoid multipli-
cation. Our study is motivated by a variety of geometrical structures compatible
with group or groupoid structures, including:

(i) Poisson–Lie groups: A Poisson–Lie group is a Lie group G with a Poisson
structure π that is compatible in the sense that the multiplication map m :G×G→G
is a Poisson map. Equivalently, the Poisson bivector π is multiplicative, that is,

πgh = (lg)∗πh + (rh)∗πg,

for every g, h ∈ G. Here lg and rh denote the left and right multiplication by g
and h, respectively. Poisson–Lie groups arise as semiclassical limit of quantum
groups, and they are infinitesimally described by Lie bialgebras. See for example,
[Drinfel’d 1983].

(ii) Symplectic groupoids: A symplectic groupoid is a Lie groupoid G with a
symplectic structure ω that is compatible with the groupoid multiplication in the
sense that the graph

Graph(m)⊆ G×G×G

is a Lagrangian submanifold with respect to the symplectic structure ω⊕ω	ω.
This compatibility condition is equivalent to saying that ω is multiplicative, that is,

m∗ω = pr∗1ω+ pr∗2ω,

where pr1, pr2 : G(2) → G are the canonical projections and G(2) ⊆ G × G is
the set of composable groupoid pairs. Symplectic groupoids arise in the context
of quantization of Poisson manifolds [Weinstein 1987; Weinstein and Xu 1991],
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connecting Poisson geometry to noncommutative geometry. In [Cattaneo and Felder
2001], symplectic groupoids appeared as phase spaces of certain sigma models.
The infinitesimal description of symplectic groupoids is given by Poisson structures,
see for example, [Weinstein 1987; Coste et al. 1987].

(iii) Poisson groupoids: These objects were introduced by A. Weinstein [1988]
unifying Poisson–Lie groups and symplectic groupoids. A Poisson groupoid is a
Lie groupoid G equipped with a Poisson structure π that is compatible with the
groupoid multiplication in the sense that

Graph(m)⊆ G×G×G

is a coisotropic submanifold. These structures are related to the geometry of the
classical dynamical Yang–Baxter equation, see for instance [Etingof and Varchenko
1998]. At the infinitesimal level, Poisson groupoids are described by Lie bialgebroids
[Mackenzie and Xu 1994].

(iv) Presymplectic groupoids: Lie groupoids equipped with a multiplicative closed
2-form were studied in [Bursztyn et al. 2004]. A presymplectic groupoid is a Lie
groupoid G with a multiplicative closed 2-form ω satisfying suitable nondegeneracy
conditions. These objects arise in connection with equivariant cohomology and gen-
eralized moment maps [Bursztyn and Crainic 2009]. The infinitesimal description
of presymplectic groupoids is given by Dirac structures, extending the infinitesimal
description of symplectic groupoids. More generally, Lie groupoids endowed with
arbitrary multiplicative closed 2-forms are infinitesimally described by bundle maps
σ : AG→ T ∗M called IM-2-forms. Here AG denotes the Lie algebroid of G, and
T ∗M is the cotangent bundle of the base of G.

The first goal of this work is to find a suitable definition of multiplicative Dirac
structure that includes both multiplicative Poisson bivectors and multiplicative
closed 2-forms, and hence encompasses all examples above. This is obtained by
observing that given a Lie groupoid G over M with Lie algebroid AG, the tangent
bundle T G and the cotangent bundle T ∗G inherit natural Lie groupoid structures
over TM and A∗G, respectively. One observes that a bivector πG is multiplicative
if and only if the bundle map π ]G : T

∗G→ T G is a groupoid morphism [Mackenzie
and Xu 1994]. Similarly, a 2-form ωG is multiplicative if and only if the bundle
map ω]G : T G→ T ∗G is a morphism of Lie groupoids. It turns out that the direct
sum vector bundle T G⊕ T ∗G is a Lie groupoid over TM ⊕ A∗G, and graphs of
both multiplicative Poisson bivectors and multiplicative closed 2-forms define Lie
subgroupoids of T G⊕T ∗G. We say that a Dirac structure LG on a Lie groupoid G
is multiplicative if LG ⊆ T G ⊕ T ∗G is a Lie subgroupoid. A Lie groupoid G
equipped with a multiplicative Dirac structure is referred to as a Dirac groupoid.
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Our main purpose is to describe multiplicative Dirac structures infinitesimally,
that is, in terms of Lie algebroid data. This work can be considered as a first step
toward such a description. The main result of the present work says that for every
source simply connected Lie groupoid G with Lie algebroid AG, multiplicative
Dirac structures on G correspond to Dirac structures on AG suitably compatible
with both the linear and Lie algebroid structures on AG. In the particular case of
multiplicative Poisson bivectors and multiplicative 2-forms, we explain how this is
equivalent to the known infinitesimal descriptions carried out in [Mackenzie and
Xu 2000] and [Bursztyn et al. 2004], respectively. Along the way, we develop
techniques that can treat all multiplicative structures above in a unified manner,
often simplifying existing results and proofs.

The present paper is organized as follows. In Section 2 we recall the definition
of tangent and cotangent structures including tangent and cotangent groupoids and
their algebroids, that is, tangent and cotangent algebroids. We also give an intrinsic
construction of the tangent lift of a Dirac structure, providing an alternative proof
of the results shown in [Courant 1990a]. In Section 3 we define the main objects
of our study, multiplicative Dirac structures. We discuss a variety of examples
arising in nature, including foliated groupoids, Dirac Lie groups, tangent lifts of
multiplicative Dirac structures, symmetries of multiplicative Dirac structures (for
example, reduction of Poisson groupoids), B-field transformations of multiplicative
Dirac structures and generalized complex groupoids. In Section 4 we introduce the
notion of Dirac algebroid and also several examples are discussed, including foliated
algebroids, Dirac Lie algebras, tangent lifts of Dirac algebroids, symmetries of Dirac
algebroids (for example, reduction of Lie bialgebroids), B-field transformations of
Dirac algebroids and generalized complex algebroids. In Section 5 we explain how
the multiplicativity of a Dirac structure is reflected at the Lie algebroid level, proving
the main result of this work, which says that if G is a source simply connected Lie
groupoid with Lie algebroid AG, then there is a one-to-one correspondence between
Dirac groupoid structures on G and Dirac algebroid structures on AG. Along the
way, we explain the relation between multiplicative Dirac structures and higher
structures such as CA-groupoids and LA-groupoids. We also relate the examples
of Section 3 with the examples of Section 4, in the spirit of the correspondence
established by the main result of the paper. In Section 6, we discuss conclusions
and work in progress.

1A. Notation and conventions. For a Lie groupoid G over M we denote by s, t :
G → M the source and target maps, respectively. The multiplication map is
denoted by m : G(2) → G, where G(2) = {(g, h) ∈ G × G | s(g) = t (h)} is the
set of composable pairs. The Lie algebroid of G is defined by AG := Ker(T s)|M ,
with Lie bracket given by identifying sections of AG with right-invariant vector
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fields on G and anchor map ρAG := T t |AG : AG→ TM . Given a Lie groupoid
morphism 9 : G1→ G2, the corresponding Lie algebroid morphism is denoted
by A(9) : AG1→ AG2. Arbitrary Lie algebroids are denoted by A→ M with
Lie bracket [ · , · ]A and anchor map ρA. Also, given a smooth manifold M , the
tangent bundle is denoted by pM : TM→ M and the cotangent bundle is denoted
by cM : T ∗M→ M .

2. Tangent and cotangent structures

2A. Tangent and cotangent groupoids. Let G be a Lie groupoid over M with
Lie algebroid AG. The tangent bundle T G has a natural Lie groupoid structure
over TM . This structure is obtained by applying the tangent functor to each of the
structure maps defining G (source, target, multiplication, inversion and identity
section). We refer to T G with this groupoid structure over TM as the tangent
groupoid of G. The set of composable pairs of T G is (T G)(2) = T (G(2)), and for
(g, h) ∈ G(2) and a tangent groupoid pair (Xg, Yh) ∈ (T G)(2) the multiplication
map on T G is

Xg • Yh := T m(Xg, Yh).

Now consider the cotangent bundle T ∗G. It was shown in [Coste et al. 1987]
that T ∗G is a Lie groupoid over A∗G. The source and target maps are defined by

s̃(αg)u = αg
(
T lg(u− T t (u))

)
and t̃(βg)v = βg(T rg(v)),

where αg ∈ T ∗g G, u ∈ As(g)G and βg ∈ T ∗g G, v ∈ At (g)G. The multiplication on
T ∗G is defined by

(αg ◦βh)(Xg • Yh)= αg(Xg)+βh(Yh)

for (Xg, Yh) ∈ T(g,h)G(2).
We refer to T ∗G with the groupoid structure over A∗G as the cotangent groupoid

of G.

2B. Tangent and cotangent algebroids. Let qA : A → M be a vector bundle
over M . The tangent bundle TA has a natural structure of a double vector bundle
[Pradines 1974], given by the diagram below.

(1)

TA

A

TM

M

T qA //

qA //

pA

��

pM

��
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Assume now that qA : A→ M has a Lie algebroid structure with anchor map
ρA : A→ TM and Lie bracket [ · , · ] on 0M(A).

As explained in [Mackenzie 2005], there is a canonical Lie algebroid structure on
the vector bundle T qA : TA→ TM . Recall that there exists a canonical involution
JM : T TM → T TM , which is a morphism of double vector bundles. In a local
coordinates system (x i , ẋ i , δx i , δ ẋ i ) on T TM this map is given by

JM((x i , ẋ i , δx i , δ ẋ i ))= (x i , δx i , ẋ i , δ ẋ i ).

Notice that the map JM yields a vector bundle isomorphism as below.

(2)

T TM

TM

T TM

TM

JM //

Id //

T pM

��

pTM

��

Now we can apply the tangent functor to the anchor map ρA : A→ TM , yielding a
bundle map TρA : TA→ T TM , where T TM is equipped with bundle projection
T pM : T TM→ TM . Therefore, composing TρA with the canonical involution JM

we obtain the bundle map ρTA : TA→ T TM , defined by

ρTA := JM ◦ TρA,

which is a vector bundle morphism from TA→ T TM , where the target bundle is
the one corresponding to the usual bundle projection pTM : T TM→ TM . The map
ρTA : TA→ T TM , as above, defines the tangent anchor map. In order to define the
tangent Lie bracket, we observe that every section u ∈ 0M(A) induces two types
of sections of T qA : TA→ TM . The first type corresponds to the linear section
T u : TM → TA, which is given by applying the tangent functor to the section
u : M→ A. The second type of section is the core section û : TM→ TA, which is
defined by

û(X)= T (0A)(X)+A u(pM(X)),

where 0A
:M→ A denotes the zero section, and u(pM(X))=d/dt(tu(pM(X)))|t=0.

As observed in [Mackenzie and Xu 1994], sections of the form T u and û generate the
module of sections 0TM(TA). Therefore, the tangent Lie bracket is determined by

[T u, T v] = T [u, v], [T u, v̂] = [̂u, v], [û, v̂] = 0,

and we extend to other sections by requiring the Leibniz rule with respect to the
tangent anchor ρTA. This defines the natural Lie algebroid structure on T qA : TA→
TM .
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Example 2.1. Assume that A = g is a Lie algebra, that is, a Lie algebroid over a
point. In this case, the tangent Lie algebra structure on Tg= g× g is given by the
semidirect product Lie algebra determined by the adjoint representation of g on
itself.

Following [Mackenzie 2005], the cotangent bundle of a Lie algebroid inherits
a Lie algebroid structure. For that, let us explain the vector bundle structure
T ∗A→ A∗. If (x i , ua) are local coordinates on A, we induce a local coordinates
system (x i , ua, pi , λa) on T ∗A, where (pi ) determines a cotangent element in T ∗x M
and (λa) ∈ A∗x is a cotangent element with respect to the tangent direction to the
fibers of A. Now the bundle projection r : T ∗A → A∗ is described locally by
r(x i , ua, pi , λa)= (x i , λa). These vector bundle structures define a commutative
diagram

(3)

T ∗A

A

A∗

M.

r //

qA //

cA

��

qA∗

��

This endows T ∗A with a double vector bundle structure. Suppose that qA : A→ M
carries a Lie algebroid structure. Then we can consider the dual bundle A∗ endowed
with the linear Poisson structure induced by A. The cotangent bundle T ∗A∗→ A∗

has the Lie algebroid structure determined by the linear Poisson bivector on A∗.
There exists a Legendre type map R : T ∗A∗→ T ∗A that is an antisymplectomor-
phism with respect to the canonical symplectic structures, and it is locally defined
by R(x i , ξa, pi , ua)= (x i , ua,−pi , ξa). For an intrinsic definition see [Mackenzie
and Xu 1994; Tulczyjew 1977].

Definition 2.2. The cotangent algebroid of A is the vector bundle T ∗A → A∗

equipped with the unique Lie algebroid structure that makes the Legendre type
transform R : T ∗(A∗)→ T ∗A into an isomorphism of Lie algebroids.

Example 2.3. Suppose that A = g is a Lie algebra, that is, a Lie algebroid over a
point. Then, the cotangent algebroid T ∗g= g× g∗→ g∗ is given by the transfor-
mation Lie algebroid with respect to the coadjoint representation of g on its dual
vector space g∗.

Finally, recall also that the Tulczyjew map 2M : T T ∗M→ T ∗TM is the isomor-
phism which, in a local coordinates system (x i , pi , ẋ i , ṗi ), is given by

2M(x i , pi , ẋ i , ṗi )= (x i , ẋ i , ṗi , pi ).

See [Mackenzie and Xu 1994; Tulczyjew 1977] for an intrinsic definition. Con-
sider now a Lie groupoid G over M with Lie algebroid AG = ker T s|M . There
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exists a natural injective bundle map

(4) i AG : AG→ T G.

The canonical involution JG : T T G→ T T G restricts to an isomorphism of Lie
algebroids jG : T (AG)→ A(T G). More precisely, there exists a commutative
diagram

(5)

T (AG)

T T G

A(T G)

T T G

jG //

JG //

T (i AG)

��

i A(T G)

��

In particular, the Lie algebroid A(T G) of the tangent groupoid is canonically
isomorphic to the tangent Lie algebroid T (AG) of AG. Similarly, the Lie algebroid
of the cotangent groupoid T ∗G is isomorphic to the cotangent Lie algebroid T ∗(AG).
For that, notice that the natural pairing T ∗G⊕T G→R defines a groupoid morphism,
and the application of the Lie functor yields a symmetric pairing 〈〈 · , · 〉〉 : A(T ∗G)⊕
A(T G)→ R, which is nondegenerate. See for example, [Mackenzie and Xu 1994;
2000]. In particular, we obtain an isomorphism KG : A(T ∗G)→ A(T G)∗, where
the target dual is with respect to the fibration A(T G)

A(pG)
−−−→ AG. Now we define a

Lie algebroid isomorphism

(6) j ′G : A(T ∗G)→ T ∗(AG),

determined by the composition j ′G = j∗G ◦ KG , where j∗G : A(T G)∗→ T ∗(AG) is
the bundle map dual to the isomorphism jG : T (AG)→ A(T G). As jG : T (AG)→
A(T G) is a suitable restriction of the canonical involution JG : T T G→ T T G, the
isomorphism j ′G is related to the Tulczyjew map 2G : T T ∗G→ T ∗T G, via

j ′G = (T i AG)
∗
◦2G ◦ i A(T ∗G).

2C. Tangent lift of a Dirac structure. The tangent lift of Dirac structures was
originally studied by T. Courant [1990a], who described tangent Dirac structures
locally. I. Vaisman [2005] gives an intrinsic construction of tangent Dirac structures,
where the tangent lift of a Dirac structure is described via the sheaf of local sections
defining a Dirac subbundle of T TM ⊕ T ∗TM . Here, we provide an alternative
description of the tangent lift of a Dirac structure relied on the tangent lift of Lie
algebroid structures described in the previous section.

In order to fix our notation, we begin by summarizing some of the main properties
of tangent lifts of vector fields and differential forms, see [Grabowski and Urbański
1997; Yano and Ishihara 1973]. Let f ∈ C∞(M) be a smooth function. Then we
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have a pair of smooth functions on TM defined by

f v = f ◦ pM , f T
= d f.

We refer to f v and f T as the vertical and tangent lifts of f . One can see easily
that the algebra of functions C∞(TM) is generated by functions of the form f v

and f T . Now, given a vector field X on M we define the vertical lift of X as the
vector field Xv on TM that acts on vertical and tangent lifts of functions as

Xv( f v)= 0, Xv( f T )= (X f )v.

The tangent lift of X is the vector field X T on TM that acts on vertical and
tangent lifts of functions in the following manner:

X T ( f v)= (X f )v, X T ( f T )= (X f )T .

It is easy to see that vertical and tangent lifts of vector fields generate the space of
all vector fields on TM . Now let us consider a 1-form α on a smooth manifold M .
We define the vertical lift of α as the 1-form αv on TM , which is determined by its
value at vertical and tangent lifts of vector fields,

αv(Xv)= 0, αv(X T )= (α(X))v.

The tangent lift of α is the 1-form αT on TM defined by

αT (Xv)= (α(X))v, αT (X T )= (α(X))T .

It is important to emphasize that vertical and tangent lifts of vector fields (resp.
of 1-forms) are sections of the usual vector bundle structure T (TM)

pTM
−−→ TM

(resp. sections of T ∗(TM)
cTM
−−→ TM), and they do not define sections of the tangent

prolongation vector bundle T (TM)
T pM
−−→ TM (resp. of the tangent prolongation

T (T ∗M)
T cM
−−→ TM). However, there exists a canonical relation between vector

fields (resp. 1-forms) on TM and sections of the tangent prolongation vector bundle
T (TM)→ TM (resp. T (T ∗M)→ TM). Given a vector field X and a 1-form
α on M , we consider the linear sections T X, Tα and the core sections X̂ , α̂
of the corresponding tangent prolongation vector bundles. It follows from the
definition that

JM(T X)= X T , JM(X̂)= Xv.(7)

2M(Tα)= αT , 2M(α̂)= α
v.(8)

It turns out that many geometric properties of the direct sum vector bundle T (TM)⊕
T ∗(TM) can be understood in terms of tangent geometric properties of T (TM)⊕
T (T ∗M), using the canonical identification

JM ⊕2M : T (TM)⊕ T (T ∗M)→ T (TM)⊕ T ∗(TM).
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Now consider a Dirac structure L M on M . Equivalently, we may think of L M as
a Lie algebroid over M with Lie bracket given by the Courant bracket on sections
of L M , and the anchor map ρM is the natural projection from L M ⊆ TM ⊕ T ∗M
onto TM . According to a construction of K. Mackenzie and P. Xu [1994], we can
consider the tangent prolongation Lie algebroid TL M → TM , with anchor map

ρTM = JM ◦ TρM ,

and Lie bracket defined by

[â1, â2]TL M = 0, [T a1, â2]TL M =
̂[a1, a2], [T a1, T a2]TL M = T [a1, a2],

where a1, a2 are sections of L M→M . We denote by LTM the image of TL M under
the natural bundle map JM ⊕2M : T TM ⊕ T T ∗M→ T TM ⊕ T ∗TM .

Proposition 2.4. The subbundle LTM ⊆ T TM ⊕ T ∗TM is isotropic with respect
to the nondegenerate symmetric pairing 〈 · , · 〉TM defined on T TM ⊕ T ∗TM.

Proof. Let (X, α), (Y, β) be sections of L M . Then, the tangent lifts (X T , αT ) and
(Y T , βT ) define sections of LTM . Notice that

〈(X T , αT ), (Y T , βT )〉 = (β(X))T + (α(Y ))T = (〈(X, α), (Y, β)〉)T = 0.

This implies that LTM is isotropic. �

The tangent Lie algebroid TL M→ TM induces a unique Lie algebroid structure
on LTM → TM characterized by the property that JM ⊕2M : TL M → LTM is a
Lie algebroid isomorphism. The space of sections 0(LTM) is generated by sections
of the form aT

:= (JM ⊕2M)(T a) and av := (JM ⊕2M)â, where a is a section
of L M→M . In particular the induced Lie bracket on sections of LTM is completely
determined by identities

[av1 , av2 ] = 0, [aT
1 , av2 ] = [[a1, a2]]

v, [aT
1 , aT

2 ] = [[a1, a2]]
T ,

and the Leibniz rule with respect to the induced anchor map prT TM : LTM→ T TM .

Proposition 2.5. The induced Lie bracket on sections 0(LTM) is a restriction of
the Courant bracket [[ · , · ]]TM on sections of T TM ⊕ T ∗TM.

Proof. Due to the identities (7) and (8), we only need to check that the Courant
bracket on sections of LTM , naturally induced by JM ⊕2M , satisfies the bracket
identities that determine the induced Lie bracket on 0(LTM). One observes that
vertical and tangent lifts are compatible with Lie derivatives in the sense that

(1) LXvα
v
= 0,

(2) LX T αv = (LXα)
v,

(3) LX T αT
= (LXα)

T ,
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and we conclude that

(1) [[Xv
⊕αv, Y v ⊕βv]] = 0,

(2) [[X T
⊕αT , Y v ⊕βv]] = [X, Y ]v ⊕ (LXβ − iY dα)v,

(3) [[X T
⊕αT , Y T

⊕βT
]] = [X, Y ]T ⊕ (LXβ − iY dα)T .

Thus the Lie bracket on 0TM(LTM) induced by the tangent Lie bracket on
0TM(TL M) coincides with the Courant bracket. �

We have shown the following:

Proposition 2.6. Let M be a smooth manifold. There exists a natural map

Dir(M)→ Dir(TM)

L M 7→ LTM ,

where LTM := (JM ⊕2M)(TL M).

The Dirac structure LTM ∈ Dir(TM) given by the proposition above is referred
to as the tangent Dirac structure induced by L M ∈ Dir(M). It is straightforward
to check that this construction unifies the tangent lift of both closed 2-forms and
Poisson bivectors. Additionally, the presymplectic foliation of LTM corresponds to
taking the tangent bundle of each leaf endowed with the tangent lift of the leafwise
presymplectic forms defined by L M . See also [Boumaiza and Zaalani 2009] for
a general construction of tangent lifts of Dirac structures on arbitrary Courant
algebroids.

3. Multiplicative Dirac structures

This section introduces the main objects of study of this work, that is, Lie groupoids
equipped with Dirac structures compatible with the groupoid multiplication, includ-
ing both multiplicative Poisson and closed 2-forms as particular cases.

3A. Definition and main examples. Let G be a Lie groupoid over M , with Lie
algebroid AG. Consider the direct sum Lie groupoid TG = T G⊕ T ∗G with base
manifold TM ⊕ A∗G.

Definition 3.1. Let G be a Lie groupoid over M . A Dirac structure LG on G is
said to be multiplicative if LG ⊆ T G⊕T ∗G is a subgroupoid over some subbundle
E ⊆ TM ⊕ A∗G.

We refer to a pair (G, LG), made up of a Lie groupoid G and a multiplicative
Dirac structure LG on G, as a Dirac groupoid. We use the notation Dirmult(G) to
indicate the set consisting of all multiplicative Dirac structures on G.

It follows from the multiplicativity of LG that E ⊆ TM ⊕ A∗G is a vector
subbundle. In particular, a multiplicative Dirac structure LG on a Lie groupoid G
defines a VB-subgroupoid LG ⊆ TG.
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Example 3.2. Let ωG be a closed multiplicative 2-form on a Lie groupoid G.
The multiplicativity property of ωG is equivalent to saying that the bundle map
ω
]
G : T G→ T ∗G is a morphism of Lie groupoids. Hence, the corresponding Dirac

structure LωG = Graph(ωG)⊆ TG is a multiplicative Dirac structure. In this case
we have a groupoid LωG ⇒ E , where E ⊆ TM ⊕ A∗G is the subbundle given by
the graph of the bundle map −σ t determined by the IM-2-form (see [Bursztyn et al.
2004]) σ associated to ωG .

Example 3.3. Let (G, πG) be a Poisson groupoid. The multiplicativity of πG is
equivalent to saying that π ]G :T

∗G→T G is a morphism of Lie groupoids. Therefore,
the associated Dirac structure LπG = Graph(πG) ⊆ TG defines a multiplicative
Dirac structure. In this case we have a groupoid LπG ⇒ E , where E ⊆ TM ⊕ A∗G
is the subbundle given by the graph of dual anchor map ρA∗G : A∗G→ TM .

The examples discussed previously show that Dirac groupoids lead to a natural
generalization of Poisson groupoids and presymplectic groupoids. Our main aim is
to describe Dirac groupoids infinitesimally, establishing in particular, a connection
between such an infinitesimal description and Lie bialgebroids and IM-2-forms.

3B. More examples of multiplicative Dirac structures. In addition to multiplica-
tive closed 2-forms and multiplicative Poisson bivectors, there are several interesting
multiplicative Dirac structures, which will be discussed throughout this subsection.

3B1. Foliated groupoids. A regular distribution FG ⊆ T G is called multiplicative
if it defines a Lie subgroupoid of the tangent groupoid T G. A foliated groupoid is
a pair (G, FG), where G is a Lie groupoid and FG is an involutive multiplicative
regular distribution. In this case, the Dirac structure FG ⊕ F◦G ⊆ TG is easily seen
to be a multiplicative Dirac structure on G. The foliation tangent to an involutive
multiplicative distribution is called a multiplicative foliation. Multiplicative foli-
ations that are simultaneously transversal to the s-fibration and to the t-fibration
were studied in [Tang 2006], providing interesting examples of noncommutative
Poisson algebras. Also, multiplicative foliations arise in the context of geometric
quantization of symplectic groupoids, namely, as polarizations compatible with
a symplectic groupoid structure (see [Hawkins 2008]). In addition, the notion of
multiplicative foliation has appeared in connection with exterior differential systems.
For more details see [Crainic et al. 2012] and the references therein.

3B2. Dirac Lie groups. Dirac Lie groups, that is, Lie groups equipped with multi-
plicative Dirac structures, were first studied by the author in [Ortiz 2008], providing
a generalization of Poisson Lie groups within the category of Lie groups. In that
work, it is shown that, modulo regularity issues, Dirac Lie groups are given by the
pull-back (in the sense of Dirac structures) of Poisson Lie groups via a surjective
submersion which is also a Lie group morphism. Notice that whenever a Lie
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groupoid G over M is equipped with a multiplicative Dirac structure, then for every
x ∈ M , the isotropy Lie group Gx := s−1(x)∩ t−1(x) inherits a Dirac structure LGx

making the pair (Gx , LGx ) into a Dirac Lie group.
We emphasize that different notions of Dirac Lie groups exist in the literature. For

instance, Li-Bland and Meinrenken [2011] have proposed a notion of multiplicativity
that includes interesting examples of twisted Dirac structures on Lie groups such as
the Cartan–Dirac structure on a compact Lie group.

3B3. Tangent lift of a multiplicative Dirac structure. In [Grabowski and Urbański
1995] it was proved that whenever a Lie group G carries a multiplicative Poisson
bivector πG , then the tangent Lie group T G equipped with the tangent Poisson
structure πT G becomes a Poisson Lie group. It is easy to extend the multiplicative
Poisson case to abstract multiplicative Dirac structures on Lie groupoids. Assume
that G is a Lie groupoid over M and consider the tangent groupoid T G over TM
explained in Section 2A. Then, the tangent Dirac structure LT G ⊆ T T G⊕ T ∗T G
induced by a multiplicative Dirac structure LG ⊆ T G⊕T ∗G is also a multiplicative
Dirac structure. Indeed, first observe that the bundle map JG : T T G → T T G
is a groupoid isomorphism over JM : T TM→ T TM . Similarly, the bundle map
2G : T T ∗G→ T ∗T G is a groupoid isomorphism over the canonical identification
I : T (A∗G)→ (T (AG))∗. Since LG is a Lie subgroupoid of T G⊕ T ∗G, then the
tangent functor yields a Lie subgroupoid TLG of T T G⊕ T T ∗G. Due to the fact
that LT G is the image of TLG via the groupoid isomorphism JG ⊕2G , we see
that LT G inherits a natural structure of Lie subgroupoid of T T G⊕ T ∗T G. Hence
we conclude that LT G defines a multiplicative Dirac structure on T G.

3B4. Symmetries of multiplicative Dirac structures. Let LG be a multiplicative
Dirac structure on a Lie groupoid G ⇒ M , and let H be a Lie group acting on G
by groupoid automorphisms. Assume that the H -action is free and proper and
that the H -orbits coincide with the characteristic leaves of LG . In this case the
quotient space G/H inherits the structure of a Lie groupoid over M/H . Moreover,
since G/H is the space of characteristic leaves of LG , we conclude that there exists
a Poisson structure πred on G/H , making the quotient map G→ G/H into both
a backward and forward Dirac map. This fact together with the multiplicativity
of LG imply that πred is a multiplicative Poisson bivector. In other words, the
quotient space G/H is a Poisson groupoid. In the case where LG is the graph
of a multiplicative Poisson bivector and the action is Hamiltonian in the sense of
Fernandes and Iglesias [≥ 2013], this recovers some of the results about reduction
of Poisson groupoids carried out by those authors.

3B5. Multiplicative B-field transformations. Let L ⊆ TM be a Lagrangian sub-
bundle. Given a 2-form B ∈�2(M) one can construct the Lagrangian subbundle
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τB(L)⊆ TM defined by

τB(L)= {X ⊕α+ iX B | X ⊕α ∈ L}.

A straightforward computation shows that τB(L) defines a Dirac structure on M
if and only if B is a closed 2-form. See for instance [Bursztyn 2005; Gualtieri
2003]. In this case, we say that the Dirac structure τB(L) is obtained out of L by a
B-field transformation.

Assume now that LG is a multiplicative Dirac structure on a Lie groupoid G.
Given a multiplicative closed 2-form BG on G, one can consider the bundle map
τBG :TG→TG, X⊕α 7→ X⊕α+iX (BG). It follows from the multiplicativity of BG

that τBG is a Lie groupoid isomorphism. As a result, the Dirac structure τBG (LG)

on G is multiplicative. Our interest in B-field transformations of multiplicative
Dirac structures is motivated by the work carried out in [Bursztyn 2005; Bursztyn
and Radko 2003], where the authors study the connection between certain B-field
transformations of symplectic and Poisson groupoids and the notion of Morita
equivalence of Poisson manifolds.

3B6. Generalized complex groupoids. Generalized complex structures were intro-
duced in [Hitchin 2003] and further developed in [Gualtieri 2003]. Given a smooth
manifold M , one can consider the complexified vector bundle TC M := TM ⊗C

endowed with the complex Courant bracket and the complex pairing 〈 · , · 〉. A
generalized complex structure on M is a complex Dirac structure L ⊆ TC M such
that L ∩ L = {0}, where L denotes the conjugate of L . Complexified versions of
multiplicative Dirac structures give rise to generalized complex groupoids. More
concretely, let G be a Lie groupoid equipped with a generalized complex struc-
ture LG . We say that (G, LG) is a generalized complex groupoid if LG ⊆ TCG
is a Lie subgroupoid. Generalized complex groupoids were introduced in [Jotz
et al. 2012] under the name of Glanon groupoids. Structures such as symplectic
groupoids and holomorphic Poisson groupoids are special instances of generalized
complex groupoids.

4. Dirac algebroids

In this section we study Lie algebroids equipped with Dirac structures compatible
with both the linear and Lie algebroid structure.

4A. Definition and main examples. Let A→ M be a vector bundle. A Poisson
bivector πA on A is linear if the map π ]A : T

∗A→ TA is a morphism of double
vector bundles. Similarly, a 2-form ωA on A is linear if the map ω]A : TA→ T ∗A is a
morphism of double vector bundles. The bundle map ω]A in this case covers a bundle
morphism λ : TM→ A∗. As shown in [Konieczna and Urbański 1999], a linear
2-form ωA on a vector bundle A→ M is closed if and only if ωA =−(λ

t)∗ωcan ,
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where ωcan is the canonical symplectic form on T ∗M and λt
: A → T ∗M is a

fiberwise dual map of λ : TM → A∗. The definition below includes both linear
Poisson bivectors and linear closed 2-forms as special instances.

Definition 4.1. A Dirac structure L A on A is called linear if L A ⊆ TA is a double
vector subbundle of TA.

A linear Dirac structure L A ⊆ TA is not only a vector bundle over A, but also a
vector bundle over a subbundle E ⊆ TM⊕A∗. It follows directly from the definition
that graphs of linear Poisson bivector and linear closed 2-forms define linear Dirac
structures. Linear Dirac structures arise also in connection with Lagrangian and
Hamiltonian mechanics, see for example, [Grabowska and Grabowski 2011].

Assume now that A→ M carries also a Lie algebroid structure. Consider the
direct sum Lie algebroid TA = TA⊕ T ∗A, whose base manifold is TM ⊕ A∗.

Definition 4.2. A Dirac structure L A on A is called morphic if L A is a linear Dirac
structure that is also a Lie subalgebroid of TA.

We denote by Dirmorph(A) the space of morphic Dirac structures on the Lie
algebroid A.

A pair (A, L A), where A is a Lie algebroid endowed with a morphic Dirac
structure L A, will be referred to as a Dirac algebroid.

Example 4.3. Let πA be a linear Poisson bivector on a Lie algebroid A → M .
Then, the Dirac structure given by the graph of πA is morphic if and only if
π
]
A : T

∗A→ TA is a Lie algebroid morphism. As shown in [Mackenzie and Xu
1994], this is equivalent to the pair (A, A∗) being a Lie bialgebroid.

Example 4.4. Let ωA be a linear closed 2-form on a Lie algebroid A→ M , that is,
ωA =−σ

∗ωcan , for some bundle map σ : A→ T ∗M . The Dirac structure defined
by the graph of ωA is morphic if and only if ω]A : TA→ T ∗A is a Lie algebroid
morphism. Equivalently, as shown in [Bursztyn et al. 2009a], the bundle map
σ : A→ T ∗M is an IM-2-form on A. The notion of IM-2-form was introduced
in [Bursztyn et al. 2004] motivated by the problem of the integration of Dirac
structures. See also [Arias Abad and Crainic 2011], where IM-2-forms arise in
connection with the Weil algebra and the Van Est isomorphism.

4B. More examples of Dirac algebroids. In addition to both morphic Poisson
structures and morphic closed 2-forms, there are more examples of morphic Dirac
structures, which we proceed to explain below.

4B1. Foliated algebroids. Let A be a Lie algebroid and FA ⊆ TA an involutive
subbundle which is also a Lie subalgebroid of TA→ TM . In this case we say
that (A, FA) is a foliated algebroid. One can easily check that the Dirac structure
FA ⊕ F◦A ⊆ TA is a morphic Dirac structure. Foliated algebroids were studied
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in [Hawkins 2008] as a way to promote the notion of polarization in geometric
quantization to the category of Lie algebroids. Also, a detailed discussion about
foliated algebroids can be found in [Jotz and Ortiz 2012].

4B2. Dirac Lie algebras. Let g be a Lie algebra. In this case, morphic Dirac
structures are Lie subalgebroids of Tg⊕ T ∗g→ g∗. It follows from [Ortiz 2008]
that Dirac Lie algebras are suitable pull-backs of Lie bialgebras.

4B3. Tangent lifts of Dirac algebroids. Let (A, L A) be a Dirac algebroid. Consider
the tangent Dirac structure LTA on TA. By definition, the tangent Dirac structure
is given by LTA := (JA⊕2A)(TL A), where TL A→ TM is the tangent algebroid
associated to the Dirac structure L A viewed as a Lie algebroid over A. Since
the bundle map JA ⊕ 2A : T TA ⊕ T T ∗A → T TA ⊕ T ∗TA is a Lie algebroid
isomorphism, we conclude that LTA ⊆ TTA is a Lie subalgebroid. Therefore, the
pair (TA, LTA) is a Dirac algebroid.

4B4. Symmetries of Dirac algebroids. Let (A, L A) be a Dirac algebroid. Consider
a Lie group H acting on A by Lie algebroid automorphisms. Assume that the
action is free and proper and that the H -orbits coincide with the characteristic
leaves of L A. One can check that the orbit space A/H inherits a Lie algebroid
structure over M/H , making the quotient map A→ A/H into a Lie algebroid
morphism. Since the H -orbits are exactly the characteristic leaves of L A, one
concludes that A/H is equipped with a unique Poisson bivector πred determined by
the fact that A→ A/H is a forward and backward Dirac map. Since L A is morphic,
we conclude that πred is a morphic Poisson structure on A/H . In particular, due
to [Mackenzie and Xu 1994], the pair (A/H, (A/H)∗) is a Lie bialgebroid. In the
special case where L A is the graph of a morphic Poisson structure on A and the
action is Hamiltonian in the sense of [Fernandes and Iglesias ≥ 2013], this recovers
the reduction of Lie bialgebroids carried out in [Fernandes and Iglesias ≥ 2013].

4B5. Morphic B-field transformations. Let (A, L A) be a Dirac algebroid. Asso-
ciated to a morphic closed 2-form BA on A is the Lie algebroid automorphism
τBA : TA→ TA, (X, α) 7→ (X, α + iX BA). The Dirac structure τBA(L A) ⊆ TA
obtained out of L A by applying the B-field transformation τBA is morphic. Therefore,
the pair (A, τBA) is a Dirac algebroid. In particular, B-field transformations of mor-
phic Poisson structures (that is, Lie bialgebroid structures on (A, A∗)) by morphic
closed 2-forms are always morphic Dirac structures. If the B-field transformation
is admissible, that is, the resulting Dirac structure is the graph of a Poisson bivector,
such a bivector is necessarily morphic as well. In particular, we get a new bialgebroid
structure on (A, A∗) referred to as a gauge transformation of the Lie bialgebroid
(A, A∗). Gauge transformations of Lie bialgebroids were introduced in [Bursztyn
2005] motivated by the study of gauge transformations of Poisson groupoids and
Morita equivalence of Poisson manifolds.
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4B6. Generalized complex algebroids. Let A→ M be a Lie algebroid. Consider
the complexified Lie algebroid TC A = (TA ⊕ T ∗A)⊗ C whose base manifold
is (TM ⊕ A∗) ⊗ C. A generalized complex structure L A on A is morphic if
L A ⊆ TC A is a Lie subalgebroid. In this case, we say that (A, L A) is a generalized
complex algebroid. The notion of generalized complex algebroid was introduced
in [Jotz et al. 2012] under the name of Glanon algebroids. Generalized complex
algebroids include holomorphic Poisson structures and holomorphic Lie bialgebroids
as particular cases.

5. Infinitesimal description of multiplicative Dirac structures

This section is the main part of the present work. Here we show that Dirac algebroids
correspond to the infinitesimal counterpart of Dirac groupoids.

5A. The canonical CA-groupoid. The main idea for studying multiplicative Dirac
structures infinitesimally is based on the following observation. Given a Lie
groupoid G over M , the canonical geometric objects associated to TG that are used
to define Dirac structures (symmetric pairing and Courant bracket) are suitably
compatible with the groupoid structure of TG. This compatibility makes TG into
a CA-groupoid. The notion of CA-groupoid was suggested by Mehta [2009] and
further studied by Li-Bland and Ševera [2011]. More precisely, let 〈 · , · 〉G be the
nondegenerate symmetric pairing on the direct sum Lie groupoid TG.

Proposition 5.1. The canonical pairing defines a morphism of Lie groupoids

〈 · , · 〉G : TG⊕TG→ R,

where R is equipped with the usual abelian group structure.

Proof. Since R is a groupoid over a point, we only need to check the compatibility
of 〈 · , · 〉G with the corresponding groupoid multiplications. For that, consider
elements (Xg ⊕αg), (Yg ⊕βg) ∈ TgG and (X ′h ⊕α

′

h), (Y
′

h ⊕β
′

h) ∈ ThG. Then by
definition of the groupoid structure on TG⊕TG, we have(
(Xg ⊕αg)⊕ (Yg ⊕βg)

)
∗
(
(X ′h ⊕α

′

h)⊕ (Y
′

h ⊕β
′

h)
)

= (Xg • X ′h ⊕αg ◦α
′

h)⊕ (Yg • Y ′h ⊕βg ◦β
′

h),

therefore one gets〈
(Xg • X ′h ⊕αg ◦α

′

h), (Yg • Y ′h ⊕βg ◦β
′

h)
〉
G

= (αg ◦α
′

h)(Yg • Y ′h)+ (βg ◦β
′

h)(Xg • X ′h)

= αg(Yg)+α
′

h(Y
′

h)+βg(Xg)+β
′

h(X
′

h)

= 〈(Xg ⊕αg), (Yg, βg)〉G +〈(X ′h ⊕α
′

h), (Y
′

h ⊕β
′

h)〉G . �
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In order to explain the relation between the Courant bracket and the Lie groupoid
structure on the direct sum vector bundle TG = T G⊕ T ∗G, we consider the direct
product Courant algebroid TG ×TG→ G ×G. Every section a(2) of TG ×TG
can be written as

a(2) = a1 ◦ pr1⊕ a2 ◦ pr2,

where a1, a2 are sections of TG, and pr1, pr2 :TG×TG→TG denote the natural
projections. The direct product bracket on sections of TG×TG is defined as usual;

[a(2), a(2)] = [[a1, a1]] ◦ pr1⊕[[a2, a2]] ◦ pr2,

and the anchor map ρ(TG)(2) : TG × TG → T G × T G is given by the canonical
componentwise projection.

Proposition 5.2. Let mT : (TG)(2)→ TG denote the groupoid multiplication of
TG = T G⊕ T ∗G. If a, b, ai , bi ∈ 0(TG), i = 1, 2 are sections such that

mT ◦ (a1, a2)= a ◦mG, mT ◦ (b1, b2)= b ◦mG,

then the following identities hold:

(i) T mG
(
ρ(TG)(2)(X

1
g ⊕α

1
g, X2

h ⊕α
2
h)
)
= X1

g • X2
h ;

(ii) mT ◦ ([[a1, b1]], [[a2, b2]])= [[a, b]] ◦mG .

Proof. We begin by checking (i). For that, consider a section a(2)=a1◦ pr1⊕a2◦ pr2

of (TG)(2), where a1 = X1
⊕ α1 and a2 = X2

⊕ α2 are sections of TG. The
multiplication on the Lie groupoid TG maps the section a(2) into

mT(a1 ◦ pr1⊕ a2 ◦ pr2)(g, h)= X1
g • X2

h ⊕α
1
g ◦α

2
h .

Applying the anchor map of TG we obtain

ρTG(X1
g • X2

h ⊕α
1
g ◦α

2
h)= X1

g • X2
h .

On the other hand, the componentwise anchor map of (TG)(2) applied to the
section a(2) gives rise to

ρ(TG)(2)(a1 ◦ pr1⊕ a2 ◦ pr2)(g, h)= (X1
g, X2

h),

which followed by the derivative of mG : G(2)→ G yields

T mG
(
ρ(TG)(2)(X

1
g ⊕α

1
g, X2

h ⊕α
2
h)
)
= X1

g • X2
h,

as required. In order to prove identity (ii), one considers

mT ◦ a(2) = a ◦mG,(9)

mT ◦ a(2) = a ◦mG,(10)
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where a(2), a(2) ∈0G(2)((TG)(2)) and a, a ∈0G(TG). More concretely, write down
sections as

a(2) = (X1
⊕α1) ◦ pr1⊕ (X2

⊕α2) ◦ pr2,

a(2) = (X1
⊕α1) ◦ pr1⊕ (X2

⊕α2) ◦ pr2,

a = Y ⊕β,

a = Y ⊕β.

The identities (9), (10) then become

X1
g • X2

h ⊕α
1
g ◦α

2
h = Ygh ⊕βgh,(11)

X1
g • X2

h ⊕α
1
g ◦α

2
h = Y gh ⊕βgh,(12)

for any composable pair (g, h)∈G×G. Now it follows directly from the definition
of the direct product bracket that

[a(2), a(2)]

=
(
[X1, X1

]⊕LX1α1
− iX1dα1)

◦ pr1⊕
(
[X2, X2

]⊕LX2α2
− iX2dα2)

◦ pr2.

Then, composing with the groupoid multiplication of TG, we have

mT ◦ [a(2), a(2)](g,h)
= [X1, X1

]g • [X2, X2
]h ⊕ (LX1α1

− iX1dα1)g ◦ (LX2α2
− iX2dα2)h .

On the other hand,

[[a, a]] ◦mG(g, h)= [Y, Y ]gh ⊕ (LYβ − iY dβ)gh,

and using the identities (11) and (12) one concludes that

[Y, Y ]gh = [X1, X1
]g • [X2, X2

]h .

Thus, the tangent component of [[a, a]]gh coincides with the tangent component
of mT ◦ [a(2), a(2)](g,h). It remains to show that we also have the equality of the
corresponding cotangent parts. This is equivalent to showing that

(LYβ −LYβ − d〈β, Y 〉)gh

=
(
LX1α1

−LX1α
1
− d〈α1, X1

〉
)

g ◦
(
LX2α2

−LX2α
2
− d〈α2, X2

〉
)

h,

for every composable pair (g, h) ∈ G(2). In order to prove this identity, we need to
check that the left hand side (LHS), and the right hand side (RHS) above coincide
at elements of the form Ug • Vh . For that consider the 1-form on G defined by
γ :=LYβ−LYβ−d〈β, Y 〉. We can look at the pull-back 1-form m∗Gγ ∈�

1(G(2)),
which at every tangent vector (Ug, Vh) ∈ T(g,h)G(2) is given by

(m∗Gγ )(g,h)(Ug, Vh)= γgh(Ug • Vh)= (LHS)(Ug • Vh).
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The pull-back form m∗Gγ involves three terms. Let us analyze the first term
m∗G(LYβ) of this pull-back form. It follows from the relation Y = (mG)∗(X1, X2)

that
m∗G(LYβ)= L(X1,X2)m

∗

Gβ.

Notice that (12) implies that

(m∗Gβ)(g,h)(Ug, VH )= βgh(Ug • Vh)= (α
1
g ◦α

2
h)(Ug • Vh)

= α1
g(Ug)+α

2
h(Vh)= (α

1, α2)(g,h)(Ug, Vh).

That is, m∗G(LYβ) = LX1α1
⊕LX2α2. A similar argument can be applied to the

other terms of the pull-back form m∗Gγ , yielding

(LHS)(Ug • Vh)= (m∗Gγ )(g,h)(Ug, Vh)

= (LX1α1)g(Ug)+ (LX2α2)h(Vh)− (LX1α
1)g(Ug)

− (LX2α
2)h(Vh)− d〈α1, X1

〉g(Ug)− d〈α2, X2
〉h(Vh)

= (RHS)(Ug • Vh).

Thus RHS and LHS coincide at elements of the form Ug • Vh , and we conclude
that (mT,mG) is bracket preserving. �

Recall that, given a Courant algebroid (E, ρ, [[ · , · ]]) over smooth manifold M
and a submanifold Q ⊆ M , a Dirac structure supported on Q (see [Alekseev and
Xu 2011; Bursztyn et al. 2009b]) is a subbundle K ⊂ E|Q such that Kx ⊆ Ex is
Lagrangian for all x ∈ Q and the following conditions are fulfilled:

(1) ρ(K )⊆ T Q;

(2) whenever a1, a2 ∈ 0(E) satisfy a1|Q, a2|Q ∈ 0(K ), then [[a1, a2]]|Q ∈ 0(K ).

Dirac structures with support were used in [Bursztyn et al. 2009b] to introduce
a natural notion of morphism between Courant algebroids. Let E1, E2 be Courant
algebroids over M, N , respectively. A Courant algebroid morphism from E1 to E2 is
a Dirac structure in E2×E1 supported on Graph( f ), where f : M→ N is a smooth
map. Here E1 denotes the Courant algebroid structure on the vector bundle E1 with
the same bracket on 0(E1), anchor map and minus the usual symmetric pairing.

Combining Propositions 5.1 and 5.2, we obtain:

Proposition 5.3. Let G be a Lie groupoid over M with multiplication map mG :

G(2)→G. Let mT : (TG)(2)→TG denote the groupoid multiplication on TG. Then
Graph(mT) ⊆ TG × TG×TG is a Dirac structure supported on Graph(mG) ⊆

G×G×G. That is, Graph(mT) is a Courant algebroid morphism from TG×TG
to TG.
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Using the terminology of [Li-Bland and Ševera 2011], Proposition 5.3 says
that TG with its canonical Courant algebroid structure and groupoid multiplication
is an example of CA-groupoid. See also Example 2.3.1 of [Li-bland 2012].

5B. The LA-groupoid of a multiplicative Dirac structure.

5B1. Review of LA-groupoids. An LA-groupoid is a Lie groupoid object in the
category of Lie algebroids. More precisely, an LA-groupoid [Mackenzie 1992] is
a square

(13)

H

E

G

M,

qH //

qE //
���� ����

where the single arrows denote Lie algebroids and the double arrows denote Lie
groupoids. These structures are compatible in the sense that all the structure
mappings (that is, source, target, unit section, inversion and multiplication) defining
the Lie groupoid H are Lie algebroid morphisms over the corresponding structure
mappings which define the Lie groupoid G. We also require that the anchor map
ρH : H → T G be a groupoid morphism over the anchor map ρE : E → TM .
Here T G is endowed with the tangent groupoid structure over TM . For describing
the square given by an LA-groupoid we use the notation (H,G, E,M). It is
worthwhile to explain how the groupoid multiplication defines a morphism of Lie
algebroids. For that, let m H : H(2)⊆ H×H→ H denote the groupoid multiplication
of H , and similarly let mG : G(2) ⊆ G ×G→ G denote the multiplication of G.
The direct product vector bundle H × H → G×G inherits a natural Lie algebroid
structure, and we have a Lie subalgebroid H(2) over G(2) which is just a pull-back
algebroid, see for example, [Higgins and Mackenzie 1990] for details about the
pull-back operation in the category of Lie algebroids. With respect to this Lie
algebroid structure, the multiplication map m H is required to be a Lie algebroid
morphism covering mG .

The Lie functor applied to an LA-groupoid (13) determines a double vector
bundle

(14)

AH

E

AG

M,

A(qH ) //

qE //
�� ��

where each of the arrows define Lie algebroids. The top Lie algebroid structure
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is nontrivial, and it deserves a detailed explanation. The Lie algebroid structure
AH → AG was constructed in [Mackenzie 2000] as a prolongation procedure
similar to the tangent prolongation of a Lie algebroid, except that we replace the
tangent functor by the Lie functor.

Definition 5.4. The prolonged anchor map AH → T (AG) is defined by

ρ̃ := j−1
G ◦ A(ρH ),

where jG : T (AG)→ A(T G) is the canonical identification defined in Equation (5).

Now we study the space of sections 0AG(AH).

Definition 5.5. A section u ∈0G(H) is called a star section if there exists a section
u0 ∈ 0M(E) such that

(1) εE ◦ u0 = u ◦ εM ,

(2) sH ◦ u = u0 ◦ sG .

Notice that since every star section u :G→ H preserves the units and the source
fibrations, we are allowed to apply the Lie functor to u, yielding a section A(u) of
the vector bundle AH

A(qH )
−−−→ AG.

Definition 5.6. Let (H,G, E,M) be an LA-groupoid. The core of H is the vector
bundle over M defined by

K := ε∗M ker(sH ).

Every section k ∈ 0(K ) induces a section kH ∈ 0G(H) in the following way:

kH (g) := k(tG(g))0H
g ,

where 0H
g is the zero element in the fiber Hg above g ∈ G. Notice that for every

section k ∈ 0(K ) the induced section kH ∈ 0G(H) satisfies

kH ◦ εM = k.

It was proved in [Mackenzie 2000] that the core of the double vector bundle
(AH, AG, E,M) is the vector bundle K → M . Notice that a core element k ∈ K
induces a Lie algebroid element k̄ ∈ AH . Indeed, we observe that every element
in AH has the form

W = d
dt
(ht)|t=0,

where ht is a curve in H sitting in a fixed source fiber s−1
H (e) with h0 = εE(e).

Thus, for every core element k ∈ K above x ∈ M — that is, sH (k) = 0E
x and

qH (k)= εM(x)— there exists a natural element k̄ ∈ AH , defined by

k̄ := d
dt
(tk)|t=0.
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Definition 5.7. Given a section k ∈ 0(K ), the core section induced by k is the
section kcore

∈ 0AG(AH) defined by

kcore(ux) := A(0H )ux + k(x).

Proposition 5.8 [Mackenzie 2000]. The space of sections 0AG(AH) is generated
by sections of the form A(u), where u : G→ H is a star section, and by sections of
the form kcore, where k : M→ K is a section of the core of H.

The Lie bracket on 0AG(AH) is defined in terms of star sections and core
sections. First we observe that whenever u, v ∈ 0G(H) are star sections, then the
Lie bracket [u, v] ∈ 0G(H) is also a star section. Thus the Lie bracket between
sections of the form A(u), A(v) is defined by

[A(u), A(v)] = A([u, v]).

The bracket of a pair of core sections is defined by

[kcore
1 , kcore

2 ] = 0.

In order to define the bracket of a star section and a core section we notice that
every star section u : G→ H induces a covariant differential operator

Du : 0(K )→ 0(K ), k 7→ [u, kH ] ◦ εM .

Now we define [A(u), kcore
] = (Du(k))core.

The Lie bracket of other sections of 0AG(AH) is defined by requiring the
Leibniz rule

[w, fw′] = f [w,w′] + (Lρ̃(w) f )w′.

The vector bundle AH
A(qH )
−−−→ AG endowed with the anchor map

ρ̃ = j−1
G ◦ A(ρ)

and the Lie bracket [ · , · ] on 0AG(AH) becomes a Lie algebroid called the pro-
longed Lie algebroid induced by H → G, see [Mackenzie 2000].

Although the following remark is not mentioned in [Mackenzie 2000], it is
important to notice that Mackenzie’s construction of the prolonged Lie algebroid is
natural in the following sense.

Proposition 5.9. Let (H,G, E,M) be an LA-groupoid. Consider the canonical
embeddings i AH : AH → TH and i AG : AG→ T G. Endow TH → T G with the
tangent algebroid structure and AH → AG with the prolonged algebroid structure.
Then i AH is a Lie algebroid morphism covering i AG .
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Recall that (see for example, [Mackenzie 2005]) a vector bundle map 9 : A→ B,
covering ψ : M→ N , is a Lie algebroid morphism if

ρB ◦9 = Tψ ◦ ρA,

and the following compatibility with brackets holds: For sections u, v ∈ 0(A)
such that 9(u)=

∑
j f jψ

∗u j and 9(v)=
∑

i giψ
∗vi , where f j , gi ∈C∞(M) and

u j , vi ∈ 0(B), we have

(15) 9([u, v]A)=
∑
i, j

f j giψ
∗
[u j , vi ]B+

∑
i

LρA(u)giψ
∗vi −

∑
j

LρA(v) f jψ
∗u j .

Proof. The compatibility with the anchor maps reads

ρTH ◦ i AH = T i AG ◦ ρ̃,

which is exactly the definition of the prolonged anchor map.
Let us check now the compatibility with the Lie brackets. For that, consider a star

section u :G→ H . Then, there are sections T u : T G→ TH and A(u) : AG→ AH .
Both are related by A(u) = T u|AG . In particular, i AH ◦ A(u) = T u ◦ i AG holds.
Similarly, every section k ∈ 0(K ) of the core of H induces a section of the tangent
prolongation TH → T G. Indeed, first consider the induced section kH ∈ 0G(H)
and then construct the core section k̂H ∈ 0T G(TH) defined in the usual way:

k̂H (Xg)= T (0H )Xg + kH (g).

For every x ∈ εM(M)⊆G one has kH (x)= k(x), and thus at any ux ∈ (AG)x ⊆Tx G
we get

k̂H (ux)= A(0H )ux + k(x).

Hence we conclude that i AH ◦ kcore
= k̂H ◦ i AG . Let us show that (15) holds for a

pair of sections A(u), A(v), where u, v : G→ H are star sections. Indeed,

i AH ◦ [A(u), A(v)] = i AH ◦ A[u, v] = T [u, v] ◦ i AG = [T u, T v] ◦ i AG,

as desired. It remains to show the bracket condition (15) for sections of the form
A(u), kcore, where u : G→ H is a star section and k : M→ K is a section of the
core. On the one hand, one has that

i AH ◦ [A(u), kcore
] = i AH ◦ (Duk)core

= (D̂uk)H ◦ i AG .

On the other hand,
[T u, k̂H ] ◦ i AG = [̂u, kH ] ◦ i AG .

Notice that to conclude that (15) holds in this case it suffices to show that
(D̂uk)H ◦ i AG = [̂u, kH ] ◦ i AG . Indeed, using the fact that k = kH ◦ εM for every
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section k : M→ K , we conclude that if vx ∈ Ax G, then

[̂u, kH ](ux)= T 0H
G (ux)+

d
dt
(t[u, kH ](x))|t=0

= T 0H
G (ux)+

d
dt
(t (Duk)H (x))|t=0 = ̂(Duk)H (vx). �

5B2. Dirac groupoids as LA-groupoids. Let LG be a multiplicative Dirac structure
on a Lie groupoid G ⇒ M . This means that we have a VB-subgroupoid LG ⇒ E of
TG ⇒ TM⊕A∗G, such that LG ⊆TG is also a Dirac subbundle. In particular there
is a canonical Lie algebroid structure on LG→ G with anchor map LG→ T G the
natural projection and Lie bracket [[ · , · ]] on 0G(LG). Given sections e1, e2 of E ,
there exist star sections a1, a2 of LG covering e1 and e2, respectively. Since LG is
involutive with respect to the Courant bracket, we conclude that [[a1, a2]] is a star
section of LG covering a section e of E . We define [e1, e2] := e. A straightforward
computation shows that with respect to this Lie bracket and the natural projection
E→ TM , the vector bundle E→ M becomes a Lie algebroid.

Proposition 5.10. A multiplicative Dirac structure LG on G gives rise to an LA-
groupoid

(16)

LG

E

G

M,

pG⊕cG //

qE //
���� ����

where pG and cG denote the tangent projection and the cotangent projection,
respectively.

Proof. Since the structure mappings defining the Lie groupoid LG ⇒ E are re-
strictions of the structure mappings of the tangent and cotangent groupoids, a
straightforward computation shows that these structure mappings are Lie algebroid
morphisms over the structure mapping of G. The fact that the multiplication
on LG is a Lie algebroid morphism over the multiplication on G follows from
Proposition 5.2. An argument similar to the one used in the proof of Proposition 5.2
shows that the inversion map on LG is a Lie algebroid morphism. �

5C. The Lie algebroid of a multiplicative Dirac structure. We let G be a Lie
groupoid over M with Lie algebroid AG. Let LG be a multiplicative Dirac structure
on a Lie groupoid G. According to Proposition 5.1, the canonical pairing 〈 · , · 〉G :
TG ⊕ TG → R is a Lie groupoid morphism. Applying the Lie functor yields a
nondegenerate symmetric pairing

A(〈 · , · 〉G) : (A(T G)⊕ A(T ∗G))×AG (A(T G)⊕ A(T ∗G))→ R.
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Let 〈 · , · 〉AG denote the canonical nondegenerate symmetric pairing on T(AG).
Recall that there exist canonical isomorphisms of Lie algebroids jG : T (AG)→
A(T G) and j ′G : A(T ∗G)→ T ∗(AG) (see (5) and (6)). Since 〈 · , · 〉AG is just a
suitable restriction of T 〈 · , · 〉G , one concludes that the canonical map

j−1
G ⊕ j ′G : A(T G)⊕ A(T ∗G)→ T (AG)⊕ T ∗(AG)

is a fiberwise isometry with respect to A(〈 · , · 〉G) and 〈 · , · 〉AG . This is a useful tool
for transporting Lagrangian subbundles of T G⊕T ∗G to Lagrangian subbundles of
T (AG)⊕T ∗(AG). For instance, given a VB-subgroupoid LG of T G⊕T ∗G, we can
apply the Lie functor to obtain a VB-subalgebroid A(LG)⊆ A(T G)⊕A(T ∗G). We
mimic the construction of tangent Dirac structures, giving rise to a VB-subalgebroid
of T (AG)⊕ T ∗(AG) defined by

L AG := ( j−1
G ⊕ j ′G)(A(LG)).

The following result is a straightforward consequence of the previous discussion.

Proposition 5.11. Let LG ⊆ T G ⊕ T ∗G be a VB-subgroupoid. Consider the
associated VB-subalgebroid L AG ⊆ T (AG)⊕ T ∗(AG). Then LG is isotropic with
respect to 〈 · , · 〉G if and only if L AG is isotropic with respect to 〈 · , · 〉AG .

In particular, if LG ⊆ T G ⊕ T ∗G is a VB-subgroupoid with associated VB-
subalgebroid L AG ⊆ T (AG)⊕ T ∗(AG) then LG is an almost Dirac structure on G
if and only if L AG is an almost Dirac structure on AG.

Now we want to deal with integrability issues. For that, consider a multiplicative
Dirac structure LG ⊆ TG and let (LG,G, E,M) be the associated LA-groupoid.
Applying the Lie functor we obtain the prolonged Lie algebroid structure on
A(LG)→ AG, and we use the canonical map

j−1
G ⊕ j ′G : A(T G)⊕ A(T ∗G)→ T (AG)⊕ T ∗(AG)

to define a Lie algebroid L AG = ( j−1
G ⊕ j ′G)(A(LG)) over AG, characterized by the

fact that j−1
G ⊕ j ′G : A(LG)→ L AG is a Lie algebroid isomorphism. We have seen

that L AG ⊆ T(AG) is a Lagrangian subbundle with respect to the canonical pairing
〈 · , · 〉AG on T(AG). We claim that the Lie bracket on 0AG(L AG) induced by the
prolonged Lie bracket on 0AG(A(LG)) coincides with the Courant bracket. Indeed,
since the tangent Lie algebroid TLG→ T G is isomorphic to LT G→ T G, where the
latter is equipped with the algebroid structure induced by the tangent Dirac structure
LT G ⊂ T T G⊕T ∗T G, and A(LG) is a Lie subalgebroid of TLG (Proposition 5.9),
then the bracket on sections of L AG induced by the identification A(LG)= L AG is
exactly the restriction of the Courant bracket on 0(T (AG)⊕ T ∗(AG)). We have
proved:
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Theorem 5.12. Given a Lie groupoid G with Lie algebroid AG, there is a canonical
map

Dirmult(G)→ Dirmorph(AG), LG 7→ L AG := ( j−1
G ⊕ j ′G)(A(LG)).

That is, up to a canonical identification, the Lie algebroid of a multiplicative Dirac
structure LG ⊂ TG defines a Dirac structure L AG on AG which is also a Lie
subalgebroid of T(AG).

It is interesting to observe that since L AG is the Lie algebroid of the LA-
groupoid LG , in particular L AG inherits the structure of a double Lie algebroid
[Mackenzie 2000]. Double Lie algebroids were introduced by Mackenzie [2011] as a
way to understand Drinfeld’s doubles of Lie bialgebroids. As a result, multiplicative
Dirac structures provide interesting examples of double Lie algebroids.

5D. Dirac groupoids vs. Dirac algebroids. This section is concerned with the
statement and proof of the main result of this work. We will prove that, whenever G
is a source simply connected Lie groupoid with Lie algebroid AG, then the map in
Theorem 5.12 is a bijection.

For that, recall that if M is a smooth manifold and L ⊂ TM is a Lagrangian
subbundle, then there is a well-defined element µL ∈ 0(

∧3L∗) given by

(17) µL(a1, a2, a2) := 〈[[a1, a2]], a3〉.

The element µL ∈ 0(
∧3L∗) is referred to as the Courant 3-tensor of L . Notice

that a Lagrangian subbundle L ⊂TM is a Dirac structure if and only if µL vanishes.

Proposition 5.13. Let G be a Lie groupoid over M. Consider a Lagrangian sub-
bundle LG ⊂ T G ⊕ T ∗G, which is also a Lie subgroupoid. Then, the Courant
3-tensor of LG is multiplicative; that is,

µLG :

3∏
pG⊕cG

LG→ R

is a groupoid morphism.

Proof. Let us consider composable pairs ai
g, a i

h in LG with i = 1, 2, 3. Set ci
gh =

mT(ai
g, a i

h) ∈ (LG)gh , for i = 1, 2, 3. Choose a section ci
∈ 0(LG) such that

ci (gh)= ci
gh . Since LG is a VB-groupoid, the multiplication on LG is fiberwise

surjective. In particular, there exist sections ai , a i
∈0(LG) such that mT◦(ai , a i )=

ci
◦mG , for every i = 1, 2, 3. Clearly ai (g)= ai

g and a i (h)= a i
h , for i = 1, 2, 3.

Then,

µLG

(
(a1

g,a
2
g,a

3
g) ∗ (a

1
h,a

2
h,a

3
h)
)
= µLG (c

1
gh, c

2
gh, c

3
gh)= 〈[[c

1, c2
]](gh), c3(gh)〉

=
〈
mT([[a2,a2

]], [[a1,a2
]])(g,h),mT(a3,a3)(g,h)

〉



356 CRISTIÁN ORTIZ

The last identity follows from the fact that (mT,mG) is a Courant morphism (see
Proposition 5.2). Now we use the fact that 〈 · , · 〉G is a groupoid morphism to
conclude that

µLG

(
(a1

g, a2
g, a3

g) ∗ (a
1
h, a2

h, a3
h)
)
= µLG (a

1
g, a2

g, a3
g)+µLG (a

1
h, a2

h, a3
h).

This proves that the function µLG is multiplicative. �

We would like to describe explicitly the Lie algebroid morphism induced by the
multiplicative tensor µLG :

∏3
pG⊕cG

LG→ R. For that, we need the next lemma.

Lemma 5.14. Let M be a smooth manifold. Consider a Lagrangian subbundle
L M ⊂ TM. Then, for every (ȧ1, ȧ2, ȧ3) ∈ TL M the following identity holds:

TµL M (ȧ1, ȧ2, ȧ3)= µLTM

(
(JM ⊕2M)ȧ1, (JM ⊕2M)ȧ2, (JM ⊕2M)ȧ3

)
,

where LTM ⊂ T(TM) is the tangent lift of L M .

Proof. One has TµL M (T a1, T a2, T a3)= T (µL M (a1, a2, a3)) for every a1, a2, a3 ∈

0M(L M). On the other hand, the canonical map JM ⊕2M applied to each of the
sections T a1, T a2, T a3 gives aT

1 , aT
2 , aT

3 ∈ 0TM(LTM). Thus we conclude that

µLTM (a
T
1 , aT

2 , aT
3 )= 〈[[a

T
1 , aT

2 ]], aT
3 〉TM = (〈[[a1, a2]], a3〉M)

T ,

which is exactly the tangent functor applied to the function µL M (a1, a2, a3). There-
fore, for every triple of sections a1, a2, a3 of L M we get

(18) TµL M (T a1, T a2, T a3)= µLTM (a
T
1 , aT

2 , aT
3 ).

Now we notice, using local coordinates, that for every point ȧ ∈ TL M above
ẋ ∈ TM there exists a section a ∈ 0M(L M) such that T a(ẋ) = ȧ, where T a ∈
0TM(TL M) is the section obtained by applying the tangent functor to the section a
of L M . This fact together with identity (18) prove the statement. �

As a consequence we obtain a direct proof of the Courant integrability of the
tangent lift of a Dirac structure L M on M .

Corollary 5.15. Let L M be an almost Dirac structure on M , and consider the
induced almost Dirac structure LTM on TM. Then LTM is Courant integrable
if L M is Courant integrable.

Now consider a multiplicative Dirac structure LG on G. The application of
the Lie functor to the groupoid morphism µLG of Proposition 5.13 yields a Lie
algebroid morphism

A(µLG ) :

3∏
A(pG⊕cG)

A(LG)→ R.

Since A(µLG )= TµLG |A(LG), we conclude:
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Proposition 5.16. For the Lagrangian subbundle L AG = ( j−1
G ⊕ j ′G)A(LG) ⊆

T(AG), we have

A(µLG )= µL AG ◦ ( j−1
G ⊕ j ′G)

(3),

where ( j−1
G ⊕ j ′G)

(3)
:
∏3

A(pG⊕cG)
A(LG)→

∏3
pAG⊕cAG

L AG denotes the natural
extension of ( j−1

G ⊕ j ′G).

Proof. This follows directly from Lemma 5.14 and the fact that jG and j ′G are
suitable restrictions of JG and 2G , respectively. �

Now we are ready to state the main theorem of this work.

Theorem 5.17. Let G be a source simply connected Lie groupoid with Lie alge-
broid AG. There is a one-to-one correspondence between multiplicative Dirac
structures on G and morphic Dirac structures on AG. The correspondence is given
by the map in Theorem 5.12.

Proof. Let LG be a multiplicative Dirac structure on G. Consider the Lagrangian sub-
bundle L AG := ( j−1

G ⊕ j ′G)(A(LG))⊂ TAG. Since µLG ≡ 0, then Proposition 5.16
implies that µL AG ≡ 0. Thus, L AG is a Dirac structure on AG which is clearly
morphic. Notice that the integrability of L AG is also a consequence of Theorem 5.12.
Conversely, consider an element L A ∈Dirmorph(AG); thus L A is a linear Dirac struc-
ture on AG such that L A ⊆ TAG is a VB-subalgebroid. Since G is source simply
connected, TG is the source simply connected Lie groupoid which integrates the
Lie algebroid TAG. As explained in [Bursztyn et al. ≥ 2013], the VB-subalgebroid
L A ⊆ TA integrates to a source simply connected VB-subgroupoid LG ⊆ TG. We
will prove that LG is a multiplicative Dirac structure on G. Since L AG ⊆ TAG is
Lagrangian with respect to the canonical symmetric pairing 〈 · , · 〉AG on TAG, we
conclude from Proposition 5.11 that LG is Lagrangian with respect to the canonical
symmetric pairing 〈 · , · 〉G on TG. It remains to show that LG ⊆ TG is integrable
with respect to the Courant bracket. Equivalently, we have to prove that the Courant
3-tensor µLG ∈0(

∧3L∗G) is zero. Since L A⊆TAG is a Dirac structure, the induced
Courant 3-tensor µL A ∈0(

∧3L∗A) vanishes. Therefore, combining Proposition 5.16
(applied to the zero Lie algebroid morphism) with Lie’s second theorem we conclude
that µLG ≡ 0, as desired. This shows that LG is a Dirac structure on G, which by
definition is multiplicative. �

Remark 5.18. Theorem 5.17 provides a direct proof of the Notice that integrability
of the Lagrangian subbundle L AG ⊂ T(AG) associated to a multiplicative Dirac
structure LG ⊂ TG, without using the theory of LA-groupoids. In spite of this,
we believe that the fact that L AG inherits the structure of a double Lie algebroid is
interesting in itself. This relies on the observation that LG is an LA-groupoid.
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5E. Main examples revisited. We have shown several examples of Dirac groupoids
and Dirac algebroids. See Sections 3 and 4, respectively. Here we will see that
both classes of examples are related by the construction explained in Section 5C.
Throughout this subsection G denotes a Lie groupoid over M with Lie algebroid AG.

5E1. Poisson groupoids and Lie bialgebroids. Consider a multiplicative Poisson
bivector πG on G. It is well known that in this case M ⊆ G is a coisotropic
submanifold and, in particular, the conormal bundle N ∗M ∼= A∗G inherits a Lie
algebroid structure. The Dirac structure LG on G defined by the graph of πG

is a multiplicative Dirac structure. The multiplicativity of this Dirac structure
is equivalent to π ]G : T ∗G → T G being a morphism of Lie groupoids, and the
associated Lie algebroid morphism coincides, up to identifications, with π ]AG :

T ∗(AG)→ T (AG), where πAG denotes the linear Poisson bivector on AG dual to
the Lie algebroid A∗G. One concludes that the corresponding Dirac structure L AG

on AG is exactly the graph of πAG . Since L AG is a Lie subalgebroid of TAG,
the bundle map π ]AG : T ∗(AG) → T (AG) is a Lie algebroid morphism. This
is equivalent to saying that (AG, A∗G) is a Lie bialgebroid. As a corollary of
Theorem 5.17 we obtain:

Corollary 5.19 [Mackenzie and Xu 2000]. Let G be a source simply connected Lie
groupoid with Lie algebroid AG. There is a one-to-one correspondence between
multiplicative Poisson bivectors on G and Lie bialgebroid structures on (AG, A∗G).

5E2. Multiplicative 2-forms and IM-2-forms. Assume that ωG ∈�
2(G) is a mul-

tiplicative closed 2-form on G. The Dirac structure LG given by the graph of
ω
]
G : T G → T ∗G is multiplicative. In this case, the corresponding Dirac struc-

ture L AG on AG is given by the graph of the closed 2-form ωAG := −σ
∗ωcan ,

where σ : AG → T ∗M is defined by σ(u) = iuωG |TM . Since the Dirac struc-
ture L AG is a Lie subalgebroid of T(AG), we conclude that the bundle map
ω
]
AG : T (AG)→ T ∗(AG) is a Lie algebroid morphism. As shown in [Bursztyn et al.

2009a], this is equivalent to the bundle map σ : AG→ T ∗M being an IM-2-form
on AG; that is, for every u, v ∈ 0(AG), the following conditions hold:

• 〈σ(u), ρAG(v)〉 = −〈σ(v), ρAG(u)〉;

• σ [u, v] = LρAG(u)σ(v)−LρAG(v)σ(u)+ d〈σ(u), ρAG(v)〉.

As a corollary of Theorem 5.17, we get:

Corollary 5.20 [Bursztyn et al. 2004]. Let G be a source simply connected Lie
groupoid with Lie algebroid AG. There is a one-to-one correspondence between
multiplicative closed 2-forms on G and IM-2-forms on AG.

5E3. Foliated groupoids and foliated algebroids. Let FG ⊆ T G be a multiplicative
involutive subbundle. Then, the Dirac structure LG = FG ⊕ F◦G is multiplicative.
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The corresponding Dirac structure L AG on AG associated to LG is given by L AG =

FAG ⊕ F◦AG ⊂ T(AG), where FAG := j−1
G (A(FG)) ⊆ T (AG). Since L AG is a

Dirac structure which is also a Lie subalgebroid of T(AG), we conclude that
FAG ⊆ T (AG) is an involutive subbundle which is also a Lie subalgebroid of
T (AG)→ TM . We refer to such a subbundle as a morphic foliation on AG. As a
corollary of Theorem 5.17, we obtain the next result.

Corollary 5.21 [Hawkins 2008]. Let G be a source simply connected Lie groupoid
with Lie algebroid AG. There exists a one-to-one correspondence between multi-
plicative foliations on G and morphic foliations on AG.

As shown in [Hawkins 2008; Jotz and Ortiz 2012], having a morphic foliation
on AG is equivalent to AG be equipped with an IM-foliation, that is, a triple
(FM , K ,∇) where FM ⊆ TM is an involutive subbundle, K ⊆ AG is a Lie subal-
gebroid with ρAG(K )⊆ FM , and ∇ is an FM -connection on AG/K satisfying the
following conditions:

• ∇ is flat.

• If u ∈ 0(AG) satisfies ∇0(FM )(u+ K ) ∈ 0(K ), then [u, 0(K )] ⊆ 0(K ).

• If u, v ∈ 0(AG) are such that ∇0(FM )(u + K ),∇0(FM )(v + K ) ∈ 0(K ), it
follows that ∇0(FM )([u, v] + K ) ∈ 0(K ).

• If u ∈ 0(AG) satisfies ∇0(FM )(u + K ) ∈ 0(K ), then [ρAG(u), 0(FM)] ⊆

0(FM).

The properties as above determine completely the morphic foliation FAG on AG.
In particular, Dirac structures of the form L AG = FAG ⊕ F◦AG are in one-to-one
correspondence with IM-foliations. Additionally, there exists a conceptually clear
interpretation of IM-foliations in terms of representations up to homotopy. See
[Drummond et al. 2013] for more details.

5E4. Dirac Lie groups and Dirac Lie algebras. Let G be a Lie group with Lie
algebra g and let LG ∈ Dirmult(G) be a multiplicative Dirac structure. Consider
the Dirac structure Lg on g associated to LG . It was shown in [Ortiz 2008] that
ker(LG) := LG∩T G is a regular involutive subbundle of T G, in particular ker(Lg)=

j−1
G (A(ker(LG))) is an involutive subbundle of Tg. Since ker(Lg) is a linear

foliation on g, that is, multiplicative with respect to the abelian group structure on g,
then the leaf through 0 ∈ g is a vector subspace h⊆ g. The other leaves are affine
subspaces of g modeled on h. In particular, the space of characteristic leaves of Lg

coincides with the quotient space g/h. The fact that Lg ⊆ Tg is a Lie subalgebroid
implies that h ⊆ g is an ideal. Therefore, the space of characteristic leaves g/h

of Lg inherits a unique Lie algebra structure making the quotient map φ : g→ g/h

into a surjective Lie algebra morphism. Since g/h is the space of characteristic
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leaves of Lg, there is a unique Poisson structure π on g/h making the quotient map
φ : g→ g/h into a forward and backward Dirac map. Since Lg is a morphic Dirac
structure, we conclude that π is a morphic bivector on g/h. In particular, the pair
(g/h, (g/h)∗) is a Lie bialgebra. Conversely, given a Lie algebra g and an ideal
h⊆ g such that (g/h, (g/h)∗) is a Lie bialgebra, then the linear Poisson bivector π
on g/h is morphic. The surjective Lie algebra morphism g→ g/h induces a Dirac
structure Lg on g (the pull-back of π) which is morphic as well. We have proved
the following result.

Proposition 5.22. Let g be a finite-dimensional Lie algebra. There is a one-to-one
correspondence between

(1) morphic Dirac structures on g, and

(2) ideals h⊆ g such that (g/h, (g/h)∗) is a Lie bialgebra.

The proposition above recovers the results of [Ortiz 2008].

5E5. Tangent lifts of Dirac structures. Let LG be a multiplicative Dirac structure
on G. Consider the associated morphic Dirac structure L AG on the Lie algebroid of
G. We can lift LG to a multiplicative Dirac structure on the tangent groupoid T G.
Similarly, as explained in Section 4B3, the morphic Dirac structure L AG can be lifted
to a morphic Dirac structure LT (AG) on the tangent Lie algebroid T (AG)→ TM .
It is straightforward to check that the morphic Dirac structure on T (AG) associated
to LT G as in Theorem 5.17 coincides with the tangent lift LT (AG) of L AG . That is,
the tangent functor commutes with the Lie functor.

5E6. Symmetries of Dirac groupoids. Let LG be a multiplicative Dirac struc-
ture on G. Consider the associated morphic Dirac structure L AG on AG as
in Theorem 5.17. Let H be a Lie group acting freely and properly on G by
groupoid automorphisms 8h : G→ G, h ∈ H . Applying the Lie functor to each
8h : G→ G yields a free and proper H -action on AG by Lie algebroid automor-
phisms A(8h) : AG → AH , h ∈ H . Assume that the H -orbits of G coincide
with the characteristic leaves of LG . Then, the H -orbits of AG coincide with the
characteristic leaves of L AG . We have shown that in this situation we can endow
the space of characteristic leaves G/H of LG with a unique multiplicative Poisson
bivector πG/H making the quotient map G→ G/H into a forward and backward
Dirac map. Similarly, the space of characteristic leaves AG/H of L AG inherits a
unique morphic Poisson structure πAG/H making the quotient map AG→ AG/H
into a forward and backward Dirac map. One can easily see that the morphic Dirac
structure L AG/H associated to πG/H as in Section 5E1 coincides with the morphic
Dirac structure on AG/H given by the graph of πAG/H . As a consequence, the Lie
bialgebroid of (G/H, πG/H ) is exactly (AG/H, (AG/H)∗).
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5E7. B-field transformations. Let LG be a multiplicative Dirac structure on G.
Assume that BG is a multiplicative closed 2-form on G. Consider the Dirac
structure L B

G on G, obtained out of LG by applying the B-field transformation
with respect to BG . As observed in [Bursztyn et al. 2009a], every multiplicative
closed 2-form on G induces a morphic closed 2-form BAG on AG. A direct
computation shows that the morphic Dirac structure L B

AG corresponding to L B
G (as

in Theorem 5.17) is given by the B-field transformation of L AG with respect to
BAG , in agreement with [Ortiz 2012].

5E8. Generalized complex groupoids. Let LG ⊆ TCG be a multiplicative general-
ized complex structure on G. The construction explained in Theorem 5.12 applies
also to the case of multiplicative generalized complex structures. As a result, there
is a morphic Dirac structure L AG ⊆ TC AG given by L AG := ( j−1

G ⊕ j ′G)C(A(LG)),
where ( j−1

G ⊕ j ′G)C : A(TCG) → TC(AG) denotes the complexification of the
canonical isomorphism ( j−1

G ⊕ j ′G) : A(TG)→T(AG). Observe that L AG ⊆TC AG
is in fact a generalized complex structure making the pair (AG, L AG) into a gen-
eralized Lie algebroid. For that, we only need to check that L AG ∩ L AG = {0}.
Indeed, one easily checks that the conjugation map ( · )G : TCG→ TCG is a Lie
groupoid isomorphism. Therefore, the generalized complex structure LG on G
is also multiplicative. Since TCG = LG ⊕ LG , the application of the Lie functor
yields a decomposition

(19) A(TCG)= A(LG)⊕ A(LG).

Straightforward computation shows that the Lie algebroid isomorphism A(( · )G) :
A(TCG)→ A(TCG) satisfies

( j−1
G ⊕ j ′G)C ◦ A(( · )G)= ( · )AG,

where the map of the right hand side of the identity above is the conjugation map
TC(AG)→ TC(AG). Hence, applying the canonical isomorphism ( j−1

G ⊕ j ′G)C :
A(TCG)→ TC(AG) on both sides of (19), gives rise to

TC AG = L AG ⊕ L AG .

Therefore, L AG is transversal to L AG and we conclude that L AG is a morphic
generalized complex structure. In this situation, Theorem 5.17 gives rise to the
following result.

Proposition 5.23 [Jotz et al. 2012]. Let G be a source simply connected Lie
groupoid with Lie algebroid AG. There is a one-to-one correspondence between
multiplicative generalized complex structures on G and morphic generalized com-
plex structures on AG.
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6. Conclusions and final remarks

This work can be considered as the first step toward describing multiplicative Dirac
structures infinitesimally. We have seen that every multiplicative Dirac structure LG

on a Lie groupoid G induces a Dirac structure L AG on its Lie algebroid AG which
is compatible with the algebroid structure in the sense that L AG ⊆ T(AG) is a
Lie subalgebroid. Notice that in the special situation of Poisson groupoids (resp.
multiplicative closed 2-forms, multiplicative foliations) the induced Dirac structure
on AG is equivalent to endowing (AG, A∗G) with a Lie bialgebroid structure
(resp. IM-2-form, IM-foliation). Therefore, it would be interesting to introduce
a suitable notion of IM-Dirac structure, providing a more explicit description of
Dirac structures compatible with a Lie algebroid, unifying different infinitesimal
structures such as Lie bialgebroids, IM-2-forms and IM-foliations. This study will
be part of a future work.
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