Vol. 267, No. 1, 2014

Download this article
Download this article For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Quantum extremal loop weight modules and monomial crystals

Mathieu Mansuy

Vol. 267 (2014), No. 1, 185–241
Abstract

In this paper we construct a new family of representations for the quantum toroidal algebra Uq(sln+1tor), which are -extremal in the sense of Hernandez. We construct extremal loop weight modules associated to level 0 fundamental weights ϖ when n = 2r + 1 is odd and = 1, r+1 or n. To do this, we relate monomial realizations of level 0 extremal fundamental weight crystals to integrable representations of Uq(sln+1tor), and we introduce promotion operators for the level 0 extremal fundamental weight crystals. By specializing the quantum parameter, we get finite-dimensional modules of quantum toroidal algebras at roots of unity. In general, we give a conjectural process to construct extremal loop weight modules from monomial realizations of crystals.

Keywords
quantum toroidal algebras, extremal loop weight modules, monomial crystals, promotion operators
Mathematical Subject Classification 2010
Primary: 20G42, 81R10
Milestones
Received: 26 September 2012
Revised: 26 April 2013
Accepted: 29 April 2013
Published: 22 December 2013
Authors
Mathieu Mansuy
Université Paris-Diderot Paris 7
IMJ-PRG CNRS UMR 7586
Bâtiment Sophie Germain
Case 7012
75205 Paris Cedex 13
France