
Pacific
Journal of
Mathematics

THE MINIMAL VOLUME ORIENTABLE HYPERBOLIC
3-MANIFOLD WITH 4 CUSPS

KEN’ICHI YOSHIDA

Volume 266 No. 2 December 2013



PACIFIC JOURNAL OF MATHEMATICS
Vol. 266, No. 2, 2013

dx.doi.org/10.2140/pjm.2013.266.457

THE MINIMAL VOLUME ORIENTABLE HYPERBOLIC
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KEN’ICHI YOSHIDA

We prove that the 84
2 link complement is the minimal volume orientable

hyperbolic manifold with 4 cusps. Its volume is twice the volume V8 of the
ideal regular octahedron; that is, 7.32 . . . = 2V8. The proof relies on Agol’s
argument used to determine the minimal volume hyperbolic 3-manifolds
with 2 cusps. We also need to estimate the volume of a hyperbolic 3-manifold
with totally geodesic boundary which contains an essential surface with non-
separating boundary.

1. Introduction

The volumes of hyperbolic 3-manifolds are known to be topological invariants. The
structure of the set of the volumes of hyperbolic 3-manifolds is known.

Theorem 1.1 (Jørgensen and Thurston’s; see [Benedetti and Petronio 1992, Corol-
laries E.7.1 and E.7.5]). The set of the volumes of orientable hyperbolic 3-manifolds
is a well-ordered set of the type ωω with respect to the order of R. The volume of
an orientable hyperbolic 3-manifold with n cusps corresponds to an n-fold limit
ordinal.

This theorem gives rise to the problem of determining the minimal volume
orientable hyperbolic 3-manifolds with n cusps. The answers are known in the
cases where 0≤ n ≤ 2.

• In the case where n = 0 (closed manifold),
Gabai, Meyerhoff and Milley [2009] showed that the Weeks manifold has

the minimal volume. Its volume is 0.94. . . .

• In the case where n = 1,
Cao and Meyerhoff [2001] showed that the figure-eight knot complement

and the manifold obtained by the (5, 1)-Dehn surgery from the Whitehead link
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84
2

Figure 1. The 84
2 link and a link whose complement is homeomor-

phic to that of the 84
2 link.

complement have the minimal volume. Their volume is 2.02 . . .= 2V3, where
V3 is the volume of the ideal regular tetrahedron.

• In the case where n = 2,
Agol [2010] showed that the (−2, 3, 8)-pretzel link complement and the

Whitehead link complement have the minimal volume. Their volume is
3.66 . . .= 4

∑
∞

k=0(−1)k/(2k+ 1)2 = V8, where V8 is the volume of the ideal
regular octahedron.

In the case where n ≥ 3, Adams [1988] showed that the volume of an n-cusped
hyperbolic 3-manifold is not less than nV3. Agol [2010] conjectured the following:

• In the case where 3≤ n ≤ 10,
the minimally twisted hyperbolic chain link complement has the minimal

volume.

• In the case where n ≥ 11,
the (n− 1)-fold covering of Whitehead link complement has the minimal

volume.

In this paper, we prove this conjecture in the case where n = 4.

Theorem 1.2. The minimal volume orientable hyperbolic 3-manifold with 4 cusps
is homeomorphic to the 84

2 link complement. Its volume is 7.32 . . .= 2V8.

We remark that this link is not the unique one to determine the complement. For
example, the complement of the link on the right of Figure 1 is homeomorphic to
the 84

2 link complement.
We will prove Theorem 1.2 in Sections 4 and 5. The proof owes much to Agol

[2010].

2. Review of Agol’s argument

In this section, we set up some notation and review the argument used by Agol
[2010] to determine the minimal volume of 2-cusped hyperbolic 3-manifolds. We
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treat compact smooth 3-manifolds with boundary and corners. We only consider
surfaces in a compact 3-manifold which are properly embedded or contained in the
boundary. Let I = [0, 1].

Let M be a 3-manifold with boundary. For a properly embedded surface X ⊂ M ,
let M \\ X denote the path-metric closure of M− X . We will say that X is essential
if X is incompressible and ∂-incompressible and has no component parallel to the
boundary. Essential surfaces are not assumed to be connected.

A finite volume orientable hyperbolic 3-manifold can be the interior of a compact
3-manifold with the boundary which consists of tori. Its boundary component is
called a cusp. When we say a hyperbolic manifold in what follows, it often means
this compact manifold. We also consider hyperbolic manifolds with totally geodesic
boundary. In this case there may be annular cusps which adjoin the totally geodesic
boundary. The double of a hyperbolic manifold M with totally geodesic boundary
is the manifold obtained from two copies of M by gluing along the totally geodesic
boundary. Then two annular cusps form one torus cusp in its double.

We introduce the notion of pared manifolds. It was defined by Thurston to
characterize a topological property of geometrically finite hyperbolic manifolds.

Definition 2.1 [Thurston 1986, Section 7; Morgan 1984, Definition 4.8]. A pared
manifold is a pair (M, P) such that
• M is a compact orientable irreducible 3-manifold,

• P ⊂ ∂M is a union of annuli and tori which are incompressible in M ,

• every abelian, noncyclic subgroup of π1(M) is peripheral with respect to P
(that is, conjugate to a subgroup of the fundamental group of a component of
P), and

• every map φ : (S1
× I, S1

× ∂ I )→ (M, P) which induces injective maps on
the fundamental groups deforms, as maps of pairs, into P .

We call P the parabolic locus of the pared manifold (M, P), and an annular
component of P is called a pared annulus. We denote the surface ∂M − int(P) by
∂0 M .

Let (M, P) be a pared manifold. If every map ψ : (S1
× I, S1

×∂ I )→ (M, ∂0 M)
that induces injective maps on the fundamental groups deforms either into ∂0 M or
into P , then we call (M, P) acylindrical.

Since a finite volume orientable hyperbolic 3-manifold is atoroidal, it is a pared
manifold by letting its parabolic locus be the cusp tori. Conversely:

Theorem 2.2. Let (M, P) be an acylindrical Haken pared manifold, and assume
that ∂0 M is incompressible. We assume that M is not a 3-ball, a T 2

× I or a solid
torus. Then M− P admits a finite volume hyperbolic structure with totally geodesic
boundary ∂0 M. This hyperbolic structure is unique up to isometry.
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Since the double DM of an acylindrical pared manifold (M, P) is atoroidal,
DM admits a finite volume hyperbolic structure, where DM is obtained from two
copies of M by gluing along ∂0 M . Then the diffeomorphism swapping the two
copies of M can be taken to be an isometry. The fixed point set ∂0 M is totally
geodesic [Leininger 2006, Lemma 2.6].

When a hyperbolic manifold is cut along an essential surface, the obtained
manifold is a pared manifold.

Lemma 2.3 [Agol 2010, Lemma 3.2]. Let M be a finite volume orientable hy-
perbolic 3-manifold, and ∂M be the parabolic locus P of M. Let X ⊂ M be an
essential surface. Then (M \\ X, P \\ ∂X) is a pared manifold.

Theorem 2.4 (JSJ decomposition for a pared manifold; see [Jaco and Shalen 1979;
Johannson 1979; Morgan 1984, Section 11]). Let (M, P) be a pared manifold such
that ∂0 M is incompressible. There is a canonical set of essential annuli (A, ∂A)⊂
(M, ∂0 M) called the characteristic annuli. It is characterized up to isotopy by the
property that they are the maximal collection of nonparallel essential annuli such
that every other essential annulus (B, ∂B)⊂ (M, ∂0 M) may be relatively isotoped
to an annulus (B ′, ∂B ′)⊂ (M, ∂0 M) so that B ′∩ A=∅. Then each complementary
component (L , ∂0L)⊂ (M \\ A, ∂0 M \\ ∂A) is one of the following types:

(1) (T 2
× I, (T 2

× I )∩ ∂0 M), where one of the boundary components T 2
× ∂ I is

a torus component of P.

(2) (S1
×D2, (S1

×D2)∩∂0 M), which is a solid torus with annuli in the boundary.

(3) (I -bundle, ∂ I -subbundle), which is an I -bundle over a surface whose Euler
characteristic is negative, and the I -bundle over the boundary is contained in
A∪ P.

(4) (L , L ∩ ∂0 M), where L has no essential annuli whose boundary is contained
in L ∩ ∂0 M.

A neighborhood of a torus component of P is either of type 1 or of type 4. One
of the boundary components T 2

× ∂ I of type 1 is a torus component of P , and
the intersection of the other boundary component and ∂0 M is a union of essential
annuli in the torus. The intersection (S1

× D2)∩ ∂0 M in a component of type 2
is a union of essential annuli in ∂(S1

× D2). The union of components of type 3
is called the window. A component of type 4 is the acylindrical pared manifold
(L , L−∂0 M). The union of the components of type 4 is called the guts and denoted
by Guts(M, P). A torus boundary component of the guts is a torus component
of P .

The definition of guts in [Agol 2010] is a bit different from ours. There, the guts
are defined to be the union of types 1, 2 and 4. The definition in [Agol et al. 2007]
is same as ours, and it is appropriate for our purpose.
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Let M be a finite volume orientable hyperbolic manifold. For an essential surface
X ⊂ M , (M \\ X, P \\ ∂X) is a pared manifold by Lemma 2.3. Therefore, we can
define Guts(X)= Guts(M \\ X, P \\ ∂X). Then the components of Guts(X) admit
hyperbolic structures with geodesic boundary by Theorem 2.2. Hence the volume
vol Guts(X) is defined. This volume is not greater than the volume of M .

Theorem 2.5 [Agol et al. 2007, Theorem 9.1]. Let M be a finite volume orientable
hyperbolic manifold, and X ⊂ M be an essential surface. Then

vol M ≥ vol Guts(X)≥
V8

2
|χ(∂ Guts(X))|.

Moreover, the refinement by Calegari, Freedman and Walker (in [Calegari et al.
2010, Theorem 5.5]) implies that M is obtained from ideal regular octahedra by
gluing along the faces when the equality holds.

The estimate of vol Guts(X) from below in Theorem 2.5 follows from the fol-
lowing theorem.

Theorem 2.6 [Miyamoto 1994, Theorem 5.2]. Let M be a hyperbolic manifold
with totally geodesic boundary. Then vol M ≥ V8/2|χ(∂M)|. Moreover, M is
obtained from ideal regular octahedra by gluing along their faces when the equality
holds.

Lemma 2.7. Let M be a finite volume orientable hyperbolic 3-manifold, and X⊂M
be a nonempty essential surface. Then each component of Guts(X) has negative
Euler characteristic.

Proof. Since the Euler characteristic of every closed 3-manifold is 0, we have
χ(Guts(X)) = 1

2χ(∂ Guts(X)). Assume that there is a component L of Guts(X)
such that χ(L)≥ 0. Since no component of ∂ Guts(X) is a sphere, χ(L)= 0 and
∂L consists of tori. Since M is atoroidal, ∂L ⊂ ∂M . This implies L = M by
connectedness of M . This contradicts the fact that X is not empty. �

This lemma implies that χ(∂ Guts(X))≤−4 if Guts(X) is not connected.

We will use annular compressions to obtain a surface whose guts are not empty.

Definition 2.8. Let (X, ∂X)⊂ (M, ∂M) be an essential surface in a 3-manifold. A
compressing annulus is an embedding i : (S1

× I, S1
×{0}, S1

×{1}) ↪→ (M, X, ∂M)
such that

• i∗ induces injective maps on π1,

• i(S1
× I )∩ X = i(S1

×{0}), and

• i(S1
×{0}) is not isotopic in X to ∂X .
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X
i(S1 × I)
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Figure 2. An annular compression.

An annular compression of (X, ∂X) ⊂ (M, ∂M) is the surgery along a com-
pressing annulus i(S1

× I ). Let U be a regular neighborhood of i(S1
× I ) in M \\X ,

and put ∂0U = ∂U ∩ (X ∪ ∂M) and ∂1U = ∂U − (X ∪ ∂M). Then the surface
X ′ = (X − ∂0U )∪ ∂1U is called the annular compression of X . If X is essential,
X ′ is also essential. We will say that A0 = ∂U ∩ ∂M is the annulus in the boundary
created by the annular compression (Figure 2). This annulus is not contained in the
window of M \\ X ′.

Lemma 2.9 [Agol 2010, Lemma 3.3]. Let M be a finite volume orientable hyper-
bolic manifold. Let X ⊂ M be an essential surface. If X has a compressing annulus,
let X ′ be the annular compression of X. Then the annulus in the boundary created
by this annular compression is not contained in the window of M \\ X ′.

The following lemma is used in the proof of [Agol 2010, Theorem 3.4]. Lemmas
2.9 and 2.10 imply that a torus or an annulus in the boundary is contained in the
boundary of the gut regions after we perform annular compressions as many times
as possible.

Lemma 2.10. Let M and X be as above. We assume that a T 2
× I component or

an S1
× D2 component intersects a component T of ∂M. Then we can perform an

annular compression for X toward T .

The following theorem is a result in [Culler and Shalen 1984, Theorem 3]. We
will use it to find an essential surface to start the proof of Theorem 4.3.

Theorem 2.11. Let M be a finite volume orientable hyperbolic manifold with n
cusps, and let ∂M = T1 ∪ · · · ∪ Tn , where Ti is a torus for 1 ≤ i ≤ n. Let k be an
integer such that 1 ≤ k ≤ n. Then there is an essential surface X ⊂ M such that
∂X ∩ Ti 6=∅ for 1≤ i ≤ k and ∂X ∩ (Tk+1 ∪ · · · ∪ Tn)=∅.

3. Essential surfaces in 3-manifold with boundary

In this section we find an essential surface in a hyperbolic 3-manifold with geodesic
boundary. Using this we will estimate the volume of a hyperbolic 3-manifold
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with geodesic boundary with at least 4 cusps. Essential surfaces are found by
a homological argument for 3-manifolds, and it is not necessary to assume the
hyperbolic structure.

Lemma 3.1 [Hatcher 2007, Lemma 3.5]. Let M be a compact orientable 3-manifold.
Then the rank of the boundary homomorphism ∂∗ : H2(M, ∂M;Q)→ H1(∂M;Q)
is half of the dimension of H1(∂M;Q).

Lemma 3.2. Let L be an orientable hyperbolic 3-manifold with geodesic boundary
S, with k annular cusps A1, . . . , Ak and with n−k torus cusps Tk+1, . . . , Tn , where
1 ≤ k ≤ 3 and n ≥ 4. Assume that χ(S)=−2. Then there is an essential surface
Y ⊂ L such that Y ∩ S =∅ and [∂Y ] 6= 0 ∈ H1(∂L;Z).

Proof. The union S′ = S ∪ A1 ∪ · · · ∪ Ak is a closed surface of genus 2. We note
that there are only two types of essential closed curves in S′; one separates S′ and
the other does not. There are no pairs of disjoint separating curves in S′.

We can take k − 1 annuli of {A1, . . . , Ak} such that the complement of them
is connected. The image of ∂∗ : H2(L , ∂L;Q) → H1(∂L;Q) is a subspace of
H1(∂L;Q) ∼= Q2(n−k)+4 of dimension n − k + 2, by Lemma 3.1. We consider
the subspace V of H1(∂L;Q) spanned by all the elements represented by curves
in A1, . . . , Ak−1, Tk+1, . . . , Tn . Since the dimension of V is 2(n − k)+ (k − 1),
V intersects Im(∂∗) in a nontrivial subspace of H1(∂L;Q). Hence there exists a
nonzero element z in H2(L , ∂L;Q) such that ∂∗z 6= 0 and z belongs to V . By taking
a multiple of z, there exists a nonzero element z′ in H2(L , ∂L;Z) such that ∂∗z′ 6= 0
and ∂∗z′ is represented by a union of closed curves in A1, . . . , Ak−1, Tk+1, . . . , Tn .
We can find an essential surface Y representing z′ such that

∂Y ⊂ A1 ∪ · · · ∪ Ak−1 ∪ Tk+1 ∪ · · · ∪ Tn. �

4. Estimate of volume

Now we are going to estimate the volume of a hyperbolic manifold with geodesic
boundary. Lemma 3.2 and Theorem 4.1 imply that the volume of an orientable
hyperbolic 3-manifold with 4 cusps and with geodesic boundary is not less than 2V8.

Theorem 4.1. Let L be an orientable hyperbolic 3-manifold with geodesic bound-
ary S. Suppose that there is an essential surface Y ⊂ L such that Y ∩ S = ∅
and [∂Y ] 6= 0 ∈ H1(∂L;Z). Then there is an essential surface Y ′ such that
χ(∂ Guts(L \\ Y ′))≤−4 and vol L ≥ 2V8.

If χ(S) ≤ −4, then vol L ≥ 2V8 by Theorem 2.6. Hence we may assume that
χ(S)=−2. Let S′ denote the surface which is the union of S and the annular cusps
of L . ∂L consists of S′ and the torus cusps of L .

We will find an essential surface Y ′ such that χ(∂ Guts(L \\ Y ′)) ≤ −4. Then
χ(∂ Guts(DL \\ (DY ′ ∪ S)) ≤ −8, where DL is the double of L (the hyperbolic
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manifold obtained from two copies of L by gluing along the geodesic boundary S)
and DY ′ is the union of two copies of Y ′ in DL . Then Theorem 2.5 implies
vol DL ≥ 4V8, and so vol L ≥ 2V8.

We will find a gut component intersecting S. For this we need to know how a
window component intersects S.

Lemma 4.2. Let L , S and Y be as above. Assume that S intersects a component
(J, ∂0 J ) of the window of L \\Y . Then (J, ∂0 J ) is a product I -bundle and intersects
S only on one component of the ∂ I -bundle.

Proof. Suppose that the base space of J is nonorientable. Since ∂0 J is connected,
∂0 J ⊂ S. We take a simple closed curve α in J such that α is projected to an
orientation-reversing loop in the base space of J . There is a simple closed curve
β in ∂0 J such that [β] = [α]2 ∈ π1(DL) ⊂ Isom+(H3). If β is homotopic to the
boundary of ∂0 J , the base space of J is a Möbius band. It contradicts the definition
of the window. Hence [β] ∈ π1(S)⊂ Isom+(H2) is hyperbolic element. The simple
closed curve β is homotopic to a simple closed geodesic β ′ in S [Ratcliffe 2006,
Theorem 9.6.5]. But the fact that [β ′] = [α]2 contradicts the fact that an element
represented by a simple closed geodesic in a hyperbolic manifold has no roots
[Ratcliffe 2006, Theorem 9.6.2]. Therefore no twisted I -bundle intersects S.

Suppose that the base space of J is orientable and both components Q0 and Q1

of ∂0 J are contained in S. Since χ(Q0) = χ(Q1) < 0, there are (not necessarily
simple) closed curves γi ⊂ Qi (i = 0, 1) such that γi is not homotopic to the
boundary of Qi and γ0 and γ1 are homotopic in L . Let γ ′i be the closed geodesic in
Qi homotopic to γi . Since L is totally geodesic, the two closed geodesics γ ′0 and
γ ′1 are homotopic in L . It contradicts the uniqueness of the closed geodesic in a
homotopy class. Therefore a product I -bundle intersects S on at most one side of
the ∂ I -bundle. �

Proof of Theorem 4.1. Let Y0 be an essential surface in L such that Y0 ∩ S = ∅
and [∂Y0] 6= 0 ∈ H1(∂L;Z). Moreover let |χ(Y0)| be minimal among the surfaces
satisfying these conditions. Since L has no essential sphere, disk, torus or annulus,
χ(Y0) < 0. Let p : L \\ Y0→ L be the natural projection.

(i) First we consider the case where S intersects a component (J, ∂0 J ) of the window
of L \\Y0. Then χ(J ) is equal to −1 or −2. We will show that χ(J )=−1. Assume
that χ(J ) = −2. S ∩ p(J ) is a 2-punctured torus or a 4-punctured sphere. (If
it is a closed surface, Y0 ∩ p(J ) is a component of Y0 which is parallel to S′. It
contradicts that Y0 is essential.) Let Y ′0 be the surface which is the union of annuli
(Figure 3) and Y0− (Y0∩ p(J )). If there is an annulus in L−Y0 whose boundary is
two components of the frontier of Y0− (Y0 ∩ p(J )), we glue Y0− (Y0 ∩ p(J )) and
this annulus (the upper of Figure 3). Since Y0 ∩ p(J ) is connected, the orientation
matches. Otherwise, there is an annular cusp which is homotopic to the frontier of
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S′
J

Y0

Y ′
0

S′

Y0

J

annular cusp

Y ′
0

S′

S′

Figure 3. Constructions in the case where S intersects a component
of the window whose Euler characteristic is −2.

Y0− (Y0 ∩ p(J )). Then we can glue Y0− (Y0 ∩ p(J )) and the two annuli, where
one of the boundary components of each annulus is contained in this annular cusp
(the lower of Figure 3). Then [Y ′0, ∂Y ′0] = [Y0, ∂Y0] ∈ H2(L , ∂L;Z). We obtain an
essential surface from Y ′0 by compressing if necessary. Then |χ(Y ′0)| < |χ(Y0)|,
contradicting the choice of Y0. Therefore χ(J )=−1.

We will find an essential surface Y1 such that S intersects only one component
of the window of L \\ Y1. If S intersects only one component of the window of
L \\ Y0 already, put Y1 = Y0. Suppose that S intersects two components (J, ∂0 J )
and (J ′, ∂0 J ′) of the window of L \\ Y0. Let Y ′0 be the surface which is the union
of Y0− (Y0 ∩ p(J )) and a surface in p(J ′) (Figure 4). Then

[Y ′0, ∂Y ′0] = [Y0, ∂Y0] ∈ H2(L , ∂L;Z).

Note that since the orientation may not match, we cannot construct a surface as in
Figure 3. If Y ′0 is not essential, we obtain an essential surface simpler than Y0 by
compressing Y ′0. Since this Y ′0 is essential.

Suppose that S intersects two components of the window of L \\ Y ′0 again. Then
one of these two components is contained in p(J ′). We can perform the above
construction again and remove a part of Y ′0 which is contained in the boundary of
the window. Since no I -bundle can intersect S essentially along both components
of the boundary by Lemma 4.2, the part of the obtained surface in p(J ′) is not
contained in the boundary of the component of the window which intersects S and
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S′

Y0

Y ′
0

S′

Y0

annular cusp

Y ′
0

S′

S′J J ′

J J ′

Figure 4. Constructions in the case where S intersects 2 compo-
nents of the window whose Euler characteristics are −1.

lies on the same side as p(J ). Hence the above construction can be performed only
finitely many times.

Let Y1 be the essential surface obtained by performing the above construction as
many times as possible. The Euler characteristic of the intersection of S and the
window of L \\ Y1 equals −1. Therefore the Euler characteristic of the intersection
of S and Guts(L \\ Y1) is equal to −1. In particular, Guts(L \\ Y1) 6=∅.

We will find an essential surface Y2 such that χ(∂ Guts(L \\ Y2)) ≤ −4. If
χ(∂ Guts(L \\ Y1)) ≤ −4, put Y2 = Y1. Suppose that χ(∂ Guts(L \\ Y1)) = −2.
Since the Euler characteristic of ∂ Guts(L \\ Y1)− S′ is equal to −1, it is either a
1-punctured torus or a 3-punctured sphere.

Suppose that ∂ Guts(L\\Y1)−S′ is a 1-punctured torus. Then ∂ Guts(L\\Y1)−S′

can contain a pared annulus, and Y1 ∩ ∂ Guts(L \\ Y1) is a 1-punctured torus or a
3-punctured sphere. If Y1 ∩ ∂ Guts(L \\ Y1) is a 1-punctured torus, let Y ′1 be the
surface which is the union of Y1 − (Y1 ∩ ∂ Guts(L \\ Y1)) and a surface in p(J ′)
(Figure 5). If Y1∩ ∂ Guts(L \\Y1) is a 3-punctured sphere, we obtain the surface Ỹ1

by modifying Y1 around the pared annulus in ∂ Guts(L \\ Y1)− S′ (Figure 6). Here
Ỹ1 ∩ ∂ Guts(L \\ Y1) is a 1-punctured torus. Thus we obtain an essential surface Y ′1
as the union of Ỹ1− (Ỹ1 ∩ ∂ Guts(L \\ Y1)) and a surface in p(J ′) (Figure 5).

Suppose that ∂ Guts(L \\ Y1)− S′ is a 3-punctured sphere. ∂ Guts(L \\ Y1)− S′

does not contain a pared annulus. Let Y ′1 be the surface which is the union of
Y1− (Y1 ∩ ∂ Guts(L \\ Y1)) and a surface in p(J ′).
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S′

S′
annular cusp S′

S′

Y1

Y1

guts

guts

window

window
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Figure 5. Constructions in the case where ∂ Guts(L \\ Y1)=−2.

pared annulus

Y1 Ỹ1

Y1 ∩ ∂Guts(L \\Y1) Ỹ1 ∩ ∂Guts(L \\Y1)

Figure 6. A construction around a pared annulus in the boundary
of Guts(L \\ Y1)− S′.

We have obtained a surface Y ′1 in these ways. Then, in general, we have
[Y ′1, ∂Y ′1] 6= [Y1, ∂Y1] ∈ H2(L , ∂L;Z), but [∂Y ′1] = [∂Y1] 6= 0 ∈ H1(∂L;Z). Since
|χ(Y1)| = |χ(Y0)|, Y1 is essential.

Since Y1∩∂ Guts(L \\Y1) cannot be contained in the window of L \\Y ′1, it follows
that S ∩ ∂ Guts(L \\ Y1) is not contained in the window of L \\ Y ′1. Hence we can
consider that Guts(L \\ Y ′1) contains S ∩ ∂ Guts(L \\ Y1). Since Y1 is essential, the
added surface in the window is not contained in Y ′1 ∩ ∂ Guts(L \\ Y ′1). Hence the
above construction can be performed only finitely many times.
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Let Y2 be the essential surface obtained by performing the above construction
as many times as possible. Then χ(∂ Guts(L \\ Y2)) is no longer equal to −2, and
χ(∂ Guts(L \\ Y2))≤−4.

(ii) Suppose that S intersects no component of the window of L \\ Y0. Then
χ(Guts(L \\Y0)∩S)=−2. Assume that χ(∂ Guts(L \\Y0))=−2. ∂ Guts(L \\Y0) is
a closed surface which is the union of a surface in S and annuli. Since L is atoroidal,
∂ Guts(L \\Y0) contains the closed surface S′. Hence ∂ Guts(L \\Y0) consists of S′

and some torus cusps of L . The connectivity of L implies that L = Guts(L \\ Y0).
It contradicts that Y0 is nonempty. Therefore χ(∂ Guts(L \\ Y0))≤−4. �

We prove the essential part of Theorem 1.2.

Theorem 4.3. Let M be an orientable hyperbolic manifold with 4 cusps. Then
vol M ≥ 2V8. Moreover, if vol M = 2V8, M is obtained from two ideal regular
octahedra by gluing along the faces.

Proof. It is sufficient to find an essential surface X ⊂ M such that χ(∂ Guts(X))≤
−4. Then Theorem 4.3 follows from Theorem 2.5.

Let T1, . . . , T4 be the cusps of M . We take an essential surface X0 such that
X0 ∩ T1 6=∅ and X0 ∩ Ti =∅(2≤ i ≤ 4) by Theorem 2.11. We perform annular
compressions for X0 as many times as possible to obtain an essential surface X1.
When annular compression is performed, the number of boundary components
of the surface increases and its Euler characteristic does not change. Since the
Euler characteristic of each component of the obtained essential surface is negative,
annular compressions can be performed only finitely many times.

We will show that Guts(X1) intersects T2, . . . , T4. Let k be the number of cusps
intersecting X1(1 ≤ k ≤ 4). Let T1, . . . , Tk be the cusps intersecting X1. Let
A2, . . . , Ak be the annuli in T2 \\ ∂X1, . . . , Tk \\ ∂X1 created by the last annular
compressions to T2, . . . , Tk . Since there are no compressing annuli any more,
Lemma 2.10 implies that A2, . . . , Ak are not contained in a solid torus component
of the JSJ decomposition of M \\ X1 and Tk+1, . . . , T4 are not contained in a
T 2
× I component of it. Since compressing annuli to different cusps can be taken

disjointly, we may change the order of annular compressions to different cusps. By
Lemma 2.9, A2, . . . , Ak are not contained in the window of M \\ X1. Therefore
A2, . . . , Ak, Tk+1, . . . , T4 ⊂ ∂ Guts(X1).

If Guts(X1) is not connected, then χ(∂ Guts(X1)) ≤ −4 as desired. Suppose
that Guts(X1) is connected. Then A2, . . . , Ak, Tk+1, . . . , T4 are contained in one
component N of M \\X1. We will find an essential surface X2 such that ∂ Guts(X2)

contains at least 4 pared components.

(i) Suppose that (T1 \\∂X1)∩N 6=∅. If N =Guts(X1), let A1 be an annulus which
is a component of (T1 \\ ∂X1)∩ N . Otherwise let A1 be an separating annulus of
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the JSJ decomposition intersecting Guts(X1). In either case, A1 is a pared annulus
of Guts(X1) different from A2, . . . , Ak . Then it is sufficient to put X2 = X1.

(ii) Suppose that (T1\\∂X1)∩N =∅. Let X ′1= X1∩ p(N ), where p : M \\X1→M
is the natural projection. Then X ′1 is an essential surface in M and T1 ∩ X ′1 = ∅.
X ′1 is the union of the components of X1 intersecting N . If we cannot perform an
annular compression for X ′1 to T1, Guts(X ′1) contains a neighborhood of T1 which
is in the complement of N . Since Guts(X ′1) is not connected, χ(∂ Guts(X ′1))≤−4.
Then it is sufficient to put X2 = X ′1.

If we can perform an annular compression for X ′1 to T1, we obtain X2 by
performing annular compressions to T1 as many times as possible. Let A1 be
the innermost annulus in T1. Since X1 is obtained by performing annular com-
pressions as many times as possible, there is no compressing annulus for X ′1 to
A2, . . . , Ak, Tk+1, . . . , T4 in p(N ). Hence there is no compressing annulus for
X2 to A2, . . . , Ak, Tk+1, . . . , T4 in p(N ). Since the surface which is obtained by
filling X ′1 with A2, . . . , Ak consists of components of a surface in the process
of the annular compression from X0 to X1, it is essential. This implies that
A1, . . . , Ak are not contained in the window of M \\ X2 by Lemma 2.9. Therefore
A1, . . . , Ak, Tk+1, . . . , T4 ⊂ Guts(X2).

Finally, we will find an essential surface X such that χ(∂ Guts(X)) ≤ −4. If
k = 4, the 4 annuli A1, . . . , A4 are disjoint and not homotopic to each other in the
nontorus components of ∂ Guts(X2). This implies that χ(∂ Guts(X2))≤−4. Then
it is sufficient to put X = X2.

If 1 ≤ k ≤ 3, vol Guts(X2) ≥ 2V8 by Theorem 4.1. Therefore vol M ≥ 2V8 by
Theorem 2.5. But we need to find X in order to prove that M is obtained from 2
octahedra when the equality holds. Lemma 3.2 and Theorem 4.1 imply that there is
an essential surface Y in Guts(X2) such that χ(∂ Guts(Guts(X2)\\Y ))≤−4. Then
Y intersects some of A1, . . . , Ak, Tk+1, . . . , T4, where A2, . . . , Ak, Tk+1, . . . , T4

are contained in ∂M . If A1 is contained in ∂M or does not intersect Y , X3 ∪ Y is
properly embedded in M . Since Guts(X2 ∪ Y )= Guts(Guts(X2) \\ Y ), we obtain
χ(∂ Guts(X2∪Y ))≤−4. Then it is sufficient to let X = X2∪Y . If A1 is contained in
the interior of M and intersects Y , X3∪Y is not properly embedded in M . Suppose
that A1∩Y is the union of l simple closed curves. Let X be the union of 2 surfaces
parallel to Y , X2∩∂ Guts(X2) and l+1 times of X2−∂ Guts(X2) (Figure 7). Since
Guts(X) is homeomorphic to Guts(Guts(X2) \\ Y ), χ(∂ Guts(X))≤−4. �

5. Realization of hyperbolic manifold

In this section we will prove that an orientable hyperbolic 3-manifold obtained
from 2 ideal regular octahedra by gluing along the faces is homeomorphic to the
complement of the 84

2 link. This completes the proof of Theorem 1.2.
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A2

A3

T4

A1

T1

Y

X2

A2

A3

T4

A1

T1

X

Figure 7. A construction of an essential surface the boundary of
whose guts is no more than −4.

Thurston [1980, Chapter 6, Example 6.8.6] calculated the volume of the com-
plement of the 84

2 link to be 2V8. SnapPy [Culler and Dunfield unskip] has the list
of the orientable hyperbolic 3-manifolds obtained from 8 ideal regular tetrahedra
by gluing along the faces. These imply the uniqueness of the minimal volume
orientable hyperbolic 3-manifold with 4 cusps, but we prove it here by an elementary
argument examining the possible ways of gluing along the faces of 2 octahedra.

The 12 vertices of the 2 octahedra correspond to the 4 cusps of the hyperbolic
manifold. We look at the number of vertices corresponding to each cusp. Since
the edge angles of an ideal regular octahedron are right angles, 4 edges of the 2
octahedra should be glued together.

Claim 5.1. If there is a cusp consisting of one vertex x , the faces around x are
glued as in Figure 8(a). If there is a cusp consisting of 2 vertices a and b, the faces
around a and b are glued as in Figure 8(b).

Proof. If there is a cusp consisting of one vertex x , the 4 edges around x are glued
together, and each face around x is glued with the opposite face.

Suppose there is a cusp consisting of 2 vertices a and b. Assume that a and b
are contained in one octahedron. If a and b are adjacent, no edges can be glued

(a)

x

A

A

B B
1 1

1 1

2

2

3 3I

II II

II II

(b)

a

A

B

C D
1 2

2 1

3

3

3

3

4 4I

III II

II III

b

A

B

C D
2 1

1 2
4 4I

II III

III II

Figure 8. Face gluings for a one-vertex cusp (a) and a two-vertex
cusp (b). In each case, edges with the same number are to be
identified, and likewise with vertices. Unprimed faces are to be
identified with their primed counterparts.
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a b a b

A A′B

B′

Gluing A,B and A′, B′

A A′

B B′

x y

An arrow from a capital indicates a back face from now on.

Figure 9. An impossible example in the case where two vertices
form a cusp. Face A is glued to A′ and B to B ′.

with the edge between a and b. If b is opposite to a, we can glue no pairs of faces
which are contained in different octahedra. This contradicts the connectivity. Hence
a and b are contained in different octahedra.

We consider how the 8 edges around a are b are glued. Since a and b are glued,
the 4 edges around a cannot be glued together. If 3 edges around a and one edge
around b are glued together, 2 adjacent faces around a are glued (the left of Figure 9).
Then the edge between the 2 faces can be glued with no edges. Hence 2 edges
around a and 2 edges around b are glued together. Assume that adjacent edges
around a are glued. Let x and y be the vertices opposite to a and b, respectively.
If x and y form 2 cusps with themselves, there are 2 edges glued with no other
edges. Since there are 4 cusps, there is a cusp consisting of x and y. There are 2
edges glued with no other edges even in this case (the right of Figure 9). Therefore
opposite edges around a are glued and the way of gluing is determined. �

Claim 5.2. There is no cusp consisting of 3 vertices.

Proof. Assume that there is a cusp consisting of 3 vertices a, b and c. If a, b and
c are vertices of one octahedron, 2 positions are possible (the left of Figure 10).
If a, b and c are the vertices of one face, this face cannot be glued with another
face. Otherwise, at least one of a, b and c is contained in a face of the octahedron
containing a, b and c. This implies that no pair of faces of different octahedra
can be glued. Hence a, b and c are not contained in one octahedron. We assume
that b and c are contained in one octahedron without loss of generality. Then 2
positions are possible (the right of Figure 10). If b and c are adjacent, no edges can
be glued with the edge between b and c. Hence c is opposite to b. Let x be the
vertex opposite to a. Since only the 4 faces around x do not contain a, b or c, the 4
faces cannot be glued with any faces of the other octahedron.

Assume that x does not form a cusp with itself. Suppose that adjacent faces
around x are glued. Then the 5 vertices except a of the octahedron containing a are
glued together. There are 2 vertices y and z which form 2 cusps with themselves
on the octahedron containing b and c. The 4 vertices around y are glued together
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a

b c

a

b

c

a b

c

a b

c

Figure 10. Positions of three vertices.

These points form two cusps with themselves.

a b

cx

These points form 2 cusps with themselves.

Figure 11. Five vertices of an octahedron cannot be glued together.

by Claim 5.1 (Figure 11). This contradicts that b is glued only with a and c. Hence
opposite faces around x are glued.

Suppose that opposite faces A and B around x are glued with a twist, that is, the
2 vertices corresponding with x in A and B are not glued. Then 2 opposite vertices
on the octahedron containing a are glued with x . Since the 5 vertices except a of
the octahedron containing a cannot be glued together, the other faces C and D
around x are glued with a twist. The 4 faces around a are glued with faces of the
other octahedron because of the correspondence of the vertices and the fact that
adjacent faces around a cannot be glued. Hence there is a vertex which forms a
cusp with itself on the octahedron containing b and c (Figure 12). This contradicts
that b is glued only with a and c.

Hence x forms a cusp with itself. Since 4 edges are glued together, the faces
around a are glued with faces of the other octahedron. At least 3 vertices of the
octahedron containing b and c are glued with the 4 vertices except a and x . Since
we must obtain 4 cusps, there is a vertex that forms a cusp with itself. This is a
contradiction. �
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This point forms a cusp with itself.

a b

cx

A

B

C D

This point forms a cusp with itself.

Figure 12. Opposite faces cannot be glued with a twist.

A

B

C DF F

E

E

1 2

2 1

3

3

4 4

5 5

5 5

I

III II

II III

III

A

B

C DH H

G

G

2 1

1 2

3

3

4 4

6 6

6 6

I

II III

III II

IV

Figure 13. First gluing of the octahedra.

Claim 5.2 implies that there is a cusp consisting of one or 2 vertices. Suppose
that there is a cusp consisting of one vertex x . The 4 vertices around x are glued
together. The 4 faces A, B,C and D around the vertex a opposite to x are glued
with faces of the other octahedron. Vertex a is glued with only one vertex b because
of Claim 5.2 and the fact that 7 vertices are glued. Since the 8 vertices around a
and b are glued together, the vertex y opposite to b forms a cusp with itself. The
numbers of the vertices corresponding to the cusps are 1, 1, 2 and 8. By Claim 5.1
the way of gluing is determined as in Figure 13.

Suppose that there is no cusp consisting of one vertex. Then there is a cusp
consisting of 2 vertices a and b. A, A′, B, B ′,C,C ′, D and D′ around a and b are
glued as Figure 8. Since no cusp consists of one vertex, the 2 vertices x and y
opposite to a and b, respectively, are glued together. The numbers of the vertices
corresponding to the cusps are 2, 2, 4 and 4. The face E adjacent to A is glued with
the face E ′ adjacent to B ′ because of the correspondence of the vertices and edges.
The way of gluing is determined as in Figure 14.

A

B

C DG H

E

F

1 2

2 1

3

3

4 4

5 6

6 5

I

III II

II III

IV

A

B

C DH G

F

E

2 1

1 2

3

3

4 4

6 5

5 6

I

II III

III II

IV

Figure 14. Second gluing of the octahedra.
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Both gluings of the octahedra give homeomorphic spaces by Figure 15 and they
are the 84

2 link complements by Figure 16.

A A′

B B′

(ii)

E

D′
C

D C ′

F
G

H

E′

F ′

G′

H ′

A A′

B B′

Thick lines correspond to cusps.

C D′

D C ′

E

F

E′

F ′
G

G′

H

H ′

H ′
H

F

F ′

G

G′

E

E′

D′
C

C ′
D

D′C H ′

G

F

E
F ′

D
C ′

H

G′E′

D′
C G′

H ′
F ′

1

F ′
0

C ′D
H

F0 F1

E0

E1

E′
1 E′

0

G

I

J I ′

J ′ H ′
G

H

G′

F ′
0E1

E0F ′
1

E′
0F1

F0E′
1

G
E

C ′D

C D′

E′ G′

Rotate by 90◦ around

Separate the front and

C ′, D′ by rotating by 180◦.

Glue A,B and A′, B′.

Let E0, E1, F0 and F1 be the faces

Glue F,H and F ′,H ′.

back and glue C,D and

The ways of gluing are
identical though the ways

Let I, I ′, J and J ′ be the new sections.

(i)

obtained by dividing E and F .

of division are different.

the central thick line.

Figure 15. The gluings from Figures 13 and 14 (replicated in
diagrams (i) and (ii) at the top) lead to homeomorphic spaces.
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Separate the upper

84
2

I J
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Divide C and D into C0, C1, D0 and D1.

Rotate the lower

We can twist them along the thick loops.

Let I, I ′, J and J ′ be the new sections.

Rotate the right half by 180◦.

Glue Ci, Di and C ′
i, D

′
i.

Glue I, J and I ′, J ′.

and lower and glue

half by 180◦.

E,G and E′, G′.

Figure 16. The space obtained in Figure 15 is the complement of
the 84

2 link.
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