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Let (A,m) be a local complete intersection ring. Let M, N be finitely gen-
erated A-modules and let I be an ideal in A. We show that⋃

n≥0

⋃
i≥0

Ass Exti
A(M, I n N)

is a finite set. We also show that there exist i0, n0 such that for all i ≥ i0 and
n ≥ n0 we have

Ass Ext2i
A (M, I n N)= Ass Ext2i0

A (M, I n0 N),

Ass Ext2i+1
A (M, I n N)= Ass Ext2i0+1

A (M, I n0 N).

We prove analogous results for complete intersection rings which arise in
algebraic geometry. We also prove that the complexity, cx(M, I n N), is con-
stant for all n� 0.

1. Introduction

Let A be a Noetherian ring. Let I be an ideal in A and let M be a finitely generated
A-module. M. Brodmann [1979] proved that the set AssA M/I n M is independent
of n for all large n. This result is usually deduced by proving that AssA I n M/I n+1 M
is independent of n for all large n.

We state some generalizations of Brodmann’s result. Fix i ≥ 0. L. Melkersson
and P. Schenzel [1993, Theorem 1] showed that

AssA TorA
i (M, I n/I n+1) and AssA TorA

i (M, A/I n)

are independent of n for all large n. By the same argument,

AssA ExtiA(M, I n/I n+1)
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and, by [Katz and West 2004, 3.5],

AssA ExtiA(M, A/I n)

are similarly independent of n. An example of A. Singh [2000] shows that

AssA lim
→

ExtiA(A/I n,M) need not be finite.

So in this example ⋃
n≥1

AssA ExtiA(A/I n,M) is not even finite.

I state some questions in this area that motivated me. They were raised respectively
by W. Vasconcelos [1998, 3.5] and Melkersson and Schenzel [1993, page 936].

(1) Is the set
⋃
i≥0

AssA ExtiA(M, A) finite?

(2) Is the set
⋃
i≥0

⋃
n≥0

AssA TorA
i (M, A/I n) finite?

The motivation for the main result of this paper came from (1). I do not believe
that the question has a positive answer in this generality, but I am unable to give
a counterexample. Note that if A is a Gorenstein local ring then Vasconcelos’s
question has, trivially, a positive answer. If we change the question a little then we
may ask: If M , D are two finitely generated A-modules,

is the set
⋃
i≥0

AssA ExtiA(M, D) finite?

This is not known for Gorenstein rings in general. However, if A = Q/( f ), where
f = f1, . . . , fc is a regular sequence, and if projdimQ M is finite, then the above
question has a positive answer. This can be seen by using the theory of cohomology
operators over such rings. This turns

⊕
i≥0 ExtiA(M, D) into a finitely generated

module over A[t1, . . . , tc], where ti has degree 2 for each i .
Using Melkerson and Schenzel’s question as a guidepost, I was interested to

solve the the following questions: Let (A,m) be a local complete intersection of
codimension c.

(a) Is the set
⋃
i≥0

⋃
j≥0

AssA ExtiA(M, D/I jD) finite?

(b) Is the set
⋃
i≥0

⋃
j≥0

AssA ExtiA(M, I jD) finite?

In Theorem 5.1 I prove that (b) holds. I have been unable to verify whether (a)
holds.
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Let R(I )=
⊕

n≥0 I ntn be the Rees algebra of I . The main result in this paper
concerns finite generation of a family of Ext modules:

Theorem 1.1. Let Q be a Noetherian ring with finite Krull dimension and let f =
f1, . . . fc be a regular sequence in Q. Set A= Q/( f ). Let M be a finitely generated
A-module with projdimQ M finite. Let I be an ideal in A and let N =

⊕
n≥0

Nn be a
finitely generated R(I )-module. Then

E(N )=
⊕
i≥0

⊕
n≥0

ExtiA(M, Nn)

is a finitely generated bigraded S=R(I )[t1, . . . , tc]-module.

Remark 1.2. See Section 2.3 for a description of E(N ) as a S=R(I )[t1, . . . , tc]-
module.

An easy consequence of this result is that (b) holds (by taking N =
⊕

n≥0 I n D);
see Theorem 5.2. A complete, local complete intersection ring is a quotient of a
regular local ring mod a regular sequence. So in this case (b) holds from Theorem 5.2.
The proof of (b) for local complete intersections in general is a little technical;
see Theorem 5.1. We also prove (b) for complete intersection rings which arise in
algebraic geometry; see Section 6.

We next discuss a surprising consequence of Theorem 1.1. Let (A,m) be a local
complete intersection of codimension c. Let M, N be two finitely generated A-
modules. Let µ(X) denote the number of minimal generators of a finitely generated
A-module X . Define

cxA(M, N )= inf
{

b ∈ N

∣∣∣∣ lim
n→∞

µ(ExtnA(M, N ))
nb−1 <∞

}
.

In Section 7 we prove (see Theorem 7.1) that

(†) cxA(M, I j N ) is constant for all j � 0.

We now describe in brief the contents of this paper. In Section 2 we give a module
structure to E(N ) over S (as in Theorem 1.1). We also discuss a few preliminaries.
The local case of Theorem 1.1 is proved in Section 3 while the global case is proved
in Section 4. In Section 5 we prove our results on asymptotic primes in the case of
local complete intersections. In Section 6 we prove our result on asymptotic primes
in complete intersection rings which arise in algebraic geometry. In Section 7 we
prove (†).

2. Module structure

Let Q be a Noetherian ring and let f = f1, . . . fc be a regular sequence in Q.
Set A = Q/( f ). Let M be a finitely generated A-module with projdimQ M finite.
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We will not change M throughout our discussion. Let I be an ideal in A. Let
R(I )=

⊕
n≥0 I n Xn be the Rees algebra of I . We consider R(I ) as a subring of

the polynomial ring A[X ]. Let N =
⊕
n≥0

Nn be a finitely generated R(I )-module.
Set

E(N )=
⊕
i≥0

⊕
n≥0

ExtiA(M, Nn).

In this section we show E(N ) is a bigraded S = R(I )[t1, . . . , tc]-module. The
grading on S is as follows: we set deg t j = (0, 2) for j = 1, . . . , c, and for a ∈ I s

we set deg aX s
= (s, 0). We also discuss two preliminary results that we will need

later in this paper.

2.1. Let F : · · · Fn→· · ·→ F1→ F0→ 0 be a free resolution of M as an A-module.
Let t1, . . . tc : F(+2)→ F be the Eisenbud operators; see [Eisenbud 1980, Sec-

tion 1]. Then:

(1) The ti are uniquely determined up to homotopy.

(2) Any two of them commute up to homotopy.

Let T = A[t1, . . . , tc] be a polynomial ring over A with variables t1, . . . , tc of
degree 2. Let D be an A-module. The operators t j give well-defined maps

t j : ExtiA(M, D)→ Exti+2
R (M, D) for 1≤ j ≤ c and all i,

which turn Ext∗A(M, D)=
⊕

i≥0 ExtiA(M, D) into a module over T . Furthermore,
these structures depend only on f , are natural in both module arguments and
commute with the connecting maps induced by short exact sequences.

2.2. Gulliksen [1974, 3.1] proved that if projdimQ M is finite then Ext∗A(M, D)
is a finitely generated T -module. If A is local and D = k, the residue field of A,
Avramov [1989, 3.10] proved a converse; that is, if Ext∗A(M, k) is a finitely generated
T -module then projdimQ M is finite. For a more general result, see [Avramov et al.
1997, 4.2].

2.3. Let N =
⊕

n≥0 Nn be a finitely generated module over R(I ). Let a ∈ I s .
Consider u = aX s

∈R(I )s . The map

Nn
u
−→ Nn+s

yields a commutative diagram

Hom(F, Nn)

u
��

t j

// Hom(F, Nn)(+2)

u
��

Hom(F, Nn+s) t j

// Hom(F, Nn+s)(+2).
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Taking homology gives that E(N )=
⊕
i≥0

⊕
n≥0

ExtiA(M, Nn) is a bigraded S-module,
where S=R(I )[t1, . . . , tc].

Remark 2.4. (1) For each i , the R(I )-module
⊕
n≥0

ExtiA(M, Nn) is finitely gener-
ated.

(2) For each n, the A[t1, . . . , tc]-module
⊕
i≥0

ExtiA(M, Nn) is finitely generated.

2.5. Notation. (1) Let N =
⊕
n≥0

Nn be a graded R(I )-module. Fix j ≥ 0. Set

N≥ j =
⊕
n≥ j

Nn.

E(N≥ j ) is naturally isomorphic to the submodule

E(N )≥ j =
⊕
i≥0

⊕
n≥ j

E(N )i j

of E(N ).

(2) If A→ A′ is a ring extension and if D is an A-module then set D′ = D⊗A A′.
Notice that if D is a finitely generated A-module then D′ is a finitely generated
A′-module.

(3) Set S′ = S⊗A A′. Notice that S′ is a finitely generated bigraded A′-algebra.
Let U =

⊕
i≥0

⊕
n≥0

Ui,n be a graded S-module. Then

U ′ =U ⊗A A′ =
⊕
i≥0

⊕
n≥0

U ′i,n

is a graded S′-module.
We state two lemmas that will help us in proving Theorem 1.1.

Lemma 2.6. If E(N≥ j ) is a finitely generated S-module then E(N ) is a finitely
generated S-module.

Proof. Set D=E(N )/E(N≥ j ). We have the following exact sequence of S-modules

0→ E(N≥ j )→ E(N )→ D→ 0.

Using Gulliksen’s result it follows that D is a finitely generated T = A[t1, . . . , tc]-
module. Since T is a subring of S, we get that D is a finitely generated S-module.
Thus if E(N≥ j ) is a finitely generated S-module then E(N ) is a finitely generated
S-module �

Lemma 2.7. (Keep the notation of 2.5(3).) Let A→ A′ be a faithfully flat extension
of rings and let U =

⊕
i≥0

⊕
n≥0 Ui,n be a graded S-module. If U ′ is a finitely

generated S′-module then U is a finitely generated S-module.
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Proof. The set
D= {uin ⊗ 1 | uin ∈Uin,where i, n ≥ 0}

generates U ′ as a S′-module. As U ′ is a finitely generated S′-module, we can
choose a finite subset C of D which generates U ′ as a S′-module. Let

V = 〈u | u⊗ 1 ∈ C〉.

Then V is a finitely generated submodule of U . Notice that U ′ = V ′. Thus
(U/V )⊗A A′ = 0. Since A′ is a faithfully flat A-algebra we get U = V . So U is a
finitely generated S-module. �

3. The local case

In this section we prove Theorem 1.1 when (Q, n) is local. Let m be the maximal
ideal of A. Set k = A/m. Let I be an ideal in A. Let

F(I )=R(I )⊗A k =
⊕
n≥0

I n/mI n

be the fiber cone of I .

3.1. Assume N =
⊕
n≥0

Nn is a finitely generated R(I )-module. Notice that

F(N )= N ⊗A k =
⊕
n≥0

Nn/mNn

is a finitely generated F(I )-module. Define

spread(N ) := dimF(I ) N/mN .

Proof of Theorem 1.1 in the local case.

Case 1: The residue field k= A/m is infinite. We induct on spread(N ). First assume
spread(N ) = 0. This implies that Nn/mNn = 0 for all n � 0. By Nakayama’s
lemma, Nn = 0 for all n� 0; say Nn = 0 for all n ≥ j . Then E(N≥ j ) = 0 and it
is obviously a finitely generated S-module. By Lemma 2.6 we get that E(N ) is a
finitely generated S-module.

When spread(N ) > 0 then there exists u = xt ∈ R(I )1 which is (N⊕F(N ))-
filter-regular, that is, there exists j such that

(0 : N u)n = 0 and (0 : F(N )u)n = 0 for all n ≥ j.

Set N≥ j =
⊕
n≥ j

Nn and U = N≥ j/uN≥ j . We have an exact sequence of R(I )-
modules

0→ N≥ j (−1)
u
−→ N≥ j →U → 0.
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For each n ≥ j the functor HomA(M,−) induces the long exact sequence of
A-modules

0→ HomA(M, Nn)
u
−→ HomA(M, Nn+1)→ HomA(M,Un+1)

→ Ext1A(M, Nn)
u
−→ Ext1A(M, Nn+1) → Ext1A(M,Un+1)

→ · · ·
u
−→ · · · → · · ·

→ ExtiA(M, Nn)
u
−→ ExtiA(M, Nn+1) → ExtiA(M,Un+1)

→ · · ·
u
−→ · · · → · · · .

Using the naturality of Eisenbud operators we have the following exact sequence
of S-modules

E(N≥ j)(−1, 0)
(u,0)
−−→ E(N≥ j)→ E(U ).

By construction,

spread(U )= spread(N≥ j )− 1= spread(N )− 1.

By the induction hypothesis, E(U ) is a finitely generated S-module. Therefore by
Lemma 3.2 we get E(N≥ j ) is a finitely generated S-module. Using Lemma 2.6 we
get that E(N ) is a finitely generated S-module.

Case 2: The residue field k is finite.
In this case we do the standard trick. Let Q′ = Q[X ]nQ[X ]. Set A′ = A⊗Q Q′.

Notice that A′ = A[X ]mA[X ] is a flat A-algebra with residue field k(X) which is
infinite. Notice that f1, . . . , fc is a Q′-regular sequence and Q′/( f ) = A′. Set
I ′ = I A′ and M ′ = M ⊗Q Q′ = M ⊗A A′. Notice that projdimQ′ M ′ is finite. Set
R(I )′ =R(I ′), the Rees algebra of I ′. Then N ′ = N ⊗A A′ is a finitely generated
R(I )′-module. Also note that E(N ′)= E(N )⊗A A′.

By Case 1 we have that E(N ′) is a finitely generated S′-module. So by Lemma 2.7
we get that E(N ) is a finitely generated S-module. �

The next lemma is a bigraded version of Lemma 2.8(1) of [Puthenpurakal 2005].

Lemma 3.2. Let R be a Noetherian ring (not necessarily local) and let B =⊕
i, j≥0 Bi, j be a finitely generated bigraded R-algebra with B0,0 = R. Note that B

need not be standard graded. Set

By =
⊕
j≥0

B(0, j).

Let V =
⊕

i, j≥0
Vi, j be a bigraded B-module satisfying these conditions:

(1) For each i ≥ 0, Vi =
⊕
j≥0

Vi, j is finitely generated as a By-module.
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(2) There exists z ∈ B(r,0) (with r ≥ 1) and a finitely generated bigraded B-module
D such that we have an exact sequence of B-modules

V (−r, 0)
z
−→ V

ψ
−→ D.

Then V is a finitely generated B-module.

Proof. Step 1. We begin by reducing to the case when ψ is surjective. Notice that
D′ = imageψ is a finitely generated bigraded B-module. If ψ ′ : V → D′ is the
map induced by ψ then we have an exact sequence

V (−r, 0)
z
−→ V

ψ ′

−→ D′→ 0.

Thus we may assume ψ is surjective.

Step 2. Choosing generators:

2.1. Choose a finite set W in V of homogeneous elements such that

ψ(W )= {ψ(w) | w ∈W }

is a generating set for D.

2.2. Assume all the elements in W have x-coordinate ≤ c.

2.3. For each i ≥ 0, by hypothesis, Vi is a finitely generated By-module. So we
may choose a finite set Pi of homogeneous elements in Vi which generates Vi

as a By-module.

2.4. Set

G =W ∪
( c⋃

i=0

Pi

)
.

Clearly G is a finite set.

Claim. G is a generating set for V .

Let U be the B-submodule of V generated by G. It suffices to prove that
Ui, j = Vi, j for all i, j ≥ 0. By construction we have that for 0≤ i ≤ c

(*) Ui, j = Vi, j for each j ≥ 0.

We give X := Z≥0×Z≥0 the lex-order �, making it well ordered. So we can
prove our result by induction on X with respect to �.

The base case is (0, 0). In this case U0,0 = V0,0 by (*). Let (i, j) ∈ X \ {(0, 0)}
and assume that for all (r, s)≺ (i, j) we have Ur,s = Vr,s .

Subcase 1: i ≤ c. By (*) we have Ui, j = Vi, j .
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Subcase 2: i > c. Let p ∈ Vi, j . By construction, there exist w1, . . . , wm ∈W ⊆ G
such that

ψ(p)=
m∑

l=1

hlψ(wl), where hl ∈ B.

We may assume that deg hlwl = (i, j) for each l. Set p′ =
m∑

l=1
hlwl ∈ Vi, j . Then

p′ ∈Ui, j and p− p′ ∈ kerψ . So

p− p′ = z · q, where q ∈ V(i−r, j).

If q = 0 then p= p′ ∈Ui, j . Otherwise, note that (i−r, j)≺ (i, j). So by induction
hypothesis, q ∈U(i−r, j). It follows that p∈Ui, j . Thus Vi, j ⊆Ui, j . Since Ui, j ⊆Vi, j ,
by construction it follows that Ui, j = Vi, j . The result follows by induction on X . �

4. The global case

We need quite a few preliminaries to prove the global case of Theorem 1.1. See
Section 4.2 for the difficulty in going from the local to the global case. Note
that in the local case we proved the result by inducting on spread(N ). This is
unavailable to us in the global situation as there are usually infinitely many maximal
ideals in a global ring. Most of this section will discuss two invariants of a graded
R(I )-module N =

⊕
n≥0 Nn . We will use these invariants to prove Theorem 1.1

by induction.

4.1. Notation and conventions. We take the dimension of the zero-module to
be −1. We also set the degree of the zero-polynomial to be −1.

Let P ∈ Spec Q. If P ⊇ f then set p = P/ f . If P + f then any A-module
localized at P is zero. So assume P⊇ f .

(1) R(I )p ∼=R(I Ap) and Sp
∼=R(I )p[t1, . . . , tc].

(2) Mp = MP has finite projective dimension as a QP-module.

(3) E(N )p ∼= E(Np).

4.2. The difficulty in going from local to global. For each p ∈ Spec A it follows
from Section 4.1 that E(Np) is a finitely generated Sp-module. Usually SuppA E(N )
will be an infinite set. So we cannot apply the local case and conclude.

The situation when SuppA E(N ) is a finite set will help in the base step of our
induction argument to prove Theorem 1.1. So we show it separately.

Lemma 4.3. If SuppA E(N ) is a finite set then E(N ) is a finitely generated S-
module.

Proof. We may choose a finite subset C of E(N ) such that its image in E(N )p
generates E(N )p for each p ∈ SuppA E(N ). Set U to be the finitely generated
submodule of E(N ) generated by C .
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Set D=E(N )/U . Notice that Dp= 0 for each p∈ Spec A. So D= 0. Therefore
E(N )=U is a finitely generated S-module. �

4.4. First inductive device. Since N is a finitely generated R(I )-module we have
annA Nn ⊆ annA Nn+1 for all n� 0. Since A is Noetherian it follows that annA Nn

is constant for all n� 0. Call this stable value LN . This enables us to define the
limit dimension of N .

lim dim N = lim
n→∞

dimA Nn = dim A/LN .

Since A has finite Krull dimension we get that lim dim N is finite.

4.5. Let P be a prime ideal in A. If D is a finitely generated A-module then

annAP DP = (annA D)P = (annA D)AP.

Therefore

(LN )P = LNP .

4.6. Note that if lim dim(N )=−1 then N j = 0, say for all j ≥ j0. So E(N≥ j0)= 0.
Using Lemma 2.6 it follows that E(N ) is a finitely generated S-module. The first
nontrivial case is the following:

Proposition 4.7. If lim dim(N )= 0 then E(N ) is a finitely generated S-module.

Proof. This implies that A/LN is Artinian. Say dim Nn = 0 for n ≥ r . Clearly,

SuppA E(N≥r )⊆ SuppA A/LN ,

a finite set of maximal ideals in A. It follows from Lemma 4.3 that E(N≥r ) is
a finitely generated S-module. Using Lemma 2.6 we get that E(N ) is a finitely
generated S-module. �

4.8. Higher-degree filter-regular element. We do not have filter-regular elements
of degree 1 in the global situation. However we can do the following:

Set E = N/H 0
R+(N ). Assume E 6= 0. As H 0

R+(E)= 0 there exists homogeneous
u ∈ R+ such that u is E-regular [Bruns and Herzog 1993, 1.5.11]. Say deg u = s.
Since En = Nn for all n � 0 it follows that the map Ni → Ni+s induced by
multiplication by u is injective for all i� 0. We will say that u is an N filter-regular
element of degree s.

4.9. The second inductive device. We now discuss a global invariant of N which
patches well with local ones.
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4.10. The local invariant. Let (A,m) be local and let W =
⊕

n≥0 Wn be a finitely
generated R(I )-module. Suppose LW = annA Wn for all n ≥ c. Let a⊆ LW be an
ideal. Fix j ≥ 0. Set

da(W, j)=


0 if j < c,
0 if j ≥ c and dim W j < dim A/a,
e(m,W j ) otherwise.

Note that for j ≥ c, W j is an A/a-module. Furthermore da(W, j) is the modified
multiplicity function on the A/a-module W j .

Remark 4.11. Notice if dim W j = dim A/a and j ≥ c then

da(W, j)= dLW (W, j).

Let µ(D) denote the minimal number of generators of an A-module D.

Lemma 4.12. The function da(W,−) is of polynomial type of degree ≤ µ(I )− 1.

Proof. We may assume that the residue field of A is infinite. Set T =R(I )/aR(I )=⊕
n≥0 Tn . Notice T0 = A/a. Let x = x1, . . . , xr be a minimal reduction of m(A/a).

So e(m,−) = e(x,−) [Bruns and Herzog 1993, 4.6.5]. By a result due to Serre
[Bruns and Herzog 1993, 4.7.6], we get that

e(x,W j )=

r∑
i=0

(−1)i`
(
Hi (x,W j )

)
.

Notice Hi (x,W )=
⊕

j≥c Hi (x,W j ) is a finitely generated T/xT -module. Notice
(T/xT )0= A/(a+x) is Artinian. Furthermore (T/xT )1 is a quotient of R(I )1 and
so can be generated by µ(I ) elements. Therefore the function j 7→ `

(
Hi (x,W j )

)
is of polynomial type of degree ≤ µ(I )− 1. The result follows. �

Definition 4.13. θ(a,W ) is the degree of the polynomial function da(W,−).

Remark 4.14. Clearly θ(a,W ) is nonnegative if and only if lim dim W = dim R/a
and is −1 otherwise. Note that if dim A/a= lim dim W then θ(a,W )= θ(LW ,W )

is independent of a.

4.15. The global invariant. Let A be a Noetherian ring with finite Krull dimension.
Let I = (x1, . . . , xs) be an ideal in A. Let W =

⊕
n≥0 Wn be a finitely generated

R(I )-module. We assume that LW = annA Wn for all n≥ c. Let a⊆LW be an ideal.
Set

C(a)= {m |m ∈m-Spec(A),m⊇ a and dim(A/a)m = dim A/a}.

Let I = (x1, . . . , xs). If m ∈ C(a) we have:

(a) Wm =
⊕

n≥0(Wn)m.
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(b) LWm = (LW )m. So am ⊆ LWm .

(c) θ(am,Wm)≤ s− 1.

Define
θ(a,W )=max{θ(am,Wm) |m ∈ C(a)}.

By (c) above we get that θ(a,W ) is finite and is ≤ s− 1.

4.16. Properties of θ(a,W). We describe some properties of θ(a,W ) we need
for the proof of the global case of Theorem 1.1. Let I = (x1, . . . , xs).

(i) θ(a,W )≤ s− 1. This is clear.

(ii) If LW 6= A then θ(LW ,W )≥ 0. It suffices to consider the local case. Note that
then dLW (W, j) > 0 for all j ≥ c. It follows that θ(LW ,W )≥ 0.

(iii) θ(a,W ) = −1 if and only if lim dim W < dim A/a. If θ(a,W ) = −1 then
θ(am,Wm)=−1 for all m ∈ C(a). This is equivalent to saying that lim dim Wm <

dim(A/a)m for all m ∈ C(a). By definition of C(a) we have that

dim A/a= dim(A/a)m for each m ∈ C(a).

Also note that as a⊆ LW we have

lim dim W =max{lim dim Wm |m ∈ C(a)}.

So lim dim W < dim A/a.
Conversely if lim dim W < dim A/a then for all m ∈ C(a) we have

lim dim Wm ≤ lim dim W < dim A/a= dim(A/a)m.

So θ(am,Wm)=−1 for all m ∈ C(a). Thus θ(a,W )=−1.

(iv) If θ(a,W ) ≥ 0 then θ(LW ,W ) ≤ θ(a,W ). By (iii) we get that lim dim W =
dim A/a. By hypothesis we also have a⊆ LW . Since dim A/a= dim A/LW it fol-
lows that C(LW )⊆ C(a). Using Remark 4.11 it follows that θ(LW ,W )≤ θ(a,W ).

(v) Let u ∈R(I )+ be homogeneous of degree b. Assume u is W -filter regular and
Wn 6= 0 for all n� 0. Set E =W/uW . Notice that LW ⊆ LE . Then

θ(LW , E)≤ θ(LW ,W )− 1.

We have nothing to show if θ(LW , E) = −1. So assume θ(LW , E) ≥ 0. Sup-
pose θ(LW , E)= θ((LW )p, Ep) for some p ∈ C(LW ). Since u is W -filter-regular,
multiplication by u induces the exact sequence

0→W j−b→W j → E j → 0 for all j � 0.
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Localization at p yields an exact sequence

0→ (W j−b)p→ (W j )p→ (E j )p→ 0 for all j � 0.

Since dLW p
(−,−) is an additive functor on (A/LW )p-modules we get that

θ
(
(LW )p, Ep

)
= θ

(
(LW )p,Wp

)
− 1.

The result follows since

θ
(
(LW )p, Ep

)
= θ(LW , E) and θ

(
(LW )p,Wp

)
≤ θ(LW ,W ).

Proof of Theorem 1.1. We induct on lim dim N . If lim dim N = −1, 0 then the
result follows from Section 4.6 and Proposition 4.7.

Assume lim dim N ≥ 1 and assume the result holds for all R(I )-modules E with
lim dim E ≤ lim dim N−1. Let x ∈R(I )+ be homogeneous and an N -filter-regular
element. Let deg x = r . Set D = N/x D. By Lemma 2.6 it suffices to assume the
case when x is N -regular.

We now induct on θ(LN , N ). If θ(LN , N ) = 0 then θ(LN , D) ≤ −1, by
Section 4.16(v). Using Section 4.16(iii) we get that

lim dim D < dim A/LN = lim dim N .

By the induction hypothesis (on lim dim) the module E(D) is a finitely generated
S-module. The short exact sequence of R(I )-modules

0→ N (−r)
x
−→ N → D→ 0

induces an exact sequence of S-modules

E(N )(−r, 0)
x
−→ E(N )→ E(D).

By Lemma 3.2 we get that E(N ) is a finitely generated S-module.
We assume the result if θ(LN , N ) ≤ i and prove it when θ(LN , N ) = i + 1.

Let D be as above. So θ(LN , D)≤ i , by Section 4.16(v). If θ(LN , D)=−1 then
the argument as above yields E(N ) to be a finitely generated S-module.

If θ(LN , D)≥ 0 then by Section 4.16(iv) we get that θ(LD, D)≤ θ(LN , D)≤ i .
So by induction hypothesis on θ(−,−) we get that E(D) is a finitely generated
S-module. By an argument similar to the one above we get that E(N ) is a finitely
generated S-module. �

5. Application I: Asymptotic associated primes — the local case

In this section we give an answer to our main motivating question.

Theorem 5.1. Let (A,m) be a local complete intersection. Let M be a finitely
generated A-module. Let I be an ideal in A and let N =

⊕
n≥0

Nn be a finitely
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generated R(I )-module. Then⋃
n≥0

⋃
i≥0

AssA ExtiA(M, Nn) is a finite set.

Furthermore there exist i0, n0 such that for all i ≥ i0 and n ≥ n0 we have

AssA Ext2i
A (M, Nn)= AssA Ext2i0

A (M, Nn0),

AssA Ext2i+1
A (M, Nn)= AssA Ext2i0+1

A (M, Nn0).

Recall a local ring A is said to be a complete intersection if Â= Q/( f1, . . . , fc),
where (Q, n) is a complete regular local ring and f is a Q-regular sequence. If A
is a complete intersection and a quotient of a regular local ring T then it can be
shown that A = T/(g1, . . . , gc), where g is a T -regular sequence (see [Matsumura
1980, 21.2]). In this case Theorem 5.1 holds by the following more general result:

Theorem 5.2. Let Q be a Noetherian ring with finite Krull dimension and let f =
f1, . . . fc be a regular sequence in Q. Set A= Q/( f ). Let M be a finitely generated
A-module with projdimQ M finite. Let I be an ideal in A and let N =

⊕
n≥0

Nn be a
finitely generated R(I )-module. Then⋃

n≥0

⋃
i≥0

Ass ExtiA(M, Nn) is a finite set.

Furthermore there exist i0, n0 such that for all i ≥ i0 and n ≥ n0 we have

AssA Ext2i
A (M, Nn)= AssA Ext2i0

A (M, Nn0),

AssA Ext2i+1
A (M, Nn)= AssA Ext2i0+1

A (M, Nn0).

The following example shows that two sets of stable values of associate primes
can occur.

Example 5.3. Let Q=k[[u, x]], A=Q/(ux). Let M=Q/(u), I = A and N =M[t]
(so Nn = M for all n).

For i ≥ 1 one has (see [Avramov and Buchweitz 2000, 4.3])

Ext2i−1
A (M,M)= 0 and Ext2i

A (M,M)= k.

5.4. We now state a special case of a result due to E. West [2004, 3.2 and 5.1].
Let R = A[x1, . . . , xr ; y1, . . . ys] be a bigraded A-algebra with deg xi = (2, 0)

and deg y j = (0, 1). Let M =
⊕

i,n≥0
M(i,n) be a finitely generated R-module. Then:

(1)
⋃
i≥0

⋃
n≥0

AssA M(i,n) is a finite set.

(2) There exist i0, n0 such that for all i ≥ i0 and n ≥ n0 we have

AssA M(2i,n) = AssA M(2i0,n0), AssA M(2i+1,n) = AssA M(2i0+1,n0).
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Proof of Theorem 5.2. The result follows from our main theorem (1.1) and 5.4. �

We need the following exercise problem from [Matsumura 1980, 6.7, page 42].

Fact 5.5. Let f : A→ B be a ring homomorphism of Noetherian rings. Let U be a
finitely generated B-module. Then

AssA U = {P∩ A |P ∈ AssB U }.

In particular AssA U is a finite set.

There exist complete intersection rings which are not quotients of a regular
local ring (see [Heitmann and Jorgensen 2012]). So Theorem 5.2 does not settle
Theorem 5.1. To prove an analog of Theorem 5.2 for a local complete intersection
we need the following result.

Lemma 5.6. Let (A,m) be a Noetherian local ring. Let Â be the completion of A
with respect to m. Let B be a finitely generated Â-algebra containing Â. Let E
be an A-module such that E ⊗A Â is a finitely generated B-module. Let D be any
A-module. Then:

(a) Ass Â E ⊗A Â is a finite set.

(b) AssA D = {P∩ A |P ∈ Ass Â(D⊗A Â)}.

(c) AssA E is a finite set.

To prove this result we need Theorem 23.3 from [Matsumura 1980]. Unfortu-
nately, there is a typographical error there, so we state it here.

Theorem 5.7. Let ϕ : A→ B be a homomorphism of Noetherian rings, and let E
be an A-module and G a B-module. Suppose that G is flat over A; then we have
the following:

(i) If p ∈ Spec A and G/pG 6= 0 then

aϕ(AssB(G/pG))= AssA(G/pG)= {p}.

(ii) AssB(E ⊗A G)=
⋃

p∈AssA(E)

AssB(G/pG).

Remark 5.8. In [Matsumura 1980], AssA(E⊗G) is written instead of AssB(E⊗G).
Also note that aϕ(P)=P∩ A for P ∈ Spec B.

Proof of Lemma 5.6. We consider the natural ring homomorphisms

α : A ↪→ Â, β : Â ↪→ B.

(a) We use the map β and Fact 5.5 to get our result.

(b) Set X = {P∩ A |P ∈ Ass Â(D⊗A Â)}. We consider the flat map α.
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Let q ∈ X . Say q = P ∩ A, where P ∈ Ass Â D ⊗ Â. By Theorem 5.7(ii),
P ∈ Ass Â Â/p Â for some p ∈ AssA D. Notice Â/p Â 6= 0. By Theorem 5.7.(i) it
follows that p=P∩ A = q. So X ⊆ AssA D.

Conversely, if p ∈ AssA D, then by Theorem 5.7(ii), Ass Â Â/p Â ⊆ Ass Â D⊗ Â.
Notice Â/p Â 6= 0. Let P ∈ Ass Â Â/p Â. Then by Theorem 5.7(i) we have p =

P∩ A ∈ X . Thus AssA D ⊆ X . It follows that AssA D = X .

(c) This follows from (a) and (b). �

Proof of Theorem 5.1. We consider the flat extension α : A→ Â. Say Â = Q/( f ),
where (Q, n) is a regular local ring and f = f1, . . . , fc ∈ n

2 is a regular sequence.

(1) Consider E(N )=
⊕

i≥0
⊕

n≥0 ExtiA(M, Nn) as an A-module. By Theorem 1.1,
E(N )⊗ Â is a finitely generated B =R(I Â)[t1, . . . tc]-algebra. By Lemma 5.6 we
get that AssA E(N ) is a finite set. Notice that

AssA E(N )=
⋃
n≥0

⋃
i≥0

AssA ExtiA(M, Nn).

(2) Set E= E(N ). By Theorem 1.1 there exist i0 and n0 such that for all i ≥ i0 and
n ≥ n0 we have

Ass Â E2i,n ⊗ Â = Ass Â E2i0,n0 ⊗ Â, Ass Â E2i+1,n ⊗ Â = Ass Â E2i0+1,n0 ⊗ Â.

By Lemma 5.6(b) it follows that for all i ≥ i0 and n ≥ n0 we have

AssA E2i,n = AssA E2i0,n0, AssA E2i+1,n = AssA E2i0+1,n0 . �

6. Application II: Asymptotic associated primes — the geometric case

Let V be an affine or projective variety over an algebraically closed field K . Then V
is said to be a local complete intersection if all of its local rings are complete
intersections. Let A be the coordinate ring of V . In the affine case we have Ap is
a complete intersection for all p ∈ Spec(A). In the projective case we have A(p)
is a complete intersection for every p ∈ Proj(A). In this section we prove results
analogous to Theorem 5.1 to coordinate rings of locally complete intersection
varieties.

We first consider the affine case. In this case we prove the following general result.
Recall a ring R is regular (a complete intersection) if Rp is regular (a complete
intersection) for all p ∈ Spec(R).

Theorem 6.1. Let Q be a regular ring of finite Krull dimension and let a be an ideal
in Q with A= Q/a a complete intersection. Let M be a finitely generated A-module
and let I be an ideal in A. Let N =

⊕
n≥0

Nn be a finitely generated R(I )-module.
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Then ⋃
n≥0

⋃
i≥0

Ass ExtiA(M, Nn) is a finite set.

Furthermore there exist i0, n0 such that for all i ≥ i0 and n ≥ n0 we have

AssA Ext2i
A (M, Nn)= AssA Ext2i0

A (M, Nn0),

AssA Ext2i+1
A (M, Nn)= AssA Ext2i0+1

A (M, Nn0).

6.2. Before proving Theorem 6.1 we state the analogous result in the projective
case. Let a be a graded ideal in Q = K [X0, X1, . . . , Xm], where deg X i = 1 for all
i . Here K is not necessarily algebraically closed. Set A = Q/a. We assume A(p)
is a complete intersection for every p ∈ Proj A. Recall that if U is the set of
homogeneous elements in A \ p then A(p) is the degree-zero part of the graded
ring U−1 A.

Let m be the unique maximal homogeneous ideal of A. If E is a graded A-module
then note that all its associate primes are homogeneous prime ideals of A. Set

∗AssA(E)= AssA(E) \ {m},

the relevant associate primes of E . In the projective case our main theorem is this:

Theorem 6.3. (Keep the hypotheses of Section 6.2; note that R(I ) is a bigraded
ring.) Let M be a finitely generated graded A-module and let I be a homogeneous
ideal in A. Let N =

⊕
n≥0 Nn be a finitely generated bigraded R(I )-module (so

each Nn is a graded A-module). Then⋃
n≥0

⋃
i≥0

∗Ass ExtiA(M, Nn) is a finite set.

Furthermore there exist i0, n0 such that for all i ≥ i0 and n ≥ n0 we have

∗AssA Ext2i
A (M, Nn)=

∗AssA Ext2i0
A (M, Nn0),

∗AssA Ext2i+1
A (M, Nn)=

∗AssA Ext2i0+1
A (M, Nn0).

We now prove Theorems 6.1 and 6.3. We begin with the affine case. We need
the following:

Lemma 6.4. Suppose A = Q/a, where Q is a regular ring. Suppose for some
p ∈ Spec A the ring Ap is a complete intersection. Let q ∈ Spec Q with q/a = p.
Then there exist g ∈ Q \ q such that aQg is generated by a Qg-regular sequence.
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Proof. We have Ap = Qq/aQq. Since Ap is a complete intersection it follows
from [Matsumura 1980, 21.2] that aQq is generated by a regular sequence, say
f1, . . . , fc. We may assume fi ∈ a for all i .

Set

E = a
( f1, . . . , fc)

and Di =
( f1, . . . , fi−1) : fi
( f1, . . . , fi−1)

for i = 1, . . . , c.

Let

L = E ⊕
( c⊕

i=1

Di

)
.

Then L is a finitely generated Q-module and Lq = 0. So there exists g ∈ Q \q such
that Lg = 0. In Qg note that aQg = ( f1, . . . , fc)Qg. Also as ( f1, . . . , fc)Qq 6= Qq

we have that ( f1, . . . , fc)Qg 6= Qg. Since (Di )g = 0 for i = 1, . . . , c we get that
f1, . . . , fc is a Qg-regular sequence. �

Proof of Theorem 6.1. Let p ∈ Spec A. Then Ap is a complete intersection. Let
q ∈ Spec Q with q/a= p. Then by Lemma 6.4 there exist g ∈ Q \ q such that aQg

is generated by a Q-regular sequence. Let gp be the image of g in A.
For x ∈ A let D(x)= {P ∈ Spec A | x /∈P}. Then D(x) is a basic open set in

Spec(A). Note that p ∈ D(gp). Clearly

Spec A =
⋃

p∈Spec A

D(gp).

As Spec A is quasicompact we have

Spec A = D(gp1)∪ · · · ∪ D(gpm ) for some m ≥ 1.

Set gi = gpi . Note that for any A-module E we have

AssA E =
m⋃

i=1

(AssAgi
Egi )∩ A,

and that E(N )g = E(Ng). Thus it suffices to prove the result for Agi for each i .
For each i = 1, . . . ,m we have that

Agi =
Qi a regular ring of finite Krull dimension

regular sequence in Qi
.

As Qi is a regular ring of finite Krull dimension we get that projdimQi
Mgi is finite.

So we can apply Theorem 5.2 to get the result. �

To prove Theorem 6.3 we need a few preliminaries. Recall that a Z-graded ring
S =

⊕
n∈Z Sn is said to be ∗-local if it has a unique proper maximal homogeneous

ideal P. Note that P is a prime ideal in S but not necessarily a maximal ideal in S.
The functor −

⊗
SP from the category of graded S-modules to the category of
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SP-modules is faithfully exact, by [Bruns and Herzog 1993, 1.5.15]. The following
result is well known and can be easily proved using the same reference.

Lemma 6.5. Let S =
⊕

n∈Z Sn be a ∗-local Cohen–Macaulay ring with unique
maximal homogeneous ideal P. Let a be a homogeneous ideal in S. If aP is
generated by a regular sequence then a is generated by a regular sequence of
homogeneous elements. Furthermore if C = {xα | α ∈1} is a generating set of a
consisting of homogeneous elements then we may choose x = x1, . . . , xc ∈ C with
a= (x) and x is an S-regular sequence.

To prove Theorem 6.3 we need the following analogue of Lemma 6.4.

Lemma 6.6. Suppose A=Q/a, where Q=K [X0, . . . , Xn] is graded with deg X i=

1 for all i and a is a homogeneous ideal in Q. Suppose for some p ∈ Proj A the
ring A(p) is a complete intersection. Let q ∈ Proj Q with q/a= p. Then there exist
homogeneous g ∈ Q \ q such that aQg is generated by a Qg-regular sequence.

Proof. Set
U = {h ∈ A | h homogeneous and h /∈ p},

W = {h ∈ Q | h homogeneous and h /∈ q}.

Then U−1 A =W−1 Q/W−1a. Also note that some X i /∈ q. It follows that

U−1 A ∼= A(p)[t, t−1
] and W−1 Q ∼= Q(q)[t, t−1

].

Claim. U−1 A is a complete intersection.

To see this, first observe that as Qq is a localization of W−1 Q we have a flat
map Q(q) → Qq of local rings. As Qq is regular we have that Q(q) is regular
(see [Matsumura 1980, 23.7]). Notice that A(p) is a quotient of a regular local
ring Q(q). So by [Bruns and Herzog 1993, 2.3.6], we have that A(p)[t] is a complete
intersection. As U−1 A is a localization of A(p)[t], it is also a complete intersection.

By Lemma 6.5 we have that W−1a is generated by a regular sequence x =
x1, . . . , xc with x ∈ a homogeneous. Set

E = a
(x1, . . . , xc)

and Di =
(x1, . . . , xi−1) : xi
(x1, . . . , xi−1)

for i = 1, . . . , c.

Set

L = E ⊕
( c⊕

i=1

Di

)
.

We have W−1L = 0. Also, L is a finitely generated Q-module. So there exist g ∈W
with Lg=0. In Qg note that aQg= (x1, . . . , xc)Qg. Also, as (x1, . . . , xc)W−1 Q 6=
W−1 Q we have that (x1, . . . , xc)Qg 6= Qg. Since (Di )g = 0 for i = 1, . . . , c we
get that x1, . . . , xc is a Qg-regular sequence. �
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The proof of Theorem 6.3 is similar to that of Theorem 6.1, so we just sketch it.

Sketch of proof of Theorem 6.3. We use Lemma 6.6 and an argument analogous to
the one used Theorem 6.1 to obtain

Proj A = ∗D(g1)∪ · · · ∪
∗D(gr ) for some r ≥ 1,

for some homogeneous gi ∈ A and Agi = Qi/ai , where Qi is regular of finite Krull
dimension and ai is generated by a regular sequence. Note that for x homogeneous,
∗D(x)= {P ∈ Proj A | x /∈P}.

Let E be a graded A-module. Note that

∗AssA E =
r⋃

i=1

(AssAgi
Egi )∩ A.

The result now follows by applying Theorem 5.2 to each Agi = Qi/ai . �

7. Application III: Support varieties

Let (A,m) be a local complete intersection of codimension c. Let M, N be two
finitely generated A-modules. Define

cxA(M, N )= inf
{

b ∈ N

∣∣∣∣ lim
n→∞

µ(ExtnA(M, N ))
nb−1 <∞

}
.

In this section we prove the following theorem:

Theorem 7.1. Let (A,m) be a local complete intersection, M, N two finitely gen-
erated A-modules and let I be a proper ideal in A. Then

cxA(M, I j N ) is constant for all j � 0.

7.2. Reduction to the case when A is complete and the residue field of A is
algebraically closed.

7.3. Suppose A′ is a flat local extension of A such that m′ =mA′ is the maximal
ideal of A′. If E is an A-module then set E ′ = E ⊗A A′. Notice that I ′ ∼= I A′;
we consider it as an ideal in A′. By [Avramov 1998, 7.4.3], A′ is also a complete
intersection. It can be easily checked that

cxA′(M ′, (I ′) j N ′)= cxA(M, I j N ) for all n ≥ 0.

We now do our reduction in two steps.
By [Bourbaki 1983, Chapitre 9, appendice, corollaire du théoréme 1, p. IX.41],

there exists a flat local extension A ⊆ Ã such that m̃ = m Ã is the maximal ideal
of Ã and the residue field k̃ of Ã is an algebraically closed extension of k. By
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Section 7.3 it follows that we may assume k to be algebraically closed. We now
complete A. Note that Â is a flat extension of A which satisfies Section 7.3.

Thus we may assume that our local complete intersection A

(1) is complete. So A = Q/( f1, . . . , fc), where (Q, n) is regular local and
f1, . . . , fc ∈ n

2 is a regular sequence.

(2) has an algebraically closed residue field k.

Of course there exist many Q and f1, . . . , fc of the type as indicated above. We
simply fix one such representation of A.

7.4. Let U, V be two finitely generated A-modules.
Let Ext∗(U, V ) =

⊕
n≥0 ExtnA(U, V ) be the total ext module of U and V . We

consider it as a (finitely generated) module over the ring of cohomological oper-
ators A[t1, . . . , tc]. Since projdimQ U is finite Ext∗(U, V ) is a finitely generated
A[t1, . . . , tc]-module.

7.5. Let C(U, V ) = Ext∗(U, V ) ⊗A k. Clearly C(U, V ) is a finitely generated
T = k[t1, . . . , tc]-module. (Here the degree of ti is 2 for each i = 1, . . . , c). Set

a(U, V )= annT C(U, V ).

Notice that a(U, V ) is a homogeneous ideal.

7.6. We now forget the grading of T and consider the affine space Ac(k). Let

V(U, V )= V(a(U, V ))⊆ Ac(k).

Since a(U, V ) is a graded ideal we get that V(U, V ) is a cone.

7.7. By [Avramov and Buchweitz 2000, 2.4] we get that

dim V(U, V )= cxA(M, N ).

Lemma 7.8. If I is an ideal in A then there exists j0 ≥ 0 such that

V(U, I j V )= V(U, I j0 V ) for all j ≥ j0.

Proof of Theorem 7.1 assuming the lemma. By 7.3 we may assume that A is
complete and has an algebraically closed residue field. The result now follows from
7.7 and Lemma 7.8. �

7.9. Let N =
⊕

n≥0 I nV . Set E(N ) =
⊕

n≥0
⊕

i≥0 ExtiA(U, I nV ). Set C(N ) =
E(N )⊗A k. By Theorem 1.1, E(N ) is a finitely generated S = R(I )[t1, . . . , tc]-
module. It follows that C(N ) is a finitely generated, bigraded, G = F(I )[t1, . . . , tc]-
module. Recall that F(I ), the fiber cone of I , is a finitely generated k-algebra.
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So we may as well consider C(N ) as a bigraded R = k[X1, . . . , Xm, t1, . . . tc]-
module (of course here X1, . . . , Xm are variables). Furthermore deg Xl = (1, 0) for
l = 1, . . .m and deg ts = (0, 2) for s = 1, . . . , c. Set T = k[t1, . . . , tc].

7.10. Advantages of coarsening the grading on C(N). By forgetting the degree
on the ti we may consider R = T [X1, . . . , Xm]. Notice that

C(N )=
⊕
n≥0

C(U, I nV )

as a graded R-module.

Proof of Lemma 7.8. We make the constructions as in Section 7.10. So C(N ) is a
finitely generated graded R = T [X1, . . . , Xm]-module. Notice that R is N-standard
graded. So there exists j0 such that

annT C(N ) j = annT C(N ) j0 for all j ≥ 0.

The results follows. �

Question 7.11 (With hypotheses as in Theorem 7.1).

Is cxA(M, N/I j N ) constant for all j � 0?
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