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SEVERAL SPLITTING CRITERIA FOR
VECTOR BUNDLES AND REFLEXIVE SHEAVES

STEPHEN S.-T. YAU AND FEI YE

In this paper, we show two splitting criteria for vector bundles on complex
projective spaces by analytic method. We also prove a splitting criterion for
reflexive sheaves on Horrocks schemes by algebraic method.

1. Introduction

Vector bundles are favored objects studied in algebraic geometry and commutative
algebra. We say that a vector bundle splits if it is isomorphic to a direct sum of line
bundles. A very interesting problem is whether there are nonsplitting vector bundles
of small ranks on complex projective spaces. Although such vector bundles exist in
lower dimensions, they seem to be extremely rare as the dimension increases. In
fact, Hartshorne conjectured:

Conjecture 1.1 [Hartshorne 1974]. If n ≥ 7, all rank-2 vector bundles on the
projective space Pn split.

Under some additional conditions, the conjecture was proved. However, the
conjecture is still open. The most well-known condition is the vanishing of certain
intermediate (local) cohomology groups. The first splitting criterion of this type is
attributed to Horrocks.

Theorem 1.2 [Horrocks 1964]. Let E be a vector bundle on the projective space Pn

with n ≥ 2. Then E splits if and only if H i (Pn, E(k)) = 0 for all k ∈ Z and
1≤ i ≤ n− 1.

A standard proof is to apply induction to n and use the following so-called
“restriction criterion”.

Theorem 1.3. Let E be a rank-r vector bundle over Pn , with n ≥ 3. E splits if and
only if its restriction E |H to some hyperplane H ∼= Pn−1

⊂ Pn splits.
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Evans and Griffith improved Horrocks’ criterion in the 1980’s.

Theorem 1.4 [Evans and Griffith 1981]. Let E be a vector bundle on the projective
space Pn of rank r < n. Then E splits if and only if H i (Pn, E(k))= 0 for all k ∈ Z

and 1≤ i ≤ r − 1.

Kumar, Peterson and Rao obtained another improvement of Horrocks’ theorem.

Theorem 1.5 [Kumar et al. 2003]. Let E be a vector bundle on Pn . If rank E <

2[n/2], then E splits if and only if H i (Pn, E(k))= 0 for all k ∈Z and 1< i < n−1.

Another type of splitting criteria involves extensibility of vector bundles. Let X
be an algebraic variety and Y be a subvariety of X . A vector bundle E on Y is said
to extend to X if there exists a vector bundle F on X such that F |Y = E . Barth and
van de Ven [1974] showed that a rank-2 vector bundle E on Pn splits if and only
if E extends to PN for all N > n. Their result was generalized to vector bundles of
arbitrary rank by Sato [1977].

For any coherent sheaf F, we denote the dual by F∗ =Hom(F,OX ). The next
theorem combines extensibility and vanishing of cohomology groups.

Theorem 1.6 [Kempf 1990]. Let E be a vector bundle on the projective space Pn

with n ≥ 2 and E∗ be its dual. Then E splits if and only if the following two
conditions are satisfied:

(1) E extends to Pn+1.

(2) H 1(Pn, E ⊗ E∗(−k))= 0 for all positive integer k.

Proofs of the above mentioned theorems are all algebraic. However, the following
remarkable criterion uses an analytic method.

Theorem 1.7 [Luk and Yau 1993]. Let E be a holomorphic vector bundle on CPn

with n ≥ 2 and E∗ be its dual. Then E splits if and only if H 1(CPn, E ⊗ E∗(k))
vanish for all k ∈ Z.

In this paper, we employ Luk and Yau’s idea to provide analytic proofs of some
splitting criteria of vector bundles on complex projective spaces.

Let p :CPn+1
\{ξ}→CPn be the projection from a point ξ ∈CPn+1

\CPn . We
prove the following theorems in this paper.

Theorem A. A holomorphic vector bundle E on CPn splits if and only if p∗E
extends to a vector bundle on CPn+1.

Theorem B. Let E be a holomorphic vector bundle on CPn . If rank E < 2[n/2],
then E splits if and only if the local cohomology groups H i

{ξ}(P
n+1, Ẽ(k))= 0 for

all k ∈ Z and 1< i < n, where Ẽ is the extension of p∗E on CPn+1.

Kumar observed that condition (2) in Theorem 1.6 implies that p∗E extends to
a vector bundle on CPn+1. Thus Theorem A implies the following theorem.
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Theorem 1.8 [Kumar 2003]. Let E be a holomorphic vector bundle on CPn with
n ≥ 2 and E∗ be its dual. Then E splits if and only if H 1(CPn, E ⊗ E∗(−k))= 0
for all positive integer k.

On the other hand, generalizations of splitting criteria to reflexive sheaves and
more general varieties have been obtained. Abe and Yoshinaga [2008] generalized
the restriction criterion for reflexive sheaves on projective spaces. On the other
hand, Bakhtary [2011] generalized the restriction criterion to Horrocks varieties.

Definition 1.9. A coherent sheaf F on X is reflexive if F ∼= F∗∗. It is normal if
for every open set U ⊂ X and every closed subset Y ⊂U of codimension ≥ 2, the
restriction map F(U )→ F(U \ Y ) is bijective. We define the singular locus of F

as Sing(F) := {x ∈ X | Fx is not locally free}.

Definition 1.10. An algebraic variety X is called a splitting variety if H 1(X, L)= 0
for any line bundle L on X . A Horrocks variety is a splitting variety X with
H 2(X, L)= 0 for any line bundle L on X .

In this paper, we prove a generalization of both the theorem of Bakhtary and the
theorem of Abe and Yoshinaga.

Theorem C. Let H be an effective ample divisor on a smooth projective variety X
of dimension dim X ≥ 4. Assume that X is a Horrocks variety. Then a reflexive
sheaf F on X is splitting if and only if the restriction F|H is splitting.

Theorems A and B will be proved in Section 2 and Theorem C will be proved in
the last section.

2. Splitting criteria via connections

Let E be a rank-r complex vector bundle over a complex n-dimensional manifold M .
Denote by Aq and Aq(E) the sheaves of smooth q-forms on M and smooth q-forms
on M with coefficients in E respectively.

Definition 2.1. A connection on E is a C-linear morphism

D :A0(E)→A1(E)

such that for any open subset U of M

D( f γ )= d f ⊗ γ + f D(γ ),

for any f ∈ 0(U,A0) and γ ∈ 0(U,A0(E)).

A connection D of a vector bundle E localized over any open subset U is
determined by a matrix ω = (ωk

j ) of smooth 1-forms, called a connection matrix
of D over U . It is well known that if the complex vector bundle E is holomorphic,
then we have a connection D which can be decomposed into D′ + ∂̄ such that
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D′ : A(0,0)(E)→ A(1,0)(E) and ∂̄ : A(0,0)(E)→ A(0,1)(E), where A(p,q)(E) are
the sheaves of smooth (p, q)-forms with coefficients in E .

Definition 2.2. Let E be a holomorphic vector bundle over Cn+1
\ {0} with a

connection D=D′+ ∂̄ . Denote by
(∑n

j=0 θ
k
i j dz j

)
the connection matrix of D′. We

say D is holomorphic in the direction zl for some 0≤ l ≤ n if the θ k
il are holomorphic

for all 1≤ i, k ≤ r .

Theorem 2.8 of [Luk and Yau 1993] says that the existence of such a connection
will force the cohomology groups H i (Cn+1

\ {0}, E) to vanish for 0< i < n. To
prove our theorems, we will look for such a connection.

Let L be the line in Cn+2 defined by z0= z1= · · · = zn = 0 and ξ = [0, . . . , 0, 1]
be a point in CPn+1

\ CPn . Set X = Cn+2
\ L and U = CPn+1

\ {ξ}. Consider
the projections π : X→U , π((z0, . . . , zn+1))= [z0, . . . , zn+1] and p :U → CPn ,
p([z0, . . . , zn+1]) = [z0, . . . , zn]. It is well known that p defines a line bundle
structure on U . In fact, U is the total space of the line bundle OCPn (1).

Assume that E is a holomorphic vector bundle on CPn . We claim that π∗ p∗E
has a connection which is holomorphic in the direction zn+1. Let D = D′ + ∂̄
be a connection on E . Assume that D′ has a connection matrix ωi

= (ωαβ) over
Ui = {zi 6= 0} ⊂ CPn , and ωαβ =

∑n
j=0 θ

α
β j d(z j/zi ). Pulling back E and the

connection D to X , we see that π∗ p∗E admits a connection whose D′-part is
defined by the connection matrix( n∑

j=0

(θαβ j ◦ p ◦π)
1
zi

dz j −

n∑
j=0

(θαβ j ◦ p ◦π)
z j

(zi )2
dzi

)
,

which is clearly holomorphic in the direction zn+1.
Now we are ready to prove Theorems A and B. The next result is a special case

of Lemma 2.2 in [Luk and Yau 1993].

Lemma 2.3. H i (X, π∗ p∗E)=
+∞⊕

k=−∞

H i (U, p∗E(k)).

Proof. Notice that the projection π : X→U admits a bundle structure whose fibers
are the punctured complex line C∗. In fact, one can check that X is the total space
of OU (1) with the zero section U removed. Applying Lemma 2.2 of [Luk and Yau
1993], we get the equality. �

Denote by ι : CPn+1
\ {ξ} ↪→ CPn+1 the inclusion and Ẽ = ι∗ p∗E the extension

of E . The following proposition is the key to prove Theorems A and B.

Proposition 2.4. Assume that the local cohomology groups

H i
{ξ}(CPn+1, Ẽ(k))= H i+1

{ξ} (CPn+1, Ẽ(k))= 0,

for 0< i < n and all k ∈ Z. Then H i (X, π∗ p∗E)= 0 for 0< i < n.



SPLITTING CRITERIA FOR VECTOR BUNDLES AND REFLEXIVE SHEAVES 453

Proof. By the assumption and the exact sequence of local cohomology

H i
{ξ}(CPn+1, Ẽ(k))→ H i (CPn+1, Ẽ(k))

→ H i (U, p∗E(k))→ H i+1
{ξ} (CPn+1, Ẽ(k)),

we see that
H i (U, p∗E(k))= H i (CPn+1, Ẽ(k)).

Hence H i (U, p∗E(k)) is of finite dimension. By Serre vanishing theorem, there
exists an integer N such that H i (CPn+1, Ẽ(−k))=0 for all integers i, k with |k|≥N
and 1≤ i ≤ n. Therefore there are only finitely many H i (U, p∗E(−k)) 6= 0. Thus
H i (X, π∗ p∗E)=

⊕N
k=−N H i (U, p∗E(−k)) is of finite dimension by Lemma 2.3.

We know that π∗ p∗E admits a connection which is holomorphic in the direc-
tion zn+1. Applying the same argument as in the proof of Theorem 2.8 in [Luk and
Yau 1993], we conclude that H i (X, π∗ p∗E)= 0. �

Theorem A follows very easily from Proposition 2.4.

Theorem A. Let E be a holomorphic vector bundle on CPn . Then E splits if and
only if p∗E extends to a vector bundle on CPn+1.

Proof. Assume that E =
⊕

a OCPn (a). Then p∗OCPn (a) extends uniquely to
OCPn+1(a). Hence Ẽ is a vector bundle, moreover Ẽ splits. Conversely, assume
that Ẽ is a vector bundle, then depthx Ẽ=depth Ẽx=dim Ox=n+1. By [Hartshorne
1967, Proposition 1.4 and Theorem 3.8], we know that H i

{ξ}(CPn+1, Ẽ(−k)) =
0 for all k ∈ Z and i ≤ n. By Proposition 2.4 and Lemma 2.3, we see that
H i (U, p∗E(−k))= 0 for all k ∈ Z and 1≤ i ≤ n. Hence H i (CPn+1, Ẽ(−k))= 0
for all k ∈ Z and 1 ≤ i ≤ n. It follows from Theorem 1.2 that Ẽ splits, and so
does E . �

Another consequence of Proposition 2.4 is the following local cohomology
version of Theorem 1.5 of Kumar, Peterson and Rao.

Theorem B. Let E be a vector bundle on CPn . If rank E < 2[n/2], then E
splits if and only if for all k ∈ Z and 1 < i < n the local cohomology groups
H i
{ξ}(CPn+1, Ẽ(k))= 0.

Proof. It is clear that if E splits then H i
{ξ}(CPn+1, Ẽ(k)) = 0 for all k ∈ Z and

1 < i < n. Assume that H i
{ξ}(CPn+1, Ẽ(k)) = 0 for all k ∈ Z and 1 < i < n. By

Proposition 2.4,

H i (X, π∗ p∗E)=
+∞⊕

k=−∞

H i (U, p∗E(−k))= 0

for 2≤ i ≤ n− 2. In particular, H i (U, p∗E)=
⊕
+∞

k=−∞ H i (CPn, E(−k))= 0 for
2≤ i ≤ n− 2. By Theorem 1.5, we see that E splits. �
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Another local version of Theorem 1.5 was obtained as one of the main theorems
in [Majidi-Zolbanin 2005].

3. Splitting of reflexive sheaves

The proof of Theorem C relies on the following two propositions.

Proposition 3.1. Let F be a reflexive sheaf on a smooth projective variety X and H
be an effective ample divisor X. Assume that H is a splitting variety. If F|H splits
into a direct sum of line bundles, then

H 1(X,F(k H))= 0 for all k ∈ Z.

Proof. By assumption, we have a surjective morphism

(∗) H 1(X,F((k− 1)H)
)
→ H 1(X,F(k H))→ 0.

By Serre duality, H 1(X,F(k H)) ∼= Hom
(
Extn−1(F(k H), ωX ), k

)
. It suffices to

show that Extn−1(F(k H), ωX ) = 0 for k � 0. Consider the spectral sequence of
local and global Ext functors

E p,q
2 = H p(X,Extq(F, ωX ))⇒ E p+q

= Extp+q(F, ωX ).

Since F|H is free, then Sing(F|H )=∅, which implies that Sing(F)∩ H =∅.
Note that the singular locus Sing(F) is a closed subset of X and H is ample. If
dim Sing(F)=d>0, then Sing(F)·H d >0. In particular, Sing(F)∩H 6=∅. There-
fore, dim Sing(F)=0. Since a coherent sheaf F is free at a point p∈ X if and only if
the stalk (Extq(F,G))p = Extq(Fp,Gp)= 0 for all q > 0 and any coherent sheaf G,
we see that dim Supp(Extq(F, ωX ))=0 for q>0. Hence, H p(X,Extq(F, ωX ))=0
for p > 0 and q > 0. Now there are only two E2-terms H 0(X,Extn−1(F, ωX ))

and H n−1(X,Hom(F, ωX )) which may contribute to Extn−1(F, ωX ). Since F is
reflexive, then depthx F ≥ 2 for all x ∈ X by [Hartshorne 1980, Proposition 1.3].
Thus H 1

{x}(Fx) = 0. By local duality, we get Extn−1(Fx , ωX,x) = H 1
{x}(Fx) = 0.

Hence Extn−1(F, ωX ) = 0. The spectral sequence then tells us that there is a
surjective morphism

(∗∗) H n−1(X,Hom(F, ωX ))� Extn−1(F, ωX ).

Since H n−1(X,F∗(−k H)⊗ ωX ) = 0 for −k � 0 by Serre vanishing theorem,
replacing F by F(k H) in (∗∗), we conclude that

Extn−1(F(k H), ωX )= 0 for all k� 0. �

Theorem 3.2. Let E be a vector bundle and F be a reflexive sheaf over a smooth
projective variety X of dimension dim X ≥ 4. Let H be an effective ample divisor
on X. If F|H ∼= E|H and H 1(X,E∗⊗F(−H))= 0, then F∼= E.
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Proof. By the assumption, we see that Hom(E,F)=E∗⊗F is also reflexive. Since
a reflexive sheaf is torsion free, then the following sequence is exact:

0→ E∗⊗F(−H)→ E∗⊗F→ (E∗⊗F)|H → 0.

Since H 1(X,E∗ ⊗F(−H)) = 0, then H 0(X,E∗ ⊗F)→ H 0(H, (E∗ ⊗F)|H ) is
surjective. Note that Hom(E,F)= H 0(X,Hom(E,F)). Therefore, there is a mor-
phism ϕ :E→F extending the isomorphism φ :E|H→F|H . We need to show that ϕ
is an isomorphism. Consider detϕ : det E→ det F. Since E|H ∼=F|H and Pic(X)=
Pic(H) by Grothendieck–Lefschetz theorem, we conclude that det E=OX (c1(E))=

OX (c1(F)) = det F. Therefore detϕ ∈ H 0(X, det E∗⊗ det F)= C because a re-
flexive rank-1 sheaf is a line bundle (see [Okonek et al. 1980, Lemma 1.1.15]).
Clearly, detϕ is a nonzero constant, since detφ is a nonzero constant. Thus at
each x ∈ X \ (Sing(E∗⊗F)), the morphism ϕx is an isomorphism. Since E∗⊗F

is reflexive, then codim(Sing(E∗ ⊗ F)) ≥ 3 and hence ϕ is an isomorphism by
[Hartshorne 1980, Proposition 1.6]. �

Theorem C follows easily from Proposition 3.1 and Theorem 3.2.

Theorem C. Let H be an effective ample divisor on a smooth projective variety X
of dimension dim X ≥ 4. Assume that X is a Horrocks variety. Then a reflexive
sheaf F on X is splitting if and only if the restriction F|H is splitting.

Proof. By [Bakhtary 2011, Proposition 4.13], X is Horrocks if and only if X and all
effective ample divisors are splitting. Clearly, if F is splitting, then F|H is splitting.
Conversely, assume that F|H is splitting. By Grothendieck–Lefschetz theorem,
there is a splitting vector bundle E on X such that E|H = F|H . By Proposition 3.1,
we know that H 1(X,E∗⊗F(−H))= 0. Therefore, E∼= F by Theorem 3.2. �

In [Abe and Yoshinaga 2008], the authors also generalized Horrocks cohomology
criterion for reflexive sheaves on projective spaces. However, Horrocks cohomology
criterion may not hold on Horrocks varieties in general. There exist smooth hyper-
surfaces in P5 with nonsplit vector bundles satisfying the Horrocks cohomology
condition (see Remarks in the introduction of [Kumar et al. 2007]). It will be
very interesting to know under what cohomology conditions a vector bundle on a
Horrocks variety splits.
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