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In this paper we construct a new family of representations for the quantum
toroidal algebra U, (5120:-1 ), which are £ -extremal in the sense of Hernandez.
We construct extremal loop weight modules associated to level 0 fundamen-
tal weights w; when n = 2r + 1 is odd and £ = 1, r+1 or n. To do this,
we relate monomial realizations of level 0 extremal fundamental weight crys-
tals to integrable representations of U, (sl::’:_l), and we introduce promotion
operators for the level 0 extremal fundamental weight crystals. By specializ-
ing the quantum parameter, we get finite-dimensional modules of quantum
toroidal algebras at roots of unity. In general, we give a conjectural process
to construct extremal loop weight modules from monomial realizations of

crystals.
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1. Introduction

Let us consider a finite-dimensional simple Lie algebra g and its associated quantum
affine algebra U, (§). Beck [1994] and Drinfeld [1987] proved that U, (g) has two
realizations: first as the quantized enveloping algebra of the affine Lie algebra g
and second as the Drinfeld quantum affinization of the quantum group Uy (g).
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The representation theory of the quantum affine algebras has been intensively
studied (see, among others, [Akasaka and Kashiwara 1997; Beck and Nakajima
2004; Chari and Pressley 1991; 1995; Frenkel and Mukhin 2001; Frenkel and
Reshetikhin 1999; Lusztig 1993; Nakajima 2001]). Kashiwara [1994] has defined a
class of integrable representations V(A) of these algebras, called extremal weight
modules, parametrized by an integrable weight A and with crystal basis %B(A).
When A is dominant, V(1) is the simple integrable module of highest weight A. But
in general V() is not simple and it is neither of highest weight nor of lowest weight.
These representations were the subject of numerous papers (see [Beck 2002; Beck
and Nakajima 2004; Hernandez and Nakajima 2006; Kashiwara 1994; 2002b; Naito
and Sagaki 2003; 2006; Nakajima 2004]) and are particularly important because they
have finite-dimensional quotients for some special weight A. Kashiwara has proved
in this way the existence of crystal bases for the finite-dimensional fundamental
representations of AU, (g) (for a special choice of the spectral parameter).

The quantum affine algebra U, (g) is also a quantum Kac-Moody algebra and
thus can be affinized again by the Drinfeld quantum affinization process. One gets
a toroidal (or double affine) quantum algebra U, (g'°") which is not a quantum
Kac—Moody algebra anymore and can not be affinized again by this process (it can
be viewed as “the terminal object” in this construction). These algebras were first
introduced by Ginzburg, Kapranov and Vasserot [Ginzburg et al. 1995] in type A
and then in the general context [Jing 1998; Nakajima 2001]. In type A, they are
in Schur—Weyl duality with elliptic Cherednik algebras [Varagnolo and Vasserot
1996].

The representation theory of these algebras has been intensively studied (see for
example [Feigin et al. 2011a; 2011b; 2012; 2013; Hernandez 2005; 2009; 2011;
Miki 2000; Varagnolo and Vasserot 1998] and references therein). In the spirit of
works of Kashiwara, Hernandez [2009] proposed the definition of extremal loop
weight modules for AU, (g'°"). The main motivation is to construct finite-dimensional
representations of the quantum toroidal algebra at roots of unity. He constructs the
first example of such a module for U, (slﬁfr ) which is neither of £-highest weight
nor of £-lowest weight. This module is generated by an £-weight vector of £-weight
an analogue of the level 0 fundamental weight w; = A; — Ag. By specializing the
quantum parameter ¢ at roots of unity, he obtains finite-dimensional representations
of the quantum toroidal algebra at roots of unity.

In the present paper, we construct a new family of extremal loop weight modules
for the quantum toroidal algebra g (slfil)lz we define extremal loop weight

! After this paper appeared on the arXiv, the constructions in [Feigin et al. 2013] were brought to
our attention by H. Nakajima. Some of the representations constructed in this paper (the V(Y 0 Y(; 11 )
are also defined in [Feigin et al. 2013] from another point of view and are called vector representa-
tions there.
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modules associated to the level 0 fundamental weight w; = Ay — Ag when n =
2r +lisoddand £ = 1,7 + 1 or n (Theorem 4.1). We call them the extremal
fundamental loop weight modules. This construction is based on the monomial
realizations of level 0 extremal fundamental weight crystals B(wy). We relate
these monomial crystals with integrable representations of AUy (slif’j_l) by studying
their combinatorics: we introduce promotion operators for B(wy) (1 <€ <n). We
describe them in terms of monomials. These operators play an important role in
our work: on the one hand, at the level of crystals, they are used to check that these
monomial crystals are closed when £ = 1,7 + 1 or n (see Definition 3.6 for this
notion, related to the theory of g-characters). On the other hand, at the level of
representations, they enable us to define the action of the quantum toroidal algebra.
We show that the representations we constructed are irreducible and, as modules over
the horizontal quantum affine subalgebra, they are isomorphic to the fundamental
extremal weight modules V(wy). We give explicit formulas for the action from
the associated monomial crystal. By specializing the quantum parameter g at
roots of unity, we get new irreducible finite-dimensional representations of the
quantum toroidal algebra at roots of unity. When £ is not equal to 1,7 + 1 or n,
the corresponding monomial crystals are not closed and it is not possible to make
the same construction. We give a conjectural process to define other extremal loop
weight modules in this situation: as an example, we construct an extremal loop
weight module of AUy (sIy") associated to the weight 2z;.

Let us describe the methods used in this paper in more detail. Kashiwara [2003]
and Nakajima [2003] have defined a crystal Jl, called the monomial crystal, whose
vertices are Laurent monomials. They determined monomial realizations of crystals
of finite type. These results have been extended in [Hernandez and Nakajima 2006]
to the level 0 extremal weight U, (§ln+1)—crystals B(wy) 1 <L=<n)ifn=2r+1
is odd, it is isomorphic to a sub-U, (§ln+1)-crysta1 My of M.

The monomials occurring in these realizations of crystals can be interpreted at
the level of representation theory. In fact Frenkel and Reshetikhin [1999] defined a
correspondence between £-weights (eigenvalues of the Cartan subalgebra for the
Drinfeld realization) and these monomials. Motivated by these facts, Hernandez
[2009] used the monomial U, (§l4)—crystal My to construct an integrable represen-
tation of Uy (s1y") whose £-weights are the monomials occurring in this crystal. He
defined in this way the first example of extremal loop weight modules for AU, (slgf’r).
We use the same technical feature in this paper. We propose to relate the monomial
Mg (§ln+1)—crystals My (where n = 2r + 1 is supposed to be odd) with integrable
representations of AU, (sl;"_ri_l).

Let us outline the main steps of the construction of extremal fundamental loop
weight modules associated to Jly. It is based on the combinatorial study of these
crystals. The cyclic symmetry of the Dynkin diagram of type A,(,l) has a counterpart
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at the level of crystals. Actually, these symmetry properties are already known for
the Uy (sl,+1)-crystals of finite type, and translated into the existence of promotion
operators (see [Bandlow et al. 2010; Fourier et al. 2009; Okado and Schilling
2008; Schilling 2008; Shimozono 2002] and references therein). Here we introduce
promotion operators for the level 0 extremal fundamental weight crystals %B(wy)
(1 < £ < n). We improve these operators in the monomial realizations Jt; of
[Hernandez and Nakajima 2006]. In particular, we get a new description of these
monomial crystals.

A monomial set is not in general the set of £-weights of an integrable repre-
sentation. In fact, it must satisfy combinatorial properties related to the theory
of g-characters (see [Frenkel and Mukhin 2001; Frenkel and Reshetikhin 1999]).
This leads us to introduce the notion of closed monomial set (Definition 3.6). It
gives a necessary condition for a set to be the set of £-weights of an integrable
representation. Finally, we determine when the monomial crystal Jil, is closed, using
promotion operators: this is the case if and only if £ = 1,7 + 1 or n (Theorem 3.22).

When Jl; is closed, we construct an associated integrable Uy (slfjrl)—module
whose set of £-weights consists of monomials occurring in Jl;. For that, we paste
together some finite-dimensional representations of the various vertical quantum
affine subalgebras of U, (sl;‘)il). The existence of promotion operators for .y
involves that it defines a U, (slf_rF 1)-module structure. Furthermore we check that the
representations obtained in this way do satisfy the definition of extremal loop weight
modules. They are irreducible, isomorphic to the level 0 fundamental extremal
representations V(zy) as modules over the horizontal quantum affine subalgebra.
Moreover the action of the quantum toroidal algebra on them is explicitly known,
given from the associated crystal. Finally by specializing the quantum parameter g
at roots of unity, we get finite-dimensional representations of the quantum toroidal
algebra at roots of unity.

When the monomial crystal Jil, is not closed, there is no integrable representation
of WUy, (slg’fH) whose set of £-weights consists of monomials occurring in it. The
idea is to consider instead of Jl; a closed crystal containing it and to apply the
preceding methods to this crystal. We treat an example of such a construction: we
define a representation of Uy (slﬁ") which satisfies the definition of extremal loop
weight modules.

Let us now describe briefly the organization of this paper.

In Section 2 we recall the definitions of quantum affine algebras AU, (§ln+1) and
quantum toroidal algebras AU, (sl}f_ri_l) and we briefly review their representation
theory. In particular one defines the extremal weight modules and the extremal loop
weight modules. Section 3 is devoted to the study of monomial crystals. We recall
its definition and we introduce the notion of closed monomial set (Definition 3.6).
We introduce promotion operators for the level 0 fundamental extremal weight
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crystals. As a consequence, we determine when M, is closed (Theorem 3.22). In
Section 4 we construct a new family of representations of Uy (slﬁf_rH) (the extremal
fundamental loop weight modules) when 7 is odd and .l; is closed (Theorem 4.1).
We check that these representations satisfy the definition of extremal loop weight
modules (Theorem 4.7) and we give formulas for the action (Theorem 4.12). We
get finite-dimensional representations of the quantum toroidal algebra at roots of
unity by specializing the quantum parameter ¢ at roots of unity (Theorem 4.18). In
Section 5 we treat an example where the considered monomial crystal is not closed.
We construct a representation of Ug(sly") associated to the level 0 weight 2.
In Section 6 other possible developments and applications of these results are

discussed.

2. Background

We recall the main definitions and general properties about the representation theory
of quantum affine algebras and quantum toroidal algebras of type A.

2A. Cartan matrix. Let C = (C; j)o<;,j<n be a Cartan matrix of type A,(ql) n=2),

(2 -1 0 -~ 0 —1

-1 2 . 0
c=|"

0

0 L2 -1

-1 0 -+ 0 -1 2)

Remark 2.1. The case n = 1 is not studied in the article and is particular. In this
case, the Cartan matrix is
2 -2
(%7

and involves —2. Furthermore, the quantum toroidal algebra U, (sltzor) requires a
special definition with different possible choices of the quantized Cartan matrix
(see [Hernandez 2011, Remark 4.1]).

Set I ={0,...,n}and Iy ={1,...,n}. In particular, (C; ;); jer, is the Cartan
matrix of finite type A,. In the following, I will be often identified with the set
Z/(n + 1)Z. Consider the (n+2)-dimensional vector space

h=Qhy@®Qh &--- & Qhy, ®Qd

and the linear functions ¢; (the simple roots) and A; (the fundamental weights) on
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h given by (i, j € I),
ai(hj)=Cji, ai(d)=250,.
Ai(hj) =6;j, Ai(d)=0.

Denote by IT = {«ag,...,a,} C h* the set of simple roots and by ITV =
{ho, ..., hn} Chthe set of simple coroots. Let P ={A €h*|A(h;)€Z forany i € I}
be the weight lattice and P = {A € P | A(h;) > 0foranyi € I}, the semi-
group of dominant weights. Let Q = ;¢ Za; C P (the root lattice) and
Ot =Yc;Ne; C Q. For A, e b*, write A > pif A—pe Q7.

Set ho = Qhy &+ @ Qhy and Iy = {ay, ..., an}, [I§ = {hy..... hy}. Then
(o, Iy, HB’) is a realization of (Cj j);,jer, (see [Kac 1990]). We define as above
the associated weight lattice Py, its subset P(;r of dominant weights, and the root
lattice Qy.

Denote by W the affine Weyl group: it is the subgroup of GL(h*) generated by
the simple reflections s; € GL(h*) defined by s;(A) = A — A(h;)a; (i € I). The
Weyl group of finite type W, is the subgroup of W generated by the s; with i € I.

Letc=ho+---+hyand § =g+ --- + . We have

{we P|lwh;)=0foralli e I} =0Q6.

Put Py = P/Q6 and denote by cl: P — P the canonical projection. Denote by
PO ={)\ e P|A(c) =0} the set of level 0 weights.

2B. Quantum affine algebra U, (§ln+1). In this article g = ¢! € C* (r € C) is not
a root of unity and is fixed. For/ € Z,r > 0,m > m’ > 0 we set

/

l —
q' —q
g =——
T g—q!

[rlg! =T[rlglr —1lg .. . [lg.
] < _ime
m’ g Im=mlglm]gl

Definition 2.2. The quantum affine algebra %, (§ln+1) is the C-algebra with gener-
ators ky, (h € h), xijE (i € I) and relations

e Z[¢*"),

knkp = kptw, ko =1,

lenxitkep = g P,

£.(2) 4+ o4 4,4 Q)
() xS — XXX X () =0.
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Here we use the notation kl.il = k4p, and for all r > 0 we set (xl.i)(’ ) =
(xE)"/[r],!. One defines a coproduct on U, (sly41) by setting

A(kp) = kp ® kp,
AN =x@1+k@xt, AQ;)=x7 ki +1®x;.

Let Uy (§ln+1)/ be the subalgebra of AU, (§ln+ 1) generated by the xl.jE and ky, for
h € Qh;. This has P, as a weight lattice.

For J C I denote by U, (§ln+1) J the subalgebra of U, (§ln+1) generated by the
xl.i, kpp, fori € J,pe Q. If J = Iy, %q(§ln+1)lo is the quantum group of finite
type asAsociated to the data (ho. ITo. ITy), also denoted by AUy (sl,,41). In particular,
a Uy (sl,+1)-module has a structure of Uy (sl,41)-module. If J = {i} withi € 1,
WUy (§1n+1) J is isomorphic to U, (sl2) and denoted by U;. So a Uy, (§1n+1)—module
has also a structure of AU, (slz)-module.

Let Uy (sl,41)T (resp. Ug(slyr1)~, Ug(h)) be the subalgebra of AUy (sl 1)
genefated by the xiJr (resp. the x;7, the k). We have a triangular decomposition of
WUg (sly+1) (see [Lusztig 1993]):

Theorem 2.3. We have an isomorphism of vector spaces
Ug (slp41) > Ug (Slyt1)” ®Ug(h) ® Ug (Slyt1) T

2C. Representations of Uq (§ln+1). For V' a representation of AU, (§1n+1) and
v € P, the weight space V), of V is

Vo={veV |kyv=qg"Pv,Vhep).

Setwt(V)={v e P|V, #{0}}.

For A € P, a representation V is said to be of highest weight A if there is v € V),
such that for all i € I, xi'" v =0 and WUy (sl,+1) - v = V. Furthermore there is a
unique simple highest weight module of highest weight A.

Definition 2.4. A representation V' is said to be integrable if
(i) it admits a weight space decomposition V = @ V,,
(ii) all the xl.jE (i € I) are locally nilpotent. vep

Remark 2.5. This definition differs from the one given in [Hernandez 2009]. In
fact we require that the following additional conditions be satisfied:

(iii) V) is finite-dimensional for any v € P.
(iv) Vy+No; =10} forallve P, N > 0,i € 1.
These conditions are implied by the previous ones for the highest weight modules.

Theorem 2.6 [Lusztig 1993]. The simple highest weight module of highest weight X\
is integrable if and only if A is dominant. We denote it V(L) (A € P™).
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For an integrable representation V' of AUy (§ln+1) with finite-dimensional weight
spaces, one defines the usual character

x(V) =" dim(V)e(w) € [ | Ze(v).

veP veP

Similar definitions hold for the quantum group U, (sl,4+1). In this case, the
integrable simple highest weight modules are parametrized by P(;" and denoted
by Vo(A) (A € P(;r ). Further they are finite-dimensional (see [Lusztig 1993; Rosso
1991]). Let 6 be the category of integrable finite-dimensional representations of
Ug (sl,+1) and R its Grothendieck ring.

Theorem 2.7 [Lusztig 1993; Rosso 1991]. The category 6 is a semisimple tensor

category and the simple objects of € are the (Vo(A)), _ p+. Furthermore x induces
0

a ring morphism

X:R—> @ Ze(v),

ve Py
where the product on the right is defined by e()e(v) = e(u + v).

We do not recall here the theory of crystal bases of quantum groups, we just
refer to [Kashiwara 1994; 2002a; 2002b]. Let us remind only that for A € P,
the Uy (§1n+1)-m0dule V(M) has a crystal basis B(A). In the same way we denote
by B (1) the crystal basis of the qu (sln+1)-rAnodule Vo(A) (A € P(;r ). WlAlen we
want to distinguish crystals of WUy (sly41), Ug (sly41) s with J C T and Ug(sl,41)’,
we call it respectively a P-crystal or an I -crystal, a J-crystal and a Pj-crystal.

2D. Extremal weight modules. In this section we recall the definition and some
properties of extremal weight modules for the quantum affine algebra U, (§ln+1)
given by Kashiwara [1994; 2002b]. All of these hold for general quantum Kac—
Moody algebras and in particular for Ug (sl 41).

Definition 2.8. For an integrable U, (§1n+1)-m0dule Vand A € P, avector v € V,
is called extremal of weight A if there are vectors {vy }ywew such that vyg = v and

xE. v, =0 and (xl?F)(iw(k)(hi)) Uy = V) i EwR)(h) = 0.

i

Note that if the vector v is extremal of weight A, then for w € W, vy, is extremal
of weight w(A).

Remark 2.9. The definition of extremal vector can be rewritten as follows (see
[Kashiwara 1994]): for an integrable AU, (§1n+1)—module V', a weight vector v of
weight A is called i-extremal if xl.+ ‘v =0or x; -v=0. In this case we set
Si(v) = (xi_)()‘(h")) -vor Si(v) = (x;L)(_)‘(hi)) - v respectively. Then a weight
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vector v is extremal if, for any / > 0, S;, o---0 §;,(v) is i-extremal for any
i,iy,...,i; € I. We set in that case

W-v={Sj0--08;,(wv|leNiy,...,ijel}.
The notion of extremal elements in a crystal & can be defined in the same way.

Definition 2.10. For A € P, the extremal weight module V(1) of extremal weight A
is the U (sl,41)-module generated by a vector vy, with the defining relations that vy,
is extremal of weight A.

Example 2.11. If A is dominant, V(1) is the simple highest weight module of
highest weight A.

Theorem 2.12 [Kashiwara 1994]. For A € P, the module V()) is integrable and
has a crystal basis B(1).

Set A = @y, where 1 < ¢ < n and @y is the level 0 fundamental weight
wy = Ag - A().

Theorem 2.13 [Kashiwara 2002b]. Let 1 <{ <n.
(i) V(wy) is an irreducible Ug (§1n+1)-module.

(i1) Any nonzero integrable Ug (§ln+1)-m0dule generated by an extremal weight
vector of weight wy is isomorphic to V(wy).

Let w be an element of W such that w(wy) = wy + §. Such an element exists
and is not unique (see [Kashiwara 2002b]). It defines a U, (§ln+1)/ -automorphism
(also called Pj-automorphism in the following) of the restricted AUy (§ln+ 1)/-module
V(@y), which sends v to vy,. It is of weight §, and denoted by z;. Let us define
the A (sl 1 1)’-module

W(wy) = V(we)/(z¢ — DV ().
Theorem 2.14 [Kashiwara 2002b]. Let 1 <{ <n.
(i) W(wy) is a finite-dimensional irreducible g (§ln+1)/ -module.
(i1) For any p € wt(V(wy)),
W(wg) e = V(oo
(iii) V(wy) is isomorphic to W(wy) g as a Uq (§1n+1)-m0dule.

Here M, is the affinization of an integrable AU, (§1n+1)/ -module M : this is
the U, (sl,+1)-module with a weight space decomposition My = @ (Magr)v
defined by vepr

(Mage)y = M)
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and with the obvious action of x . Note also that we have an isomorphism of
WUy (sln+1) -modules
My~ Clz.z7'1® M,

where x act on the right side by z+ 8 Oxl.i. In the same way one defines the

afﬁnlzatlon Batr of a Pej-crystal %B. For an integrable AUy (§ln+1)’ -module M with
associated Pg-crystal 9B, the affinization My has a P-crystal Bygr.

2E. Quantum toroidal algebra U, (slt 1)- Inthis section, we recall the definition
and the main properties of the quantum t0r01dal algebra AU, (slt '+ 1) (without central
charge).

Definition 2.15 [Ginzburg et al. 1995]. The quantum toroidal algebra U, (sI: ny1) 18
the C-algebra with generators xl.ir (iel,reZ),ky(heb), him (icl,meZ—{0})
and the following relations (i, j € I,r,1',r1,ry € Z,m € Z—{0}):

kpkp =kpyw, ko=1, [kn,hjml=0, [him. hjm]=0,

khle: k. p _qzl:aj(h) +

Xjre
[ ims X ]— [mClJ]q j.,m+r>
+ = ¢:_r+r/_ l_,r+r’
(1) [xi’r,xj',r/] = 811 ) )
q9—9q
+ + +Cii £ %+ +Cij .+ . * + +
xi,r—i—lxj,r’_q ij r’xzr—i—l - ”xtr J.r 1T j,r’—i—lxi,r’
+ .+ _+ —1\,.+ .+ + + + +
xi,rlxi,rzxizl:l,r’ - (q +4q )xl r1x1:|:1 rXi 2 + xz:l:l rXi rlxz r
+ 4 :I: e S P== :I: + + + 4+
XX Xk, +(q+4q )xz Xk X T X, X N
and [xE i X ”]—Olfz #j,j+x1. Hereforalli el andmeZ, ¢ eouq(slwr )
is determined by the formal power series in Uy, (sl}fil)ﬂzil]]
+ + +m +1 -1 +m’
¢;(2) = Z¢i,:|:mz =k; exp(:l:(q —q ) Z himz ),
m=0 m'>1

and ¢;° =0 form <0, ¢, =0 form > 0.

There is an algebra morphism AU (§ln+1) — (sltor ) defined by kj, = ky,
x:': Xt i0 (heb,iel). Itsimage is called the horizontal quantum affine subalgebra
of Uy (sl“’r 1) and is denoted by Ouh (sI ;). In particular, a Qg (sl | )-module V/
has also a structure of U, (sln+1) module We denote by Res(V) the restricted

, (sl,,+1) -module obtained from V.



QUANTUM EXTREMAL LOOP WEIGHT MODULES AND MONOMIAL CRYSTALS 195

As said above, the quantum affine algebra U, (§1n+1)’ has another realization
in terms of Drinfeld generators [Beck 1994; Drinfeld 1987]: this is the C-algebra
with generators xij; (i €ly,re),ky(heby), him (i€ ly,meZ—{0}) and the
same relations as in Definition 2. 15 It is isomorphic to the subalgebra Uy (slﬁf_ﬂ_l)
of Ay (sl ) generated by the xl o kp, higm (i € Io,r €Z,h €hg,meZ—{0}).
Ug (sl;"_ri_l) is called the vertical quantum affine subalgebra of AU, (slt 1)

Forall j€1,set]; = = I —{j} and define the subalgebra Uy’ J (s ) of Ug (s ;)
generated by the x”, kp, higm (i € lj,r €Z,h € EBZE] Qhi,m € 7Z—1{0}). In
particular Uy’ (sltor ;) is the vertical quantum affine subalgebra Uy (sltor ,) of
WUy (slz"il) All the OlLv J (slﬁfjrl) for various j € I are isomorphic: in fact let 6 be
the automorphism of the Dynkin diagram of type A( ) corresponding to the rotation
such that 8(k) = k + 1, where I is identified to the set Z/(n + 1)Z. It defines an
automorphism 6 of h by sending 4;, d to hg(. d (i e I). For all j e J, let §()
be the automorphism of A, (sltor 1) which sends xl s kpy him to xej( = k0, By
hgj (iy,m Tespectively (where i € I, h € b, r € Z, m € Z—{0}). It gives by restriction
an isomorphism of algebras between U (s, ;) and Uy v.J (sIy }), still denoted by
6U) in the following. If V is a AUy (sln+1) -module, we denote by V) the induced

WUg J (s1 ;)-module.

Forz € I, the subalgebra a; generated by the xl i kpp, (r €Z,m e Z—{0},

p € Q) is isomorphic to Uy, (slL)'.

We have a triangular decomposition of g (SI;?-rH)-

Theorem 2.16 [Miki 2000; Nakajima 2001]. We have an isomorphism of vec-
tor spaces
Ug (S 1) 2 Ug (s14 )™ @ Ug (h) @ Ug (s )T,

where Ug (sltor 1)jE (resp. Uq () is generated by the xjE (resp. the ky, the hj ).

2F. Representations of U, (slt 1)

Definition 2.17. A representation V' of Ug (sltor 1) is said to be integrable if Res(V)
is integrable as a Uy (sln_H) module.

Definition 2.18. A representation V' of AUy, (slt"r 1) is said to be of £-highest weight
if there is v € V' such that

i)V =Ug (I )™ v,
(i) Ug(h) -v = Cv,

(iii) foranyi € I,r € Z, x;}\ v =0.
For y € Hom(U, (6), C) an algebra morphism, by Theorem 2.16 we have a

corresponding Verma module M (y) and a simple representation V' (y) which are
£-highest weight. Then we have:
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Theorem 2.19 [Miki 2000; Nakajima 2001]. The simple representations V (y) of
WUy (slzoil) are integrable if there is (A, (P;)icy) € Pt x (1 + uClu))! satisfying
v (k) = g™ and the following relation in C[z*!], for eachi € I:

aeepy Pi2a™)
Pi(zq)

The polynomials P; are called Drinfeld polynomials and the representation V(y)
is then denoted by V(A, (P;);er). Such a representation is also integrable in the
sense of [Hernandez 2009], that is, V(A, (P;);er) satisfies conditions (iii) and (iv)
of Remark 2.5.

The Kirillov—Reshetikhin module associated to k > 0,a € C* and 0 < £ <n is
the simple integrable representation of weight kA, with the n-tuple

(1—ua)(1 —uaq?) ...(1 —uag®* =Yy fori =4,
1 fori #4£.

y(@E() =q

Pi(u) = {

If kK = 1, it is also called the fundamental module.
Consider an integrable representation V' of Uy, (slﬁf_ﬂ_l). As the subalgebra U, ()
is commutative, we have a decomposition of the weight spaces V), in simultaneous

generalized eigenspaces
W= @D Vo

VEP
y €Hom(Uq (h),C)

where Vi, ) ={x eV :IpeN,Vi e ,LVm > 0,(¢pF,, —v(@: )7 x =0}
If V(y,4) # {0}, then (v, y) is called an £-weight of V.
Definition 2.20. A A, (sl}f_ﬁ_l)—module V is weighted if the Cartan subalgebra

AUy (6) acts on V' by diagonalizable operators. The module V' is thin if it is weighted
and the joint spectrum is simple.

The terminology is different in [Feigin et al. 2011a; 2011b; 2012; 2013]: a thin
module is called tame.

Definition 2.21 [Frenkel and Reshetikhin 1999; Hernandez 2005; Nakajima 2001].
The g-character of an integrable representation V' of AUy (slfj_l) with finite-dimen-

sional £-weight spaces is defined by the formal sum

X = Y dim(Vy,)e(v.y).
vePA
y €Hom(Uq (h),C)

Furthermore if the weight spaces of V' are finite-dimensional we have

XRes(V)) = B(xq(V)),
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where Res(V) still denotes the restricted AU, (§ln+1)-m0dule obtained from V, and

B: 1_[ Ze(v,y) — 1_[ Ze(v)
VEP veP
y €Hom(Uq (h),C)

is Z-linear such that B(e(v, y)) = e(v) for all (v,y) € P x Hom(Uy, (6), C).

Proposition 2.22 [Frenkel and Reshetikhin 1999; Hernandez 2005; Nakajima 2001].
Let V be an mtegrable representation of qu(sltor 1) and consider an {-weight
(v, y) € PxHom(Uy (h) C) of V. Then there exist polynomials Q;(z), R;i(z) € C[z]
(i € 1) of constant term 1 such that

—1
2 3 (@) = dea(Q)—deg(Ry) Qi (24 ) Ri(2q)
? Vi) = 0:(zq)Ri(zq~")

m=0

in C[z*']. Furthermore, if V has a finite composition series
Lo={0}CLiCLy,C---CLp=V

such that Lj/L; ~ V(A;, (Pl.j),-el), where the roots ofPl.j areinq” foralli €1,
0<j=<k-—1,then

(i) there exist w € PT,a € Q7 satisfying v = o —a,
(iii) the zeros of the polynomials Q;(z), R;(z) are in ¢”.

IfVisa Kirillov—Reshetikhin module, one reduces to the case where the defining
parameter a is in g7 by twisting the action by the automorphisms #; of AUy (sln 1)
given by (b € C*)

ty(xi) = b"x}E

lr’

ty(hif,) = b"hE,.  tyky) =

Consider formal variables Yiil, e* iel,l eZ ve P)andlet A be the
group of monomials of the form m = e©¢™) [licriez Y"’ 1(m) , where u; j(m) € Z,
w(m) € P are such that

> uig(m) = w(m)(hi).

lez

For example, eiA’YljEl € Aand A;; = %Y, Y, Y lllejrll €A A
monomial m is said to be J-dominant (J C [) if for all j € J and / € Z we have

uj (m) > 0. An I-dominant monomial is said to be dominant.

Remark 2.23. Let us fix a monomial m € A and consider monomials 7’ which
are products of m with various AjEl (i € 1,1 € 7). By [Hernandez and Nakajima
2006, Remark 2.1], w(m’) is unlquely determined by w(m) and u; ;(m’). So in the
following when we are in this situation, the term e®) will be safely omitted.
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Let V be an integrable U, (sl“’r 1)-module such that for all £- welght (v,y)of V,
the roots of the associated polynomials Q;(z) and R;(z) are in g% for all i € 1.
For (v,y) € P x Hom(Uq(h), C) an £-weight of V, one defines the monomial

Ui, =il
Me,y) =¢ nzelleZY

Qi(z) = 1_[(1 —zq )ui,l and R;(z) = 1_[(1 _qu)vi,l‘

lez lez

, Where

We denote V(,, ) = Vi, ,,,- We rewrite the g-character of an integrable representa-
tion V' with finite-dimensional £-weight spaces by the formal sum

Xg(V) =Y _dim(Vi)m € Z[e*, Y7 lvepict.1cz-
m

Let us denote by .L(}") the set of monomials occurring in x4 (V).

By this correspondence between £-weights and monomials due to Frenkel and
Reshetikhin [1999], the I-tuple of Drinfeld polynomials with zeros in ¢7 are
identified with the dominant monomials. In particular for a dominant monomial m,
one denotes by V(m) the simple module of £-highest weight m. For example
V(ekAZ Yo Y0 542 Yi s42(k—1)) is the Kirillov—Reshetikhin module associated
tok>0,a=¢g°€C*(seZ)and L e I, and V(er* Yy s) is the fundamental module
associatedtoa = ¢’ € C* (s€ Z)and £ € I.

Similar results hold for the quantum affine algebra U, (§1n+1)’ due to Chari
and Pressley [1994]. In this case, the simple integrable representations are finite-
dimensional and denoted V((P;);ey,) in the following. Note that the weights
A € Py can be omitted here because they are completely determined by the Drinfeld
polynomials (P;);ef,»

A =deg(Py)A1 +---+deg(Pn)An.

In the same way if V' is a Kirillov—Reshetikhin module of U, (§ln+1)’ , its £-weights
can be only considered as elements of Hom (U, (60), C) (where qu(ﬁo) is the
subalgebra of %q(§ln+1)’ generated by ky (h € o) and h;, (i € Ig,m € Z —
{0})). They still satisfy the relations in (2). By twisting the action on V by an
automorphism 7, of AU, (§1n+1) for some b € C*, it can be parametrized as above
by Laurent monomials in Z[Y ¥ Yic I,.1ez- The weight w(m) € Py of a monomial
meZ[YY il Ve Io,lez can be omitted here because it is completely determined by
the ui,l(m) (iely!le?).

Recall that the Kirillov—Reshetikhin modules Vo(Y; Yy 542 ... Y s42(k—1))
(k >0,s €7, L e Il over %q(§ln+1)’ can be obtained from the Uy (sl,41)-
modules Vo (kAy) as follows: there exist evaluation morphisms ev, : Ug (§1n+1)’ —
WUy (sly+1) (@ € C*) which send x; o, kj on Xx;, kj respectively (i € Iy, h € by).
So the Ug (§ln+1)/—m0dule Vo(YesYe 542 ... Yo s42(k—1)) is obtained by pulling
back the action of U, (sl,+1) on Vo(kAy) by ev, for some a € C*. In particular,
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Vo(Ye sYe 542 ... Yo s42(k—1)) is irreducible as a Ug (sl 4 1)-module, isomorphic
to Vo(kAy).

We have defined irreducible finite-dimensional Uy, (§ln+1)’ -modules W(wy)
(€ € Iy) in Section 2D. One can determine them in terms of the Drinfeld realization.
For that we need the following additional result.

Lemma 2.24 [Nakajima 2004]. Let v be a vector of an integrable Uq (§1n+1)’ -
module of weight A € cl(P°) such that for all i € Iy, A(h;) > 0. Then the following
conditions are equivalent:

(1) v is an extremal vector.
(i) x;\ -v=0foralli e In.r e Z

As a direct consequence of these results, W(wy) is isomorphic to a fundamental
representation Vo ((1 — 8y ;au);ey,) for a special choice of the spectral parameter
a € C* (see [Nakajima 2004, Remark 3.3] for an expression of it). In particular for
this spectral parameter, one deduces that Vo((1 — 84 ;au);cj,) has a crystal basis.

Let 6; be the category of finite-dimensional U, (§1n+1)/ -modules (of type 1)
and 9R; its Grothendieck ring. Recall that 6; is an abelian monoidal category, not
semisimple, with as simple objects the Vo ((P;);er,) and R; is the polynomial ring
over Z in the classes [Vo((1—6¢ jau)ier,)] (£ € Iy, a € C*) (see [Chari and Pressley
1994; Frenkel and Reshetikhin 1999]). As in [Hernandez and Leclerc 2010], we
consider €; 7 the full subcategory of ¢; whose objects V' satisfy:

For every composition factor S of V, the roots of the Drinfeld polynomials
(P;i(u))ier, belong to q’.

This is also an abelian monoidal category, not semisimple and the Grothendieck
ring Ry 7 of €; 7 is the subring of %; generated by the classes [Vo(Yy )] with
L e ly,s € Z (see [Frenkel and Mukhin 2001]).

Theorem 2.25 [Frenkel and Reshetikhin 1999]. x, induces a ring morphism x4 :
Rz —> Z[Yiill]ielo,leza called the morphism of q-characters. Furthermore we
have the commutative diagram

Xq

1Y Niery ez

L Res j B
R * B Ze(v)

ve Py

where the ring morphism Res : R; 7 — R is the restriction and B is defined by

B(m) = e(w(m)).
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One does not have an expression of g-character of a representation in general. But
explicit formulas exist for the fundamental modules and the Kirillov—Reshetikhin
modules over U, (§1n+1)’ and Uy, (sl}fjrl), given in terms of tableaux [Hernandez
2011; Nakajima 2003].

2G. Extremal loop weight modules. We recall the notion of extremal loop weight
modules for U, (s, ;). The main motivation for this is the construction of finite-
dimensional representations of the quantum toroidal algebra as in the theory of
Kashiwara, but at roots of unity in this case.

Definition 2.26 [Hernandez 2009]. An extremal loop weight module of U, (slif_rH)
is an integrable representation V' such that there is an £-weight vector v € V
satisfying:

(i) Ug (s ) - v=V.
(ii) v is extremal for ou{; (s ).

(iii) %Z’j (slg’j_l) -w is finite-dimensional for all w € V and j € 1.

Example 2.27. If m is dominant, the simple £-highest weight module V(m) of
£-highest weight m is an extremal loop weight module.

An example of such a representation which is neither of £-highest weight nor of
£-lowest weight is given in [Hernandez 2009]. The goal of this article is to construct
a new family of extremal loop weight modules, called extremal fundamental loop
weight modules.

3. Study of the monomial crystals l(e®*Y, Y~ ; e)

We will relate in our paper the monomial realizations Jly of level 0 extremal
fundamental weight crystals B(wy) (1 < £ < n) of %q(§1n+1) with integrable
representations of AUg (sI, |
monomial realizations, the main point being the use of promotion operators for
level 0 extremal fundamental weight crystals introduced below. This is the first step
of the construction of integrable modules associated to Jl.

In Section 3A, one gives the definition of the monomial AU, (§1n+1)-crystal M
[Kashiwara 2003; Nakajima 2003]. This definition holds when the considered
Cartan matrix has no odd cycle. So it does not work for U, (§ln+1) when 7 is even,
and we have to assume that n» = 2r 4+ 1 (r > 1) is odd until the end of the article.
Following [Hernandez and Nakajima 2006], we recall the monomial realization of
RB(wy) (1 <L <n): it is isomorphic to the sub-AU, (§ln+1)—crystal

). In this section, we study the combinatorics of these

My = M(e™* YE’OYO_’G}[)
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of M generated by the monomial ¢®*¢ YK, 0 YO_,dlg (with dy equal to min({, n+ 1—1)).
Furthermore we define the notions of a g-closed monomial set and of a monomial set
closed by the Kashiwara operators, respectively related to the theory of g-characters
and to the combinatorics of crystals.

The monomial crystals Jl; have already been studied in [Hernandez and Nakajima
2006]: the monomials occurring in these crystals are explicitly given for 1 <£ <n
and their automorphisms z; are described in terms of monomials. We recall these
results in Section 3B.

In Section 3C, we introduce promotion operators for level 0 extremal fundamental
weight crystals B(wy) (1 < £ < n). The promotion operators were introduced in
[Shimozono 2002] for the Young tableaux realization of the finite Uy (sl;+1)-
crystals Bo(kAyg) (k € N*, 1 < £ < n) and studied in numerous papers (see
[Bandlow et al. 2010; Fourier et al. 2009; Okado and Schilling 2008; Schilling 2008;
Shimozono 2002] and references therein). It is the counterpart at the level of crystals
of the cyclic symmetry of the Dynkin diagram of type A,(,l). After recalling these
definitions, we extend the promotion operators for the level 0 extremal fundamental
weight crystals B(wy). Finally we specify the promotion operator of B(wy) in its
monomial realization ;.

In Section 3D, we use promotion operators to obtain a new description of Jly. In
particular, we improve results given in [Hernandez and Nakajima 2006] for these
crystals. Furthermore we determine the £ € I for which the monomial crystals Jit,
are closed (Theorem 3.22): this is the case if and only if £ = 1,7 + 1 or n.

3A. Monomial crystals. In this section we define the monomial crystal Jl of
WUy (§ln+1) when n = 2r 4 1 is supposed to be odd, following [Kashiwara 2003;
Nakajima 2003]. Monomial realizations of the crystals B(A) with A € P, in
particular of RB(wy) (1 < { < n), are studied in [Hernandez and Nakajima 2006;
Kashiwara 2003; Nakajima 2003]. They are obtained as subcrystals of Jl generated
by a monomial. We recall these results here. Finally we introduce new notions of
q-closed monomial set and of monomial set closed by the Kashiwara operators.

As we have said above, the definition of the monomial crystal Jil requires that the
considered Cartan matrix C is without odd cycle. So we assume that n = 2r + 1
(r = 1) is odd until the end of the article. In particular there is a function s : / —
{0,1},7 — s; such that C; ; = —1 implies s; +5; = 1.

Consider the subgroup M C A defined by

M={meAlu;;(m)=0if [ =s; + 1 mod 2}.
Following [Kashiwara 2003; Nakajima 2003], let us define wt : Ml — P by

wt(m) = w(m),
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and &;, @i, pi,qi : M — Z U {oo} U {—o0} fori € I by (m € M)
@i,.L(m) = "uii(m), @i(m)=max{g;(m)|LeZ}>0,
I<L

si,.L(m) == uj(m), &(m)=max{e;,(m)|LeZ}=0,
I>L

pi(m) =max{L € Z | &;  (m) = &;(m)}

S i g(m) = g1 (m>},

= max{L e’
I<L

qi(m) =min{ L € Z | ¢; 1 (m) = ¢i(m);

= min{L ez ‘ — Z uj(m) = sl-(m)}.

I>L

Then we define é,-,f,- M — MU{0} fori € I by

N {0 if £;(m) =0,
éi-m= ]

mAi,pi(m)—l if &; (m) >0,

~ 0 if ;(m) =0,

Jim = A if @; 0

igim+1 i (m) > 0.

Theorem 3.1 [Kashiwara 2003; Nakajima 2003]. The crystal (M, wt, &;, ¢;, €;, ﬂ)
is a WUg (sly1)-crystal, called the monomial crystal.

Remark 3.2. When # is even, the Dynkin diagram of type A,(,l) is not bipartite. In
this case, (M, wt, &;, ¢;, €;, f;-) does not satisfy the axioms of crystal (see [Kashiwara
2003]). Other crystal structures are defined on (a subset of) A in [Kashiwara 2003].
But the monomials used are different with those occurring in the theory of g-
characters of U, (slf_ri_l)-modules and it is not useful for what we will do in the
next sections.

For m € Jl denote by J(m) the connected subcrystal of .l generated by m. As
it is explained above, the weight of a monomial m’ € AL(m) is determined by w(m)
and u; ;(m’) (Remark 2.23). So we will omit the term e®™) and we just specify
the weight of the monomial m. For J C I and m € .il, denote by [ s (im) the set of
monomials obtained from m by applying the Kashiwara operators ¢é;, f, fori e J.
It is a connected sub-J-crystal of Al(m) generated by m.

For p € Z and o € Z8, let 13 o be the map 73 o: M — JM defined by

A Uin\ _ Ao Ui.n
wpa(H 1Y) = [T Yty
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This is a Pj-crystal automorphism of the crystal J, also called shift automorphism
in the following.

The following result was proved in [Kashiwara 2003; Nakajima 2003] when m
is a dominant monomial and is generalized in [Hernandez and Nakajima 2006] for
all m € M.

Theorem 3.3. For m € M, the crystal M(m) is isomorphic to a connected compo-
nent of the crystal B(A) of an extremal weight module for some A € P.

It was shown in [Kashiwara 2002b] that the fundamental extremal crystals %B ()
are connected for all £ € . Let

dy =min(l,n+1—-10)

be the distance between the nodes 0 and ¢ in the Dynkin diagram of type A,(,l). We
have the following monomial realization of R (zy).

Theorem 3.4 [Hernandez and Nakajima 2006]. Set M = e®*Y,

.0 0 d for £ € I.
Then M is extremal in M and M(M) >~ B(wy) as P-crystals.

One can define in the same way the monomial crystal /g associated to Uy (sl 41).
It can be done for all n > 2, the Cartan matrix of type A4, being without cycle.
As it is said above, the weights of monomials are completely determined by the
powers of variables Yil in this case. So they can be safely omitted. For m € .o,
we denote by Jilg(m) the subcrystal of Al generated by m. We have:

Proposition 3.5 [Kashiwara 2003; Nakajima 2003]. The Ug4(sl,41)-crystals
Mo (Y; k) and Bo(A;) are isomorphic for all i € Iy and k € Z.

Fori € I, set E; : Ml — M the map sending the variables Y ,e” to 1 for
all j #i andv € P, and Y; il to themselves. Another map will be used below:
E!: M — M, which sends the variables inl to themselves if j # i and Yljil v

to 1 for all v € P. These two maps are also defined in [Frenkel and Mukhin 2001]
and denoted by B¢;y and B, respectively.

Definition 3.6. (i) A set of monomials & C Jl is said to be g-closed in the direction
i (i 1) ifforall m € & there exists a finite subset

Fm CLN (m-]_[A,.Z,),
lez

which contains m, and a sequence (n4)sey,, of positive integers such that
oF, (Z ses,, s -s) is the g-character of a representation of U;.

(ii) A set of monomials ¥ is said to be J-g-closed (J C I), or simply g-closed if
J =1, if ¥ is g-closed in the direction i for all i € J.



204 MATHIEU MANSUY

(iii) A set of monomials &¥ C Jl is said to be J-closed by the Kashiwara operators
(J C I, or simply closed by the Kashiwara operators if J = 7, if the operators
¢, fi preserve & for alli € J.

(iv) A set of monomials & C Jil which is J-g-closed and J-closed by the Kashiwara
operators (J C I), is called a J-closed set. If J = I, it is simply called a
closed monomial set.

Remark 3.7. (i) The definition of a g-closed set is inspired by the theory of
q-characters and the algorithm of [Frenkel and Mukhin 2001]. In particular,
it involves g-characters of Oqu (§12) -modules. Let us recall that in this case,
the image of x4 : Ry 7 — Z[Y % 11 11;e7 is known (see [Frenkel and Reshetikhin
1999]): it is equal to the subrmg Z[(Y +7Y H_2)]162 of Z[Y 7 11;e7 generated
by the Yl,l + YI_JJr2 (I € 2).

(ii) The notion of a g-closed set holds also for the monomial Ug (sl 41 )-crystal .
Further it extends naturally when ¢ is specialized at roots of unity, by using
the theory of g-characters at roots of unity [Frenkel and Mukhin 2002].

Let V be an integrable U, (sl;} | )-module such that for all {-weight (v, y)
of V, V() is finite-dimensional and the roots of the associated polynomials
Qi(z) and R;(z) are in ¢Z for all i € I. Then the monomial set (V) is g¢-
closed. Note that the Frenkel-Mukhin algorithm need not necessarily hold for V':
for example, it does not work for the simple finite-dimensional AUy (§l3)’ -module
VO( 0Y2,3) = VO(YI 0Y2,3) ® Vo(¥Y1,0) considered in [Hernandez and Leclerc
2010] but Jl/L(Vo( oYa, 3)) is g-closed.

In general, JL(V) is not closed by the Kashiwara operators: for example, the ¢-
character of the qu (§12) -module Vo (Y, 0) contains the monomial Y; ¢ but does
not contain Yl_’ However, it holds for the fundamental U, (sln+1) -modules. In
fact by using the tableaux sum expressions of their g-characters given in [Nakajima
2003], we have:

Proposition 3.8 [Nakajima 2003]. Let Vo (Y; ) be a fundamental representation
of Uy (sly1) (i € Iy, k € Z). Then the monomial sets Mo(Y; ) and M(Vo(Y; x))
are equal.

In particular by Proposition 3.5, M(Vo(Y; x)) has a AUg(sl,41)-crystal structure
isomorphic to Bo(A;). As a consequence:

Corollary 3.9. For all 1 <i < n and k € Z, the Uy (sl,41)-crystal Mo(Y; )
is closed.

Finally, let us give an example of a monomial crystal which is not g-closed.
Consider the AUy (slz)-crystal Mo(Y1,4Y71,0):

-1 —1y—1
ViaVio=>Yi¢Yi0>Yi6Y12:
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If Mo(Y1,4Y1,0) is g-closed, it should contain M(Vo(Y1,4Y1,0)). This is not the
case, the g-character of V(Y] 4Y1,0) being

-1 -1 —1y—1
XaWo(Yy 4Y10) =Y, 4 Y 0+ Y 6V o+ Y 4V 5 +Y 67 5.

3B. Description of the monomial crystal M(e®*Y; Y, ‘} .)- Assume that n =
2r + 1 is odd with r > 1. The monomial crystals Jl(e™¢ Ye,oYo_,alIe) are studied
in [Hernandez and Nakajima 2006, Section 4]: the monomials occurring in these
crystals are explicitly described and the automorphisms z; are given in terms of
monomials. We recall these results here.

To describe the monomial crystals Jil(e®@*¢ YZ,OYO_,;’Z)’ we assume in this section
that £ <r + 1 (as in [Hernandez and Nakajima 2006]). Let us begin by explaining
why we can do that. We need the notion of twisted isomorphism of crystals (this
definition appears in [Bandlow et al. 2010]).

Definition 3.10. Let % and %' be crystals over two isomorphic Dynkin diagrams D
and D’ with vertices respectively indexed by 7 and I’ and let 6 : I — I’ be an
isomorphism from D to D’. Then ¢ is a O-twisted isomorphism if ¢ : B — B’ is a
bijection map and for all b € B andi € I,

Jowy ¢ () =¢(fi-b) and &gy -p(b) = ¢ (& -b).

Let ¢ be the automorphism of the Dynkin diagram of type Ag,l) such that ¢ (k) =
—k (k € I'), where I is identified to the set Z/(n+-1)Z. It defines an automorphism ¢,
of b by sending /;,d to h,(;),d foralli € I. Let ¥ : M — .l be the map defined
by (r € Q)

v (e [T Yim n) = e [Tt Yoi)er.

Then we show easily that ¢ is an (-twisted automorphism of the P-crystal Jd.
Furthermore it induces an ¢-twisted isomorphism

Y M€Y, (Yo ) —> MY, oYy

between the monomial crystals Jl(e®¢ Ye 0Y0 é) and M(ePn+1-¢Y, i, 0Y0 ¢
foralll <{=<r+1.

So one can assume that 1 < ¢ <r 4+ 1. In this case, dy = £ and we study the
crystal Jl(e™¢ Ye oYo E) (see [Hernandez and Nakajima 2006]). One defines the
monomials

e, =Y i Yeprxey forl<k<n+1,pez,
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with Y, 11, = Yo, p by convention. By Remark 2.23, the terms @) can be safely
omitted for all m’" € M(e®*Y, oYo_El)' Set My = e™*Y, 0Yo_e1 and

o -1
M; =Y, ;Yo nt4142;Y; £+JY n—{+1+j

_(.n €+2]n L+2j-2" .n—€+2 X€—1€—3"'1—€+2j)
o 1_[." t—2p+2j+2 % 1_[ [Plet1-2p+2j

p= p=j+1

with 0 < j < £. In particular, My =Y, n+1Y0_n+1+K Tnt1,—8(Mo) and M| =

73,—§(Mp) for £ =r 4 1. One defines other monomials as follows: for j € Z and a
Young tableau of shape () T = (1 <i; <ip; <---<ig <n+1) we set

J L
) mry = [[[ilnteaprajsr X T[] [lericapsa; for0=j=e-1,
p=1 p=j+1

and mr.j1¢ = Ty41,—¢5(m7;;). Note that M; = mr,; with T = (1,2,...,).
By Theorem 3.4, M(My) and B (zy) are isomorphic as P-crystals. Furthermore:

Proposition 3.11 [Hernandez and Nakajima 2006]. (i) Jly,(M;) consists of mr,
for various sequences T.

(i) We have the equality of 1y-crystals

-1
) Me™ Yy o Yo 1) =| | Gnt1,-e5) (|_| mzo(Mj)).

kez j=0
(iii) The map
o M(e®t Yo YO_,al,e) — M(e™* Yé,oYo_,;’e)

defined by o (mr,;) = mr;j+1 is a Pg-crystal automorphism and equals z[l.
(iv) The Kashiwara operators é;, ]7, are described in terms of tableaux: fori # 0
we have é;-mr.j =my.j or 0. Here T' is obtained from T by replacing i + 1
by i. If it is not possible (that is, when we have bothi + 1 and i in T or when
i + 1 does not occur in T'), then it is zero. Similarly ];, -mr,j =mgn,j or 0,
where T" is given by replacing i by i + 1. For the action of &y, fo, we have

0 ifiy #1lorig=n+1,
My, ignt1)j—1  ifir=landig #n+1,
~ 0 ifiy=1orig #n+1,

Jo-mr;; = { . .
M(1,iq,.ig—1);j+1 lfl] 75 1 and ly =n + 1.

€o M) ={
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Proposition 3.12. There is a bijection given by E° between My, (My) and M(V),
where V = Vo(E®(My)) is the fundamental representation of Ug(sly+1)" associ-
ated to Yy o. In particular the monomial crystal My,(My) is Iy-closed.

Proof. By the previous description, Jl;,(My) consists of the monomials m 7. for
various sequences 7. By applying the map E, they are sent to the monomials

)2
mr = [Tlin]esi-2p
p=1
with T = (1 <iy <---<iy <n+ 1) and where we set

~1
[1),=Y1, and [n+1], = Yy pnt

for all p € Z. They are exactly the monomials occurring in the tableaux sum
expressions of g-characters of fundamental modules of U, (§ln+1)/ (see [Nakajima
2003]). So the image of J7o(My) by E? is equal to M(Vo(Yy,0)). Further this set
is I9-q-closed by definition, and Jit7,(My) is also Iy-closed O

Now let us consider the monomial crystal M(e®*Y, oYo_c}g) with 1 <€ <n. We

determine in the next proposition when z, has the particular form of a shift.
Proposition 3.13. The automorphism zy of M(e®*Y, 0Y()_;,é) has the special form
of a shift tpo (p € Z,a0 € Z8) if and only if £ = 1,n or L =r + 1. Moreover, we
have zy = zy = T_py_1 s and zp 1 = T_3 .

Proof. Assume that £ <r+1. We have seen that z; =0~ !. So it suffices to determine
when o is a shift. We have the equality ot = Tyt1,—5- Henceif =1, 0 =1, 5
is a shift. Assume that £ =r + 1. In this case, My = 15 _s(My) = 0 (My). As the
crystal JM(Mp) is connected and o and 7, _s are automorphisms of crystals, we
have o = 1, _s. For the other cases, o is explicitly known and is not a shift. As
and shift automorphisms commute, the result follows for £ > r + 1. O
3C. Affinized promotion operators and monomial crystals M (e@* Ye,OY(Z ;z ).
In this section, we introduce promotion operators for the level 0 extremal fun-
damental weight crystals. We describe them in the monomial realizations of %B(w@y)
(1<¢<n).

Let us begin by some definitions and properties about the promotion operators
(see [Bandlow et al. 2010; Fourier et al. 2009; Schilling 2008; Shimozono 2002] and
references therein for more details). In type A, the highest weight crystal %B(A)
of highest weight A € P(;r can be realized by the semistandard Young tableaux of
shape (1). The weight function wt is defined by the content of tableaux, that is,
wt(T) :=(w((T), ..., wy+1(T)), where w; (T') is the number of letters i occurring
in the tableau 7'. It can be viewed as an element of Py in the following way: set
€i=AN—Aj_1for2<i=<n,e; =A;and €,4| = —€; —---—¢€,. In particular,
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aj=¢€—€iy1, Ni=¢€1+---+¢ (1 <i <n),and we have P =Ze; +- -+ Zep41.
Then wt(7") corresponds to the element

wi(T)er + -+ w1 (T)en1 € Po
for all Young tableau 7.

Definition 3.14. Let B¢ = Bo(A) be a highest weight Uy, (sl 1)-crystal of highest
weight A € P(;r . A promotion operator pr on % is an operator pr : Bg — Bo such
that

(i) pr shifts the content: if wt(7') = (wq, ..., wy,+1) is the content of T" € Ry,
then wt(pr(7)) = (Wy41, Wi, - .-, Wy);

(ii) the promotion operator has order n + 1 : pr"*! = id;
(iii) proé; = €;4q 0pr and pro f; = ﬁ.,.l oprfori e{l,2,...,n—1}.

Given a promotion operator pr on a highest weight U (sl,,+1)-crystal Bo (1)
(A€ P0+ ), one defines an associated affine P.-crystal by setting

o0& opr and f~0 =pr ! oflopr.

éo:=pr
We denote the Pg-crystal hence obtained by %o(k);ff.

It was shown in [Shimozono 2002] that the U, (sl,41)-crystal Bo (L) (A € Py)
has a unique promotion operator pr when A is rectangular (that is, of the form
kA with £ € Iy and k € N*), given by the Schiitzenberger jeu-de-taquin process.
Furthermore the affine Pg-crystal Bo(kA ). obtained by using the promotion
operator pr is isomorphic to the crystal basis of a Kirillov—Reshetikhin module
associated to £ € Iy, k € N* (for a special choice of the spectral parameter a € C*
see [Kang et al. 1992]).

From the affine Pgj-crystal Bo (kA ) let us consider its affinization Bo (KA g )afr
(see also [Kashiwara 2002b]): this is the P-crystal with verticesin {z*T |s € Z, T €
Bo(kAg). such that for all s € Z and T' € Bo(kAg)lg

wt(Z T) = wt(T) + 58, & 25T =290 . T),  fi-25T = z57%0(f; . T).

Assume in the following that £ < r + 1 (the case £ > r + 1 is studied at the end
of this section). We introduce the affinized promotion operator on Bo (kA ¢)afr.

Definition 3.15. Let us consider the crystal of finite type Bo(kAy) (with k € N and
£ <r+41), prits associated promotion operator and Bq (kA ). its affinization. The
affinized promotion operator on B (kA g)asr is the operator pryg : Bo(KAg)arr —
Bo(kAg)asr such that for all T € Bo(kAy)ly and s € Z,

pryg(z°T) = 27+t Dp(T),

One checks easily the following statements.
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Lemma 3.16. The affinized promotion operator prg of Bo (kA g)asr shifts the con-
tent. It satisfies

Plaf© € = €i4+10Pryy and prygo fi = fiy1 0Py

fori €{0,1,...,n} (Where é,41, f:,+1 are understood to be ¢y, f~0 respectively).
It has infinite order, the weight ofpr;’f}H being —k{4.

Recall that one has defined an automorphism 6 of the Dynkin diagram of type
A;,l) corresponding to a rotation such that (i) =i + 1 (i € I). Then by the
above Lemma, pr is a O-twisted automorphism of B (kAy)asr. Furthermore as
the P-crystals B(wy) and Bo(Ay)as are isomorphic (see [Kashiwara 2002b]), the
affinized promotion operator pr,g : Bo(Ag)ar — Bo(Ag)asr induces a O-twisted
automorphism of the level 0 fundamental extremal weight crystal B(wy) (£ <r+1).
We call it the promotion operator of B(wy), also denoted by prg.

We want to describe the promotion operators of the crystals B(wy) in the
monomial realizations when £ < r + 1. To do that, let ¢ : M(e™* Ye,oyo_,el) —
M(e®tY, YO_,ZI) be the map such that

£,0
(1) =TTt o
the terms eV being safely omitted in the definition by Remark 2.23. Denote by
¢ 1 B(@) = Bo(Agatr — MY, Y5 )
the isomorphism of P-crystals between Bo(Ay).e and M(e®* Ye,OYo_,zl)' It is
explicitly given by
¢ :2°T € Bo(Ag)ait > mp,—s € MY,  Yoi) (s €Z.T €Bo(Ay)).

Y = My, .Y to

The following result relates the map ¢ : M(e®*Y, 10Yo0r

£,070,¢
the promotion operator pr,g of %B(wy) introduced above.

Proposition 3.17. Assume that £ < r + 1. The following diagram commutes:

B(wy) MY, Yo
praff] Lq)
B(wy) L MY, Y ).

Proof. For 1 <k <n+41and p € Z, we have

—1 —1
¢(p) =1, paic Ve, prk—1) = Yie prke41 V1, p+k

_{p itk <n,

[ynss ifk=n+1.
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Fix j € Z and a Young tableau
T=(1=<i1<ip<---<ig<n—+1)

of shape (Ay). If iy # n + 1, we have

¢p(mr;j) =¢ (H.n —2p+2j+2 % 1_[ .€+1 2p+21)

= j+1
= l_[mn - 2p+2]+2x l_[ lp+ (+1-2p+2j
=j+1

= Mp(r);j = @(Pro(z~ T)).
Assume that iy = n + 1. Then

¢(””T i)
= Hmn (—2p+2j+2 Xl—[ ’P+ 41— 2p+2]X-n —042j42
p=j+l1

Jj+1

= HMn (—2p+2(j+1)+2 XH i1+ 1 —2pr2G41 < Wneega1n)
p=j+2
i .

= Mp(T);j+1 :¢(Z J pI'(T)):Q(pI'aff(Z jT)) O

Remark 3.18. It follows in particular that ¢ is a 6-twisted automorphism of
M(e®* Y(i oYo e) since B(wy) and M(e®*Y, oYo_el) are connected and pr,g is
a O-twisted automorphism.

The case £ > r + 1 is similar to the previous one. The affinized promotion
operator of Bo(kAy)ar (k € N*) is the operator

Pragr : Bo(KAg)att —> Bo(kKAg)att
such that for all T € Bo(kAy)ar and s € Z,
Proe(z°T) = 25Tk wne 1My,

Note that the definition of the affinized promotion operator is different to the one
when £ < r 4 1. This provides to the automorphism ¢ of b.
Let us consider the map

Yopoy ! :Jl/L(eWY“Y ot 1— e)—wl/t(ew‘YeoY ont1—0)-
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It is a §~!-twisted automorphism of .U(e®¢Y .0 Y()_’n1 i ¢) such that

Uil

-1 Ui\ __
vogou  (ITY") =TT¥" 1o
It can be related to the promotion operator pr,g of Bo(kAg)asr: one can check that

Yopoy ! =pryl.

3D. Application of promotion operators to the study of M(e®*Yy,0Yg, ‘} ) In
this section, we use promotion operators to obtain a new description of the monomial
crystal M(e™* YZ,OYO_,al'g)’ improving results given in [Hernandez and Nakajima
2006]. Moreover, we determine the £ for which the crystals M (e™* YLOYO_’(}Z) are
closed.

Assume first that £ < r 4 1 (where n = 2r + 1 is still supposed to be odd). Let us
begin with the following remarks. The monomials ¢/ (Yz,oY 0_’2 =Y, Yy ijﬁl n
will have a particular importance in the construction of extremal fundamental loop
weight modules. One can give them in terms of Young tableaux, thanks to the

f-twisted automorphism ¢ of :
o If jissuchthat{+j <n+1,7Y, Y7l e My, (Mp) and is equal to m;g

Ctj,j it+]
with T =(j+1,j+2,....j +0).
cIf1<j<{—1then¥,  , .. Yl .\ .. €dlr,(M))andis equal

tomrp;; with T =(1,2,...,j,n—+j+2,....n+1).

We will have to consider the finite sub-/;-crystals of M(e™*Y, OYO_ZI ,

—1
My, (Ye+j,j+k(n+1)Yj,€+j+k(n+1))

for j € I and k € Z: this is the sub-I;-crystal of JAl(e®¢ Ye,oYO_,zl) generated by
the monomial ¥, itk +1)ijﬁl k(1) Note that one of these crystals can

be obtained from another one by application of powers of ¢.

Proposition 3.19. Let £ <r + 1. We have the equality of sets

n
Me™ Y, Yo ) = tnr1,—s)* (U Mi; Yy j ijel+j))'
kez j=0

Proof: AsY,, ; .Y},  €M(e™Y, Y forall 0= j <nand l(e™*Y, (Yo"

is connected,

,0
n
-1 w —1
Ut (Ve Y74 ) Ce™ Y oY)
j=0
as sets.
Let us fix m € M(e®*Y, oYo_el)' The monomial m is of the form m7,; with

T=(0=<ij<ip<--<ig<n+1)and j € Z. By application of the shift
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automorphism, one can assume that 0 < j <{—1. So we have to show that mr; €
U, o Mp; (Y, [y je+]) If j =0, wehavemToeMIO( 0.0 ”) Assume that
I<j=<{—landsets=ij 4 ;—1.ThenT =(i; <---<ij <s+1<ijys<---<liy)
and by application of the Kashiwara operators e, ...,€5_1,€542,...,€, On mr;;,
we show that

mr,j € My (mrrj) withT'=(1<---<j<s+l<---<s+L—)).
By applying €q,...,€j—1,€54¢—j41,...,€n and €g On myv;;, it is sent on
mypro withT”" =(s+1<---<s+4{) ifs+{<n+]1,
and on

myry withu =s+€—n—1,T" =(1 <---<u<s+1<---<n+1) otherwise.

Furthermore mz»,, = =¢°(Y, 2,0 o )0 ) -

is also contained in Jz, (Y, +s, SYS_e +s)

by the above remark and mr;;
d

€+s K s Z-i—s

Remark 3.20. One of the questions treated in [Hernandez and Nakajima 2006, Sec—
tion 4] is to give an explicit description of monomials occurring in Jl(e®* Ye 0 Yo ¢

(€ <r 4+ 1). Actually by the shift automorphism and the description given in
that reference, all the monomlals in M(e®tY, Y, 0. é) can be obtained from the
monomials occurring in |_| = Oﬂ/LIO (Mj) (see (4)) So this description requires

knowing
(0]

monomials to obtain all the other ones. The preceding proposition improves this
result. In fact to determine all the vertices of A (e™*¢ Ye 0Y0 e 1), it suffices to know
the monomials occurring in the /g 13- crystal My, 1}( 070, e) and to apply ¢.
Further a monomial m7;o € My, ,, (Y, 0.0%0, Z) is such that 7" has the form 7" =
(1 <iy <---<iy). So by Proposition 3. 19, only (l 1) monomials are sufficient to

determine all the vertices of Jil(e™* Ye oYo 7

The following lemma will be useful.
Lemma 3.21. Assume that £ = 1 or{ =r + 1 and set p =n+1o0r p =2
respectively. We have the equality of Ij-crystals (0 < j <n)

(&) M(e™* YZ,OYO_,EI) = |_| (Tp,—é)k (Mlj (Y€+j,j ijel+j))-
kez

Proof. By Proposition 3.13, the automorphism z; has the special form of a shift
in the considered cases. Further we know that (7_ p’g)é = T_p—1,8- Using (4), we
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obtain
{—1
M(Ee™ Y, o Yo ) =| | (p-) " (|_| (tp—s) (i, (Mo)))-
kez j=0
As 1, s and ¢ commute, (5) follows. O

Similar equalities of crystals can be given for £ > r + 1, by using the automor-
phism . Now we are able to determine the £ € I for which the monomial crystal

M(e™¢ Ye 0Y0 dy ) is closed.

Theorem 3.22. The monomial crystal M(e®* YZ,OYO_,J’Z) is closed if and only if
{=1,r+1orn.

Proof. Let us begin by the case £ <r + 1. Assume that the crystal l(e™*¢ Y, 0Yo .
is g-closed for 2 < £ < r. Consider the monomial

— —1 2
Mj =YY 0 ty142;Y; e+JY ntt14) € METY (Yo
with j # 0. We have E;(M;) = Yj_“_JY] Hel 14 By Definition 3.6, there exists

a subset

Fm; C MYy oY) N (M,- 11 A;{,)
lez
containing M; such that its image E;(¥p,) by Ej is the set of {-weights of a
representation of U j. By the theory of g-characters of a; j-modules, we should have

—1 B(A; po oF
Yt Yin—tr14;8i (A e4j-1) € Bj(Fag)).

Furthermore, the map E; is injective when it is restricted on the set of monomials

M; - ([Tjez AJZJ): indeed, we have for all monomial M; - ([];cz A;fl’l),

g ( 147 ’) =E;(M))-[[E;(4/) = (M) -] [ e (47,
lez lez lez
where 7y is the map defined in Definition 3.2 of [Frenkel and Mukhin 2001]
(the second equality is a consequence of Lemma 3.5 of the same reference). The
injectivity is a consequence of the injectivity of 7¢; (see [Frenkel and Mukhin
2001, Lemma 3.3]).
So the monomial

m=M;-Aji+j1

=Yy Yomoti142; Yitnj2 Y tesio1 Vit rsjo1Yimti14)

should occur in J(e™* Ye 0Y0 Z) But this is not the case, m being not of the

form (3). Hence M(e™* Yo e) is not g-closed when 2 < { <r.
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Now assume that £ =1 or £{ = r + 1. In this case, zy = 7_, s with p =n+1 or
p = 2 respectively and by the above lemma

M(e™ YZ,OYO_,KI) = |_| (Tp,—b’)k (M Yetjj ijel+j))
kez
as Ij-crystals (0 < j < n). By Proposition 3.12, the finite crystal Az, (M) is
Io-closed. As the [j-crystals Jy; (Ye+] Y €+1) can be obtained from Jl;, (M)
by application of powers of ¢, they are also /j-closed for all 0 < j <n. Then by
the above equalities .l(e®¢Y, .Y~ }) is closed.

£,0°0,4
Finally, the result follows forall the £ € I o by using the (-twisted automorphism
(which preserves the notion of g-closed monomial set). O

4. Extremal fundamental loop weight modules for U, (slt 1)
when Jil(e @¢ Y, o¥o. dz) is closed

Assume thatn = 2r + 1 (r = 1) is odd and My = M(e®¢ YZ,OYO_,;’e) is closed (it
holds if and only if £ = 1,7 + 1 or n). In this section, we relate the monomial
WUy (§ln+1)—crystals Mg with integrable representations of AU, (slzo_ri_l).
In Section 4A, we construct a new infinite family of representations V; of
(slt "+ 1) (Theorem 4.1). We call these representations the extremal fundamental
loop welght modules. Let us give the outline of this construction: consider the vector
space V¢ freely generated by the monomials occurring in Jlg. For all 0 < j <,

we define an action of Ou” J (sltor 1) on it, denoted by V(J ). such that

() _ )
v =P

kez

where V(j ) is a subvector space endowed with a structure of a simple £-highest
weight Ou v.J (Slifil) -module. We show that it defines a Uy, (sl“’r ,)-module struc-
ture in thlS way on Vy, the compatibility between the action of various vertical
subalgebras being a consequence of the existence of promotion operators on Jily.
Furthermore the g-character of V) is the sum of monomials occurring in Jly; with
multiplicity one.
In Section 4B, we study these representations: we show that V; is irreducible and
it is an extremal loop weight module, generated by an extremal vector of £-weight
et Y, oY, ;, Furthermore explicit formulas are given for the action of U (sI;" )
on V. Itis remarkable that these formulas are expressed only from the associated
monomial crystal and are “universal” in the following sense: the action on all the
extremal fundamental loop weight modules V; is completely determined by these
formulas and by the data of the corresponding monomial crystals Jly. This sheds
new light on the link between monomial crystals and the theory of g-characters
already expected in [Hernandez and Nakajima 2006]. All these sentences hold
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for the fundamental £-highest weight modules V(Y o) of Uq (§ln+1)’ with the
corresponding monomial crystals Jlo(Yy o).

In Section 4C, we specialize ¢ at a root of unity €. We obtain new irreducible
finite-dimensional representations of the quantum toroidal algebra U, (sl}lo_ri_ D

4A. Construction of the extremal fundamental loop weight modules. Let us be-
gin with the main result of this section.

Theorem 4.1. Assume that n = 2r + 1 is odd and £ = 1,r + 1 or n. There
exists a thin representation of %q(sl:fil) whose q-character is the sum of all
monomials occurring in M(e™*¢ YIZ,OYO_,alI@) with multiplicity one. It is denoted by
Vi = V(e®t Ye,OYO_,al'g) and called the extremal fundamental loop weight module

of L-weight e®*Y, YO_;'[

To construct these representations, let us start with results about the fundamental
modules Vo (Yy ) of %q(§1n+1)/ (meN*, 1<l <n,k eZ). Asitis said above, it
is isomorphic to the fundamental highest weight AU (sl,;+1)-module Vo(Ay). So
we begin by recalling some well-known facts about V(A ), which will be useful.

Lemma 4.2. All the weight spaces of the fundamental highest weight Ug (sly41)-
module Vy(Ay) (1 <L <n) are of dimension one. Furthermore the Weyl group of
finite type Wy acts transitively on wt(Vy(Ay)).

Proposition 4.3. Let Vo (Yy i) be a fundamental module of Ug (§ln+1)/ (Lely ke
7). Then Vo(Yy k) is a thin Ug (§1n+1)/ -module which admits a basis (vy,) indexed
by the vertices of the monomial crystal Mo (Y ), such that for all m € Mo(Yy k)
and i € Iy, vy, is of L-weight m and

+ e - . .
X0 Um = Vegpms  Xjg Um =V,
where vy = 0 by convention.

Proof. It is known that Res(V (Y; «)) is the fundamental highest weight Ug (sl 4 1)-
module Vy(Ay). By the preceding Lemma, its weight spaces are all of dimension
one. In particular its £-weight spaces are also of dimension one and V(Y x) is a
thin U (sl 1)’-module.

Furthermore Res(Vy(Y; «)) is the extremal weight module of extremal weight Ay,
generated by an extremal vector v of weight Ay. Hence, there exists {vy jyew,
such that vig = v and

xfo vy =0 and (xfo)(iw(‘\e)(hi)) Uy = Vg () if Ew(Ag)(hi) = 0.

By the above lemma for all v € wt(Res(Vo(Yy x))), there exists w such that v =
w(Ay). Then the corresponding vector vy, is nonzero of weight v. As all the weight
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spaces of V(Y i) are of dimension one, {vy, }yew, generates Vo(Yy i) as a vector
space. Furthermore for all w, w’ € W,

w(Ap) =w'(Ay) &= vy = vy
In fact, we have (see [Bourbaki 1968, Chapter V.3.3, Proposition 2])
w(Ag) =w' (Ay) = wlw' (A =A; = wlw e (si.i ely—{L})
— wew-(s;,i € Iy—{L}).

Fix an £-weight m € M(Vo(Yy x)) = Mo(Yy ). By what we have said above, one
can define vy, as the unique vector vy, (w € Wp) such that w(Ay) = wt(m). Then
{vm | m € Mo(Yy )} is a basis of V(Y x). Furthermore as the weight subspaces
and the £-weight subspaces of V(Y x) coincide and are of dimension one, vy, is
also an £-weight vector of £-weight m for all m € Mo(Yy k).

We determine the action of GILZ (§ln+1) on this basis. Fix m € Ay, (Yy x). For all
i € Iy, we have wt(m)(h;) = 0, £1. Assume that wt(m)(%;) = 0. Then on the one
hand xl.j’:o *Um = 0 by definition of the family {vy }wem,- And on the other hand
¢i-m=0and f;-m = 0 by the description of the crystal .lo(Yy x) recalled above.
Now assume that wt(m)(h;) = 1. The vector S;(vy,) = xl.:,FO - Upy, 1s of the form
Uy With m” € Mo (Y g ) such that

wt(m') = s;(wt(m)) = wt(m) F o;.

But the description of .ilo (Y &) shows that the unique monomial of weight wt(m) F
a; is fi-m (resp. &; -m). Hence m’ is equal to f; -m (resp. &; -m). Finally we have
shown that for all i € Iy and m € Mo(Yy k),

XZ_O'Um=Ué,~.m and xi_,o'vmzvj;i.m. O

In particular, the action of 9, (§1n+1)’ on the fundamental modules V(Y x) is
determined by the combinatorics of monomial crystals Jilo(Yy x); in fact, the action
of operators xl-j; (1 <i <n,r €Z) deduces from the action of the xl.jfo (given by
Mo(Ye x)) and the action of /; , (given by the £-weights m € JMo(Yy x)) from (1).

Let us begin the construction of extremal fundamental loop weight modules.
Assume that 7 = 2r + 1 is odd and £ < r + 1 (the case £ > r + 1 is discussed below
at Remark 4.5). Consider the monomial U, (§ln+ 1)-crystal M (e™*¢ YE,OYO_,EI ), sup-
posed to be closed. This is the case if and only if £ =1 or £ = r + 1 (Theorem 3.22).
Set p =n+1 or p = 2 respectively.

Denote by € (resp. €; x for 0 < j <n and k € Z) the set of monomials oc-
curring in the crystal M (e®* YZ,OYO_,ZI) (resp. in (‘Ep’_g)k (JI/LIj (Y(—i—j,j YjT£1+j)) =

Ay (YHLHkajngJrkp)). By (5), one has € = | |y €,k forall0 < j <n.
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Let
(6) V(e™t YZ’OYO_’KI) = @ Cupm
me$é

be the vector space freely generated by elements of €. For all 0 < j < n and
k € 7 set Vk(J) = @me% . Cup the subspace of V(e™* Ye OYO 6) of dimension
dim(Vy(Ay)). In partlcular we have

( Y(() )—@V(j)

kez
This decomposition can be compared to the equalities of crystals (5).
We endow the vector space V(e®‘Y, (Y~ 1) with a structure of Uy’ J (sI -
module as follows (0 < j <n): forall k € Z let (vm) be the basis of the Ou” J (slt )"
module Vo(Yy j 1k p)(f ) defined in Proposition 4.3, indexed by the set of monomlals

87 My (Vg j jkp ¥y iy jrkp)) = (BT 0m) [m €y (Yo 5 Vi jaep)
Let us define an isomorphism of vector spaces between Vk(j ) and Vo(Ye,jvk p)(j ) by

Vkm — Vo(Ye,j+kp)(j)
Um = ij(m)'

We endow the vector space with a structure of %Z’j (sl;"fi_l)-module by pulling

back the action of ou,‘;’f (slzojrl) on Vo(Yy,; _,_kp)(f). By direct sum, V(e® Y, OYO i

isa Ou"’f (s, ;)-module, denoted by V(e™* Y, Y_l)(j ).

%)
Vk

Proposition 4.4. There exists a structure of Ug (sl“’r )-module on V(e®tY, Y

£,0°0, €
such that the induced U, v.J (slg’_ri_l) -module is isomorphic to V(e™* Y 0Yo. 1)(1 ) for
all j € 1. Furthermore the q-character of V(e™¢ Ye 0Y0 g) is
)(q(V(ew‘Z Ye 0 Z m,
meé
where € is the set of the monomials occurring in M(e™ Ye OY 0.0
Proof. To define an action of Uy, (sl}f_rH) on V(e®¢ Ye 0Y0 Z) we determine the

action of the subalgebras a; for all i € I. For that, let J € I be such that j #i.
The action of U; on V(em Y, ,Y;}) is the restriction of the action of Ug™/ (sI'™" )

2,070, e ntl
on V(e®¢ Y Y ) (/). Furthermore we set for all /1 € h and m € M(e™*¢ Y(i 0Y0 7
kp - vm = gV Wy,

The definition of the action of ; (i € I) is independent of the choice of j € I,
j # i: for m € €, the action of ou” J (sl“’r 1) on the vector vy, is determined by
the sub-7j-crystal Ay, (m) of Jl/L(eW Ye oYo e) and by the £-weight B/ (m). So
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the action of AU; on vy is determined by the action of ¢; and fl on m and by the
£-weight E;(m), which are independent of the choice of ;.

We show that this action endows V(e™*¢ YL’ 0Y0 7 ') with a structure of Uy (slt0r 1)
module. We fix two indices i1,i, € I and we check the relations satisfied by Ou,l
and OfL,Z The indices i; and i, are in the same connected subset I; of the set
of vertices of the Dynkin diagram (j € I). By construction, the action of Gull

v, j
and m,z are restrictions of the action of AU’ (sltor 1) on V(e®t Ye oYo e) As

V(e®tY, Yy, )(f )isa Ou“ J (s '+ 1)-module, the relations between ou,l and Gu,z

are satlsﬁed and V(e™¢ Y, oY, Z) is al, (slﬁfil) -module.

By construction the induced Ou” J (sltor 1)-module obtained from V' (e®* Ye OYO i
by restriction is isomorphic to V(e®¢Y, (Y- 1)(1 ) forall j e I. Furthermore the
£-weight of vy, is E;(m) for the action ofou (i € I). So m is the £-weight of vy,
and the g-character of V(e™¢ YZ 0Y0 e) is the sum of monomials occurring in

M(e™¢ Ry e) with mu1t1p11c1ty one. O

Remark 4.5. Let us consider the case £ > r + 1. M(e®Y, OYO_n 41_¢) is a mono-
mial crystal closed for £ = n. We show in the same way as above that there
exists also a g (slg’j_l)—module V(e®nY, Y_ ) whose ¢g-character is the sum of
monomials occurring in M(e®"Y’ OYO h ) Wlth mult1p11c1ty one.

Actually this U, (slg’i - module is related to the previous one for £ = 1 as follows.
We have defined an automorphism ¢ of the Dynkin diagram of type A( ). Tt induces
an algebra automorphism of U, (slmr 1) we still denote ¢, which sends xl o him, Ky,
to xl(l)r,ht(,)m, wy G € I,r € Z,m € Z—{0},h € b). Let us denote by
ViemY, Yy ) the U, (sl“’r ,)-module obtained from V(ew"Y Y, ) by twist—
ing the acfion by t. Then we show easily that V(e®"Y’ OYO ;)tand V(ew1 Y 0Y0 h
are isomorphic.

4B. Study of the extremal fundamental loop weight modules. In this section, we
study the AU, (sltor )-modules V(e®*Y, . ()Yo do ), where n = 2r + 1 is supposed to
beoddand £ =1,nor{ =r + 1. Wesetp—n+1 or p = 2 respectively.

Proposition 4.6. The U, (sIy" | )-module V(e™'Y, oYo_alIg) is integrable. More-
over, it satisfies properties (iii) and (iv) of Remark 2.5 with weight subspaces of
dimension one.

Proof. Assume first that £ = 1, 7 + 1. The g-character of V(ewﬂ Y, . 0Y0 ¢ 1) is known:
this is the sum of monomials occurring in Jil(e®*Y, Yo / 1) with multiplicity one.

Furthermore one has the equality of Iy-crystals

M(e®t Yo Yo_,el) = |_| (Tp,—é’)k (‘Mlo (e Ye,OYO_,Kl ))'
kez
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For all m € My, (e®* Z 0 0 6) and k € Z, wt((rp _s)*(m)) = wt(m) —k$§. So to
prove that the weight spaces of V(e®*Y, e 0¥, K) are of dimension one, we have to
show that the weights of monomials occurring in Jlz, (e®* K 0 0 Y, ') are different
to each other. More precisely, it is sufficient to show that the sum

> e(wi(E°(m))) € EP Ze(v)

meilyy(e™tY,  Y577) vePo

is without multiplicity. This follows from the above results: it is the character of
the AUy (sl 41)-module Vo (Ay).
For all j € I, the representation V(e™¢ Ye oYo ¢ ') is completely reducible as a

WUg J (s1 ;)-module and we have

(N V(ewz Ye,oyo_,(l)(j) = @ VO(Yﬁ,j—l-kp)(j)-
DEZ

As the representations VO(Yg .j+kp) are all integrable, it holds for V(e®™* YZ 0Y0 /
Furthermore V' (e™¢ Ye 0Y0 ¢ ') satisfies the stronger property (iv) of Remark 2.5: in
fact the representations Vj (Y ¢,j+kp) are all isomorphic as g (sl,41)-modules and
satisfy property (iv). Hence we have V(e®¢ YZ’OYO_’ZI)U_F Ney =10} forallv e P,
iel, N>0.

Finally, the case £ = n is deduced from the case £ = 1 by the i-twisted automor-

phism . O
Theorem 4.7. The U, (slt 1)-module V(e®™* Ye 0Y 0., ) is an extremal loop weight
module generated by the vector v, Y, Yo of L-weight e™®* Ye oYo. alhz

:070.dg

Proof. We treat the case £ = 1,r + 1 (the case £ = n can be deduced from £ = 1 by
using ). The formulas in (7) imply immediately the third point of Definition 2.26.
The first two points are consequences of the following lemmas. O

Lemma 4.8. Let M’ be a sub-%, (§1n+1)-c1ystal of M. Assume V is a Uq (§ln+1)-
module with basis (V) mey satisfying

®)  wt(vy) = wt(m), (x;r)(k) U = vél(c_m and (xi_)(k) U = Ufik.m
forallm e M',i € I and k € N, where vy = 0 by convention. If the monomial m
is extremal of weight M\, then the vector vy, is an extremal vector of weight .
Furthermore if the crystal M is connected, then the Ug(sl,41)-module V is cyclic

generated by any vy, withm € M.

Proof. Assume that m is extremal of weight A: there exists {m, },ew such that
miq = m and

éi-my =0 and (f;)w(}‘)(h")-mw =mg,w) if wA)(h;) =0,

)] .
fimp =0 and (&) "YPE) gn = mg oy  if w) (ki) 0.
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For all w € W, set vy, = vp,,- By (8) and (9), {vy }wew satisfies vig = vy, and
xEovy =0 if w@®)(h) =0 and (x;7)EFCDED =y
Hence the vector v, is extremal of weight A.

Assume that the crystal /M’ is connected and fix m € M'. For m’ € M’, there
exists a product s of Kashiwara operators such that s(m) = m’. Consider the
corresponding operator S € Ug(sl,41) at the level of V, that is, S has the same
expression as s, where the operators é{‘ (resp. f;.k ) are replaced by ()cl.Jr Y& (resp.
(xi_)(k)) in the product (k € N,i € I). By (8), S(vm) = Vs(4n) = vp and the
Mg (slp41)-module V' is cyclic generated by vy,. O

Lemma 4.9. Assume that £ = 1,r + 1. For the action of O]LZ (SI;?-rH)’ the L-weight
vector v,w, Y, oYl € V(e™¢ YZ,OYO_,ZI) is an extremal vector of weight wy. Fur-
thermore

-1 h
V(e™t Ye,o Yo,e )= qu (slﬁfil) ey, (Yot

Proof. Let us begin to show that the basis (vy) of V(e®¢Y, oYo_el) introduced

in (6) satisfies the properties in (8). For all m € M (e®* Y, oYO_el)’ Upy 18 an £-weight
vector of £-weight m and wt(vy,) = wt(m). Fix i € I and let j € I be such that

jF#i.Asa %Z’] (slf_ri_l)—module, V(e®¢ YZ,OYO_,ZI) is completely reducible (see (7))

and there exists k € Z such that vy, € Vo(Yy j1k p)(j ). As the properties in (8) are
satisfied in Vo (Y, j+kp)(j ) (Proposition 4.3), it holds on v, fori € I.
From there the result is a direct consequence of the above lemma and the fact that

e™e YZ,OYO_,ZI is extremal in the connected crystal M (e®*¢ YE,OYO_,KI) (Theorem 3.4).
O

Proposition 4.10. The AU, (Sl;f_ri_l)-module V(e®t YZ,OYO_,c}Z) is irreducible and is a

simple %2 (s1'°" )-module. Also, Res(V (e@¢ Ye,OYO_,z;@)) is isomorphic to V(wy).

n+1
Proof. Let V be a nontrivial sub—oug (s1'"_)-module of V(ePtY, Yo_c}e)' As

n+1 £,0
the weight spaces of V(e®*Y, ()Yo_alig) are all of dimension one, there exists m €

M(e™¢ YZ,OYO_,dlg) such that v, € V. By Lemma 4.8, v, generates V(e®*¢ YZ,OYO_,L:'()

and V = V(e”*Y, OYO_t}g)' Hence V(e™'Y, oYo_:}g) is simple as a mg(sﬁ;’;l)-

module and as a Uy (sl;oj_l)—module. Furthermore, Res(V (e™¢ YZ’OYO_"}E)) is an

integrable AU, (§ln+1)—module generated by the extremal vector

UV o —1
e“tY, 0¥ 4,

of weight @wy. Then by Theorem 2.13, Res(V(e™¢ Ye,oYo_,(}e)) is isomorphic
to V(wy). d

Some readers may expect that the U, (slifil)-module V(e®tY, 0.0 YO_,;'@) can be

obtained from the extremal weight module V(@) by an evaluation morphism, but
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this is not the case for the following reasons (which generalize arguments given
in [Hernandez 2009]): Res(V(e®‘Y, OYO_C}Z)) is isomorphic to the AUy (sl,41)-
module V(wy). In particular,

Tp,—s V(@) = V(@y), tm > Vg, _somy Torall m € M(e™* Yz,oYo_,alIg)

is a ouq(sAanrl)/—automorphism of V(wy) (with p=n+1lorp=2ifl =1,n
or £ = r + 1 respectively). If V(e®* YZ’OYO_"}E) is obtained from an evaluation
morphism AUg (sl ) — OILZ (sl 1), Tp,—s should induce an automorphism of
V(e™¢ YZ,OYO;}K). But it does not commute with the action of the xiﬂ;, hi, for
i €I and r € Z—{0}. In the same way, V' (e®* Ye,oyo_,c}e) can not be obtained from an
evaluation morphism U, (slg’j_l).—> OU,Z’j (slg’_rH) (j €I). Infact, V(e™¢ Ye,oY 0_,;’@)

is completely reducible as a GILZ’] (slf_il)-module and is a direct sum of fundamental
or

modules (see (7)). But it is a simple Uy, (sl; ' 1)-module.

Remark 4.11. Let us denote Uy (slfil)’ the quantum toroidal algebra without
derivation element, that is, this is the subalgebra of AU, (slﬁf_ﬂ_l) generated by xl.j;
(Gel,reZ),him@el,meZ—{0}) andky (h €)_ Qh;). An automorphism ¥
of Uy (slg’fH)/ which exchanges vertical and horizontal quantum affine subalgebras
is defined in [Miki 1999]. Denote by V(e®¢ YZ,OYO_,;’@)\IJ the AU, (sls’jrl)/ -module
obtained from V(e®¢ YZ, 0 Yo_,all ) by twisting the action by W. It would be interesting
to determine if V(e™®¢ Y, o¥o., dy )Y is already known, for example if it is of £-highest
weight. Actually this is not the case: for the vertical quantum affine subalge-
bra Uy (SI;?-rH), , it is an integrable and cyclic module which is reducible. Further
as a Oug (slg’_ﬁ_l)’ -module, it is a completely reducible, direct sum of irreducible
finite-dimensional representations. So V(e™¢ YLOYO_’;.Z)‘I’ cannot be an £-highest

weight module or an £-lowest weight module.

From now on, let JM,() be a subcrystal of Jlg over Uy (sl,41) (resp. M’ subcrystal
of M over AUy (§1n+ 1)). Let us consider the vector space V' with basis (vy,) indexed by
the vertices of .l;, (resp. L"). We define an action of g (§1n+1)’ (resp. Uq (SI;;)-rH))
on V by the formulas

+ _ i (m)—1
xl_’r Uy = qr(Pt (m) )vé,'-ma

oy = " @i+

ao " m =1 B

biryvm = £(q—q ) (pi(m)q
v = gM B,

withr € Z,s > 0,1 € Iy (resp. i € I) and h € by (resp. i € ), and where vy =0
by convention. Note that p;(m) is well defined only if &; (n2) > 0 or equivalently if
¢é;-m # 0 and ¢; (m) is well defined only if ¢; (m) > 0 or equivalently if ]7, -m #0.
Then, these expressions make sense.

VF;oms

+s(g; (m)+1) +s(pi (m)—l))

—e&i(m)q

Um,
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Theorem 4.12. (i) Setn e N*, 1 </{ <n. Assume that ./l/% = Mo (Y k). Then the
formulas in (10) endow V with a structure of Ug(sly+1)-module isomorphic
to the fundamental module Vo (Yy x ).

(ii) Assume thatn =2r +1isoddand £ =1,r + 1,n. Set M’ = M(e®* Y, 0YO_L}E).

Then the formulas in (10) endow V with a structure of Uq (slﬁf_ri_l)imodule

isomorphic to the extremal fundamental loop weight module V(e®*Y, 0Yo_c}e).
Proof. The action of the horizontal quantum affine subalgebra and the action
of the Cartan subalgebra are known on the basis (Vsn)meq for the Uy (sl,41)'-
module V(Y ) and for the AU, (sl;;’_ﬁ_l)—module V(e®tY, OYO_al,Z). From (1) it is

straightforward to deduce the action of the xl?’tr on these modules (r € Z). We obtain
the formulas in (10) given only from the corresponding monomial crystal. O

Remark 4.13. In [Hernandez 2011], the algebra U, (§loo) is introduced as the
quantum affinization of Ug (sleo). It is defined by the same generators and relations
as in Definition 2.15 with the infinite Cartan matrix C = (Cj,j);,jez such that

Cii=2, Ciy1=-1, Cyi=-1, G ;=0

if i —j ¢{—1,0,1}. The representation theory of U, (sloo) is similar to the one
of AUy (slﬁfil): the simple £-highest weight modules are parametrized by Drinfeld
polynomials. In particular, the fundamental modules can be defined and they are
the inductive limit of the fundamental modules for the quantum affine algebra
Mg (§ln+1)’ when n — oo (see Theorem 3.8 and Proposition 3.11 in [Hernandez
2011]). So, the previous results about the fundamental modules of U, (§ln+1)’
extend directly to the case of the fundamental modules of AU, (§loo).

Remark 4.14. As we have said, relations between monomial crystals and the
set of monomials occurring in the g-character of representations are known and
have combinatorial origin (see [Hernandez 2011; Hernandez and Nakajima 2006;
Nakajima 2003]). The above results, in particular Theorem 4.12, give one way to
better understand the representation theoretical meaning of this narrow link expected
in [Hernandez and Nakajima 2006]. In fact, the formulas in (10) hold for all the
fundamental U, (§1n+1)’ -modules V(Y x) and for all the extremal fundamental
loop weight AU, (sl}f_ri_ ,)-modules V(e®* Ye,oYo_,;’g)' Hence the knowledge of these
representations is reduced to the one of the corresponding crystals Jlo(Y; ) and
M(e™* Ye,oY 0‘3(}@) respectively, which is totally combinatorial.

Example 4.15. Assume that n = 3 and £ = 1. We study the extremal fundamental
loop weight module V(e®! Y1,0Y0_,11) for AUy (s1y"). Let us consider the monomial
crystal l(e™! Y1,0Y0_,11)' It is closed and p = 4 in this case. Using the notation
introduced above, ¢ = | | € x and we have

kez

— {,D1 —1 -1 -1 —1
%0,0 - {e Y1,0Y0,1 ’ Y2,1Y1,2’Y3,2Y2,3’Y0,3Y3,4}-
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€0,k can be obtained from € o by applying 74 —s. In the same way, we obtain
€, k by applying ¢’ +ak o €0,0- Then the g-character of the extremal fundamental
loop weight module V(e™'Y, (Y, }) is

—1 —ké -1 —1
Xg(V(e™'Y, oY5 1)) = Z(ewl YiarYoivan T Yo 101 Y1 2 4ak

kez -1 -1
+ Y3,2+4kY2,3+4k + Yo,3+4kY3,4+4k)-

Furthermore the action is explicitly given by the crystal At(e®'Y, oyo_ll) and by

the formulas in (10). This module was already constructed in [Hernandez 2009].

Remark 4.16. After this paper appeared on the arXiv, the constructions in [Feigin
et al. 2013] were brought to our attention by H. Nakajima: some representations
over the d-deformation AU, 4 (sl}fj_l) of the quantum toroidal algebra are obtained
as the quantum version of a module over a Lie algebra of difference operators. They
are called vector representations in [Feigin et al. 2013]. Our works give another

way to define these representations. Actually, let
@ U (SIS ) = Uy (5197 )

be the map sending xl.j;,h,-,m,k;, to x. himkp(iel,reZ, meZ—{0},heb).

L,r’
This w extends to an isomorphism of algebras. For u € C*, let

[V(ewl Yl,()Y()_,l1 )]u

be the AUy (slﬁf_ri_l)—module obtained from V(e®'Y, ,oYo_,11) by twisting the action by

lyg—1 0. Then [V(e®'Y, 0Y0_11)]u is isomorphic to a vector representation where
we specialized the parameter d at 1 (this representation is denoted by V@ (1) in

[Feigin et al. 2013]).

Example 4.17. Assume that n =3 and £ = 2. Let us study the extremal fundamental

loop weight module V(e®2Y, 0Y0_21) of Uy (slﬁ)r). Consider the closed monomial

crystal A (e®2 Yz,OYO_,zl)' In this case, p = 2 and we have
w5 ~1 —1 —1 -1
% {e Yy 0Y02: Y11 Y22Y3,1 Y02, Y1,1Y53 »}
0,0 = .
’ -1 y—1 —1 —1
Y3.Y 3.1 3Y5,Y33Y0,5, V4%,

To describe all the monomials occurring in M(e®2Y, 0Y0_21), it is sufficient to
consider only the sub-/yq q3-crystal

2 3
—1 —1 —1 —1
Y2,OY0,2 Yl,1Y2,2 Y3,1Y0,2 Y1,1Y3,3
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and to apply the 6-twisted automorphism ¢ (Remark 3.20). The g-character of

V(e™2Y, (Y, ) is

Xq (V(ewz Yzﬁo Yo_,zl )

_ wor—k§ —1 —1

= Ze (Yo Yootok + Y1142k Yook
kez -1 —1 —1

Y3 10k Yo 2426 T Y1 3426 5,142k T Y3 1400 Y1 342k

-1 -1 -1
+ 1,3+2kY2,2+2k+ 3,3+2kY0,2+2k+ 2,4+2kYO,2+2k)’

and the action of Uy (sIy") on V(e™2 YZ,OYO_,ZI

M(e™2Y, ,Y;) and the formulas in (10).

) is explicitly given by the crystal

4C. Finite-dimensional representations at roots of unity. The existence of shift
automorphisms for M(e®*Y, , YO_L}e) is related to finite-dimensional representations
of quantum toroidal algebras at roots of unity. We explain that in this section.

So assume that n = 2r +1lisodd (r > 1)and £ = 1,n or £ = r + 1. In this
case M(e™tY, OYO_ég) is closed and its automorphism z, has the special form of a
shift T_, 5 with p =n + 1 or p = 2 respectively.

Set L > 1 and € a primitive (pL)-root of unity (we assume also that p # 2 or
L > 1 in the following). Let AUe (sI} )’ be the algebra defined as Uy (sIyy ;) with
€ instead of ¢ (without divided powers and derivation element).

For N € N*, let

. +1 +1
Iy : Z[Yu ]ieI,leZ - Z[Ylj ]ieljez/jvz
be the map defined by sending the variables Ylj;1 to Yziil (iel,leZ).SetFe the
image of a monomial set & by I'(,1). ’

Consider the monomial set €. By the existence of the shift automorphism 7_, 5,

we have
te= L @000

0<k=<L-1

with j € I. One checks easily that €, is closed.
Specializing the representations V(e ®¢ Y(Z,OYO_,L}Z) at a root of unity €, we obtain:

Theorem 4.18. Assume that € is a primitive (pL)-root of unity. There is an irre-
ducible U (51;?:—1)/ -module V(e™¢ YE,O Yo_,allg)f of dimension L ("'g 1) such that

Xe(V(e™ Y, Yo i)e) = Y m.

meée

Furthermore there exists a basis (vm) of V(e®*Y, OYO_;,E)E indexed by €¢ such that
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the action on it is given by

+ . _ r(pi(m)—-1)
X;Um =€ Vsoom

X o . Uy = Er(qi(m)'i'l)vf
i-m’

¢i:f::|:s U= t(e— 6—1)(% (m)eTs @M+ _ g (yy)et5(pi (m)—l))v

kE ., = et@im—sim),

m’

5. Extremal loop weight modules for U, (sl;":_l)

when the considered monomial crystal is not closed

In this section, we still assume that # = 2r 4 1 is odd and we discuss the case where
the considered monomial crystal AL’ is not closed. It is not possible here to construct
an integrable module whose g-character is a sum of monomials occurring in ..
In fact some monomials miss and we have to consider a larger closed monomial
crystal U’ containing it. It is obtained from .’ by adding other monomial crystals.
But its structure is more complicated than J(’ and it is difficult for us to construct
systematically a possible representation of U, (slif_ri_l) associated to L.

So we propose to treat an example of such a construction. Assume n = 3
and consider the crystal J((e2™! Yl’1 Yl,—IYO_,zl Yo_,(;)’ which is not closed. We
determine a closed monomial crystal Jl(e2®! Y1,1 Yl’_1 Yo_,zl Yo_,(}) containing it
and we construct a representation V(e2®! Y Y Yo_,zl Yo_,(}) of Uy (sly") such
that its g-character is the sum of monomials occurring with multiplicity one in
M(e*™Y Y, Y, Yy ) (Theorem 5.6). We will see that the definition of

extremal loop weight module is satisfied by V(e2®@! Y, Y, Y0_21 YO_(} .
Section 5A, we study the crystal Jl(e>®! Y Y, _, Yo_zl YO_(;) and determine a

closed monomial crystal .l(e2™! Y Y YO_’zf Yoo ), containing it.

The construction of the Uy (sly")-module V(e?®1 Y, Y, _, Y0_21 Yo_(} is done
in Section 5B. The process is the same as in the preceding section: we consider
the vector space freely generated by the vertices m of Al(e2™! Y1,1 Yl,_1 Yo_,zl Yo_,ol
and we define an action of AUy (slfr) by pasting together some finite-dimensional
representations of the vertical quantum affine subalgebras OILZ’J (slfr) (jel).

In Section 5C, we study the representation V(e2@! Y Y _ 1Y0_21 Yo_(; Ditis
an integrable representation of ‘U, (slffr) which is thin and irreducible. Further-
n;ore V(e?™@1 Y, 11/1’_11Y0_’21 Yo_,(}) is an extremal loop weight module of £-weight

@ i R
Y Y Yo Yo,

In Section 5D, we specialize ¢ at roots of unity €. We get finite-dimensional
representations of the quantum toroidal algebra U, (slfr)/ .

Remark 5.1. It could be interesting to construct other extremal fundamental loop
weight modules of £-weight e®¢Y, 0Yo_£1 with 2 < £ <r in the same way. The first
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crystal M(e®*Y, OYO_KI which is not closed is obtained for n = 5 and £ = 2. We

are led to consider the closed crystal

M(e™? Yz,OYo_,zl) = A(e™? Yz,oYo_,zl) ® @ (> A0 Y 1Y _ies Yo_,z1 YO_,61s)’
seN*

which contains Al (e™? Yz,o Yo_,zl)- The maps ¢ and 74 _»s are automorphisms of it
and the P -crystals

MY, o Yo_,z1 )/(t6,—25) and (A8 Yi Y iyes Yo_,z1 Yo_,éls)/(TG,—M)

have 30 vertices and 36 vertices respectively.

The example we propose to treat in this section is simpler than the case of the
extremal fundamental loop weight modules and we focus only on this situation for
the sake of clarity and simplicity.

SA. Study of the monomial U, (§l4)-crystal M(e?™ Y1,1Y1,—1Y0_, ; YO_, 3). We
refer to the Appendix for explicit descriptions of all the crystals considered in
this section. Let us study the monomial crystal M (e2™1Y Y Yo_,zl Yo_,(}): the

maps ¢ and 74 _,s are automorphisms of M(e?®1 Y, | Y, _ 1Y0_21 YO_&). Further

straightforward computations lead to the following result.

Proposition 5.2. (i) We have the equality of sets
M(e>™! Yi Y Yo_,z1 Yo_,(})

3
k -1 —1
= a2 (U My Vg joa i Vi j-14 Y045 ))-
kez j=0

(ii) Forall j € I, the monomial crystal My; (Y, ; ;Y14 14 Yiae; Y} is

Ij-q-closed. More precisely, we have the bijection of monomial sets
27y, (Y,

Y Y ijjl)—)/‘/L(VO(YI,I—Fle,—l—i—j)(j)),

+i 1+ 14,147 )2+

where Vo(Y1,14jY1,—14 ) is the simple (-highest weight representation of
qu (814)/ of L-highest weight Y1’1+j Y1’_1+j.

(ii1) Forall j € 1, the Ij-crystal Mp; (Y1-|—j,1+jY1+j,—1+ijT21+j YJ_JI) is not q-

closed: the monomial ¢7 (Yl,_1 Y3_,51 Yo_,& Yo, 4) occurs in this crystal, but it is

not the case of ¢’ (Y, _ Y3j51 Yoj()l Yy 4 Ao—1) = iy (Y, sY, Yojg Yojg )

Hence, we are led to consider the crystal ((e2@1 19 Y, | Y, s Yo_zl Yo_i 4)» which
is also not closed. More generally we have to deal with all the monomial crystals

2w +s8 —1y—1 .
M(e=®1 Y1,1Y1,—1—4sY0,2 Yo,—4s) with s € N. We set

(2 —1y—1y _ 2w +58 —1y—1
M(e™Y 1Yy 1Y, Yo,) —EBJI/L(e YY) C1—as Y02 Yo,—as)-

seN
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For all (k,s) e Zx N and j € I, denote by

. Jl/tjl.’k’s the sub-1;-crystal of Jl(e2®! JrS‘SYI’IYI’ Y ly: !, ) generated

—1—4s10,210,~4s
: j+ak (2w +58 —ly—1
by the monomial ¢/ (ec®@1Ts Y1,1Y15_1_4SY0,2 Yo,—4s)’
. ,/l/tj? ks the sub-Ij-crystal of M(e2®1+s8 Y, Y, Y ly: !, ) generated

—1—4s710,210,—4s
o1 44k —1 -1
by the monomial ¢ (Yl’1 Y1,—3—4sY2,—4—4sYo,2 .

Proposition 5.3. (i) Forall s e Nand j € I, one has the equality of 1;-crystals

2w +s8 —1y—1 y_ 1 2
M(e”™! Yi 1Y) _1asY02 YO,—4s) = @(Mj,k,s eBMj,k,s)'
kez

(i) Forall j €1,k €Z and s> 1, the monomial crystal M; j s ZM},k,s@‘/‘/LJZ‘,k,s—l

is Ij-q-closed. More precisely, we have the bijection of monomial sets

B M s — M(VO(YI,1+j+4kY1,—1+j+4k—4s)(j))v
where Vo(Y1 14 j+4k Y1,—14j+4k—as) is the L-highest weight representation
of Uy (sla) of L-highest weight Yy 14 j 4k Y114 j+4k—ds-
The proof of these statements is straightforward. As a consequence of these
results, we have:

Corollary 5.4. The monomial crystal M(e>®'Y. 1Y Yo_zl YO_(}) is closed.

Proposition 5.5. J((e%®! Y, Y, Yo_zl YO_(;) is a monomial realization of the P-
crystal B(2w). Further, the monomials My = e*>™! +s8 Y Y ias Y0_21 Yo_l4s
are extremal of weight 2ty + s6 (s € N).

Proof. The monomial crystal .iL(e2®! le1 Y0_22 is isomorphic to the connected com-
ponent of B(2w|) generated by v,4;, [Hernandez and Nakajima 2006, Proposition

3.1]. One checks that the map
M(e™ 8 YY) s Yo_,z1 Yo_,l4s) — A(e*™ Y12,1 Yo_,22

which sends the monomial Mj to the extremal element ¢2@! Y12,1 Yo_,22 is an iso-
morphism of Pj-crystals for all s € N. Then the result is a direct consequence of
the description of the crystal (2w ) given in [Beck and Nakajima 2004]: all the
connected components of %B(2z;) are isomorphic to each other modulo shift of

weight by §. O

SB. Construction of the U, (slf;’r )-module V(e*®1 Y1,1 Yl,—l Y(; ; YO_’ (1)). Let us
give the main result of this section.

Theorem 5.6. There exists a thin representation of Ug (slffr) whose q-character is
the sum of monomials occurring in M(e*>™! Y, Y, _, Yo_zl Yo_ol) with multiplicity

one. It is denoted by V(e>™1 Y, Y, _, Yo_zl Yo_g).
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The construction of V(e2®1 Y1,1Y1,—1Yo_,21 Yo_,&) is analogous to the one of
V(e™¢ YZ, oYo_,el) in Theorem 4.1: we paste together the finite-dimensional repre-
sentations Vo(Y1, 1444k Y1,—14j+4k)Y) and Vo(Y1 14 j+ak Y1~ 14 +ak—a5)
of Uy’ (s1§") with j € I, k € Z and s € N*.

Let us begin by recalling some well-known facts about the Kirillov—Reshetikhin
module Vo (E®(M)) over %q(§l4)’ with M = ¢2@1 Y Y YO_,zl Yo_,(}' It is irre-
ducible as a Uy (sl4)-module, isomorphic to Vo(2A ). In particular, Vo(EO(M)) is
an extremal weight module of extremal weight 2A; and there exist vectors vy ar)
(j =0,...,3) such that vy is an £-highest weight vector of V4 (Z2°(M)) and

(xi_,O)(Z)'vd)i_l(M):vdJi(M) fori=1,...,3,
(X;FO)(Z)'UW(M):U(M—I(M) fori = 1,...,3,
xfo Vi (my =0 in the other cases.
Set
VM I=X1,0°UM, V7 oM I=X5.0X1,0° VM Vi M =X3,0X2,0X1,0° VUM
ViaM) "= X2,0 Vo(M): V7 7 gyt X3,0¥2,0 Vo (M):
Vfg2(M) T X3,0 " Vg2(M):

These vectors form a basis (vy,) of Vo(E°(M)), indexed by the monomials occur-
ring in Jz,(M). Furthermore for all m € JMy,(M), vy, is an £-weight vector of
(-weight 2°(m).

The other finite-dimensional representations of U, (§14)’ we have to consider

are Vo(E0(My)) with My = 2™1H5%y, 1y, |, Yo 1YL, and s € N*. The

following two points are well known:
() Vo(E®(My)) is an irreducible AUy (§14)’ -module isomorphic to
Vo(Y1,1) ® Vo(Y1,-1-15)-

(ii) Res(Vo(E®(My))) is a completely reducible Uy (sl4)-module isomorphic to
Vo(2A1) @ Vo(A2).

Furthermore there exist vectors Vgpi (M) (j =0,...,3)such that vy, is an £-highest
weight vector of V(E°(Mj)) and
(xi,o)( )'U¢i—l(Ms) = Ugi (M) fori =1,...,3,
(X?_O)(z)'v(pi(Ms) :U¢i—1(Ms) fori = 1,...,3,
xijfo Vi (M) =0 in the other cases.

To complete this family of vectors to a basis of Vo (Z°(M,)), the following example
is used.
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Example 5.7. Let a,b € Z be such that ¢ # b and a # b £+ 2. Consider the
Ug (slz)'-module V4 (Y7 4Y; p). This module was already studied in [Hernandez
2010]. We have

—1 —1 1 -l
XaVo(Y1 Y1 ) =Y Y 1 5+ Y1 oY pio t Y102 Y 1+ Y1 a0 1 pya-

In particular, it was shown that there exists a basis

v Vy—1 v —1 Uy —1 —1
{ YiaYip Yiar2Yip® Yia¥ipt+s' Yiata¥i +2}’

where the action of the Drinfeld generators on it is given by

+ _
Yro le.aYLh =0,

X 1) =
rOYY Y

b—1 a+1 b+1 a—1
g9 " —4 qr(a+1)v B + 9 " —4 qr(b+1)v .
qb —q4 Yia2Yis qb —q Y oY1 py2’
+ _ r(a+1)
X, *VUy—1 = v y
S ST S3 q 1.a¥1p
— _ r(b+1)
X, *Uy—1 = Vy—1 -1,
ro vy, T LEWEED S
+ _ r(b+1)
X, v -1 = v ,
T WY o q Y, Y1,
— _ r(a+1)
X, v —1 = Vy—1 -1,
Y WY b 4 LEWAES ST
+
X, Uy—1 -1 =
RS SIS Sy
b—1 a+1 b+1 a—1
q —q qr(b+1)v B + q —4 qr(a+1)v B
qb —q4 YiaYip qb —q4 Y oY1 py2
X, - Vy—1 -1 =0,
S ST ST
. : _ -1 -1
anq with v{ﬂ of £-weight m for.m = Yl,aXl,b’ e Yl,a+2Y1,b+2' Note that the
basis used in [Hernandez 2010] is renormalized here and we have
—(2) _ +1(2) —
X -V = Vy-—1 -1, X *Vy—1 —1 =V .
(xo) Y Y LEWEED S (xg) LEWEES S Y.V

As a # b2, itis well known that the Uy, (§12)’ -module V(Y7 47 p) is isomorphic
to Vo(Y1,4) ® Vo(Y1 ). Furthermore the A, (sl;)-module Res(Vo(Y1,4Y 5)) is not

irreducible, but it is cyclic generated by one of the vectors v —1  Of Vy—1 .
yelieg y Y a¥ipin Yiav2Yip

1 _ y-1 —1 2 _ —1 —1
Set My = Y3V, __4Y,,Y5 4y and Mg =Y, Yy Y, ¥, Let
Uyt and vy, € Vo(EO(M)) of L-weight M} and M2, respectively, be such that
—2—4s 614 N q—4s _ 612
e TR Umy g

X1,0 VM = 39Mm3
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Set
Vb "= X2,07 UM VR fopgy - X3,0%2,0 UMY

with u = 1, 2. In the same way, one can define

VpME)s Vfgmyy @A Vg2(a)

for u = 1,2. We check that these vectors form a basis (v,;) of Vo(E%(My)),
indexed by the monomials occurring in .llg,o . Moreover vy, is an £-weight vector
of £-weight E°(m) for all m.

By twisting the action of Uy, (§l4)’ on Vo(Y1,1Y1,—1) and Vo (Y1,1Y1,—1—45) by
6\ and tp for some b € C*, we obtain for all j € I,k € Z and s € N*

e the ou};’f (sly")-modules VO(YI,I+j+4kY1,_1+j+4k)(j), called modules of
type KR below;

e the Gu,’;’f' (slﬁfr)—modules Vo(Y1,14j+4k Yl,_1+j+4k_4s)(j), called modules of
type s-TP below. The modules of type s-TP for various s € N* are called
modules of type TP.

From the construction done above, we get bases (vy,) of these modules indexed
by the monomial crystals Jy; ((;Sj""‘k(Yl’1 1Y0 21Y0 01)) (resp. A x,s) with
analogous properties as the previous ones. In partlcular the action on a vector Um
is completely determined by the action of the horizontal quantum affine subalgebra
on it and by its £-weight m.
We begin the construction of the U (sly")-module V(e?®! Y, Y 1Y0 21Y0 3.

Denote by € the set of monomials occurring in Jl(e2@1 Y Y Y ) and for
all jel,keZandseN* €; i o (resp. €; i ) the set of monomlals correspondlng

to ‘M},k,o (resp. JM; x 5). We have forall 0 < j <3,

e=||erou || €

kez keZ,seN*
Let

V(™ Yi .Y Yo_,21 Yo_,ol) = @ Com
meé
be the vector space freely generated by €. For 0 < j <3,k € Z and 5 € N*, set
= @®mes, ;. o Cvm (resp. Vk(,js) = @mes, ., Cvm)- Then forall 0 < j <3,

V(™ Y Yo_,zl Yo_,(}) = @ Vk(]) S @ Vk(,Js)'
kez kez,seN*

We endow V(e?@! Y Y Y, 1Y 1) with a structure of Ou” J (sly")-module
for all j € I as follows: for k e’/ and s € N*, V(]) (resp. V(J)) is isomorphic to

Vo(Y1 14 j+4kY1—14j+4x) (resp. Vo(¥ 1+J+4kY1 14 j+ak—as))) by iden-
tifying the corresponding bases. So V(J ) (resp. V(js ) is endowed with a structure
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of Ouz’j'(slffr)—mgdule, and V(ez"?1 Y, 1 Y]) 1Y0 21Y0 (}) also by direct sum. We
denote it by V(e“™! Y Y Yoo Yo, o) G

Proposition 5.8. There exists a Ug (sltor) module structure on the vector space
V(e?™1 Y 1Y Y 21Y0 (}) such that for all j € I the induced Uy v.J (slif_ri_l) -module
is isomorphic t0 V(e2zzr Y, Y 1Y 1Y 1)(/) Furthermore the g-character of

2 -1
V(e™™1Y, Y, 1Yo, Y, 0) is
xa(V(E™Y, 1Y, Y5, Y50) =) m,

meé

where € is the set of monomials occurring in M(e>®1 Y, Y, _,

Yo2Yoo)
Proof. The process is the same as in TheoremA4.1: to define an action of AU, (slﬁ”),
we determine the action of the subalgebras %U; for all i € I. For that, let j € [
be such that j # i. Then the action of aU; on V(ezwlY Y, Yo, 1Y 1) is the
restriction of the action of ou" J (sly") on V(e2™@1 Y Y 1Y0 21Y0 g)(f ). We check
that this is independent of the choice of j #1.

Let us show that this action endows V(e2®! Y, Y, Y, 1y =1) with a structure

-1%0,2%0,0
of g (s1y")-module. For that, we have to dlstmgulsh two types of monomials:

o the m such that there is no s, 5" € N with s # s" and m € €; 4 s N €/ s ¢ for
some 0 < j,j' <3 and k,k’ € Z. For such a monomial, the defined action
on vy, comes from the same type of modules, that is, only of modules of type
KR or only on modules of type s-TP for one s € N*;

o the m such that there is s, 5" € N with s # 5" and m € €; ;s N €/ g ¢ for
some 0 < j, j' <3 and k, k" € Z. For such a monomial, the defined action on
v, comes from two different types of modules, that is, of modules of type KR
and of type TP or of modules of type s-TP and of type s'-TP with s # s’.

For the first ones, the same process as in Theorem 4.1 (using promotion operator) im-
plies that the defining relations of U, (slﬁfr ) hold on it. For the other ones, this is more
complicated. Such a monomial is of the form m = ¢/ T4k (Y, —1-45Y35 ! Y, YO_ 4s)
with 0 < j <3,k € Z, s € N*. The promotion operator implies some ‘relations
on vy, but not all and we check directly that they are satisfied. We do not detail the

calculations here. O

5C. Study of the U, (s1§")-module V(e*™ Y 1Y 1Y, ;Yo 2)-

Proposition 5.9. The Uy (s1y")-module V(e*™'Y, | Y, _ | Y} Yy ) is integrable.

Moreover, it satisfies property (iv) of Remark 2.5.
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Proof. For all j € 1, V(e*™y, 1Y —1Y0_21 Yo_é) is completely reducible as a
WUy (s | )-module and we have

n+1
(D) V@Y, Y, Yo, Yo ) = @ VoVt it jran Y114 rar—as).
seN
kez

The representations occurring in the direct sum on the right-hand side are integrable.
Hence V(e?™! Y, Y Y, 0_’21 Yo_,&) is an integrable U, (sI;} | )-module. Further-
more the modules of type KR are all isomorphic as U, (sl4)-modules and satisfy
property (iv) of Remark 2.5; the same is true of the modlules of type TP. Therefore,

we have
V(E™ Y Y, Yo, Yoo viNe; =10} forallve P.iel,N>0. O

Remark 5.10. The weight spaces of V(e2™'Y, Y, _,Y;, Y, o) have infinite di-
mension and property (iii) of Remark 2.5 does not hold. However its £-weight
spaces are all of dimension one.

The main result of this section is the following:

Theorem 5.11. Set M = ¢2™1 Y, Y, Yo_zl Yo_(}' The representation V(M) is
an extremal loop weight module generated by the vector vps of £-weight M.

Proof. The third point of Definition 2.26 is a consequence of (11). For the first two
points, we use the following results. O

Lemma 5.12. Let V be a Uy (§1n+1)-m0dule with basis (Vm)me indexed by a
subcrystal M of M. Assume that M € M’ is extremal of weight wt(M') and for all
ielandmeW - -M,

wt(vy) = wt(m), xt

i 'vm=0

and
(x, )Y ENED) Ly = vy i £ Wim) (h;) = 0,
Then vas is an extremal vector of weight wt(M).
Proof. The proof is analogous to the one of Lemma 4.8. O
Corollary 5.13. Set
My = *™1 50 YY) —1oas Yo_,z1 Yo_,i4s (s €N).

: 2 —1y—1 :
Then vy, is an extremal vector of V(e“®! Y)Y 1Yo, Y0) of weight 2wy + 58

for the horizontal quantum affine subalgebra mg (slf,f’r).
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Proof. By construction of the basis (v,,) of V(e?™! Y, Y, —1Y0_21 YO_(}), we
have wt(vy,,) = wt(m) for all m. Furthermore a monomial in W - Mj is of
the form ¢/ T4k (Mj) with j € I, and k € Z and we have wt(¢/ T4*(My)) =

2Aj 41 —2A; —2KkS,

(xfo)(z) “Vgitak (M) = Vpi—1+4k (M) = US; (¢7 +4k (M)
— 2
(X,-+1,o)( ) “Vpitak (My) = Vpi+1+4k(My) = VS, 4 (¢p] 4k (M)
xii “Vgi+ak (M) = 0 in the other cases.

Hence the hypotheses of the above lemma are satisfied and vy, is extremal of

weight 2@y + 56 for the horizontal quantum affine subalgebra %2 (s1y"). O

Proposition 5.14. The representation V(e*™! Y, Y, Y0_21 YO_(}) is cyclic as a
Bt _

Ug (s1y")-module generated by the vector v =10 2a, Y, Y Yoyl

Proof. Consider the sub—ouz (slffr)—module V' generated by v. By construction of
the basis (vy;) of
V(e YY) Yo_,z1 Yo_,(})a

U € V for all m € M(e?>™1Y, 1Y Yo_zl YO_(}). By a recursive argument, assume
for one s € N we have v,, € V for all m € Jl/L(ezwl_’SY1 e _1_4tY0_21 YO_L”)

with 0 <¢ <. In particular v — —1 1sin V and by Example 5.7,
- = p Yy 1—as¥53Y0.4Y5 Las y P

Y—l € V

Xo-U 1
0,0 “Y ,—174sY0,6 0,—4s

—1 1 = U 2w —(s+1)8
l—1-4sY35 Y0 4 Y, e?m1= 6ty Sy

0,—4s
In the same way

v —1 —1 and Vi 2w —(s+1)8
SR (Y _1_asY35 Y0 4¥0 2ay) A G IR CI SR

A

are in V for any k € Z. All v,, with m € Jl/L(ezwl_(erl)SY1 Y, C1easYod Yoty

can be obtained from these vectors by action of OILZ (slﬁfr):’this is straightforward
from Example 5.7 and the construction of the basis (vy,). O

Proposition 5.15. The U (s1y")-module V(™'Y | Y, Y5 Y 3) isirreducible.

Proof. Let V' be a nontrivial sub-Al, (slffr)—module of V(e2@1 Y1,1 Yl’_1 Yo_,zl Yo_,(; .

As the £-weight spaces are of dimension one, there exists s € N and a monomial
m e M(eFTHY, Y |, Yo Yo, ) such that vy, € V.

If s = 0, we have already shown that V(e2®! Y, Y, —1Y0_21 YO_(}) is cyclic
generated by v,, and V = V(e2™! Y, Y, _

Y- 1Y 1). Assume that s € N*. By
Example 5.7 and the construction of (vy,), there exists x € %2 (slfr) such that

—1ly—1
YO,6 YO.—As)

170,270,0

X Um =V, 2t +s8 —1ly—1 .
m eIV 1Yy 14 Y02 Yo Zus

Furthermore

A

Wq-v,2 58 —1y—1
1 P21 438y, 1Y) a5 Yoa Yo Ly
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is the simple £-highest weight OIALI -module of £-highest weight Y7 ;Y] _j_45 and
there exists y € Uy (slﬁfr) such that

y ' Um - Y Yl 1—4s Y2,—4S Y0721
1 1 2w +(s—1)8 ly—1
with ¥y Y Y, 4 Y, € M(e™™! « )Y 1 Y1 —1—a—1Yo,2 Yo, —4(s— 1)

Reeatmh rgument, one sh hat th - nV.
) g this argument, one S owstattevectorv 2w’1Y Y, Yo,zYo,(} isin V
By the above proposition we get

V = V(e*™! YI,IYI,_IYO_,ZI Yojg), O

Proposition 5.16. The Ug (sly)-module Res(V(e*™1Y, Y, _\ Y3 Yyh)) has a

crystal basis isomorphic to B(2w).

Proof. Set K = C(g) with g an indeterminate and let A be the subring of K
consisting of rational functions in K without pole at ¢ = 0. We normalize the
basis (vy,) of the C(g)-vector space V(e2™! Y Y Y. 21Y0 (}) as follows. For all
m e M(e>™ Y, Y, 1Y0 21Y0 (}) let wy, be the vector defined by wm = (1/q) vy, if
there exists k € Z s € N* such that m = Pk (e2™1+58 Yo Y 4o, IYO_ 45) and
Wy, = Uy, otherwise. Set B = (wm)m and £ =P, Awn. We check directly that
(&£, B) is a crystal basis of the AUy (sl4) module Res(V (e2®! Y Y Yoy 1))

-1 0 210,0
isomorphic to B(2z;). We do not detail the calculations.

Remark 5.17. All these results suggest that Res(V (e2®! Y, Y, Y 1Y 1)) is
isomorphic to the extremal weight U, (sl4) module V(2w ). One expects to prove
such a result for all the extremal loop weight modules constructed by the conjectural
process given above.

5D. Finite-dimensional representations at roots of unity. Set L > 1 and let € be
a primitive (4L)-root of unity.
Denote by € the set of monomials occurring in
A>T YY) —1-asYo0,2 Yo_ 45)
for all s € N. Consider ¢’ the subset of ¢ defined by
v= || .
0<s<L-1

Let € and €, be the images of the sets € and €’ respectively by the map I'(4.):
€. is a finite monomial set of cardinality 1612

Theorem 5.18. Assume that € is a primitive 4L-root of unity. There exists an
irreducible U (slfr)’ -module Vy of dimension 16L? such that

xe(Ve) = Z m.

7
meée
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Proof. The main difficulty is to specialize ¢ at ¢ in the ou;’f (slyr)-modules of
type TP. In fact, these modules can be undefined or reducible after specialization.
To better understand these phenomena, let us study the specialized U (§12)’ -module
Vo(Y1,4Y1p)e With a, b € Z. This representation is well defined if a ¢ b +4LZ.
Assume that in the following and study Vo (Y1 ,4Y) p)e. If a b £2+4L7Z, this
representation is irreducible. If @ € b + 2 +4LZ, it is not irreducible: in fact
Ue(sha)' VY, Y T Cle.aYl.h ® (EUYI_.al-i-ZYl,b ® CUYI_.ul-‘rZYl_,l-i-Z

is an irreducible submodule of V(Y1 4Y] p)e.

By our study of the AU (§12)/ -module V(Y1,4Y7 p)e, One can specialize ¢ at € in
the defining relations of the action on the basis (v,,) of V(e2®! Y Y Yoly—h.

—-1%0,2%0,0
Moreover one checks that

tory/ —
Oué (514 ) le .1 Yl,—1—4L Y()_21 YO_.14L o @ Cvm
me¢—¢’
is a sub-Ae (s1y")’-module of V(e?®1 Y, Y, Yo_zl YO_OI)G. By taking the quotient,
we obtain a U (sl,")’ -module

which is irreducible: this is straightforward with the formulas of the action. O

6. Further possible developments and applications

In this last section, we give other promising directions to study the extremal loop
weight modules for quantum toroidal algebras of general types. Moreover we give
some possible applications of the results obtained in this article. This will be done
in further papers.

In our construction of level 0 extremal loop weight modules in type A, monomial
realizations of crystals and promotion operators on the finite crystals have a crucial
role. Let us give some results which suggest that a similar construction is possible
in other types. In [Hernandez and Nakajima 2006], an explicit description of
monomial realizations of level 0 extremal fundamental weight crystals of quantum
affine algebras is given for all the nonexceptional types. The automorphisms z; are
determined in these cases. Furthermore in other types, there exists also symmetry
properties for crystals arising from automorphisms of the associated Dynkin diagram
(analogue of promotion operators in type 4). Using that, a combinatorial process
allows to obtain Kirillov—Reshetikhin crystals from crystals of finite type (see
[Fourier et al. 2009; Kang et al. 1992; Okado and Schilling 2008]). These symmetry
properties will be useful for a similar construction of extremal loop weight modules
in other types.
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As we have seen, the extremal fundamental loop weight modules
V(€™ Yy 0Y54,)

(m=2r+1and £ = 1,r + 1 or n) are completely reducible as OuZ’O(SI;?:q)'
modules: they are direct sums of fundamental modules of Uy (sl,;+1). Similar
vector spaces are considered in [Chari and Greenstein 2003] for the quantum affine
algebra WU, (g) associated to a simple Lie algebra g over C. In fact for a finite-
dimensional representation V of AU, (§)’, the vector space V ®cC[z, z~!]is endowed
with a structure of AUy (§)-module by using the grading of this algebra. So the action
is very different to the one defined in this article and we do not have a way to extend
this action for the quantum toroidal algebra U, (g'°"). But it would be interesting
to study an analogous construction for the quantum toroidal algebra U, (g'°"). We
can expect to construct other examples of extremal loop weight modules by this
process.

Let us explain another approach to construct extremal loop weight modules
which could be fruitful. Let g be a Kac—-Moody algebra. For an integral weight A,
one defines

b= ) Mh)A;
A(h;)=0
and A— = A4 — A. To study the extremal weight module V' (1), Kashiwara [1994]
considers the tensor product V/(A) = V(A4+) ® V(A—) of the simple highest weight
module V(A 4) and the simple lowest weight module V(A_). By analogy, it would
be interesting to define an action of the quantum affinization U, (g) on the tensor
product of simple £-highest weight modules and simple £-lowest weight modules,
in the spirit of [Hernandez 2005; 2007; Feigin et al. 2011a; 2011b; 2012; 2013].
This will be studied in a further paper.

Another possible direction is to study the finite-dimensional representations of
double affine Hecke algebras (or Cherednik algebras) at roots of unity obtained
from the new finite-dimensional representations of WU, (slifil) defined above, via
Schur—Weyl duality [Varagnolo and Vasserot 1996].

In this article, we have defined promotion operators for the level O extremal
fundamental weight crystals B(wy) in type A, (n > 2 odd, 1 <€ <n). It will be
interesting to discuss the existence of promotion operators for other level 0 extremal
weight crystals and the uniqueness of them in the spirit of [Shimozono 2002].

Appendix
We describe here the monomial crystal

T 2w —1y—1y _ 2w, +58 —1y—1
M(e”™! Vi, Y, Yo, Yo,o) = @M(e : Y1 1Y) _1asY02 YO,—4s)‘
seN
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~
)2 —1y—1
1Y Y Yoo o -
1 _ 7
\ g
—1 —1
Y1,3 Y1,—1Y2,2Y0,0 0o -
/ \2 - -
£
—1ly—1 —1 —1
Yl,3 Yl 1 Y2 2Y20 Yl,—lY2,4Y3 3Y00
—ly—1 —1 -1
Yl,l Y24Y2,0Y3,3 Yl,—lYSSYO 4Y00
—ly—1 —1 —1
Y2,4Y22Y3 3Y3,1 Y1,1Y2,0Y3,5Yo4
—1yv—1 —1 —1
Yz,z Y3,5 Y3,1Y0,4 Y, 5Y1,1 Yz,oYO,s
Y3,5 Yy Yo,4Yo,2 Y1,5Y2,21 Y3,1 Y; 61
Yl,S Y37,3l Yotel Yo,z Y1T7l Y2,6Y27,l Y3,1

/
\

}
<

—1y—1
Y1,5 Y1,3 Yo,s Yo,4

3

[

[=))

w
Wl
o<
(S}

1,7 ,
0o - 2
P \
- -1 -1

Yz,s Y3,7Y3,3 Yo,z

o_ -

~
£

Figure 1. The AU, (sly)-crystal M(e2™1Y, Y, _ Y Y.

More precisely, we show in Figures 1 and 2 the two connected components
2 —1y—1 2w +8 —1y—1
M(E™NY) 1Yy 1 Y5,Y5,) and (e it YY) sYo, Yo —4)

of M(e2™1 Y Y, _, Yo_zl YO_(}). Recall that all the connected components of the
latter are isomorphic modulo shift of weight by §. Furthermore the map 74 __55 is an
automorphism of these crystals and we only give a part of them. The full crystals

are obtained by applying the automorphism 74 __»5. The sub-/y-crystals

M(l),o,o = ‘MIO(YI,I Y1,—1 Yo_,z1 Yo_,(;)
and
Mo,0,1 = /‘/Llo(Yl,l Yl,—SYO_,Zl Yo_,l4) ©® Mlo (Yl_,ll YI,SYZ,OYO_,61)

are explicitly given.
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)
o
|
~

\

£
Y1,3 Y1,—5Y2,2Yo_,—4 0o -~
/ \2 Pl
£
—1y—1 —1 —
Y1,3 Yl,—S 2,2Y2,—4 Y1,—5Y24Y3,3Y0 —4
-1 y—1 —1
Y —3Y2,4 Yz,—4Y3,3 Yl,—5Y3,5 Y0,4
—1y—1 -1 —1
Y2,4 Y2,72Y3,3Y3,73 Y1,73Y2,74Y3,5 Y0,4
~ e L
Y2,72Y3,5 Y3,73Y0,4 Y1,5Y1,—3Y
—1y— — —1
Y3,5 Y3,71Yo,4Y0,72 YI,SYZ,—2Y3,—3YO,6
~. f/
Y1,5Y3,—1Y ,6 Yo,—z Y1,7 Y2,6Y2,—2
- \1; 43/
-
—1y—1 —1 -
Y, Y, YO,6 Yoo Y1,7 Y2,6Y3,71 Yo,fz
0o_ -~
£~ -1 -1
Yz,s Y3,7Y3,71
0o_ -~
A -

Figure 2. The U, (sly)-crystal A(e>™1 oY, | Y, Y5 ¥

Note that the -twisted automorphism ¢ of .il(e2™! Y, Y, _, Yo_zl Y,

viewed as a descent of one diagonal in these crystals.
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