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NUMERICAL STUDY OF
UNBOUNDED CAPILLARY SURFACES

YASUNORI AOKI AND HANS DE STERCK

Unbounded capillary surfaces in domains with a sharp corner or a cusp are
studied. It is shown how numerical study using a proposed computational
methodology leads to two new conjectures for open problems on the asymp-
totic behavior of capillary surfaces in domains with a cusp. The numerical
methodology contains two simple but important ingredients, a change of
variable and a change of coordinates, which are inspired by known asymp-
totic approximations for unbounded capillary surfaces. These ingredients
are combined with the finite volume element or Galerkin finite element
methods. Extensive numerical tests show that the proposed computational
methodology leads to a global approximation method for singular solutions
of the Laplace–Young equation that recovers the proper asymptotic behav-
ior at the singular point, is more accurate and has better convergence prop-
erties than numerical methods considered for singular capillary surfaces
before. Using this computational methodology, two open problems on the
asymptotic behavior of capillary surfaces in domains with a cusp are stud-
ied numerically, leading to two conjectures that may guide future analytical
work on these open problems.

1. Introduction

The mathematical analysis of unbounded capillary surfaces is most often done by
asymptotic analysis (see [Concus and Finn 1970; 1974; 1989; Miersemann 1993;
King et al. 1999; Norbury et al. 2005; Scholz 2001; 2004; Aoki 2007; Aoki and
Siegel 2012]). Results for unbounded capillary surfaces in domains with sharp
corners have been known for many years, and recent work of Aoki and Siegel
[2012] on singular capillary surfaces in domains with a cusp fills almost all the
gaps that still existed for the cusp case, though a few open problems remain. Since
asymptotic analysis is a local analysis, asymptotic approximations are valid only in
a sufficiently small domain near the singularity. It is also not easy to determine the
precise region of validity of the asymptotic analysis results. In applications, global
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approximations for the singular capillary surfaces that are valid in the whole domain
are desirable, and such approximations cannot be provided by asymptotic analysis.

In this paper, our aim is to construct globally valid approximations of singular
capillary surfaces which exhibit the proper asymptotic behavior at the singular
point while also being valid away from the singularity. We do so by introducing
a computational methodology for singular capillary surfaces. A second aim of
this paper is to investigate two open problems on asymptotic behavior of capillary
surfaces in domains with a cusp. We investigate these open problems using the
proposed numerical methodology, which leads to two conjectures that may guide
future analytical work on these open problems.

Our computational methodology starts from the finite volume element method
(FVEM) [Bank and Rose 1987; Aoki and De Sterck 2011] or the Galerkin finite
element method (FEM) [Strang and Fix 1973; Brenner and Scott 1994]. However,
it is widely known (see [Grisvard 1985; Strang and Fix 1973; Aoki and De Sterck
2011]) that a lack of smoothness in the solution can spoil the accuracy of approxi-
mations of finite element type; hence it can be expected that standard finite element
approximations cannot accurately approximate the unbounded singularity. There
are about a half dozen published papers on numerical solutions of the Laplace–
Young equation [Nigro et al. 2000; Hornung and Mittelmann 1990; Polevikov
2004; Polevikov 1999; Scott et al. 2005]. However, with the exception of the
paper by Scott et al. [2005] they do not consider unbounded singular solutions.
Scott et al. use the finite volume element method to approximate solutions of the
Laplace–Young equation, and one of their model problems is a corner problem with
unbounded singularity. Our proposed methodology enhances their approach in two
important ways, leading to much more accurate and informative results, as shown
in our numerical results section.

Instead of directly approximating the solution with a standard finite element
expansion, our idea is to incorporate knowledge obtained from asymptotic analysis
into the finite element approximation, in order to avoid inaccuracies introduced by
the singularity. Roughly speaking, we first change the variable based on the known
asymptotic order of the solution so that the new unknown function is bounded.
(Though it is bounded, it can still be discontinuous at the location of the original
singularity.) Inspired by knowledge of the leading-order term of the asymptotic
series solution, we change the coordinate system so that the unknown function is
smooth with respect to the new coordinate variables. We then finally approximate
the smooth bounded new unknown function with respect to the new coordinate
variables, using the finite volume element method or the Galerkin finite element
method.

We verify the accuracy of this numerical methodology by comparing the nu-
merical solution with known asymptotic series approximations, and by conducting
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numerical convergence studies. We first show that the numerical solutions we
obtain have the proper singular behavior by comparing numerical solutions of the
Laplace–Young equation with known asymptotic series approximations. Then we
conduct numerical convergence studies to show that the numerical approximation is
a globally valid approximation. In order to conduct numerical convergence studies,
we need model problems with known closed-form solutions. Though there is no
known unbounded closed-form solution of the Laplace–Young equation, a few
closed-form solutions are known for the steep slope approximation of the Laplace–
Young equation [King et al. 1999; Aoki 2007] (we shall refer to this PDE as the
asymptotic Laplace–Young equation). It is known that these solutions have the
same asymptotic behavior as the solution of the original problem, so we conduct
the convergence study using the asymptotic Laplace–Young equation.

Using the proposed numerical methodology for computing singular solutions
of the Laplace–Young equation, we investigate a few open problems of singular
behavior of the Laplace–Young equation in a cusp domain. Aoki and Siegel [2012]
considered the solution behavior for all possible cusp domains, attempting to
generalize the results of Scholz [2004]. However, there are still a few cases that
remain open. Using our computational methodology, we numerically investigate
these cases and make conjectures based on the numerical approximations.

The paper proceeds as follows. In Section 2 we describe the Laplace–Young
boundary value problem of interest and its asymptotic variant in domains with a
sharp corner or a cusp. Section 3 describes the proposed numerical methodology
for computing accurate global numerical approximations of unbounded capillary
surfaces in these types of domains, and Section 4 gives extensive numerical results
verifying the accuracy and convergence of the numerical methods. Section 5
presents conjectures for two open cases on asymptotic behavior of capillary surfaces
in a domain with a cusp, motivated by numerical solutions for these open cases
using the proposed numerical methodology. Finally, conclusions are formulated
in Section 6.

2. The boundary value problem

In this section we first formulate the Laplace–Young boundary value problem, and
describe the asymptotic behavior of its solutions in domains with a corner or a cusp
and the function spaces these solutions belong to. We state some open problems on
asymptotic behavior for a domain with an osculatory cusp and a cusp with infinite
curvature, and define model problems that will be used in numerical tests. We
then describe the asymptotic Laplace–Young equation and its known closed-form
solutions on domains with a corner or a cusp, which are used to formulate additional
numerical model problems.
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Figure 1. Two photos of capillarity experiments, indicating the
capillary surface height u and the contact angle γ .

2.1. Laplace–Young boundary value problem. This problem originates from ob-
servations of Laplace in 1806 and Young in 1805 that “the height of the liquid
is proportional to its mean curvature” and “the angle of the contact between the
solid and liquid only depends on their material.” Gauss showed in 1830 that the
Laplace–Young PDE is in fact the Euler–Lagrange equation of the surface energy
functional. Thus the solution of the Laplace–Young boundary value problem gives
the shape of the liquid surface that minimizes the surface energy, in a nonvanishing
downward gravity field, and hence the Laplace–Young boundary value problem is a
mathematical model for a liquid surface at equilibrium when the gravity is present.
We refer the reader to Section 1.4 of a book by Finn [1986] for detailed discussion
of the derivation of the Laplace–Young boundary value problem. Figure 1 shows
photos of capillarity experiments, indicating the capillary surface height u and the
contact angle γ .

Let � be an unbounded open domain as in Figure 2 with boundaries ∂�1 and
∂�2 described by functions f1(x) and f2(x), and let u ∈ C2(�) be the height
of the capillary surface that satisfies the following boundary value problem (the
Laplace–Young boundary value problem) on this domain:

∇ · T (u)= κu in �,(1)

Eν1 · T (u)= cos γ1 on ∂�1,

Eν2 · T (u)= cos γ2 on ∂�2,(2)
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Figure 2. Unbounded domains. Left: a corner domain. Right: a cusp domain.

with

κ : capillarity constant (we assume κ > 0),

Eν1, Eν2 : exterior unit normal vectors on the boundaries ∂�1 and ∂�2,

γ1, γ2 : contact angles

and

T (u)=
∇u√

1+ |∇u|2
.

Note that the capillarity constant κ can be normalized by rescaling x , y and u when
κ > 0. In the following sections we let κ = 1. The open domain � and boundaries
∂�1 and ∂�2 are defined more specifically as follows:

�= {(x, y) ∈ R2
: 0< x, f2(x) < y < f1(x)},(3)

∂�1 = {(x, y) ∈ R2
: 0< x, y = f1(x)},(4)

∂�2 = {(x, y) ∈ R2
: 0< x, y = f2(x)},(5)

with

f1(x), f2(x) ∈ C3(0,∞),

f1(x) > f2(x) for x > 0,

lim
x→0+

f1(x)= lim
x→0+

f2(x)= 0,(6)

lim
x→0+

f ′1(x) 6= ∞ 6= lim
x→0+

f ′2(x).
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For simplicity of discussion we focus on the two specific types of domains depicted
in Figure 2: a corner domain, defined as

f1(x)= x tanα and f2(x)=−x tanα, where 0< α < π/2,

and a cusp domain, defined as

(7) lim
x→0+

f ′1(x)= 0 and lim
x→0+

f ′2(x)= 0.

2.1.1. Asymptotic behavior. It is known that the solution of the Laplace–Young
boundary value problem in a corner domain is unbounded at (0, 0) if γ1+γ2+2α<π
(see [Finn 1986]). Also, it can be shown that if γ1 + γ2 6= π the solution of the
boundary value problem in a cusp domain is unbounded at (0, 0) (see [Scholz 2004;
Aoki and Siegel 2012]). In addition, the following asymptotic behaviors are known.

Corner domain with γ1+ γ2+ 2α < π (see [Concus and Finn 1970; Miersemann
1993] for a proof): If γ1=γ2=γ and γ+α<π/2, then the solution of the boundary
value problem in the corner domain has the following asymptotic behavior:

(8) u(r, θ)=
cos θ −

√
k2− sin2 θ

kr
+ O(r3) as r→ 0,

where

(r, θ) : polar coordinate variables,

k =
sinα
cos γ

.

More formally, we can write that there exist constants ro and M such that∣∣∣∣∣u− cos θ −
√

k2− sin2 θ

kr

∣∣∣∣∣< Mr3 for 0< r < ro.

This gives the following bounds for the solution u:

(9)
cos θ −

√
k2− sin2 θ

kr
−Mr3 < u <

cos θ −
√

k2− sin2 θ

kr
+Mr3

for 0< r < r0.

The proof for the asymptotic relation (8) only provides the existence of these two
constants and does not give any estimate of their size. Thus, even though (8) shows
that the asymptotic approximation becomes more and more accurate as we get closer
to the singularity, it does not give any quantitative description of the approximation
error.
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Also, it is easy to show from (9) that there exist positive constants M+, M−, and
xo such that

(10)
M−

f1(x)− f2(x)
< u <

M+

f1(x)− f2(x)
for 0< x < xo.

Cusp domain with γ1+ γ2 6= π (see [Aoki and Siegel 2012] for a proof): An un-
bounded solution of the boundary value problem in a cusp domain has the asymptotic
behavior

(11) u(x, y)=
cos γ1+ cos γ2

f1(x)− f2(x)
+ O

(
f ′1(x)− f ′2(x)
f1(x)− f2(x)

)
as x→ 0+

if γ1+ γ2 6= π and the boundary functions f1(x) and f2(x) satisfy the asymptotic
relations

f1(x)− f2(x)= o( f ′1(x)− f ′2(x)),(12)

f ′′1 (x)− f ′′2 (x)
f1(x)− f2(x)

= α
( f ′1(x)− f ′2(x))

2

( f1(x)− f2(x))2
+ o

(
( f ′1(x)− f ′2(x))

2

( f1(x)− f2(x))2

)
,

f ′′′1 (x)− f ′′′2 (x)
f ′1(x)− f ′2(x)

= O
(
( f ′1(x)− f ′2(x))

2

( f1(x)− f2(x))2

)
,

f ′1(x)+ f ′2(x)= δ( f ′1(x)− f ′2(x))+ o( f ′1(x)− f ′2(x)),(13)

f ′′1 (x)+ f ′′2 (x)= O( f ′′1 (x)− f ′′2 (x))(14)

as x→ 0, where α, δ ∈ R.
Note that most boundary functions forming cusp domains satisfy the asymptotic

conditions (12)–(14). One known exception is when the boundary functions forming
a cusp are osculatory at the cusp. Curves are said to be osculatory if they intersect
and share the tangent line and the osculating circle at the intersection point. Again
it follows from (11) that there exist positive constants M+, M−, and xo such that

(15)
M−

f1(x)− f2(x)
< u <

M+

f1(x)− f2(x)
for 0< x < xo.

2.1.2. Open problems. To the authors’ knowledge there are two major open prob-
lems in the solution behavior of the Laplace–Young equation in a domain with a
cusp. We summarize these open problems.

Problem 1: Osculatory cusp with nonsupplementary contact angles (γ1+ γ2 6= π ):
An osculatory cusp is a cusp formed by two osculating curves. It is known that the
solution is unbounded when γ1+ γ2 6= π , but the asymptotic expansion from the
previous section does not apply in the osculatory cusp case and remains an open
problem. For example, the two boundary functions

f1(x)= x2
+ x3 and f2(x)= x2

− x3
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form an osculatory cusp at the origin. The asymptotic orders of the sum and the
difference of these boundary functions are different (i.e., f1(x)− f2(x)= O(x3)

while f1(x)+ f2(x)= O(x2) as x→ 0). Hence these choices of f1(x) and f2(x) do
not satisfy the asymptotic relations (13)–(14), so that the leading-order asymptotic
behavior of the solution at this cusp is unknown. The main reason why the proof for
the leading-order asymptotic behavior could not be constructed for the osculatory
cusp case is that the second-order term of the formal asymptotic series could not be
found (see [Aoki and Siegel 2012] for details).

Problem 2: Infinite curvature cusp with supplementary contact angles (γ1+γ2=π ):
As was noted before, the solution of the Laplace–Young equation in a cusp domain
is unbounded if γ1 + γ2 6= π , but it is not necessarily true that the solution is
bounded if γ1+ γ2 = π . Aoki and Siegel [2012] have shown that the solution is
bounded if γ1+ γ2 = π and the curvatures of the boundary functions are finite (i.e.,
limx→0 f ′′1 (x) 6= ∞ and limx→0 f ′′2 (x) 6= ∞). However, the nature of the solution
for the case where the curvatures of one or both boundary functions are infinite is
not known (e.g., f1(x)= x3/2 and f2(x)=−2x3/2).

2.1.3. Model Problems 1 and 2. For the numerical experiments to be reported on
below we consider the following model problems (henceforth, MPs).

Consider bounded open domains� as depicted in Figure 3. Let u ∈C2(�) be the
height of the capillary surface that satisfies the following boundary value problem:

∇ · T (u)= u in �,

Eν1 · T (u)= cos γ1 on ∂�1,

Eν2 · T (u)= cos γ2 on ∂�2,

Eν3 · T (u)= 0 on ∂�3,

f1(x)

0

y

f2(x)

x1

�

��1

��2 ��3

f1(x)

0

y

f2(x)

x1

��1

��2
��3

Figure 3. Computational domains for model problems with a corner
and a cusp at (0,0). Left: problems 1 and 3. Right: problems 2 and 4.
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with

Eν1, Eν2, Eν3 : exterior unit normal vectors on the boundaries ∂�1, ∂�2 and ∂�3,

γ1, γ2 : contact angles.

The bounded open domain � and boundaries ∂�1,2,3 are defined more specifically
as follows:

�= {(x, y) ∈ R2
: 0< x < 1, f2(x) < y < f1(x)},(16)

∂�1 = {(x, y) ∈ R2
: 0< x < 1, y = f1(x)},

∂�2 = {(x, y) ∈ R2
: 0< x < 1, y = f2(x)},

∂�3 = {(x, y) ∈ R2
: x = 1, f2(1) < y < f1(1)}.(17)

The boundary functions and the contact angles are chosen for each model problem
as tabulated in Tables 1 and 2. Although there are cases in which the behavior of
bounded solutions in a corner domain has special interest (e.g., [Lancaster 2010]),
in this paper we focus our attention on unbounded solutions in a corner domain.

These model problems are chosen so that the singularity may only occur at
the corner or cusp at the origin, although there are three nonsmooth points on
the boundary of the domain �. Following immediately from the regularity result
of Simon [1980], this implies that the solutions u of these model problems are
differentiable up to the boundary except at the origin, i.e., u ∈ C1(�\{(0, 0)}).
Also, the asymptotic behavior of the solution at the origin is known to be as
stated in (8) for MP 1 (γ1 + γ2 + 2α < π , unbounded), and as in (11) for MPs
2a (γ1+ γ2 6= π , unbounded) and 2c-1 and 2c-3 (γ1+ γ2 6= π , unbounded). The
asymptotic expansions for MPs 2b (osculatory cusp with nonsupplementary contact
angles) are an open problem (but it is known that the solutions are unbounded).
The asymptotic behavior of the solution of MP 2c-2 (infinite curvature cusp with
supplementary contact angles) is an open problem.

2.1.4. Solution function spaces. It is interesting to discuss the function spaces
where the solutions of MP 1 and MPs 2a, 2c-1, and 2c-3 reside.

Problem f1(x) f2(x) γ1 γ2

1-1 x tan(π/7) −x tan(π/7) π/6 π/6 Corner (unbounded)
1-2 x tan(π/7) −x tan(π/7) π/4 π/4 Corner (unbounded)
1-3 x tan(π/7) −x tan(π/7) π/3 π/3 Corner (unbounded)

Table 1. Model Problem 1: Laplace–Young equation in a domain
with a corner. All three variants have α=π/7 and γ1+γ2+2α<π ,
resulting in solutions that are unbounded at (0,0).
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Problem f1(x) f2(x) γ1 γ2 cusp unbd? open?

2a-1 x2/6 −x3/8 π/6 π/3 R yes no
2a-2 x3/6 −x3/8 π/3 π/4 R yes no
2a-3 x5/6 −x4/8 π/3 π/4 R yes no
2b-1 (x2

+ x3)/6 (x2
−

3
4 x3)/6 π/3 π/4 O yes yes

2b-2 (3x2
+ x3)/6 (3x2

−
3
4 x3)/6 π/3 π/4 O yes yes

2b-3 x3/2
+ x3/6 x3/2

−
3
4 x3/6 π/3 π/4 O yes yes

2c-1 x3/2/6 x3/2/8 5π/6−π/180 π/6 IC yes no
2c-2 x3/2/6 x3/2/8 5π/6 π/6 IC ? yes
2c-3 x3/2/6 x3/2/8 5π/6+π/180 π/6 IC yes no

Table 2. Model Problem 2: Laplace–Young equation in a domain
with a cusp. Variants 2a, 2c-1, and 2c-3 have unbounded solutions
at (0,0) and known asymptotic expansions. Variants 2b also have
unbounded solutions at (0,0), but asymptotic expansions are un-
known and remain an open problem. The asymptotic behavior of
variant 2c-2 at (0,0) is an open problem. Key for the last three
columns: R = regular; O = osculatory; IC = infinite curvature;
unbd = unbounded; open = open problem.

Proposition 2.1. For any fixed p with 1≤ p <∞, the solutions of MP 1, MPs 2a
and MPs 2c-1 and 2c-3 are in the L p(�) function space if and only if the following
integral is finite for any ε in the interval (0, 1]:

(18)
∫ ε

0

1
( f1(x)− f2(x))p−1 dx .

Proof. We first note that, for the case of MP 1 and MP 2a, the comparison principle
(see [Finn 1986]) gives that u > 0. Also recall that there exist positive constants
M+, M−, and xo such that

M−

f1(x)− f2(x)
< u <

M+

f1(x)− f2(x)
for 0< x < xo.

We now bound the integral
∫
�
|u|p dA from above:∫

�

|u|p dA =
∫
�

u p dA (since u > 0)

=

∫ 1

x=0

∫ f1(x)

f2(x)
u p dy dx =

∫ xo

x=0

∫ f1(x)

f2(x)
u p dy dx +

∫ 1

x=xo

∫ f1(x)

f2(x)
u p dy dx

≤

∫ xo

x=0

∫ f1(x)

f2(x)
u p dy dx +

∫ 1

x=xo

∫ f1(x)

f2(x)
max

xo<x<1
u p dy dx
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<

∫ xo

x=0

∫ f1(x)

f2(x)

(M+)p

( f1(x)− f2(x))p dy dx + max
xo<x<1

(u)p
∫ 1

x=xo

∫ f1(x)

f2(x)
1 dy dx .

This last sum can also be written as

(19) (M+)p
∫ xo

0

1
( f1(x)− f2(x))p−1 dx + max

xo<x<1
(u)p

∫ 1

x=xo

( f1(x)− f2(x)) dx .

If p is chosen so that the integral (18) is finite for any ε ∈ (0, 1], then the first term of
(19) is finite. Also, noting that u is bounded away from the origin (u ∈ C1(�\{0}))
and that the domains � for the model problems are bounded domains, the second
term of (19) is also finite. Thus if p is chosen so that integral (18) is finite then
the solution of MPs 1 and 2a are in the L p(�) function space. We now bound the
integral

∫
�
|u|p dA from below:∫

�

|u|p dA =
∫ xo

x=0

∫ f1(x)

f2(x)
u p dy dx +

∫ 1

x=xo

∫ f1(x)

f2(x)
u p dy dx

>

∫ xo

x=0

∫ f1(x)

f2(x)
u p dy dx >

∫ xo

x=0

∫ f1(x)

f2(x)

(M−)p

( f1(x)− f2(x))p dy dx

= (M−)p
∫ xo

x=0

1
( f1(x)− f2(x))p−1 dx .

This gives that if p is chosen so that integral (18) is not finite, then the solutions of
MPs 1 and 2a are not in the L p function space.

The proof for MPs 2c-1 and 2c-3 is slightly more complicated because u> 0 does
not hold. A sketch of the proof for these cases is as follows. Since u ∈ C1(�\{0}),
there is a neighborhood �s of the singularity where the solution is either positive or
negative. Using the approach above, it can be shown that u ∈ L p(�s) if and only if
integral (18) is finite, which is equivalent to u ∈ L p(�) since u is bounded away
from the singularity. �

Corollary 2.1. (A) The solution of MP 1 is in the L2−δ function space where δ > 0.

(B) The solution is in the L1+1/2−δ function space for MP 2a-1, is in the L1+1/3−δ

function space for MP 2a-2, and is in the L1+1/4−δ function space for MP 2a-3,
where δ > 0.

(C) The solution is in the L1+2/3−δ function space for MPs 2c-1 and 2c-3, where
δ > 0.

Note finally that all solutions of the Laplace–Young equation in a bounded
domain � are in L1, which is consistent with the physical interpretation that the
volume of the fluid under the capillary surface is finite.
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2.2. Asymptotic Laplace–Young equation. There are no closed-form solutions for
the Laplace–Young equation in domains with a corner or a cusp, but closed-form
solutions exist for the following simplification of the Laplace–Young PDE. These
closed-form solutions will be used in Section 4 for convergence studies of the
numerical methodology we propose in Section 3.

Assuming the slope of the solution of the Laplace–Young boundary value problem
((1)–(2)) is steep, i.e., |∇u| � 1, we can approximate the PDE and the boundary
condition, by ignoring the 1 in the denominator of the differential operator T (·),
and obtain the following boundary value problem:

∇ · T̃ (u)= u in �,(20)

Eν1 · T̃ (u)= cos γ on ∂�1,(21)

Eν2 · T̃ (u)= cos γ on ∂�2,(22)

where
T̃ (u)=

∇u
|∇u|

.

This approximation is called the “steep slope approximation” [King et al. 1999] of
the Laplace–Young boundary value problem, and unbounded closed-form solutions
of this boundary value problem are known for two types of domains: the unbounded
corner domain of Figure 2, left [King et al. 1999] and the circular cusp domains
of Figure 4 [Aoki 2007]. Also, it has been shown that the exact solutions of this
boundary value problem are good asymptotic approximations of the solutions of the
original Laplace–Young equation on the same domains [Miersemann 1993; Aoki
2007]. We shall refer to this boundary value problem as the asymptotic Laplace–
Young boundary value problem. Note that this boundary value problem is a rare
case of a nonlinear PDE with nonlinear boundary conditions for which one can find
closed-form solutions in some nontrivial domains.

2.2.1. Closed-form solutions. Corner domain (Figure 2, left, γ + α < π/2): Let
u ∈C2(�) be a solution of the boundary value problem (20)–(22) on the unbounded
corner domain defined as in (3)–(5) with the boundary functions

f1(x)= x tanα, f2(x)=−x tanα.

If γ +α < π/2, then u is given as the following closed-form expression in terms
of the polar coordinate variables r and θ :

(23) u(r, θ)=
cos θ −

√
k2− sin2 θ

kr
,

where k = sinα/cos γ . This precise property of the asymptotic function in (8) was
first observed in [King et al. 1999].
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Figure 4. Circular cusp domains.

Circular cusp domain (Figure 4, γ 6= π/2): Let u ∈ C2(�) be a solution of the
boundary value problem (20)–(22) with γ 6= π/2 and with the domain defined as

� :=


{
(x, y) ∈ R2

\

(
B 1

2a

(
0, 1

2a

)
∪ B
−

1
2b

(
0, 1

2b

))}
for b < 0,{

(x, y) ∈
(

B 1
2b

(
0, 1

2b

)
\B 1

2a

(
0, 1

2a

))}
for b > 0,

where Br (xo, yo) is the open disc of radius r centered at (xo, yo), i.e.,

Br (xo, yo)= {(x, y) ∈ R2
: (x − xo)

2
+ (y− yo)

2 < r2
}.

A closed-form expression for u is given by

(24) u(p, q)= Ap2
− 2

√
1− A2(q − q0)2 p− A(q − q0)

2
+ Aq2

0 ,

where

A =
2 cos γ
a− b

, q0 =
a+ b

2
,

and p and q are the coordinate variables of the tangent cylindrical coordinate system
introduced in [Moon and Spencer 1961], depicted in Figure 5 and defined as

p =
x

x2+ y2 , q =
y

x2+ y2 .

This closed-form solution of the asymptotic Laplace–Young equation first appears
in [Aoki 2007]. Note that lim(x,y)→(0,0) p =∞ and the solution (24) behaves like
1/x2 as x → 0, hence it exhibits a more severe singularity than the singularity
of the asymptotic Laplace–Young PDE in a corner domain, which features a 1/r
singularity.
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q = constant > 0

q = constant < 0

p = constant < 0 p = constant > 0

x

y

Figure 5. Tangent cylindrical coordinate system.

2.2.2. Model Problems 3 and 4. For the numerical experiments on the asymptotic
Laplace–Young equation we consider the following model problems on the corner
and cusp domains of Figure 3.
Let u ∈ C2(�) be the function that satisfies the boundary value problem

∇ · T̃ (u)= u in �,

Eν1 · T̃ (u)= cos γ1 on ∂�1,

Eν2 · T̃ (u)= cos γ2 on ∂�2,

u = uexact on ∂�3.

Here with Eν1, Eν2, Eν3 are the exterior unit normal vectors on the boundaries ∂�1,
∂�2, ∂�3, while γ1, γ2 are the contact angles, and uexact is the closed-form solutions
given in (23) or (24).

The bounded open domain � and boundaries ∂�1,2,3 are defined as in (16)–(17);
see Figure 3. The boundary functions and the contact angles are chosen for each
model problem as tabulated in Table 3, resulting in model problems with unbounded

Name f1(x) f2(x) γ1 γ2 unbd?

MP 3 x tan(π/7) −x tan(π/7) π/6 π/6 corner yes
MP 4 −

√
52− x2+ 5

√
102− x2− 10 π/6 π/6 circular cusp yes

Table 3. Model Problems 3 and 4: asymptotic Laplace–Young
equation in domains with a corner and a cusp. MP 3 has α = π/7
and γ +α < π/2, resulting in a solution that is unbounded at (0,0).
MP 4 has γ 6= π/2, and its solution is also unbounded at (0,0).
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solutions. The closed-form solutions of these two model problems are given by
(23) and (24), respectively.

3. Numerical method

In this section, we propose a numerical methodology to accurately find global
numerical approximations of singular solutions of the Laplace–Young equation
in domains with a corner or a cusp. The starting point of our approach is the
finite volume element method (FVEM) [Bank and Rose 1987; Aoki and De Sterck
2011] or the Galerkin finite element method (FEM) [Strang and Fix 1973; Brenner
and Scott 1994], and two simple but crucial additional steps are made to arrive
at a method that can capture the singular behavior. The first step is to consider a
change of variable, with the new solution variable being smoother than the capillary
height variable u and more amenable to accurate numerical approximation. The
second step is to solve the PDE numerically in a new coordinate system, which
allows us to accurately represent the discontinuous behavior of the new solution
variable at the singular point. We describe these two crucial ingredients of our
methodology along with the FEM and FVEM discretizations, and show in the
numerical results of Section 4 that this approach leads to a global approximation
method for singular solutions of the Laplace–Young equation that recovers the proper
asymptotic behavior, and is more accurate and has better convergence properties
than numerical methods that were considered previously.

3.1. Change of variable. From the asymptotic analysis results (10)–(15) we ob-
serve that the solutions we wish to approximate have the asymptotic behavior

u(x, y)= O
(

1
f1(x)− f2(x)

)
as x→ 0

=
O(1)

f1(x)− f2(x)
as x→ 0.

This implies that, if we transform the unknown function u(x, y) as follows, the new
unknown function v(x, y) is a bounded function:

u(x, y)=
v(x, y)

f1(x)− f2(x)
.

We aim to approximate the solution of the boundary value problem, u(x, y), by
numerically approximating the new unknown function v(x, y). Since v(x, y) is
bounded while u(x, y) is unbounded, we expect a better quality of numerical
approximation.

3.2. Change of coordinates. An appropriate choice of coordinate system is es-
sential for the asymptotic analysis of unbounded solutions of the Laplace–Young



16 YASUNORI AOKI AND HANS DE STERCK

equation, as shown in [Miersemann 1993; Scholz 2004; Aoki 2007; Aoki and Siegel
2012]. We have observed that an appropriate choice of coordinate system is also
beneficial for the numerical approximation of unbounded solutions.

For MP 1, we can observe as follows that the new unknown function v is
discontinuous at the origin. From (9), we know that the solution u of MP 1 behaves
like (cos θ −

√
k2− sin2 θ)/kr near the origin r = 0. This gives that the new

unknown function v behaves like (cos θ −
√

k2− sin2 θ)/k near the origin. Hence,
as r → 0, v approaches different values depending on the angle θ , so the new
unknown function v has a jump discontinuity at the origin. Our idea is to expand
the point of singularity on the boundary into a boundary line segment through a
coordinate transformation in order to accurately approximate the discontinuous
behavior of v.

For MP 2, since the boundaries for the cusp domain are curved boundaries, we
would need special boundary elements (e.g., isoparametric elements) to accurately
represent the cusp domain when approximating the unknown function through finite
element approximation in the standard (x, y) coordinate system. However, the
change to (s, t) coordinates introduced in [Aoki and Siegel 2012] and illustrated in
Figure 6 transforms a cusp domain into a rectangular domain, and hence no special
treatment is needed for curved boundaries.

We use this (s, t) coordinate system for numerical simulation on domains with
a corner or a cusp at (0, 0). The (s, t) coordinate transformation as depicted in
Figure 6 is given by

t =
2y− ( f1+ f2)

f1− f2
, s = x .

The Cartesian coordinates can be expressed using the above coordinate system as

x = s, y =
t ( f1(s)− f2(s))+ ( f1(s)+ f2(s))

2
=

1+ t
2

f1(s)+
1− t

2
f2(s).

We have y = f1(x) when t = 1 and y = f2(x) when t = −1, so the domain of
interest in the curvilinear (s, t) coordinate system can be written as (see Figure 6)

(25) �= {(s, t) ∈ R2
: 0< s < 1, −1< t < 1}.

With some calculation, the left-hand side of the Laplace–Young PDE can be
rewritten in the curvilinear coordinate system as

∇·T (u)=
∂

∂s
ux

√

1+u2
x+u2

y

+
f ′1− f ′2
f1− f2

ux
√

1+u2
x+u2

y

+
∂

∂t

(
2

f1− f2

u y
√

1+u2
x+u2

y

+

(
−

f ′1+ f ′2
f1− f2

− t
f ′1− f ′2
f1− f2

)
ux

√

1+u2
x+u2

y

)
,
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f1(x)

f2(x)

10
x

y

s

t
1

1

−1

0

t =
2y − (f1 + f2)

f1 − f2

s = x

x = s

y =
1 + t

2
f1(s) +

1 − t

2
f2(s)

Figure 6. Coordinate transformation.

where

ux =
vs

f1− f2
−
v( f ′1− f ′2)
( f1− f2)2

− vt
( f ′1+ f ′2)+ t ( f ′1− f ′2)

( f1− f2)2
, u y =

2vt

( f1− f2)2
.

The boundary conditions on ∂�1 and ∂�2 can be written as

(26) Eν1,2 ·T (u)= Eν1,2 ·ŝ

(
f1− f2

2
ux

√

1+u2
x+u2

y

)

+Eν1,2 · t̂

(
u y

√

1+u2
x+u2

y

+
−( f ′1+ f ′2)−t ( f ′1− f ′2)

2
ux

√

1+u2
x+u2

y

)
=

√
1+ f ′1,2(s)

2 cos γ1,2 on ∂�1,2.

The boundary condition for boundary ∂�3 of MPs 1 and 2 is as in (26) but with
zero on the right-hand side. The left-hand side and the boundary conditions of the
asymptotic Laplace–Young PDE in the (s, t) coordinate system can be obtained
by just neglecting the 1 in the denominator in the expressions above. Note that the
point (x, y) = (0, 0) corresponds to the line segment (s = 0, t ∈ [−1, 1]) in the
(s, t) coordinate system.

3.3. Discretized boundary value problem. In the numerical results of Section 4
we approximate the new unknown function v(s, t) in the new coordinate variables
s and t numerically on the Cartesian grid in (s, t)-space, as shown in Figure 7(a),
and for comparison we also perform some calculations on the corner domain of
Figure 7(b) without a change of coordinates. We now describe the Galerkin finite
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(b) a corner domain in (x, y) space
(without change of coordinates)

Figure 7. Finite elements and control volumes for the numerical
methods. The thin lines give the finite element triangulation, which
is used in both the FEM and the FVEM. The thick lines give the
control volumes that are used in the FVEM. The grid in panel (a)
can be used for corner domains or for cusp domains (depending
on the boundary functions f1 and f2 that enter into the coordinate
transformation formulas), and the grid in panel (b) is used for
comparison simulations for corner domains (without coordinate
transformation).

element method (FEM) and the finite volume element method (FVEM) discretiza-
tions.

3.3.1. Galerkin finite element method discretization. We follow the construction
of the finite element space presented in Chapter 3 of Brenner and Scott [1994].
Let Nnode be the number of nodes created by finite element triangulation of the
domain and N be the set of indices of the nodes, i.e., N= {1, 2, . . . , Nnode}. The
triangulation of the domain is as depicted in Figure 7(a) (or Figure 7(b) for the
corner problem without a change of coordinates). Also, we let NDirichlet be the
indices of the nodes on the boundary with Dirichlet boundary condition. That is to
say, for MPms 3 and 4,

(si , ti ) ∈ ∂�3⇒ i ∈ NDirichlet,

where (si , ti ) is the location of the i-th node, and for MPs 1 and 2 NDirichlet=∅ since
there is no Dirichlet boundary. Let φi (s, t) be the standard continuous piecewise
linear nodal basis function (tent function) that corresponds to node i in the finite
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element triangulation on domain �. We have

φi (s j , t j )= δi, j ,

where δi, j is the Kronecker delta function. We approximate the unknown function
v with a linear combination of these basis functions, i.e.,

v ≈ vh
:=

Nnode∑
i=1

ciφi .

The {c1, c2, . . . , cNnode} are the unknowns of the discretized boundary value problem.
The Galerkin finite element discretization of MPs 1 and 2 can then be written as
follows (the discretization of MPs 3 and 4 can be derived similarly):∫

�

(
∇ · T

( ∑Nnode
i=1 ciφi

f1(s)− f2(s)

))
φ j dA =

∫
�

∑Nnode
i=1 ciφi

f1(s)− f2(s)
φ j dA(27)

for j ∈ N\NDirichlet,

ci

f1(si )− f2(si )
= uexact(si , ti ) for i ∈ NDirichlet.(28)

By the divergence theorem we can rewrite (27) as∫
∂�

(
ν · T

( ∑Nnode
i=1 ciφi

f1(s)− f2(s)

))
φ j dl −

∫
�

(
T
( ∑Nnode

i=1 ciφi

f1(s)− f2(s)

))
· ∇φ j dA

=

∫
�

Nnode∑
i=1

ci
φiφ j

f1(s)− f2(s)
dA

for j ∈ N\NDirichlet.

By imposing the boundary conditions (26), we obtain the following system of
equations:

(29)
∫
�

(
T
( ∑Nnode

i=1 ciφi

f1(s)− f2(s)

))
· ∇φ j dA−

Nnode∑
i=1

ci

∫
�

φiφ j

f1(s)− f2(s)
dA

=

∫
∂�1

√
1+ f ′1(s)

2 cos γ1φ j dl +
∫
∂�2

√
1+ f ′2(s)

2 cos γ2φ j dl

for j ∈ N\NDirichlet.

After some calculation we can rewrite (29) together with (28) as the following
system of nonlinear equations:
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(30)
∫ 1

t=−1

∫ 1

s=0
(φ j )s

(
f1− f2

2
uh

x
√

1+(uh
x)

2
+(uh

y)
2

)
+(φ j )t

( uh
y

√

1+(uh
x)

2
+(uh

y)
2
+
−( f ′1+ f ′2)−t ( f ′1− f ′2)

2
uh

x
√

1+(uh
x)

2
+(uh

y)
2

)
ds dt

−

Nnode∑
i=1

ci

∫ 1

t=−1

∫ 1

s=0
φiφ j ds dt

=

∫
∂�1

√
1+ f ′1(s)

2 cos γ1φ j dl+
∫
∂�2

√
1+ f ′2(s)

2 cos γ2φ j dl

for j ∈ N\NDirichlet,

ci = uexact(xi , yi ) for i ∈ NDirichlet,

where

uh
x =

Nnode∑
i=1

ci

(
(φi )s

f1− f2
−
(φi )( f ′1− f ′2)
( f1− f2)2

− (φi )t
( f ′1+ f ′2)+ t ( f ′1− f ′2)

( f1− f2)2

)
,(31)

uh
y =

Nnode∑
i=1

ci
2(φi )t

( f1− f2)2
(32)

and (φi )s and (φi )t are the partial derivatives of φi with respect to s and t . We
can construct a system of nonlinear equations by integrating each of the terms in
(30) numerically. Note that although we are integrating the unbounded functions
vhφ j/( f1(s)− f2(s)), due to the change of coordinates the area element dA be-
comes ( f1(s)− f2(s))/2 ds dt , hence the integrand becomes 2vhφ j , a piecewise
quadratic polynomial; hence we avoid singular integration. We solve this system
of nonlinear equations with the Levenberg–Marquardt method to obtain the un-
knowns {c1, c2, . . . , cNnode}. This gives a numerical approximation for v, and hence
a numerical approximation of the solution of the boundary value problem u.

3.3.2. Finite volume element method discretization. The finite volume element
method (FVEM) is a type of Petrov–Galerkin method that uses piecewise constant
functions as test functions in the weak form, instead of using the finite element
basis functions as in the Galerkin FEM. The test functions for the FVEM are chosen
as follows:

ψ j (s, t)=

{
1 if (s, t) ∈� j ,

0 otherwise,

where the � j are control volumes constructed as in [Bank and Rose 1987] (note
that in [Bank and Rose 1987] the control volumes are called “boxes”). As depicted
in Figure 7(a) (and Figure 7(b)), the control volumes {� j }

Nnode
j=1 are constructed by
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first computing the centroids of the finite element triangles, and then connecting
those element centroids with the midpoints of the finite element triangle edges.
This construction divides each finite element triangle into three quadrilaterals. The
control volume � j for finite element node j is then constructed as the union of the
quadrilaterals adjacent to node j .

By substituting the test functions φ j by ψ j in the Galerkin finite element dis-
cretization (27) and after some calculation, we obtain the following system of
nonlinear equations for the FVEM, where ux and u y are defined as in (31) and (32):

(33)
∫
∂� j

Eν ·ŝ
(

f1− f2

2
uh

x
√

1+(uh
x)

2
+(uh

y)
2

)
+ Eν · t̂

( uh
y

√

1+(uh
x)

2
+(uh

y)
2
+
−( f ′1+ f ′2)−t ( f ′1− f ′2)

2
uh

x
√

1+(uh
x)

2
+(uh

y)
2

)
dl

−

Nnode∑
i=1

ci

∫∫
� j

φi ds dt

=

∫
∂�1∩∂� j

√
1+ f ′1(s)

2 cos γ1 dl+
∫
∂�2∩∂� j

√
1+ f ′2(s)

2 cos γ2 dl

for j ∈ N\NDirichlet.

Again, we avoid singular integration by the change of coordinates, hence the
integration can be done numerically without any special treatment for singular inte-
gration. We solve the resulting system of nonlinear equations using the Levenberg–
Marquardt method.

Note that we choose the triangulations of Figures 7(a) and 7(b) symmetric with
respect to the t = 0 and y= 0 axes, respectively. While this is not a requirement, we
made this choice because some of our model problems are symmetric with respect
to the t = 0 and y = 0 axes, and this choice of grid leads to numerical solutions
that closely retain this symmetry.

The FEM is known to achieve optimality in the energy norm for linear elliptic
PDEs, but it does not have a local conservation property. The FVEM has a local
conservation property like the finite volume method; however, it does not necessarily
produce an optimal approximation. We have conducted numerical experiments
using both methods, and the results we obtained were very similar. For brevity,
we mainly present the numerical experiment results obtained by the FVEM in this
paper, except in a few places where we compare them with the Galerkin FEM.

4. Numerical results

We now show that the numerical approximations we obtain with the computational
methodology proposed in Section 3 for singular solutions of the Laplace–Young
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(b) MP 2a-1: cusp problem

Figure 8. MPs 1-1 and 2a-1. FVEM solution on the (s, t)-type
grid of Figure 7(a) with 33 × 65 nodes. Surface plots of the
unbounded capillary surfaces in the corner and cusp domains.

equation in domains with a corner or a cusp are accurate global approximations. As
an initial illustration, surface plots for two numerical approximations of singular so-
lutions of the Laplace–Young equation in domains with a corner and with a cusp are
shown in Figure 8. In what follows, we first show how our numerical methods obtain
accurate global solutions for unbounded solutions of the Laplace–Young equation in
domains with a corner or a cusp, by comparing with known asymptotic expansions
and formal asymptotic series. We then numerically investigate the convergence
behavior of the methods we propose using known closed-form unbounded solutions
for the asymptotic Laplace–Young equation. The numerical results confirm that
the computational methods we propose are accurate and have good convergence
properties, and that they can be used with confidence to numerically investigate
open problems on asymptotic solutions of the Laplace–Young equation in Section 5.

4.1. Laplace–Young equation: asymptotic behavior. We now investigate how well
our numerical solutions can approximate the singular behavior by comparing the
numerical solutions to known asymptotic solutions for the Laplace–Young equation.

MP 1: corner problem. As given in (8), the leading-order term of the asymptotic
series solution of the Laplace–Young equation at a sharp corner is known. In
Figure 9, we plot a horizontal cross-section (a cross-section along the x-axis or s-
axis; see Figure 6) of the numerical approximation and the asymptotic approximation
in log-log scale. In Figure 10, we plot a vertical cross-section (a cross-section along
the line x = 1/25 or s = 1/25; see Figure 6) of the numerical approximation and
the asymptotic approximation.

In order to illustrate the crucial benefits of the change of variable and change
of coordinates that are the essential building blocks of the numerical methodology
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we proposed in Section 3, we compare four different choices for obtaining the
numerical approximation using the FVEM: with or without change of variable, and
with or without change of coordinates. The only published work on numerical
approximation of singular capillary surfaces [Scott et al. 2005] also uses the FVEM,
but it does not use a change of variable nor a change of coordinates, and thus
corresponds to Figures 9 and 10.

As can be seen in Figures 9 and 10, the change of variable and the change of
coordinates proposed in Sections 3.1 and 3.2 are very beneficial for the accuracy of
the numerical approximations on a domain with a sharp corner near the singularity.
Note that we cannot conduct a numerical convergence study for these unbounded
solutions of the Laplace–Young equation, as there is no known closed-form solution.

MP 2: cusp problem. We now consider the Laplace–Young equation in a domain
with a cusp. Unbounded cusp solutions are known to have a more severe singularity
than the sharp corner problem. The leading-order term of the asymptotic series
solution is known; see (11). Also, as shown in Lemma 2.3 of [Aoki and Siegel
2012], the first two terms of the formal asymptotic series ũ are known:

(34) ũ =
cos γ1+ cos γ2

f1(s)− f2(s)
−

√
1−

(cos γ1(t + 1)+ cos γ2(t − 1)
2

)2 f ′1(s)− f ′1(s)
f1(s)− f2(s)

.

The formal asymptotic series of a boundary value problem is a series that satisfies
the PDE and the boundary condition asymptotically, but, as opposed to the case of
an asymptotic expansion, a bound on the error has not been proven. (There is no
O(·) term in (34), but there is one in the asymptotic expansion (11).)

As can be seen in Figure 11, the numerical solution we obtain for MP 2 with the
change of variable and the change of coordinates proposed in Sections 3.1 and 3.2
accurately approximates the singular behavior.

Although it is not known if the second-order term of the formal asymptotic series
of this problem is in fact the second-order term of the asymptotic series solution, it
can be seen in Figure 11 that the numerical solution appears to match better with the
second-order formal asymptotic series than with the first-order asymptotic solution.
It is particularly interesting that the domain where the asymptotic approximation is
a good approximation seems to expand by adding a second term to the asymptotic
series.

4.2. Asymptotic Laplace–Young equation: convergence study. In the previous
section, we have shown that the numerical approximations with a change of variable
and a change of coordinates as proposed in Sections 3.1 and 3.2 exhibit the correct
singular behavior for singular solutions of the Laplace–Young equation. Since our
interest is to obtain global approximations which are accurate both at the singularity
and away from the singularity, we now show that the numerical solution in fact
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Figure 9. MPs 1-1, 1-2 and 1-3 (unbounded corner solutions).
Panels (a) and (b) show FVEM solutions on the (x, y)-type grid of
Figure 7(b) with 1089 nodes (no change of coordinates). Panels (c)
and (d) show FVEM solutions on the (s, t)-type grid of Figure 7(a)
with 33 × 65 nodes (with change of coordinates). Panels (a) and
(c) are for computation of the original variable u, and panels (b)
and (d) are for computation of the transformed variable v. The
log-log plots show a comparison of the numerical solutions and the
first-order asymptotic approximations in a horizontal cross section
at y=0 or t=0. Panel (d) clearly gives the most accurate numerical
solutions.
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Figure 10. MPs 1-1, 1-2, and 1-3 (unbounded corner solutions).
Panels (a) and (b) show FVEM solutions on the (x, y)-type grid of
Figure 7(b) with 1089 nodes (no change of coordinates). Panels (c)
and (d) show FVEM solutions on the (s, t)-type grid of Figure 7(a)
with 33× 65 nodes (with change of coordinates). Panels (a) and (c)
are for computation of the original variable u, and panels (b) and
(d) are for computation of the transformed variable v. The plots
show a comparison of the numerical solutions and the first-order
asymptotic approximations in a vertical cross section at x = 1/25

or s = 1/25 (the grid points closest to the singular point). Panel
(d) clearly gives the most accurate numerical solutions.
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Figure 11. MPs 2a-1, 2a-2 and 2a-3 (unbounded cusp solutions).
FVEM solutions on the (s, t)-type grid of Figure 7(a) with 33×65
nodes (with change of coordinates and with change of variable).
The log-log plots in the left panels show a comparison of the
numerical solutions with the first-order asymptotic solution in a
horizontal cross section at t = 0. The log-log plots in the right
panels show a comparison of the numerical solutions with the first
two terms of the formal asymptotic series in a horizontal cross-
section at t = 0. It is clear that accurate numerical solutions are
obtained.

converges to the exact solution everywhere. It would be desirable to conduct a
numerical convergence study for the Laplace–Young equation, but there is no known
closed-form singular solution, and hence we cannot conduct a numerical conver-
gence study. As we have discussed in Section 2.2, there are known exact solutions
of the asymptotic Laplace–Young equation, and it is known that they have the same
singular behavior as the corresponding solutions of the Laplace–Young equation.
We therefore conduct a numerical convergence study for the asymptotic Laplace–
Young equation in corner and cusp domains. Since the exact solution is in the L1

function space but not in L2, we conduct the convergence study in the L1 norm.
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Figure 12. MP 3 (unbounded corner solution for asymptotic
Laplace–Young). FVEM solutions on (s, t)-type grids (Figure 7(a))
and on (x, y)-type grids (Figure 7(b)), with and without change
of variable. The plots show L1 convergence of the numerical
solutions obtained by the FVEM to the closed-form solution. The
plots indicate that all four approaches converge, but it is clear that
the method with change of variable and with change of coordinates
converges significantly faster (with nearly second-order accuracy)
than the other approaches.

MP 3: corner problem. As can be seen in Figure 12, the FVEM numerical ap-
proximation with change of variable and change of coordinates as proposed in
Sections 3.1 and 3.2 converges to the closed-form solution nearly quadratically,
whereas the other approaches (no change of variable or no change of coordinates)
only converge linearly.

MP 4: cusp problem. We have also conducted a numerical convergence study for
the circular cusp problem, where the solution has a more severe singularity than
for the corner problem. For this problem, we have used both the Galerkin finite
element method (FEM) and the finite volume element method (FVEM) to show
that both numerical schemes work well with the change of variable and the change
of coordinates proposed in Sections 3.1 and 3.2. As can be seen in Figure 13, both
the FEM and the FVEM achieve near-quadratic convergence with the change of
variable and change of coordinates, while only linear convergence can be achieved
without change of variable.

5. Conjectures on open problems

As shown in the previous section, we can obtain a globally accurate approxima-
tion of unbounded solutions of the Laplace–Young equation using the numerical
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Figure 13. MP 4 (unbounded cusp solution for asymptotic
Laplace–Young). FVEM and FEM solutions on (s, t)-type grids
(Figure 7(a), with change of coordinates), with and without change
of variable. The plots show L1 convergence of the numerical
solutions obtained by the FVEM and FEM to the closed-form
solution. The plots indicate that all four approaches converge,
but it is clear that the methods with change of variable converge
significantly faster (with nearly second-order accuracy).

methodology proposed in Section 3. We now numerically approximate the solutions
of two problems where the singular behavior is not known yet analytically. Our
numerical results will allow us to formulate conjectures on asymptotic behavior
for these open problems, which may guide further analytical study of these open
problems.

5.1. Open problem 1: osculatory cusp with nonsupplementary contact angles.
As stated in Section 2.1.2, the leading-order asymptotic behavior of the unbounded
solution of the Laplace–Young equation at an osculatory cusp is not known: In
summary, a proof for the leading-order asymptotic behavior could not be obtained
in [Aoki and Siegel 2012] for the osculatory cusp because the authors were not able
to determine the formal asymptotic series. As shown in Lemma 2.2 of that paper,
the first two terms of the formal asymptotic series are known for the osculatory
cusp case up to an additive constant in the coefficient of the second-order term, i.e.,

(35) ũ =
cos γ1+ cos γ2

f1(s)− f2(s)

+

(
−

√
1−

(cos γ1(t + 1)+ cos γ2(t − 1)
2

)2
+C1

)
f ′1(s)− f ′1(s)
f1(s)− f2(s)

,

where ũ asymptotically satisfies the boundary value problem, C1 = 0 if the cusp is
not an osculatory cusp, and C1 is unknown if it is an osculatory cusp. One can see
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from the proofs in [Aoki and Siegel 2012] that the unknown additive constant C1 is
the elusive key to the proof of the leading-order behavior of the osculatory cusp
problem. The coefficient C1 is unknown and may depend on the specific functional
form of the boundary functions f1(s) and f2(s).

Physical intuition suggests that the singular behavior of the unbounded capillary
surface near a sharp corner or a cusp may be governed only by the distance between
the two boundaries forming the sharp corner or cusp. In other words, one may think
that the asymptotic behavior should only depend on f1(s)− f2(s) and its derivatives
and not on f1(s) and f2(s) separately. This would imply that the formal asymptotic
series would be the same for the four MPs 2a-2 and 2b, since f1(s)− f2(s)=7/24 x3

for all these cases. If so, then C1 = 0 is required also for the osculatory cusps of
MPs 2b, since C1 = 0 for the regular cusp of MP 2a-2. But it is also possible that
C1 depends on the precise functional form of f1(s) and f2(s).

In order to investigate this, we now numerically approximate the second-order
term of the formal asymptotic series by the following change of variable for the
unknown function u:

(36) u(s, t)=
cos γ1+ cos γ2

f1(s)− f2(t)
+w(s, t)

f ′1(s)− f ′2(s)
f1(s)− f2(s)

.

We numerically approximate the new unknown functionw(s, t) in (s, t) coordinates,
and we plot the second-order term w(s, t)( f ′1(s)− f ′2(s))/( f1(s)− f2(s)) (or equiv-
alently, u(s, t)− (cos γ1 + cos γ2)/( f1(s)− f2(t))) obtained from the numerical
approximation in Figure 14.

As can be seen in Figure 14, the known second-order term of the formal as-
ymptotic series for the regular cusp (MP 2a-2) is approximated correctly using
the change of variable (36). Also, Figure 14 shows that the second-order term of
the formal asymptotic series of the osculatory cusp case differs from the regular
cusp case and is shifted up by constants, consistent with (35). These numerical
results guide us in conjecturing that the additive constant C1 of the coefficient of the
second-order formal asymptotic series for the osculatory cusp changes depending
on the leading-order term of the boundary functions f1(s) and f2(s), and is strictly
greater than 0. The numerical evidence from Figure 14 indeed indicates that C1 is
not zero for osculatory cusps and that the asymptotic behavior depends on f1(s)
and f2(s), and not just on the difference f1(s)− f2(s). This conjecture on the
unknown constant C1 in (35), obtained from numerical investigation, can guide
future analytical study of this case.

5.2. Open problem 2: infinite-curvature cusp with supplementary contact angles.
Another open problem on the singular behavior of the Laplace–Young equation in
a cusp domain is the infinite-curvature boundary cusp (i.e., limx→0 f ′′1 (x)=∞ or
limx→0 f ′′2 (x)=∞) with supplementary contact angles (i.e., γ1+ γ2 = π ). It was
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Figure 14. MPs 2a-2 (unbounded cusp solution) and 2b (un-
bounded osculatory cusp solution, open problem). FVEM solutions
on an (s, t)-type grid (Figure 7(a)) with 33× 65 nodes, with change
of variable. The plots show vertical cross sections at s = 1/25. The
left panel shows how the numerical solution tracks the second-order
term of the formal asymptotic series. The right panel supports the
conjecture that C1 > 0 in (35).

proven in [Aoki and Siegel 2012] that the cusp solution is bounded if the contact
angles are supplementary angles and the boundaries forming the cusp have finite
curvatures (but it is unbounded if the contact angles are not supplementary).

We conduct numerical experiments for MP 2c (infinite curvature cusp) without
change of variable. Lemma 2.1 of [Aoki and Siegel 2012] gives that the solutions
of MPs 2c-1 and 2c-3 are unbounded, and MP 2c-2 is the supplementary contact
angle case with unknown behavior.

As can be seen in Figure 15, the numerical solution surface is bounded if the
contact angles are supplementary for this case, where the boundaries forming a
cusp have infinite curvature at the cusp. We have conducted various other numerical
experiments; however, we were not able to find any evidence of unbounded solutions
if the contact angles are supplementary angles. Guided by these numerical results
we conjecture that the solution of the Laplace–Young equation in a domain with a
cusp is always bounded if the contact angles of the boundaries forming the cusp
are supplementary angles. We also note that, as an additional check on the validity
of our numerical approach, we have conducted further numerical experiments with
cusps with finite curvature boundaries and with the same contact angles as MPs 2c,
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Figure 15. MPs 2c-1, 2c-2, and 2c-3 (infinite curvature cusp). It
is known that the solutions for 2c-1 and 2c-3 are unbounded, but
the behavior for 2c-2 is an open problem. FVEM solutions on
an (s, t)-type grid (Figure 7(a)) with 33 × 65 nodes, with change
of variable. Surface plots of the capillary surfaces are shown.
The numerical result for MP 2c-2 supports the conjecture that the
solution is bounded in this case.

and we have confirmed numerically the theoretical prediction that the solution is
bounded for supplementary contact angles, and unbounded otherwise.

To conclude, we conjecture that the capillary surface in a cusp domain is bounded
if the contact angles of the boundaries forming the cusp are supplementary angles,
even if the curvatures of the boundaries are infinite. This conjecture on the open
problem of the asymptotic behavior of capillary surfaces in domains with a cusp
and supplementary contact angles, obtained from numerical investigation, can guide
further analytical study of this case.

6. Conclusion

We have proposed a methodology for the numerical study of unbounded capillary
surfaces in domains with a sharp corner or a cusp. The methodology was developed
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by incorporating knowledge obtained from asymptotic analysis into a finite element
based approximation method. It contains two simple but important ingredients that
are combined with the finite volume element method (FVEM) [Bank and Rose
1987; Aoki and De Sterck 2011] or the Galerkin finite element method (FEM)
[Strang and Fix 1973; Brenner and Scott 1994]. The first ingredient is to consider a
change of variable, with the new solution variable being smoother than the capillary
height variable and more amenable to accurate numerical approximation. The
second ingredient is to solve the PDE numerically in a new coordinate system that
is inspired by asymptotic analysis work, which allows us to accurately represent the
discontinuous behavior of the new solution variable at the singular point. We have
shown in extensive numerical tests in domains with a sharp corner or a cusp that
this approach leads to a global approximation method for singular solutions of the
Laplace–Young equation that recovers the proper asymptotic behavior, and is more
accurate and has better convergence properties than numerical methods that were
considered for singular capillary surfaces before [Scott et al. 2005]. Although we
have only considered the Laplace–Young equation and its steep slope approximation,
it is likely that the methodology we have proposed can also be useful for other
nonlinear elliptic PDEs with singularities. One important limitation of our approach
is that in its present form it only works for problems with one singular point.
Extension to problems with multiple singular points is a subject for further research.

The main mathematical contribution of this paper is that we were able to formulate
conjectures for two open problems on the asymptotic behavior of capillary surfaces
in domains with a cusp. These conjectures are derived from numerical investigation
of these open problems using the numerical methodology we propose, and they
may guide future analytical work on these open problems.
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