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LEFSCHETZ FIBRATIONS WITH SMALL SLOPE

NAOYUKI MONDEN

We construct Lefschetz fibrations over S2 which do not satisfy the slope
inequality. This disproves a conjecture of Hain.

1. Introduction

Lefschetz fibrations have been an active area of research ever since the remark-
able work in [Donaldson 1999] and [Gompf and Stipsicz 1999] revealed a close
connection between them and symplectic 4-manifolds. In this paper, we consider
the geography problem of Lefschetz fibrations over S2, which derives from that of
complex surfaces fibred over curves.

We are interested in two kinds of geography problems. Let σ and e be the
signature and the Euler characteristic of a closed oriented smooth 4-manifold X ,
respectively. For an almost complex closed 4-manifold X , we set K 2

:= 3σ + 2e
and χh := (σ + e)/4 (the holomorphic Euler characteristic).

One is the geography problem for complex surfaces: the characterization of pairs
(K 2, χh) corresponding to minimal complex surfaces. It is well known that any
minimal complex surface of general type satisfies K 2 > 0, χh > 0, the Noether
inequality 2χh−6≤ K 2 and the Bogomolov–Miyaoka–Yau inequality K 2

≤9χh (see
[Barth et al. 1984], for example). The above geography problem can be extended
to the symplectic 4-manifolds. However, Fintushel and Stern [1998] constructed
Lefschetz fibration which does not satisfy the Noether inequality. In particular,
for most pairs (p, q) satisfying p < 2q − 6, there exists a minimal symplectic
4-manifold with p= K 2 and q = χh (see [Gompf and Stipsicz 1999]). On the other
hand, no examples of a minimal symplectic 4-manifold with K 2 > 9χh have been
found yet.

The other is the geography problem for complex surfaces fibred over curves.
Hereafter, we assume g ≥ 2. Let f : S→ C be a relatively minimal holomorphic
genus-g fibration, where S is a complex surface and C is a complex curve of
genus k. We define relative numerical invariants χ f := χh − (g− 1)(k − 1) and
K 2

f := K 2
−8(g−1)(k−1) for f : S→C . Then, we have two inequalities χ f ≥ 0
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and K 2
f ≥ 0, known as Beauville’s inequality (see [Beauville 1979]) and Arakelov’s

inequality (see [Arakelov 1971]), respectively. For χ f 6= 0, which is equivalent
to the fact that f is not a holomorphic bundle, we define λ f to be the quotient
K 2

f /χ f , called the slope of f . Xiao [1987] proved that 4− 4/g ≤ λ f ≤ 12 (that is,
(4− 4/g)χ f ≤ K 2

f ≤ 12χ f ). The former inequality is called the slope inequality.
For a relatively minimal genus-g Lefschetz fibration, χ f , K 2

f and the slope λ f are
defined in the same way as for complex surfaces fibred over curves. To the author’s
knowledge, the slope of all known Lefschetz fibrations over S2 is greater than or
equal to 4− 4/g.

Conjecture 1.1 (Hain; see [Amorós et al. 2000, Question 5.10; Endo and Nagami
2005, Conjecture 4.12]). For every relatively minimal genus-g Lefschetz fibration
f : X→ S2, the slope inequality λ f ≥ 4− 4/g holds.

In this paper, we give a negative answer to Conjecture 1.1.

Theorem 3.1. For each g ≥ 3, there exists a genus-g Lefschetz fibration over S2

with slope λ f = 4− 4/g− 1/3g whose total space is simply connected.

Moreover, by fiber sum operations, we have the following results:

Corollary 3.6. For each g ≥ 3, m ≥ 0 and l ≥ 0, there exists a genus-g Lefschetz
fibration fm,l : Xm,l → S2 with slope λ fm,l = 4 − 4/g − 1/(m + 3)g such that
π1(Xm,l) = 1. Moreover, if (m, l) 6= (0, 0), then Xm,l is a minimal symplectic
4-manifold.

Corollary 3.7. For each g ≥ 3, m ≥ 1 and l ≥ 0, there exists a genus-g Lefschetz
fibration f ′m,l : Ym,l→ S2 with slope λ f ′m,l = 4− 4/g− 1/2g+ 1/(2 · 3m−1g) such
that π1(Ym,l)= 1. Moreover, if l ≥ 1, then Ym,l is a minimal symplectic 4-manifold.

As a consequence, we have the following results.

Corollary 4.2. The Lefschetz fibrations fm,l (m ≥ 0) and f ′m,l (m ≥ 2) are non-
holomorphic.

Let f : X→ S2 be a relatively minimal genus-g Lefschetz fibration with n > 0
singular fibers. From e(X)=−4(g−1)+n and results from [Smith 1999; Stipsicz
1999; Ozbagci 2002], we have χ f > 0, K 2

f ≥ 4g− 4 and λ f ≤ 10. Moreover, it is
well known that any hyperelliptic Lefschetz fibration satisfies the slope inequality.
This fact follows from the signature formula for genus-g hyperelliptic Lefschetz
fibrations obtained by Matsumoto [1983; 1996] for g = 1, 2 and Endo [2000]
for g ≥ 3. Therefore, genus-2 Lefschetz fibrations satisfy the slope inequality.
In particular, if f is a hyperelliptic Lefschetz fibration with only nonseparating
vanishing cycles, then λ f is equal to 4− 4/g. For Lefschetz fibrations with b+2 = 1,
we prove the following result.
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Theorem 5.1. Let g ≥ 2 and let f : X→ S2 be a genus-g Lefschetz fibration with
b+2 (X)= 1.

(1) If X is not diffeomorphic to the blow-up of a ruled surface, then

(i) 4− 4/g ≤ λ f ≤ 8 for b1(X)= 0,

(ii) 4≤ λ f ≤ 8 for b1(X)= 2.

(2) If X is diffeomorphic to the blow-up of an S2-bundle over 6k , then

4+ 4(k− 1)/(g− k)≤ λ f ≤ 8,

and the lower bound is sharp.

The study of the slope of holomorphic fibrations was mainly motivated by
Severi’s inequality, which states that if S is a minimal surface of general type of
maximal Albanese dimension, then K 2

≥ 4χh . Equivalently, if K 2 < 4χh , then S
is a surface fibred over C of genus b1(S)/2. Severi [1932] claimed it, but his proof
was not correct (see [Catanese 1983]). The inequality was independently posed
as a conjecture by Reid [1979] and by Catanese [1983]. Xiao [1987] proved the
conjecture when S is a surface fibred over a curve of positive genus. He showed
that if S admits a holomorphic genus-g fibration f over C of positive genus k with
K 2<4χh+4(g−1)(k−1) (that is, λ f <4), then k=b1(S)/2. Konno [1996] proved
it in the case of even surfaces. The conjecture was solved by Manetti [2003] when
S has ample canonical bundle. Pardini [2005] proved the conjecture completely by
using the slope inequality for holomorphic fibrations over CP1.

In Section 2, we review some standard facts on Lefschetz fibrations. Our main
results are proved in Section 3. We give Lefschetz fibrations which violate the
slope inequality. Consequently, we obtain examples of nonholomorphic Lefschetz
fibrations in Section 4. In the last section, we investigate the slopes of Lefschetz
fibrations with b+2 = 1.

Remark 1.2. The slope inequality of Conjecture 1.1 can be reformulated in terms
of the Deligne–Mumford compactified moduli space of stable curves of genus g,
denoted by Mg, as follows. For a relatively minimal genus-g Lefschetz fibration
f : X → S2 with n singular fibers, we obtain a symplectic structure on X such
that for all x ∈ S2, f −1(x) is a pseudoholomorphic curve. Since a 2-dimensional
almost-complex structure is integrable, f −1(x) determines a point in Mg. Thus, we
obtain the moduli map φ f : S2

→Mg which is defined by φf (x)= [ f −1(x)] ∈Mg

for x ∈ S2. We denote by Hg the Hodge bundle on Mg with fiber the determinant
line

∧g H 0(C; KC), where C is the set of critical points of f . By Smith’s signature
formula [1999] and the slope inequality, we have the following inequality:

(8g+ 4)〈c1(Hg), [φ f (S2)]〉− g · n ≥ 0.
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2. Preliminaries

In this section, we first recall the definition and basic properties of Lefschetz
fibrations. More details can be found in [Gompf and Stipsicz 1999].

Let 6g be a closed oriented surface of genus g ≥ 2 and let 0g be the mapping
class group of 6g, which is the group of isotopy classes of orientation-preserving
diffeomorphisms of6g. We denote by tc the right-handed Dehn twist about a simple
closed curve c on an oriented surface. The notation tctd means that we first apply
td then tc.

Definition 2.1. Let X be a closed, oriented smooth 4-manifold. A smooth map
f : X→ S2 is a genus-g Lefschetz fibration if it satisfies the following conditions:

(i) f has finitely many critical values b1, . . . , bn ∈ S2, and f is a smooth 6g-
bundle over S2

−{b1, . . . , bn}.

(ii) For each i (i = 1, . . . , n), there exists a unique critical point pi in the singular
fiber f −1(bi ) such that about each pi and bi there are local complex coordinate
charts agreeing with the orientations of X and S2 on which f is of the form
f (z1, z2)= z2

1+ z2
2.

(iii) f is relatively minimal (no fiber contains a (−1)-sphere).

Each singular fiber is obtained by collapsing a simple closed curve (the vanishing
cycle) in the regular fiber. The monodromy of the fibration around a singular fiber
is given by a right-handed Dehn twist along the corresponding vanishing cycle. A
Lefschetz fibration f : X→ S2 is holomorphic if there are complex structures on
both X and S2 with holomorphic projection f .

Once we fix an identification of 6g with the fiber over a base point of S2, we can
characterize the Lefschetz fibration f : X→ S2 by its monodromy representation
π1(S2

− {b1, . . . , bn}) → 0g. This map is really an antihomomorphism, since
elements of π1(S2

−{b1, . . . , bn}) are written left-to-right and elements of 0g are
written right-to-left. Let γ1, . . . , γn be an ordered system of generating loops for
π1(S2

−{b1, . . . , bn}), such that each γi encircles only bi and
∏
γi is homotopically

trivial. Thus, the monodromy of f comprises a factorization

tvn . . . tv2 tv1 = 1 ∈ 0g,

where vi are vanishing cycles of the singular fibers. This factorization is called the
positive relator.

According to theorems of Kas [1980] and Matsumoto [1996], if g ≥ 2, then
the isomorphism class of a Lefschetz fibration is determined by a positive relator
modulo simultaneous conjugations

tvn . . . tv2 tv1 ∼ tφ(vn) . . . tφ(v2)tφ(v1) for all φ ∈ 0g
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Figure 1. The curves d1, d2, d3, d4, x1, x2, x3.

and elementary transformations

tvn . . . tvi+2 tvi+1 tvi tvi−1 tvi−2 . . . tv1 ∼ tvn . . . tvi+2 tvi tt−1
vi (vi+1)

tvi−1 tvi−2 . . . tv1,

tvn . . . tvi+2 tvi+1 tvi tvi−1 tvi−2 . . . tv1 ∼ tvn . . . tvi+2 tvi+1 ttvi (vi−1)tvi tvi−2 . . . tv1 .

Note that φtviφ
−1
= tφ(vi ). For all φ ∈ 0g, let φ(%) be the positive relator which

is obtained by applying simultaneous conjugations by φ to a positive relator %.
We denote a Lefschetz fibration associated to a positive relator % ∈ 0g by f% :
X%→ S2. Clearly, if %1 ∼ %2 in 0g (that is, %2 is obtained by applying elementary
transformations or simultaneous conjugations to %1), then

χf%1
= χf%2

and K 2
f%1
= K 2

f%2
.

For positive relators %1 and %2 in 0g, the genus-g Lefschetz fibration

f%1%2 : X%1%2 → S2

is the (trivial) fiber sum of f%1 and f%2 . Since σ(X%1%2) = σ(X%1) + σ(X%2)

and e(X%1%2) = e(X%1)+ e(X%2)+ 4(g− 1), we see that χf%1%2
= χf%1

+ χf%2
and

K 2
f%1%2
= K 2

f%1
+ K 2

f%2
. In particular, if %1 ∼ %2, then

χf%1%2
= 2χf%1

= 2χf%2
and K 2

f%1%2
= 2K 2

f%1
= 2K 2

f%2
.

We next begin with a definition of the lantern relation (see [Dehn 1938; Johnson
1979]).

Definition 2.2. Let 64
0 denote a sphere with 4 boundary components. Let d1, d2,

d3, d4 be the 4 boundary curves of 64
0 and let x1, x2, x3 be the interior curves as

shown in Figure 1. Then, we have the lantern relation

td1 td2 td3 td4 = tx1 tx2 tx3 .

Let % be a positive relator of 0g. Let d1, d2, d3, d4, x1, x2, x3 be curves as in
Definition 2.2. Suppose that % includes td1 td2 td3 td4 as a subword:

% =U · td1 td2 td3 td4 · V,
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where U and V are products of right-handed Dehn twists. Then, by the lantern
relation, the product of right-handed Dehn twists

%′ =U · tx1 tx2 tx3 · V

is also a positive relator of 0g.
This operation is one of substitution techniques introduced by Fuller.

Definition 2.3. We say that %′ is obtained by applying an L-substitution to %.
Conversely, % is said to be obtained by applying an L−1-substitution to %′. We also
call these two kinds of operations lantern substitutions.

Proposition 2.4 [Endo and Nagami 2005, Theorem 4.3 and Proposition 3.12]. Let
%, %′ be positive relators of 0g and let X%, X%′ be the corresponding Lefschetz
fibrations over S2, respectively. Suppose that % is obtained by applying an L−1-
substitution to %′. Then, σ(X%)= σ(X%′)− 1 and e(X%)= e(X%′)+ 1. Therefore,

χf% = χf%′
and K 2

f% = K 2
f%′
− 1.

Remark 2.5. Endo and Gurtas [2010] showed that X%′ is a rational blowdown of X%
introduced by Fintushel and Stern [1997]. Such relations were also generalized by
Endo, Mark, and Van Horn-Morris [Endo et al. 2011].

3. Main results

In this section, we give a negative answer to Conjecture 1.1.

Theorem 3.1. For each g ≥ 3, there exists a genus-g Lefschetz fibration over S2

with slope λ f = 4− 4/g− 1/3g whose total space is simply connected.

In order to prove Theorem 3.1, we recall some standard facts on hyperelliptic
Lefschetz fibrations. Let 1g be the hyperelliptic mapping class group of genus g,
that is, the subgroup of 0g which consists of all isotopy classes of orientation-
preserving diffeomorphisms of 6g commuting with the isotopy class of ι, called
the hyperelliptic involution. Note that 1g = 0g for g = 1, 2.

Definition 3.2. Let % = ta1 . . . tan be a positive relator in 0g. A genus-g Lefschetz
fibration f% : X%→ S2 is called hyperelliptic if for each k ∈ {1, . . . , n}, tak is in 1g.
Equivalently, ι(ak)= ak for each k.

The following theorem was established in [Matsumoto 1983; 1996] for g = 1, 2
and in [Endo 2000] for g ≥ 3.
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Figure 2. The curves c1, . . . , c2g+1, x1, x2, x3, y.

Theorem 3.3 (Matsumoto, Endo). Let f% : X% → S2 be a genus-g hyperelliptic
Lefschetz fibration with m nonseparating and

s =
[g/2]∑
h=1

sh

separating vanishing cycles, where sh denotes the number of separating vanishing
cycles that separate 6g into two surfaces, one of which has genus h. Then, we have

σ(X%)=−
g+1

2g+1
m+

[g/2]∑
h=1

(
4h(g−h)

2g+1
− 1

)
sh .

We need the following positive relator to prove Theorem 3.1. As shown in
Figure 2, let c1, c2, . . . , c2g+1 be the curves in 6g. We denote by hg (∈ 0g) the
product of 8g+ 4 right-handed Dehn twists

hg := (tc1 tc2 . . . t
2
c2g+1

. . . tc2 tc1)
2.

It is well known that hg is a positive relator in 1g and that σ(Xhg )=−4(g+ 1),
by Theorem 3.3 and e(Xhg ) = 4(g+ 2). This gives χfhg

= g, K 2
fhg
= 4g− 4 and

λ fhg
= 4− 4/g (that is, fhg is lying on the slope line).

Proof of Theorem 3.1. Suppose g ≥ 3. Let x1, x2, x3, y be the curves as shown in
Figure 2. Since c1, xi are nonseparating curves, there exists a diffeomorphism φi

such that φi (c1)= xi . Hence, we have the following positive relator ri (i = 1, 2, 3):

ri = φi hgφ
−1
i = φi (tc1 tc2 . . . t

2
c2g+1

. . . tc2 tc1)
2φ−1

i

= (tφi (c1)tφi (c2) . . . t
2
φi (c2g+1)

. . . tφi (c2)tφi (c1))
2

= (txi tφi (c2) . . . t
2
φi (c2g+1)

. . . tφi (c2)tφi (c1))
2

= 1 ∈ 0g.

Let r ′g = r1r2r3 = (tx1 . . . tφ1(c1))
2(tx2 . . . )

2(tx3 . . . )
2. Since fr ′g is the fiber sum of

fr1 , fr2 and fr3 which are obtained by applying simultaneous conjugations to hg,
we have

χfr ′g
= 3χfhg

= 3g and K 2
fr ′g
= 3K 2

fhg
= 3(4g− 4).
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We apply elementary transformations to r ′g as follows:

r ′g = r1r2r3

= tx1 tφ1(c2) . . . tφ1(c2)tφ1(c1) · tx2 tφ2(c2) . . . tφ2(c1) · tx3 tφ3(c2) . . . tφ3(c1)

∼ tx1 tφ1(c2) . . . tφ1(c2)tx2 tt−1
x2 (φ1(c1))

tφ2(c2) . . . tφ2(c1) · tx3 tφ3(c2) . . . tφ3(c1)

..
.

..
.

∼ tx1 tx2 tt−1
x2 (φ1(c2))

. . . tt−1
x2 (φ1(c2))

tt−1
x2 (φ1(c1))

tφ2(c2) . . . tφ2(c1) · tx3 tφ3(c2) . . . tφ3(c1)

∼ tx1 tx2 tt−1
x2 (φ1(c2))

. . . tt−1
x2 (φ1(c2))

tt−1
x2 (φ1(c1))

tφ2(c2) . . . tx3 tt−1
x3 (φ2(c1))

tφ3(c2) . . . tφ3(c1)

..
.

..
.

∼ (tx1 tx2 tx3)W,

where W is a product of 24g+ 9 right-handed Dehn twists. By the lantern relation,
we get the following positive relator rg:

rg := (tc1 tc3 tc5 ty)W.

Since rg is obtained by applying an L−1-substitution to r ′g, by Proposition 2.4

χfrg
= 3g and K 2

frg
= 3(4g− 4)− 1.

Then, the slope of frg is equal to 4− 4/g− 1/3g.
Since it is easy to check that rg includes the Dehn twist about a curve φ3(ci ) for

1≤ i ≤ 2g+1, π1(Xrg )= 1. This follows from [Gompf and Stipsicz 1999] and the
fact that frg has a section. This completes the proof of Theorem 3.1. �

Remark 3.4. Since rg is obtained by applying an L−1-substitution to r ′g, Xrg is
a rational blow-up of Xr ′g . By applying elementary transformations to a relator
corresponding to a Lefschetz fibration which is obtained by taking a twisted fiber
sum with sufficiently many Lefschetz fibrations, we obtain a positive relator such
that we can apply a monodromy substitution, which corresponds to the operation
of rational blowdown (resp. rational blow-up) in [Endo et al. 2011], to it.

Remark 3.5. Miyachi and Shiga [2011] produced genus-g Lefschetz fibrations
over 62m which do not satisfy the slope inequality.

Moreover, by fiber sum operations, we have the following results:

Corollary 3.6. For each g ≥ 3, m ≥ 0 and l ≥ 0, there exists a genus-g Lefschetz
fibration fm,l : Xm,l → S2 with slope λ fm,l = 4 − 4/g − 1/(m + 3)g such that
π1(Xm,l) = 1. Moreover, if (m, l) 6= (0, 0), then Xm,l is a minimal symplectic
4-manifold.
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Proof of Corollary 3.6. For any m ≥ 0, we consider the Lefschetz fibration frghm
g
:

Xrghm
g
→ S2 which is the fiber sum of frg and m copies of fhg . Then,

χfrg hm
g
= χfrg

+mχfhg
= (3+m)g,

K 2
frg hm

g
= K 2

frg
+mK 2

fhg
= (3+m)(4g− 4)− 1.

Therefore, we obtain

(1) λ frg hm
g
= 4− 4/g− 1/(m+ 3)g.

Let fm,l : Xm,l→ S2 be the fiber sum of l copies of frghm
g

(that is, fm,l = f(rghm
g )

l ).
By Using (1) and an argument similar to the proof of Theorem 3.1, we have
λ fm,l = 4− 4/g − 1/(m + 3)g and π1(Xm,l) = 1. By the result of Usher [2006],
Xm,l is minimal for (m, l) 6= (0, 0). This completes the proof. �

Corollary 3.7. For each g ≥ 3, m ≥ 1 and l ≥ 0, there exists a genus-g Lefschetz
fibration f ′m,l : Ym,l→ S2 with slope λ f ′m,l = 4− 4/g− 1/2g+ 1/(2 · 3m−1g) such
that π1(Ym,l)= 1. Moreover, if l ≥ 1, then Ym,l is a minimal symplectic 4-manifold.

Proof of Corollary 3.7. When we apply the argument of Theorem 3.1 again, with
%1=hg replaced by %2=rg, we obtain a genus-g Lefschetz fibration f%3 : X%3 → S2

with
χf%3
= 3χf%2

= 3 · 3χf%1

K 2
f%3
= 3K 2

f%2
− 1= 3(3K 2

f%1
− 1)− 1.

By repeating this argument, we get a genus-g Lefschetz fibration f%m (m ≥ 1) with

χf%m
= 3m−1χf%1

= 3m−1g,

K 2
f%m
= 3

(
. . . (3(3K 2

f%1
− 1)− 1) . . .

)
− 1= 3m−1K 2

f%1
− 3m−2

− · · ·− 3− 1

= 3m−1(4g− 4)− (3m−1
− 1)/2.

Therefore, λ f%m
= 4− 4/g− 1/2g+ 1/(2 · 3m−1g).

Let f ′m,l : Ym,l→ S2 be the fiber sum of l copies of f%m , and so λ f ′m,l = 4−4/g−
1/2g+1/(2 ·3m−1g). Similar to the proof of Corollary 3.6, we see that π1(Ym,l)= 1
and that Ym,l is minimal for l ≥ 1. �

4. Nonholomorphic Lefschetz fibrations

There are various kinds of nonholomorphic Lefschetz fibrations. By fiber summing
two copies of genus-2 Lefschetz fibration due to Matsumoto [1996], Ozbagci and
Stipsicz [2000] constructed nonholomorphic genus-2 Lefschetz fibrations whose
total space does not admit a complex structure. Korkmaz [2001] generalized their
examples to g ≥ 3. The above mentioned examples of Fintushel and Stern are
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also nonholomorphic Lefschetz fibrations. From the study of divisors in moduli
space, Smith [2001] showed that a genus-3 Lefschetz fibration over S2 which was
produced by Fuller is nonholomorphic. Endo and Nagami [2005] constructed some
examples of nonholomorphic Lefschetz fibrations which violate lower bounds of
the slope for nonhyperelliptic fibrations of genus 3, 4 and 5 from the results of
Konno [1991; 1993] and Chen [1993]. Hirose [2010] also gave some examples
of g = 3, 4. In this section, we give new examples of nonholomorphic Lefschetz
fibrations.

From the slope inequality for holomorphic fibrations, we have the following
necessary condition for a Lefschetz fibration to be holomorphic:

Proposition 4.1 [Xiao 1987]. If a Lefschetz fibration f is holomorphic, then the
slope inequality λ f ≥ 4− 4/g holds.

As a consequence, we have the following results.

Corollary 4.2. The Lefschetz fibrations fm,l (m ≥ 0) and f ′m,l (m ≥ 2) are non-
holomorphic.

Remark 4.3. The above mentioned examples of Fintushel and Stern satisfy the
slope inequality but violate the Noether inequality. On the other hand, fm,l and f ′m,l
satisfy the Noether inequality but violate the slope inequality. Therefore, these two
necessary conditions for a Lefschetz fibration to be holomorphic are independent
in the sense that neither one implies the other.

5. The slopes of Lefschetz fibrations with b+

2 = 1

We have the following natural question: Which Lefschetz fibrations satisfy the
slope inequality? By Proposition 4.1, holomorphic Lefschetz fibrations satisfy the
slope inequality. If a Lefschetz fibration is hyperelliptic, then λ f ≥ 4− 4/g. This
fact can proved as follows. In the notation of Theorem 3.3, we have e(X%) =
−4(g− 1)+ (m+ s). Then, since h ∈ {1, . . . , [g/2]} and g ≥ 2, we have

K 2
f% − (4− 4/g)χf% =

[g/2]∑
h=1

4h(g−h)−g
g

sh ≥ 0.

In particular, this means that for any hyperelliptic Lefschetz fibrations with only
nonseparating vanishing cycles, λ f = 4− 4/g.

In this section, we investigate the slopes of Lefschetz fibrations with b+2 = 1.
By combining the results of [Stipsicz 1999; 2002] and [Li 2000], we can show
that Lefschetz fibrations with b+2 = 1 satisfy the slope inequality. Stipsicz showed
that if X→ S2 is a genus-g Lefschetz fibration over S2 with b+2 (X)= 1 and X is
not diffeomorphic to the blow-up of a ruled surface (that is, diffeomorphic to an
S2-bundle over6k), then b1(X)∈ {0, 2} and e≥ 0 (see [Stipsicz 1999, Corollary 3.3
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and 3.5]). In particular, if X is the blow-up of an S2-bundle over 6k , then k ≤ g/2
(see [Li 2000, Proposition 4.4]). Then, we obtain the following result.

Theorem 5.1. Let g ≥ 2 and let f : X→ S2 be a genus-g Lefschetz fibration with
b+2 (X)= 1.

(1) If X is not diffeomorphic to the blow-up of a ruled surface, then

(i) 4− 4/g ≤ λ f ≤ 8 for b1(X)= 0,

(ii) 4≤ λ f ≤ 8 for b1(X)= 2.

(2) If X is diffeomorphic to the blow-up of an S2-bundle over 6k , then

4+ 4(k− 1)/(g− k)≤ λ f ≤ 8,

and the lower bound is sharp.

An improvement of the previous result was suggested by the referee.

Proof of Theorem 5.1. For a genus-g Lefschetz fibration, a regular fiber has zero
self-intersection. Since the intersection form is nondegenerate, it follows that b±2 ≥1.
Let f : X→ S2 be a nontrivial genus-g Lefschetz fibration with b+2 (X)= 1. Note
that −4(g − 1) ≤ K 2, and so 4(g − 1) ≤ K 2

f (see [Stipsicz 1999, Lemma 3.2]).
Suppose that X is not diffeomorphic to the blow-up of a ruled surface.

First, suppose that b1 = 0. Since b+2 = 1 and χ f = (σ + e)/4 + (g − 1) =
(b+2 − b1+ 1)/2+ (g− 1)= g, we have 4(g− 1)/g ≤ K 2

f /χ f = λ f . On the other
hand, since K 2

= 3σ + 2e = 5b+2 − b−2 + 4− 4b1 = 9− b−2 , by b−2 ≥ 1, we have
λ f = K 2

f /χ f = {9− b−2 + 8(g− 1)}/g ≤ 8.
Next, suppose b1 = 2. Then, χ f = g−1. Therefore, by 4(g−1)≤ K 2

f , we have
4≤ λ f . Since 0≤ e = 2− 2b1+ b+2 + b−2 = 2− 4+ 1+ b−2 =−1+ b−2 , we obtain
λ f = {1− b−2 + 8(g− 1)}/(g− 1)≤ 8.

Finally, suppose that X is the m-fold blow-up of an S2-bundle over 6k . Let Y be
the S2-bundle over 6k . Then, since b1(Y )= 2k, b±2 (Y )= 1 and X = Y # mCP2, we
have b1(X)= 2k, b+2 (X)= 1, b−2 (X)=m+1, e(X)= 4−4k+m and σ(X)=−m.
Hence, we have λ f = 8−m/(g− k). From m ≥ 0, λ f ≤ 8. We will give lower
bounds for λ f . By Lemma 3.2 in [Stipsicz 2002], 4(2k − g)+m ≤ 4. We have
λ f ≥ 4+ 4(k − 1)/(g − k) from λ f = 8− m/(g − k), 4(2k − g)+ m ≤ 4 and
0 ≤ k ≤ g/2 [Li 2000, Proposition 4.4]. Fintushel and Stern [2004] showed that
(6k × S2) # 4mCP2 admits a genus-(2k+m− 1) Lefschetz fibration fF S over S2.
When m = g− 2k+ 1, we find b+2 = 1 and that λ fF S = 4+ 4(k− 1)/(g− k). �

Remark 5.2. If two Lefschetz fibrations f1 and f2 satisfy λ f1, λ f2 ≥ 4− 4/g, then
the (twisted) fiber sum f3 of f1 and f2 satisfies λ f3 ≥ 4− 4/g.
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