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THE SHORT TIME ASYMPTOTICS OF NASH ENTROPY

GuoYI XU

Let (M", g) be a complete Riemannian manifold with Re>—-Kg, H(x, y, t)
be the heat kernel on M”, and H = (4rt)~"/?¢~/. Nash entropy is defined
asN(H,t) = [, wn (f H) dp(x) — n/2. We study the asymptotic behavior of
N(H,t)and 9N (H, t)/dt as t — 01 and get the asymptotic formulas at ¢ =0.
In the appendix, we get a Hamilton-type upper bound for the Laplacian of
the positive solution to the heat equation on such manifolds, which is itself
interesting.

1. Introduction

On a complete manifold (M", g) with Rc > —Kg, where K > 0 is a constant,
for fixed y € M", it is well known that the heat kernel H (x, y, t) on (M", g) is
unique. We assume H = (4t)™"?e~f. As in [Ni 2004b], Nash entropy is defined
as follows.

Definition 1.1. N(H, 1) :/ (fH) du(x) — g
MVI

Nash entropy is closely related to ‘W-entropy for the linear heat equation, and
the large time asymptotics of this entropy reflects the volume growth rate of the
manifold; see [Ni 2004a; 2004b; 2010].

In this paper, we study the asymptotic behavior of N(H, t) and o N(H, t)/dt as
t — 0%, and solve Problem 23.36 of [Chow et al. 2010]. More precisely, we prove:

Theorem 1.2. Let (M", g) be a complete Riemannian manifold with Rc > —K g,
where K > 0 is a constant. Then

(1-1) N(H,t)=—3R(Y)-t+ O(?)
and

9
(1-2) S IN(H, )] = —1R(y) +o(D),

where lim sup,_, O (3?7312 is bounded, lim, .o o(1) = 0, and t is small enough.

MSC2010: 35K15, 53C44.
Keywords: Nash entropy, short time asymptotics.

423


http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2013.266-2
http://dx.doi.org/10.2140/pjm.2013.266.423

424 GUOYI XU

One motivation to study the short time asymptotics of Nash entropy is Li—Yau—
Perelman type estimates for the heat equation on manifolds with Ricci curvature
bounded from below. Motivated by Perelman’s differential Harnack estimate for
Ricci flow on a closed manifold (M", g) with Rc > 0, Ni [2004a] proved the
following Li—Yau—Perelman type estimate for the heat equation when ¢ > 0:

fey.n—n _

(1-3) 2Af(x,y,t)—IVf(x,y,t)lerf <0,

where H(x, y, t) = (4wt)™"/?¢~/ is the heat kernel. In fact, (1-3) is also true for
the heat kernel on a complete manifold (M", g) with Rc > 0; see [Chow et al.
2008].

Perelman made the following claim.

Claim 1.3 [Perelman 2002, Remark 9.6]. If (M", g) is a compact Riemannian
manifold, g;;j(x,t) evolves according to (g;;); = A;j(t) and g;j(x,0) = g;;(x),
t € (—T,0]. Define = 09/(dt) — A and its conjugate (J* = —9/(9t) — A — %A
(Where A = g'/ A;j). Consider the fundamental solution u = (—4nt)™"2e=! for
0%, starting as a §-function at some point (p, 0). Then, for general A;;, the function
@f + f/0)(q,t), where f = f — an fu,is of order O(1) for (q,t) near (p,0).

We focus on the special case where the evolving metrics are the static metric.
From Theorem 1.2, it is easy to show that Perelman’s claim in the static metric case
is equivalent to the following claim on compact manifolds:

f(x,)’»l‘)—”
t

(1-4) 2Af (x, y,0) = |V f(x,y, D>+ = —R()+ 0@t +d*(x,y)).

If (1-4) is true, it is an improvement of (1-3) when ¢ + d*(x, y) is small enough
and R(y) > 0. But, using the explicit formula (cf. [Grigor’yan 2009, Section 9.2])

_ 4324 4
H = (4nt) nhd exp( 17 t)
for the heat kernel on a hyperbolic manifold H?, it is easy to check that (1-4) is not
true generally. Hence Claim 1.3 is not generally true for the static metric case on
complete manifolds.

As observed in [Ni 2004b], the integrand of N (H, t)/0¢ is simply the expression
in Li and Yau’s gradient estimate for the heat kernel multiplied with the heat kernel,
which is —(Aln H +n/(2t))H. Because so far there is no sharp Li—Yau-type
gradient estimate for the heat kernel or solutions to the heat equation on complete
manifolds with Ricci curvature bounded from below by a negative constant, we
hope that (1-2) will be helpful in better understanding this estimate.

On the other hand, in the case where (M", g) is a compact Riemannian manifold,
the short time behavior of the logarithm of the heat kernel has been studied by many
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probabilists. Although the heat kernel H (x, y, ) has an infinite sequence expansion
at t = 0, generally there is no such expansion of In H at t = 0, and the singularity
of In H at t = 0 can have many complicated situations. However, Varadhan [1967]
proved

d*(x,y)
—

Moreover, using stochastic processes methods, Malliavin and Stroock proved
[1996] that the above equation is preserved while taking the first and second spatial
derivatives on a domain outside of the cut locus. Using analytic methods, (1-5) was
proved for complete Riemannian manifolds by Cheng, Li, and Yau [Cheng et al.
1981]. We hope that Theorem 1.2 will be useful in studying the short time behavior
of the logarithm of the heat kernel on complete manifolds by analytic methods.

The strategy to prove (1-1) is to use the infinite sequence expansion Hy (x, y, t)
of H(x,y,t) at t =0, although generally In Hy does not converge to In H near
t = 0 uniformly. In the integral sense of Definition 1.1, we show there is a uniform
convergence in Lemma 3.1 by using an improved estimate of H — Hy obtained in
Theorem 2.2. The rest of the calculation of the integral of Hy is standard, but, for
completeness, we give the details.

To prove (1-2), because the manifold M" can be noncompact, we need to be
more careful when switching the order of differentiation and integration. A detailed
proof of the validity of the switch is given in the beginning of Section 4. We need an
upper bound of H;/H to verify the above switch. This type of bound is known for
closed manifolds [Hamilton 1993], and in [Chow et al. 2008] (see also [Ni 2006])
the proof is sketched for complete manifolds with Rc > 0 using a strategy similar to
that in [Kotschwar 2007]. A detailed proof of this Hamilton-type upper bound for
complete manifolds with Rc > —K g is included in the appendix for completeness.

The paper is organized as follows. In Section 2, we state some preliminary results
about the heat kernel and get some improved estimates of H — Hy. In Section 3,
we prove (1-1). In Section 4, using (1-1) and results in the appendix, we prove
(1-2). In the appendix, we prove Hamilton-type upper bound of H;/H on complete
manifolds with Ricci curvature bounded from below.

(1-5) lin(l)tln Hx,y, t)=—
—

2. Preliminaries

We first define some notations and functions. In the rest of the paper, we fix y € M"

and define o
Qy = {x € Ml’l :d(xa )’) < ang(Y)},

where inj,(y) denotes the injectivity radius of the metric g at y. Define

B(p) ={x:d(x,y) <p} and B (p)={x:d(x,2) <p}.
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Hence B(p) = By, (p). V(B;(p)) is used to denote the volume of B, (p) and V_g (p)
is the volume of the geodesic ball of radius p in the constant (—K /(n — 1)) sectional
curvature space form.

Fix r € (0, %injg(y)) and let Ng = n/2 4+ 3. Define

d*(x, y)

E = (471)™"/? exp(— an

2
) and E = (471t)_”/2exp(—d (x,y))

51y )

When the meaning is clear from context, we sometimes simplify notation by
denoting B(r/2) by B and d(x, y) by d.
Assume 7 : [0, 00) — [0, 1] is a C*° cut-off function with

1 ifs<r,

@D n(s) = {o if s > 2r.

The following theorem collects several known results about the heat kernel on
complete manifolds; see, for example, [Chow et al. 2010; Garofalo and Lanconelli
1989; Li 2012].

Theorem 2.1. (M", g) is a complete Riemannian manifold with Rc > —K g, where
K > 0 is a constant. Then there exists a unique positive fundamental solution
H(x, y,t) to the heat equation, which is called the heat kernel. Moreover,

H(x,y,t) € C*(M" x M" x (0, 00))

is symmetric in x and y, and

@)
(2-2) o H(x,y, t)du(x)=1;
(ii)
(2-3) H(x,y, 1) = Pny(x, y, 1) + Fyy(x, y, 1)

(2_4) PN()(x’ y’t):n(d(xvy))HNo(x’y’t)a
- P\
(25)  Hy,(r.y.0) = @)™ exp<—4—y> S ek,
t
k=0
where g (x,y) € C°(R,) andk =0, 1, ..., No. Also, Hy, satisfies

ad
(0 (8= ) Huolx. y.0) = EAgy™:
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(1) let {xk};c’:1 be exponential normal coordinates centered at y € M". Then ¢
and @1 have the asymptotic expansion

(2-7) @o0(x, y) = L+ 5 Ry (MxPx4 4+ O(d* (x, y)),
_ R(y)
(2-8) Pi(x,3) ===+ 0d(x, y)).

We prove an estimate for Fy,. This estimate is an improvement of the usual
estimate of Fy,, which only gives t¥0+1="/2 bound. The improved estimate (2-9)
is the key to the proof of Lemma 3.1.

Theorem 2.2. For Fy,(x,y,t) in Theorem 2.1, we have the following estimates:

d*(x,
(2-9) Pt = Crtexp - 52
2 2 _dZ(X,y)
(2-10) atFNo(x»yJ)‘fCt exp< 5¢ )

where t is small enough and C is a positive constant independent of x, t.

Remark 2.3. (2-9) was proved in [Garofalo and Lanconelli 1989] for uniformly
parabolic operators. Our proof of (2-9) and (2-10) is motivated by an argument in
[Li 2012] and is different from the proof in [Garofalo and Lanconelli 1989].

Proof. (A). We first prove (2-9). From the definition of Py, (x, y, t), it is easy to
see that lim; .o Py, (x, y, ) = 6,(x). In particular,

(2_11) FN()(-x’yvt)=H(-x’yat)_PN()(-xay’t)

t
:_/ 9 H(x,z,t —s)Pn,(z,y,8)du(z)ds
0 3s Mn

B _/0 / <% a AZ)PNo(Z’y’S) “H(x,z,t —5)du(z)ds,

where A is the Laplacian with respect to the variable z.
From (2-6) and the definition of n, when z € B(r),

0 d*(z,y)
(2-12) (55— A:) Pz v 9)| = €os° exp(— - )
and when z € B(2r)\B(r),
- 9 _ —n/2-1 @y
@13 (5= A Pu v, 9| < Cos exp( )
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Hence

(2-14)  [Fyy(x, y, 1)

t
§C1f 53 H(x,z,t—s)exp(—
0 B(r)

t d2 ,
+C2/ s”/21/ H(x,z,t—s)exp(— (z y>>du(z)ds
0 BQr\B(r) 4s

< (a)+(b)
We can find 0 < #; <1 and ky > O such that if s € (0, 11),

2
d Sj’ y))d,u(z)ds

V(B,(+/5)) > kos™/* forany p € B,(3r).

In the rest of the proof, assume ¢ € (0, #;]. We have two cases.

Case 1. If x € By(3r) and z € By(2r), then, from [Li and Yau 1986] and the above
volume lower bound,

(2-15) H(x,z,t—s)

- o 6d>(z, x)
<CV (B, (WT=35)V /(Bz(vf—s))'eXP[CK(t_s)_25(r—s)}
6d%(z,

< C(K. ko n)(t —5)™"" exp<_%>

Case 1l. If x ¢ By(3r) and z € By(2r), using (2-15), d(x, z) > r, and the volume
comparison theorem,

— 1/2
(2-16) H(x,z,t—s) <CV Y B,(V1—5))- [VK(W s +d(x, z))]

V_g (VT =)
2
-exp [CK(I—S)_%}
2
<C(K, ko, n,r)exp (_%)

Note that, in Case I, inj,(x) has a uniform lower bound. Hence it is easy to get

d2(z,
(2-17) / §/2 exp<— (e x)> du(z) < C
By(r) 100s

for any s € (0, 11].
Now, using (2-15), (2-16), (2-17) and the classical inequality

Ce.n) P Pk y)
t—s s o t ’
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we can get

d*(z. y) 23d*(x, y)

H(x,z,t— — d <C —_—).
5o (x,z s)exp( i ) wn(z) exp( 007 )
Hence
23d%(x, y)

2-18 <crt — 7).
(2-18) (a)=C eXP( 100z )
Similarly,

d*(z,
f H(x,z,t—s) exp(— Sj y)>du(z)
By (2r)\By(r) S 3,2 d2(x )

<C - — ).
exP( 100)6Xp( 51 )
Hence
to, 3r? d*(x,y)

2-19 b)<C -1 — d 7
(2-19) b < z[fos exp( 100s) s]exp( = )

d*(x, y)

4 _ )
<Ct exp( 57 )

By (2-18) and (2-19), (2-9) is proved.
(®). The strategy to prove (2-10) is similar.

_FNO(X y, t)_ 8[|: f / __A PNO(Z,y,S)‘H(X,Z,t—s)d/ul,(Z)ds]

// ——A PNO(Z v,s) - ( H(x,z,t— s))d,u(z)ds

+ <Ax - %)PN()(X5 y’t)
=(y)+(v)
From (2-12), (2-13), and Py, (x, y,t) =0, when x ¢ B(2r),
2
(2-20) () < cr* exp(—d (;’ 4 )).
Now we estimate ().
(y) = / f ——A PNO(z, v,8)- (A H(x,z,t —5))du(z)ds

_/0 / A &—AZ>PNO(z,y,S)]-H(x,z,t—S)dM(Z)dS-
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Similarly as with (2-12) and (2-13), from (2-6), when z € B(r),

9 d*(z, y)
(2-21) ‘AZ<£ - Az) Py, (z, ¥, s)‘ < Css exp(— )
and when z € B(2r)\B(r),
d*(z,
(2-22) ‘Az<aa—s — AZ) Pny(z, y, S)‘ < Cys/*3 exp(—%).

Following a similar argument as in the proof of (2-9), using (2-21) and (2-22)
instead of (2-12) and (2-13),

2
2 (y) <ct? exp(_d (;, y)).
From (2-20) and (2-23),
2
%FNO(X, Y, t)| <) +(r) < Ct> exP(_d (;ct, y))‘ -

3. The short time asymptotics of N(H, t)

From (2-5) and (2-7) in Theorem 2.1, there exists 0 < 7y < 1 such that

d?(x,
(3-1) I <@nny? em(%) Hy,(x,y,1) <2

holds when x € B(r/2) and 0 < t <ty. In Sections 3 and 4, we assume that ¢ € (0, #o]
and (M", g) and H are from Theorem 2.1.

Lemma 3.1.

H(x,y,t) } ,
32 W HE O] g o,
. /19(r/2)[nHNO(X,y,Z) @, y, 1) dp(x) ()

Proof. Assume x € B(r/2),t <ty. Then Py,(x, y,t) = Hy,(x, y, t). Hence
FNO(xv yvt) :H(x’ Y, t)_HNO(x’ yvt)-
From (2-9),

d?(x,
(3-3) |FN0(x, v, )| < CtNo+1—n/2 eXp(- (;Ct y))

If Fny(x,y,t) >0,

H
-H
No

In

F F
(x,y,t)=1n<1+ NO)-H< No g
Hy,
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If Fy,(x,y,t) <0, H(x,y,t) < Hy,(x, y, t) and

H
In HN -H (x7y7t):|1nH(xay$t)_1nHN0(xsyst)|'H(xayat)
0
1
:‘E[H(xsy7t)_HN0(x7y’t)]|H(xsyvt)’
where H(x, y,t) <& < Hy,(x, y,t). Hence
2
In H “H|(x,y,1) < m “H = Fy, < CtMt171/2 ex —M .
s Y = H No = P 5
No t

By the above,

H
H

No

From (3-1) and (3-3),

(3-4) |In

d*(x, y) d*(x, y)
4| ns2 eV g _ ’
(x,y,1) <Ct [t exp( 200 ) —i—exp( 57 )]

(3_5) H(x’y,t)S|HN0|+|FN0|

42 (x, d2(x,
< 2(4nr)~"? exp(—%y)) Lot exp(— (; y>).

By (3-4) and (3-5),

(3-6) In “H|(x,y,1) <Cr*.
No
Hence
Hx, y,t
/ [ln&}-H(x,y,t)du(x):O(tz). O
B/l Hny(x,y,1)

Proof of (1-1).
| sHdGu= / (—FH) dp + / (—FH) dp = (1) + (1D,
mn M™\B(r/2) B(r/2)

First we estimate (I). From [Li and Yau 1986], we have

2
H(x,y,0) < CV~'"2(B.(Vi)V (B, (V1) - exp[cm -4 (;’ y)]'

If x e M"\B(r/2) and ¢ is small enough, using the volume comparison theorem,

V_xk (Nt +d) '

- _1 - —
(3-7) H(x,y, 1) < CV™' (B, (V1)) NG

exp[CKt - %]

<cr? exp(—i—j),
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where C depends on n, K, r, and the metric g near y. Choose ¢ small enough such
that H < Ct? < e~ !. Then, by the monotonicity of 4(x) =Inx - x on (0, e 1,

nH(x,y, 1) H(x, y, 1)| < ‘ln[Ctz exp (—g)] - [Ct2 exp(—”é—j)”.

Hence

(3-8) || = ‘/ [lnH+%ln(4nt)] - H du(x)
"\B(r/2)

< [ e exp (<) [ eso ()] e

n 2 d2
+2 ’m(4m) : [Ct exp<—6—)] ) du(x)
2 Jum\B(r/2) t

<o0@?).

In the last inequality, we used Rc > — K g and the volume comparison theorem.

()| = / [m H+n 1n(4rrt)] Hdyu
B(/2) 2

H
= / In—— . H du(x) +/ [m Hy, + 2 1n(471t)] - H du(x)
Btr/2  Hn, B(r/2) 2
— (1) + (IV).
By Lemma 3.1, (II) = O(#?). From Lemma 3.2, which follows,
1
(IV):—g—I—ER(y)-t—I—O(t?’/z). 0

Lemma 3.2.
n

5 3R 140,

(3-9) f [ln Hy,+2 1n(4rrt)] CHdu(x) = —
B(/2) 2

Proof. Set (I) := fB(r/Z) [In Hy, + (n/2) In(4mt)] - H dju(x). From Theorem 2.1,

n d*(x.y) L
) k
In Hy, = —> In(4mt) — P + ln(Z Ort )
k=0
and

No
IH(Z Wk) =Ingo+ 21+ 0().
k=0 %o

Hence

d*(x,
(I):/ [—M—Hnwo—i-ﬂ-t—i-O(tz)]-Hd,u(x).
B(r/2) 4t ®o
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Now using Theorem 2.1(iii),

2 R
(3-100 (D= / [—d— + Ry MxPx? + O(d”) + (ﬂ + O(d))ti|
B/l 4t 6
CHdp(x)+ 0%

= (II) + (III) 4+ (IV) + (V) + (VD) + O (¢?),

where )
(Il) = / (—d &, y)) CHdp(x),
B(r/2) 41
am = & / (Rpg @)x7x) - H dpa ),
B(r/2)
(IV)=Cf d*(x,y)- H(x,y,t)dp(x),
B(r/2)
R
V) = %r/ Hx, y, 1) du(x),
B(r/2)
(VI):CI-/ dx,y)-H(x,y,t)du(x).
B(r/2)
From (3-7),
/ H:f H—/ H=1+0(>.
B(r/2) n "\B(r/2)
Hence

(V)= LR(y) -t + O(t?).
Using (3-5) and the fact that
k —n)2 _x? k)2
/n O (Ix ") (4rr) exp( i )dx_ 0"/,

where k is any nonnegative integer, we can get (IV) = O(t*/?) and (VI) = O (#3/?).
Similarly,
(I = :R(y) -t + O(t?)

Finally, from Lemma 3.3, which follows,
n
(II):—5+éR(y)-t+0(t3/2). 0
Lemma 3.3.

1
3-11) __ d*(x,y) - Hdp(x) = —= + LR(y) -t + 0(*/?).
4¢ B(r/2) 2
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Proof. (I) := —(1/(41)) [, ) d*(x,y)- Hdu(x). Then
1

(3-12) ah =—— d*(x,y) - (Hy, + Fy,) - o dx,
4t Jpir/2)

where dx in the integral of (3-12) is the volume element of Euclidean space R”,
and

@ =/det(g) =1 — LR,y (MxPx? + O(d’(x, y)).

Then
1 d*(x,
) =—— d*(x,y) - (4mt) " ?exp| — () (9o +@1t) - adx + O(t%)
4¢ B(r/2) 4¢
11 . 2 qm \-n2 <_d_2>
_[ m 24R(y)] /sz)d (P exp(— 4 ) dv
1 —n)2 P gy g2 d? 32
b A t)™2(Rpy (1)x"x)d ~exp<——>dx+0(t )
48¢ B(r/2) 4t
1
- [—1/4z _ 1/24R(y)] 2t ol 0GP,
where

n n n
_ 1
I, = . (4rr)™"/? (,;_1 )ka,%) . ( x?) exp(—a . . x?) dx.

i=1 j=1

In the above we diagonalize R,,(y) and let Ay = Ry (y).
We can get I} = 124,72 and the induction formula

n
I,=1,, +4<Z ,\,-)ﬂ +4(n + Dt
i=1

Then it is easy to get
n

(3-13) I, =4(n+2)<Zki)t2 =4(n+2)R(y)r>.
i=1

By all the above (II) = —n/2 + (R(y)/6)t + O (¢3/?). O

4. The short time asymptotics of dN(H, t) /0t

To study dN(H, t)/dt, we must first switch the order of differentiation with inte-
gration. Because the manifold M" can be noncompact, we need to be more careful
when doing this. The following lemma justifies this switch in our case.
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Lemma 4.1.

0

(1) 5[ H(-f) dM(X)] — [ tHEPhdueo.
M)l n

Proof. Define ¢, (x) = ¢(d(x, y)/p), where ¢ is defined in the appendix, p > 1 isa

constant. Fix # > 0 and define G (x, t) = [H(— f)](x, y, t). For any € > 0, assume

1>1>0(f! <0, a similar argument works). Then

‘/‘ G, t+1)—G(x,1)
n [

du(x) — / Grpp du(x)
Mn

5/ |Gt<x,t+sxl)—Gt<x,r>|du<x>+2/ sup |Gy (x, 5] due(x)
B(p) M"\B(p) selt,t+]

2
< [ |howara|duco-t+2 [ s (Gitr o die)
B(p)! 97 M™\B(p) selt,i+]

< () + D).
We first estimate (II). From [Li and Yau 1986], for s € [z, t + 1],

H, [ TIVH> 2n C
(4-2) S | e T e
where C = C(K, n). From Corollary A.10,
@3 T
- —(x,s
H 2 C(K,t+1)
N
<={n+@+Ks)l
—s{” ( S)“H(x,y,s)vl/Z(Bx(\/_s/2>>v1/2<By<\/_s/2‘>>}

oo <l (s(3) (5]

When x € M"\ B(p), using the volume comparison theorem,

o () V(D)
<2|In V(By (@))' ¥ ‘ln VK<\/§>) FInVog (s +d(x, )

<C(Ins|+s+d),

where C is independent of p. From (4-2), (4-3), and (4-4),

H, C
(4-5) (x,5) < —(InH[+|Ins[+s+d)
s

-t
H

when x € M"\ B(p).
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From (4-5), on M"\ B(p),
(4-6) |(=f)H;|(x,s) < [IlnH|+%lln(4ns)l]-IHtI(x,s)
< [llnH|+%|ln(4ns)|]-C|H|-s_1(|1nH|+|lns|+s+d)
< g-H[|lnH|2+|lns|2+s2+d2].
From (4-5) and (4-6), if s € [t,t 4+ ] and x € M"\ B(p),

4-7) |G (x, )]

< [ 11+ Z I+ 1= Hil o)

|

a

C

<=H-(InH|+|lns]| +s+d)+2”—s|H| —|—?H-(|lnH|2+ ns|?+s>+d%)

A «

H-(InH|>+ |lns|® +s>+d?),

< =
s
where C is independent of p. We can choose / smooth enough such that (r +1/) < 2¢.
Then, using (3-7) and (4-7), on x € M"\ B(p),

2 22
(4-8) |Gt(x,s)|§Csexp(—c61—s)-”C+21ns—c6i—s‘ +|1ns|2—|—s2+d2]

) [P+ +ime?+ (dz)z]

T

<C(t+Dexp (_6(zfl+l)

2 2.2
< Ctexp <—%) . [t2+ |lnt|2+ (dT) ]

Hence, for any € > 0, we can find pg > 1 such that if p > po,

€
(4-9) / (sup 1G:(x D @) <
M"\B(p) se[t,t+1]
On the other hand, because 0 <[ < 1,
(4-10) |G (x, 1+ D) du(x) < / sup |Gy (x,s)du(x) < C(p).

B(p) B(p) selt,t+1]

Choose [ <€/(4C(p)). From (4-9) and (4-10), if p > po,
‘/ Gix,t+1)—G(x,1)

4-11)

< €.

)

dpu(x) — / Gippdp(x)
It is easy to see from Lemma 4.3 and its proof that

lim [ G4,

P—=>00 [ pqn
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exists and
(4-12) lim Gip, = / G;.
P—>00 Mn n
From (4-11) and (4-12), we get our conclusion. U

From results in [Cheng et al. 1981], lim;,otIn H = —d2/4 and the limit is
uniform for any x in B(r). Hence we can assume

d*(x, )

tlnH(x,y, t)=— 7

+e(t, x, y).

We sometimes simplify notation by denoting €(¢, x, y) by €. Then
d2
(4-13) t(—f)= —tln(47tt)—z+e

where lim;_,g €(¢, x, y) = 0, and the limit is uniform for any x in B(r). Without
loss of generality, we can assume that ¢g(x, y) > 1/2 when x € B(r/2).

Lemma 4.2.
(4-14) f E(—f)dM(X)=—E+§R(y)‘t+0(t),
B(r/2) 2
(4-15) / E(=f)0(d(x,y))du(x) =o(1),
B(r/2)

where lim;_,go(t)/t = 0.

Proof.

(4-16) /B E(—f)du(x)

L fydp(x)
B Z}ivio Ptk
I ¢
:f<———t>H( fdu(x) +o(t)
%o %

=/<1+ﬁqu(Y)X”xq RO >H( f)+o(@)
B

=i P \ry )t—{—l ()xPx? - H(— f) du(x) + o(t)
B BAVEET 12 | Rra® ® '

In the last equation, we used (1-1).
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We estimate the third term on the right side of (4-16).

@i =gy [ R B o)

_ 1
12

1

2
=— qu(y)x”x"-HNo[—d——i—ln(po]-oedx+0(t)
12 [, 4t

f R pg ()P H[ln Hy, + 1 ln(4nt)]du(x)
B 2

__ b .d?. P4
=~ 15 BE d” - Rpe(0)xPx%dx +o(t)

n+2
1 R(y)t +o(1).

In the last equation above, we used (3-13). From (4-16) and (4-17), we get (4-14).
To prove (4-15), we follow a similar strategy.

1
/E(—f)O(d)dM(X)=/(——(’%t>H(—f)0(d)dM(X)+0(1)
B B\%0 ¢
:/ HNO[lnHNO+ﬂln(47rt)]0(d)du(x)+o(l)
B 2

2
=/ E(—Z—t +ln<po>0(d) du(x)+o(l)=o(1). 0O
B
Lemma 4.3.
[ i p e = 06,
M™\B
where t <K 1 is small enough.

Proof. Similarly as with (4-6), on M"\ B,
c 2 2,2, 12
(4-18) |(—=f) Hil ST-H[IlnHI +[Int|"+1"+d°].
Hence

C C
/ |(_f)Hz|§—/ H-|1nH|2+—/ H(|Int|> +1> +d*)
M™\B t Jun\B t Jum\B

= (I) + (ID).

Similarly as in the proof of (3-8), using (3-7), the volume comparison theorem,
and the monotonicity of #(x) = x(In x)?, when x € (0, e72],

M <0@'?).
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Using (2-9), when x € M"\ B,

2 2 ~
(4-19) H < |nHy,|+ |Fn,| < C|t™?exp _ +1*-exp _d = O(t*)E.
0 0 4¢

5t
From (4-19), it is easy to get
(I < 0(). ([l

Proof of (1-2).

d

sl [ Henan] = [ [m g i e na]a
t M’l

zzﬁ f (— f)H,du(x)—i—/ (=) H; dp(x)
M™\B(r/2) :

B(3)

= 2_t + (D + dD).

From Lemma 4.3, we have
M =o0@'?).
From Lemma 4.4, which follows, we get
=" 4 Lro) 4o, O
2t 2

Lemma 4.4.
1
/B(—f)m dj(x) = —% + 5RO +o(D.
Proof. From (2-10) and (4-13),
/B (= ) Hydp(x) = /B (=)~ (Hyy)e + O(0)
and
/ (= ) (Hxy)r dpa ()
B
d2
. / (45 = 5 )t )+ [ B dueco) +o01)
-1 / Hy(— f)d>dp(x) — - / Hiy(— f)dpe (o) + / Eg1(— P dpu(x) +o(1)
= (D) + (II) + (III) 4+ o(1).
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Using Lemma 4.2,

(III)Z/BEwl(—f)dM(X)Z%R(y)fBE(—f)d/L(X)JF/BE(—f)'O(d)

__"r 1
=~ R0 +o(D).
From (2-9) and (1-1),

=1 fB Hyy(— f) dut(x)

_n _ _n No+1\ T
2I/BH< £) du(x) thBoa VE(— f) du(x)

2

=2 2Ry +o(1)
=2 180 +o.

Similarly, by Lemma 4.5, which follows,
1 No+1 2 2
D= (H +ONTYEY(—f) - d*dp(x) = 2 H(—f)-d*du(x)+o(1)
B

n(n+2)

From all the above,

n 1
/B () Hidip() = =+ 2 R(3) +0(1) 0
Lemma 4.5.
2 n(n+2)
M/H( - dPdpt) = =2 (4 2 RG) + o).

Proof. We use a strategy similar to that used in the proof of (1-1).

1
» /B H(=f) - ddp(x)
1
42

[lnHN E1n(4m)]Haﬂdu(x)+L [1 H ]Hdzdu(x).
o2 412 B Hy,

From (3-6),
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Hence,
1 2
m H(—f)-d”dun(x)
B
= — ——+1 —t+O@°) |Hd" -adx 1
4l2/3[ 4t+n<po+(p0 + O( )] adx +o(1)

R 1
()’)dz n

1 > 1
LR Pyd L LRy — _
/B( T R+ RO =57 4

— 2
=1 v qu(y)xpxq‘d )

-Ed*dx +o(1)
f ERp,(»)xPx9-d* dx +o(1).
Rn

nn+2) n —n’+2n+4
4¢ 24
Define

R
W+ 195

n

anfw Equ(y)xpx"-d4dx:/”E-<Z)»ixi2)'( xj"?) dx,
i=1 j=1

]:

where we diagonalize R, (y) and let A; = R;;(y). We can get Q| = 12017 and
the induction formula

On = Qn-1+8@2n+5) (Z /\l-)ﬁ +8(n° +4n+3)h, - 1.
i=1

Then it is easy to get O, = 8(n>+6n+8)R(y)-t3. Hence

! : _ n+2) 1
@/BH(—f)-d a0 ===+ (54 3) RO +o(). O
Appendix

Richard Hamilton [1993] established an upper bound of the Laplacian of the positive
solution to the heat equation on closed manifolds. We generalize his theorem to
complete manifolds with Ricci curvature bounded below. Our proof follows a
strategy similar to that in [Kotschwar 2007]. We firstly establish a preliminary
estimate on f|Au| so that the maximum principle of Ni and Tam [2004] may be
applied to the quantity of interest in Hamilton’s second derivative estimate.

We introduce a cut-off function ¢ defined on R, which is a smooth nonnegative
nonincreasing function which is 1 on (—oo, 1) and 0 on [2, +00). We can further
assume

(A-1) l¢1<2, 19"+

N2
(@) < 16.
¢

To prove the following Bernstein-type local estimate, we employ a technique of
W.-X. Shi [1989] from the estimation of derivatives of curvature under the Ricci
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flow (see also [Chow et al. 2008]). Define F = (C + ¢|Vu|?)t?|Au|* and consider
the evolution of F.

Lemma A.6. Suppose (M", g) is a complete Riemannian manifold. If |u(x, t)| <M
is a solution to the heat equation on B,(4p) x [0, T for some p € M", constants
M, p,T,K >0,andRc > —Kg on B,(4p),

(A-2) 1|Au| <Cn, K, M)[l + T(l n %)] : (% + 1) : [T —l—coth( Llp)]

holds on B,(p) x [0, T].

Proof. From [Kotschwar 2007], we get that

(A-3) t|Vu|2§C1[1+T(1+#)] — G

holds on B,(2p) x [0, T'], where Cy = C(K, M). Define C3 = 4C>, and
F(x,1) = (C3+1|Vu(x, )| Aulx, 1)[%.

A long but straightforward computation gives

d
——A)F
(3
= —2(C3 +t|VuP)|VAul* =82 > " V;VuVi AuVjuAu — 26 |V?ul* - | Aul®
i,J
+2¢(C 2 2 2 _ 2 2
3+ 1| Vul?) | Aul? + [|Vu|? — 2t Re(Vu, Vu)le?| Aul?.
When x € B,,(4p), using t|Vu|> < C; = 1C3 and Re > —K g,

(% _ A)F < —1083|Vul - [VAul® +83|Vu| - |V Aul - |V2ul - | Aul
—263\V2u|? - |Au|? + Cat|Aul?

< —26\V2ul* - |Aul? + Cut|Aul?,

where C4 = (2KT + 11)C,. The term with the coefficient —% arose from the
inequality —10x2 4 8xy —2y? < —%yz. On the other hand, we know that |V?u|? >
(1/n)|Au|*. Hence

ad 2 5 4 2 1
——A)F<——t Aul*+Cat| Aul? < ——
<8t S5, 1AulrCatlAul = =0

In the last equality we used F < (C3 + C2)t?| Au|* = 5Cot*| Au|?, and

5 C C
(2 AulPP+ 20 Cy < — =0 P24 3
4t t t

(A-4) c5:C(n,K,M)(1+T)[1+T(1+%)],

(A-5) C6=C(n,K,A/L)[1+T<1+%>]_2.
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Define y (x) = ¢ (d(x, p)/p). Then y(x)F(x, t) attains its maximum at a point
(x0, t0) € B,(2p) x [0, T]. The rest of the computation is at (x, f);

d Ce C
0< (E—A)(VF) < y(——F2+ :) — Ay -F—2VyVF.
Note that at (xg, f9), V(y F) = 0. Letting G = (y F)(xo, to), we get
C vyl|? C
(A-6) 05—7602+<2ﬂ—Ay>G+75
Y

and

e ) ) " ’
1AL NNV D U A AN
pPo P op
(A7) 32 2
<= + — -COth( Lp)
P> p I

In the last inequality we used (A-1), Rc > —K g, and the Laplacian comparison
theorem. From (A-4)—(A-7),

2 NPTt K
0<-G°+Cn, K, M)|1+T(1+ 5 T - coth ,o
o n—1
+Co, K, M)[1+ <1+% ] (1+T).

Then it is easy to get

n—1

G5C(n,K,M).[HT(1+%)]2(1+T)-[(%+%)coth( K p)—i—l—i—T(l—i—%)].
Hence, on B, (p),

Plau* <Cy'F <G

< cn i [+ (10 LT[ 01)- (7 reon( K 0)) +1]

Taking the square root in the above inequality, we get our conclusion. U
Letting p — oo, we get the following global estimate.

Corollary A.7. Suppose (M", g) is a complete Riemannian manifold with Rc >
—Kg,and |u(x, t)| < M is a solution to the heat equation on M" x [0, T], where
K, M, T are positive constants. Then

(A-8) t1Au| < C(n, K, M)(1+T)?
holds on M"™ x [0, T].
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We also need a maximum principle, due originally to Karp and Li [1982], which
was stated more generally by Ni and Tam.

Theorem A.8 [Ni and Tam 2004, Theorem 1.2]. Suppose (M", g) is a complete
Riemannian manifold and h(x, t) is a smooth function on M" x [0, T such that

(& -a)fen=o

whenever f(x,t) > 0. Assume that

T
/ / e_a-dz(x,mff(x, s)dp(x)ds < oo
0 n

for some a > 0, where p is a fixed point on M" and fi(x,t) :=max{f(x,1t),0}. If
f(x,0)<O0forallx e M", f(x,t) <O0forall (x,t) e M" x [0, T].

Now we are ready to prove Hamilton’s theorem in the complete case.

Theorem A.9. Suppose (M", g) is a complete Riemannian manifold with Rc >
—Kg,and 0 < u(x,t) <M is a solution to the heat equation on M" x [0, T'], where
K, M, T are positive constants. Then

A Vul?

e 154 :

(A-9) z( ; <n+@+2Kn0n

Proof. Defining u, = u + € for € > 0, we obtain a solution satisfying € < u, <
M+ € =: M. Once the estimate has been proved for u., the theorem follows by
letting € — 0. Consider the function

|Vu5|2 Me
Fx,t)=t| Auc+ —uUc(n+@+2Kt)In— |.

Ue Ue
A long but straightforward computation gives

(A-10) (% — A)F(x, 1) = u6|:—2t|V2 nuc?+ Alnue — (2+2K0)|V Inu, 2

—2tRe(VInue, Vinu,) —2K In &]

€
§ue[—%|Alnue|2+Alnue—2|Vlnu€|2].
If F(x,t) >0 at (x, 1),
2 n
(A-11) —2|VInu| §A1nu€—;.
From (A-10) and (A-11),
ad n

(A-12) (E — A)F(x, 1< ue[—%|Alnu€|2+2Alnue — ?] <" o,
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In (A-3) let p — oo. Then
(A-13) 1|\Vul> < C(K, M, T).
From (A-13) and (A-8),
|Vue|?

2
(A-14) Fi(x,0) < |:t(Aue + )] <C(e,n, K, Mc,T).

Ue

Using (A-14), for any p € M" and p > 0,

T
(A-15) / / exp (—d*(x, p))Fi(x,t)du(x)dt
0 JBy(p)
<C(e,n, K, Mc, T) | exp(—d*(x, p))du(x) <C.
M)’l
In the last equality we used the volume comparison theorem and Rc > — K g. Letting
0 —> 00,

T
(A-16) / / exp —d*(x, p)F2(x, 1) du(x)dt < C < oo.
0 n

From (A-12) and (A-16), using Theorem A.8, we get F(x,t) <Oforall0 <t <T,
completing the proof. ([

We now give an the upper bound for the Laplacian of the heat kernel.

Corollary A.10. Suppose (M", g) is a complete Riemannian manifold such that
Rc> —Kg, H(x, y, t) is the heat kernel on M", and 0 <t < T, where K, T are
positive constants. Then

AH+ vHT? ( 1)
7] X, ¥,

< —2H(x’y’t){ +@+Kt)In CK,T) }
= " H(x, y, OV2(B (i)W 2By (Vi) |
Proof. Note that if s € [t/2, t], from [Li and Yau 1986],
H(x,y,1) <C(K,T)-V'?(By(y/1/2))V'2(By(V1/2)).

Then apply Theorem A.9 on u(x,s) = H(x,y,s +1t/2) and M" x [0, ¢/2]. The
conclusion follows from (A-9). U
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