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NUMERICAL STUDY OF
UNBOUNDED CAPILLARY SURFACES

YASUNORI AOKI AND HANS DE STERCK

Unbounded capillary surfaces in domains with a sharp corner or a cusp are
studied. It is shown how numerical study using a proposed computational
methodology leads to two new conjectures for open problems on the asymp-
totic behavior of capillary surfaces in domains with a cusp. The numerical
methodology contains two simple but important ingredients, a change of
variable and a change of coordinates, which are inspired by known asymp-
totic approximations for unbounded capillary surfaces. These ingredients
are combined with the finite volume element or Galerkin finite element
methods. Extensive numerical tests show that the proposed computational
methodology leads to a global approximation method for singular solutions
of the Laplace–Young equation that recovers the proper asymptotic behav-
ior at the singular point, is more accurate and has better convergence prop-
erties than numerical methods considered for singular capillary surfaces
before. Using this computational methodology, two open problems on the
asymptotic behavior of capillary surfaces in domains with a cusp are stud-
ied numerically, leading to two conjectures that may guide future analytical
work on these open problems.

1. Introduction

The mathematical analysis of unbounded capillary surfaces is most often done by
asymptotic analysis (see [Concus and Finn 1970; 1974; 1989; Miersemann 1993;
King et al. 1999; Norbury et al. 2005; Scholz 2001; 2004; Aoki 2007; Aoki and
Siegel 2012]). Results for unbounded capillary surfaces in domains with sharp
corners have been known for many years, and recent work of Aoki and Siegel
[2012] on singular capillary surfaces in domains with a cusp fills almost all the
gaps that still existed for the cusp case, though a few open problems remain. Since
asymptotic analysis is a local analysis, asymptotic approximations are valid only in
a sufficiently small domain near the singularity. It is also not easy to determine the
precise region of validity of the asymptotic analysis results. In applications, global

MSC2010: 35J25, 65N30, 76B45, 35J75.
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approximations for the singular capillary surfaces that are valid in the whole domain
are desirable, and such approximations cannot be provided by asymptotic analysis.

In this paper, our aim is to construct globally valid approximations of singular
capillary surfaces which exhibit the proper asymptotic behavior at the singular
point while also being valid away from the singularity. We do so by introducing
a computational methodology for singular capillary surfaces. A second aim of
this paper is to investigate two open problems on asymptotic behavior of capillary
surfaces in domains with a cusp. We investigate these open problems using the
proposed numerical methodology, which leads to two conjectures that may guide
future analytical work on these open problems.

Our computational methodology starts from the finite volume element method
(FVEM) [Bank and Rose 1987; Aoki and De Sterck 2011] or the Galerkin finite
element method (FEM) [Strang and Fix 1973; Brenner and Scott 1994]. However,
it is widely known (see [Grisvard 1985; Strang and Fix 1973; Aoki and De Sterck
2011]) that a lack of smoothness in the solution can spoil the accuracy of approxi-
mations of finite element type; hence it can be expected that standard finite element
approximations cannot accurately approximate the unbounded singularity. There
are about a half dozen published papers on numerical solutions of the Laplace–
Young equation [Nigro et al. 2000; Hornung and Mittelmann 1990; Polevikov
2004; Polevikov 1999; Scott et al. 2005]. However, with the exception of the
paper by Scott et al. [2005] they do not consider unbounded singular solutions.
Scott et al. use the finite volume element method to approximate solutions of the
Laplace–Young equation, and one of their model problems is a corner problem with
unbounded singularity. Our proposed methodology enhances their approach in two
important ways, leading to much more accurate and informative results, as shown
in our numerical results section.

Instead of directly approximating the solution with a standard finite element
expansion, our idea is to incorporate knowledge obtained from asymptotic analysis
into the finite element approximation, in order to avoid inaccuracies introduced by
the singularity. Roughly speaking, we first change the variable based on the known
asymptotic order of the solution so that the new unknown function is bounded.
(Though it is bounded, it can still be discontinuous at the location of the original
singularity.) Inspired by knowledge of the leading-order term of the asymptotic
series solution, we change the coordinate system so that the unknown function is
smooth with respect to the new coordinate variables. We then finally approximate
the smooth bounded new unknown function with respect to the new coordinate
variables, using the finite volume element method or the Galerkin finite element
method.

We verify the accuracy of this numerical methodology by comparing the nu-
merical solution with known asymptotic series approximations, and by conducting
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numerical convergence studies. We first show that the numerical solutions we
obtain have the proper singular behavior by comparing numerical solutions of the
Laplace–Young equation with known asymptotic series approximations. Then we
conduct numerical convergence studies to show that the numerical approximation is
a globally valid approximation. In order to conduct numerical convergence studies,
we need model problems with known closed-form solutions. Though there is no
known unbounded closed-form solution of the Laplace–Young equation, a few
closed-form solutions are known for the steep slope approximation of the Laplace–
Young equation [King et al. 1999; Aoki 2007] (we shall refer to this PDE as the
asymptotic Laplace–Young equation). It is known that these solutions have the
same asymptotic behavior as the solution of the original problem, so we conduct
the convergence study using the asymptotic Laplace–Young equation.

Using the proposed numerical methodology for computing singular solutions
of the Laplace–Young equation, we investigate a few open problems of singular
behavior of the Laplace–Young equation in a cusp domain. Aoki and Siegel [2012]
considered the solution behavior for all possible cusp domains, attempting to
generalize the results of Scholz [2004]. However, there are still a few cases that
remain open. Using our computational methodology, we numerically investigate
these cases and make conjectures based on the numerical approximations.

The paper proceeds as follows. In Section 2 we describe the Laplace–Young
boundary value problem of interest and its asymptotic variant in domains with a
sharp corner or a cusp. Section 3 describes the proposed numerical methodology
for computing accurate global numerical approximations of unbounded capillary
surfaces in these types of domains, and Section 4 gives extensive numerical results
verifying the accuracy and convergence of the numerical methods. Section 5
presents conjectures for two open cases on asymptotic behavior of capillary surfaces
in a domain with a cusp, motivated by numerical solutions for these open cases
using the proposed numerical methodology. Finally, conclusions are formulated
in Section 6.

2. The boundary value problem

In this section we first formulate the Laplace–Young boundary value problem, and
describe the asymptotic behavior of its solutions in domains with a corner or a cusp
and the function spaces these solutions belong to. We state some open problems on
asymptotic behavior for a domain with an osculatory cusp and a cusp with infinite
curvature, and define model problems that will be used in numerical tests. We
then describe the asymptotic Laplace–Young equation and its known closed-form
solutions on domains with a corner or a cusp, which are used to formulate additional
numerical model problems.
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Figure 1. Two photos of capillarity experiments, indicating the
capillary surface height u and the contact angle γ .

2.1. Laplace–Young boundary value problem. This problem originates from ob-
servations of Laplace in 1806 and Young in 1805 that “the height of the liquid
is proportional to its mean curvature” and “the angle of the contact between the
solid and liquid only depends on their material.” Gauss showed in 1830 that the
Laplace–Young PDE is in fact the Euler–Lagrange equation of the surface energy
functional. Thus the solution of the Laplace–Young boundary value problem gives
the shape of the liquid surface that minimizes the surface energy, in a nonvanishing
downward gravity field, and hence the Laplace–Young boundary value problem is a
mathematical model for a liquid surface at equilibrium when the gravity is present.
We refer the reader to Section 1.4 of a book by Finn [1986] for detailed discussion
of the derivation of the Laplace–Young boundary value problem. Figure 1 shows
photos of capillarity experiments, indicating the capillary surface height u and the
contact angle γ .

Let � be an unbounded open domain as in Figure 2 with boundaries ∂�1 and
∂�2 described by functions f1(x) and f2(x), and let u ∈ C2(�) be the height
of the capillary surface that satisfies the following boundary value problem (the
Laplace–Young boundary value problem) on this domain:

∇ · T (u)= κu in �,(1)

Eν1 · T (u)= cos γ1 on ∂�1,

Eν2 · T (u)= cos γ2 on ∂�2,(2)
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Figure 2. Unbounded domains. Left: a corner domain. Right: a cusp domain.

with

κ : capillarity constant (we assume κ > 0),

Eν1, Eν2 : exterior unit normal vectors on the boundaries ∂�1 and ∂�2,

γ1, γ2 : contact angles

and

T (u)=
∇u√

1+ |∇u|2
.

Note that the capillarity constant κ can be normalized by rescaling x , y and u when
κ > 0. In the following sections we let κ = 1. The open domain � and boundaries
∂�1 and ∂�2 are defined more specifically as follows:

�= {(x, y) ∈ R2
: 0< x, f2(x) < y < f1(x)},(3)

∂�1 = {(x, y) ∈ R2
: 0< x, y = f1(x)},(4)

∂�2 = {(x, y) ∈ R2
: 0< x, y = f2(x)},(5)

with

f1(x), f2(x) ∈ C3(0,∞),

f1(x) > f2(x) for x > 0,

lim
x→0+

f1(x)= lim
x→0+

f2(x)= 0,(6)

lim
x→0+

f ′1(x) 6= ∞ 6= lim
x→0+

f ′2(x).
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For simplicity of discussion we focus on the two specific types of domains depicted
in Figure 2: a corner domain, defined as

f1(x)= x tanα and f2(x)=−x tanα, where 0< α < π/2,

and a cusp domain, defined as

(7) lim
x→0+

f ′1(x)= 0 and lim
x→0+

f ′2(x)= 0.

2.1.1. Asymptotic behavior. It is known that the solution of the Laplace–Young
boundary value problem in a corner domain is unbounded at (0, 0) if γ1+γ2+2α<π
(see [Finn 1986]). Also, it can be shown that if γ1 + γ2 6= π the solution of the
boundary value problem in a cusp domain is unbounded at (0, 0) (see [Scholz 2004;
Aoki and Siegel 2012]). In addition, the following asymptotic behaviors are known.

Corner domain with γ1+ γ2+ 2α < π (see [Concus and Finn 1970; Miersemann
1993] for a proof): If γ1=γ2=γ and γ+α<π/2, then the solution of the boundary
value problem in the corner domain has the following asymptotic behavior:

(8) u(r, θ)=
cos θ −

√
k2− sin2 θ

kr
+ O(r3) as r→ 0,

where

(r, θ) : polar coordinate variables,

k =
sinα
cos γ

.

More formally, we can write that there exist constants ro and M such that∣∣∣∣∣u− cos θ −
√

k2− sin2 θ

kr

∣∣∣∣∣< Mr3 for 0< r < ro.

This gives the following bounds for the solution u:

(9)
cos θ −

√
k2− sin2 θ

kr
−Mr3 < u <

cos θ −
√

k2− sin2 θ

kr
+Mr3

for 0< r < r0.

The proof for the asymptotic relation (8) only provides the existence of these two
constants and does not give any estimate of their size. Thus, even though (8) shows
that the asymptotic approximation becomes more and more accurate as we get closer
to the singularity, it does not give any quantitative description of the approximation
error.
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Also, it is easy to show from (9) that there exist positive constants M+, M−, and
xo such that

(10)
M−

f1(x)− f2(x)
< u <

M+

f1(x)− f2(x)
for 0< x < xo.

Cusp domain with γ1+ γ2 6= π (see [Aoki and Siegel 2012] for a proof): An un-
bounded solution of the boundary value problem in a cusp domain has the asymptotic
behavior

(11) u(x, y)=
cos γ1+ cos γ2

f1(x)− f2(x)
+ O

(
f ′1(x)− f ′2(x)
f1(x)− f2(x)

)
as x→ 0+

if γ1+ γ2 6= π and the boundary functions f1(x) and f2(x) satisfy the asymptotic
relations

f1(x)− f2(x)= o( f ′1(x)− f ′2(x)),(12)

f ′′1 (x)− f ′′2 (x)
f1(x)− f2(x)

= α
( f ′1(x)− f ′2(x))

2

( f1(x)− f2(x))2
+ o

(
( f ′1(x)− f ′2(x))

2

( f1(x)− f2(x))2

)
,

f ′′′1 (x)− f ′′′2 (x)
f ′1(x)− f ′2(x)

= O
(
( f ′1(x)− f ′2(x))

2

( f1(x)− f2(x))2

)
,

f ′1(x)+ f ′2(x)= δ( f ′1(x)− f ′2(x))+ o( f ′1(x)− f ′2(x)),(13)

f ′′1 (x)+ f ′′2 (x)= O( f ′′1 (x)− f ′′2 (x))(14)

as x→ 0, where α, δ ∈ R.
Note that most boundary functions forming cusp domains satisfy the asymptotic

conditions (12)–(14). One known exception is when the boundary functions forming
a cusp are osculatory at the cusp. Curves are said to be osculatory if they intersect
and share the tangent line and the osculating circle at the intersection point. Again
it follows from (11) that there exist positive constants M+, M−, and xo such that

(15)
M−

f1(x)− f2(x)
< u <

M+

f1(x)− f2(x)
for 0< x < xo.

2.1.2. Open problems. To the authors’ knowledge there are two major open prob-
lems in the solution behavior of the Laplace–Young equation in a domain with a
cusp. We summarize these open problems.

Problem 1: Osculatory cusp with nonsupplementary contact angles (γ1+ γ2 6= π ):
An osculatory cusp is a cusp formed by two osculating curves. It is known that the
solution is unbounded when γ1+ γ2 6= π , but the asymptotic expansion from the
previous section does not apply in the osculatory cusp case and remains an open
problem. For example, the two boundary functions

f1(x)= x2
+ x3 and f2(x)= x2

− x3
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form an osculatory cusp at the origin. The asymptotic orders of the sum and the
difference of these boundary functions are different (i.e., f1(x)− f2(x)= O(x3)

while f1(x)+ f2(x)= O(x2) as x→ 0). Hence these choices of f1(x) and f2(x) do
not satisfy the asymptotic relations (13)–(14), so that the leading-order asymptotic
behavior of the solution at this cusp is unknown. The main reason why the proof for
the leading-order asymptotic behavior could not be constructed for the osculatory
cusp case is that the second-order term of the formal asymptotic series could not be
found (see [Aoki and Siegel 2012] for details).

Problem 2: Infinite curvature cusp with supplementary contact angles (γ1+γ2=π ):
As was noted before, the solution of the Laplace–Young equation in a cusp domain
is unbounded if γ1 + γ2 6= π , but it is not necessarily true that the solution is
bounded if γ1+ γ2 = π . Aoki and Siegel [2012] have shown that the solution is
bounded if γ1+ γ2 = π and the curvatures of the boundary functions are finite (i.e.,
limx→0 f ′′1 (x) 6= ∞ and limx→0 f ′′2 (x) 6= ∞). However, the nature of the solution
for the case where the curvatures of one or both boundary functions are infinite is
not known (e.g., f1(x)= x3/2 and f2(x)=−2x3/2).

2.1.3. Model Problems 1 and 2. For the numerical experiments to be reported on
below we consider the following model problems (henceforth, MPs).

Consider bounded open domains� as depicted in Figure 3. Let u ∈C2(�) be the
height of the capillary surface that satisfies the following boundary value problem:

∇ · T (u)= u in �,

Eν1 · T (u)= cos γ1 on ∂�1,

Eν2 · T (u)= cos γ2 on ∂�2,

Eν3 · T (u)= 0 on ∂�3,

f1(x)

0

y

f2(x)

x1

�

��1

��2 ��3

f1(x)

0

y

f2(x)

x1

��1

��2
��3

Figure 3. Computational domains for model problems with a corner
and a cusp at (0,0). Left: problems 1 and 3. Right: problems 2 and 4.
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with

Eν1, Eν2, Eν3 : exterior unit normal vectors on the boundaries ∂�1, ∂�2 and ∂�3,

γ1, γ2 : contact angles.

The bounded open domain � and boundaries ∂�1,2,3 are defined more specifically
as follows:

�= {(x, y) ∈ R2
: 0< x < 1, f2(x) < y < f1(x)},(16)

∂�1 = {(x, y) ∈ R2
: 0< x < 1, y = f1(x)},

∂�2 = {(x, y) ∈ R2
: 0< x < 1, y = f2(x)},

∂�3 = {(x, y) ∈ R2
: x = 1, f2(1) < y < f1(1)}.(17)

The boundary functions and the contact angles are chosen for each model problem
as tabulated in Tables 1 and 2. Although there are cases in which the behavior of
bounded solutions in a corner domain has special interest (e.g., [Lancaster 2010]),
in this paper we focus our attention on unbounded solutions in a corner domain.

These model problems are chosen so that the singularity may only occur at
the corner or cusp at the origin, although there are three nonsmooth points on
the boundary of the domain �. Following immediately from the regularity result
of Simon [1980], this implies that the solutions u of these model problems are
differentiable up to the boundary except at the origin, i.e., u ∈ C1(�\{(0, 0)}).
Also, the asymptotic behavior of the solution at the origin is known to be as
stated in (8) for MP 1 (γ1 + γ2 + 2α < π , unbounded), and as in (11) for MPs
2a (γ1+ γ2 6= π , unbounded) and 2c-1 and 2c-3 (γ1+ γ2 6= π , unbounded). The
asymptotic expansions for MPs 2b (osculatory cusp with nonsupplementary contact
angles) are an open problem (but it is known that the solutions are unbounded).
The asymptotic behavior of the solution of MP 2c-2 (infinite curvature cusp with
supplementary contact angles) is an open problem.

2.1.4. Solution function spaces. It is interesting to discuss the function spaces
where the solutions of MP 1 and MPs 2a, 2c-1, and 2c-3 reside.

Problem f1(x) f2(x) γ1 γ2

1-1 x tan(π/7) −x tan(π/7) π/6 π/6 Corner (unbounded)
1-2 x tan(π/7) −x tan(π/7) π/4 π/4 Corner (unbounded)
1-3 x tan(π/7) −x tan(π/7) π/3 π/3 Corner (unbounded)

Table 1. Model Problem 1: Laplace–Young equation in a domain
with a corner. All three variants have α=π/7 and γ1+γ2+2α<π ,
resulting in solutions that are unbounded at (0,0).
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Problem f1(x) f2(x) γ1 γ2 cusp unbd? open?

2a-1 x2/6 −x3/8 π/6 π/3 R yes no
2a-2 x3/6 −x3/8 π/3 π/4 R yes no
2a-3 x5/6 −x4/8 π/3 π/4 R yes no
2b-1 (x2

+ x3)/6 (x2
−

3
4 x3)/6 π/3 π/4 O yes yes

2b-2 (3x2
+ x3)/6 (3x2

−
3
4 x3)/6 π/3 π/4 O yes yes

2b-3 x3/2
+ x3/6 x3/2

−
3
4 x3/6 π/3 π/4 O yes yes

2c-1 x3/2/6 x3/2/8 5π/6−π/180 π/6 IC yes no
2c-2 x3/2/6 x3/2/8 5π/6 π/6 IC ? yes
2c-3 x3/2/6 x3/2/8 5π/6+π/180 π/6 IC yes no

Table 2. Model Problem 2: Laplace–Young equation in a domain
with a cusp. Variants 2a, 2c-1, and 2c-3 have unbounded solutions
at (0,0) and known asymptotic expansions. Variants 2b also have
unbounded solutions at (0,0), but asymptotic expansions are un-
known and remain an open problem. The asymptotic behavior of
variant 2c-2 at (0,0) is an open problem. Key for the last three
columns: R = regular; O = osculatory; IC = infinite curvature;
unbd = unbounded; open = open problem.

Proposition 2.1. For any fixed p with 1≤ p <∞, the solutions of MP 1, MPs 2a
and MPs 2c-1 and 2c-3 are in the L p(�) function space if and only if the following
integral is finite for any ε in the interval (0, 1]:

(18)
∫ ε

0

1
( f1(x)− f2(x))p−1 dx .

Proof. We first note that, for the case of MP 1 and MP 2a, the comparison principle
(see [Finn 1986]) gives that u > 0. Also recall that there exist positive constants
M+, M−, and xo such that

M−

f1(x)− f2(x)
< u <

M+

f1(x)− f2(x)
for 0< x < xo.

We now bound the integral
∫
�
|u|p dA from above:∫

�

|u|p dA =
∫
�

u p dA (since u > 0)

=

∫ 1

x=0

∫ f1(x)

f2(x)
u p dy dx =

∫ xo

x=0

∫ f1(x)

f2(x)
u p dy dx +

∫ 1

x=xo

∫ f1(x)

f2(x)
u p dy dx

≤

∫ xo

x=0

∫ f1(x)

f2(x)
u p dy dx +

∫ 1

x=xo

∫ f1(x)

f2(x)
max

xo<x<1
u p dy dx
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<

∫ xo

x=0

∫ f1(x)

f2(x)

(M+)p

( f1(x)− f2(x))p dy dx + max
xo<x<1

(u)p
∫ 1

x=xo

∫ f1(x)

f2(x)
1 dy dx .

This last sum can also be written as

(19) (M+)p
∫ xo

0

1
( f1(x)− f2(x))p−1 dx + max

xo<x<1
(u)p

∫ 1

x=xo

( f1(x)− f2(x)) dx .

If p is chosen so that the integral (18) is finite for any ε ∈ (0, 1], then the first term of
(19) is finite. Also, noting that u is bounded away from the origin (u ∈ C1(�\{0}))
and that the domains � for the model problems are bounded domains, the second
term of (19) is also finite. Thus if p is chosen so that integral (18) is finite then
the solution of MPs 1 and 2a are in the L p(�) function space. We now bound the
integral

∫
�
|u|p dA from below:∫

�

|u|p dA =
∫ xo

x=0

∫ f1(x)

f2(x)
u p dy dx +

∫ 1

x=xo

∫ f1(x)

f2(x)
u p dy dx

>

∫ xo

x=0

∫ f1(x)

f2(x)
u p dy dx >

∫ xo

x=0

∫ f1(x)

f2(x)

(M−)p

( f1(x)− f2(x))p dy dx

= (M−)p
∫ xo

x=0

1
( f1(x)− f2(x))p−1 dx .

This gives that if p is chosen so that integral (18) is not finite, then the solutions of
MPs 1 and 2a are not in the L p function space.

The proof for MPs 2c-1 and 2c-3 is slightly more complicated because u> 0 does
not hold. A sketch of the proof for these cases is as follows. Since u ∈ C1(�\{0}),
there is a neighborhood �s of the singularity where the solution is either positive or
negative. Using the approach above, it can be shown that u ∈ L p(�s) if and only if
integral (18) is finite, which is equivalent to u ∈ L p(�) since u is bounded away
from the singularity. �

Corollary 2.1. (A) The solution of MP 1 is in the L2−δ function space where δ > 0.

(B) The solution is in the L1+1/2−δ function space for MP 2a-1, is in the L1+1/3−δ

function space for MP 2a-2, and is in the L1+1/4−δ function space for MP 2a-3,
where δ > 0.

(C) The solution is in the L1+2/3−δ function space for MPs 2c-1 and 2c-3, where
δ > 0.

Note finally that all solutions of the Laplace–Young equation in a bounded
domain � are in L1, which is consistent with the physical interpretation that the
volume of the fluid under the capillary surface is finite.
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2.2. Asymptotic Laplace–Young equation. There are no closed-form solutions for
the Laplace–Young equation in domains with a corner or a cusp, but closed-form
solutions exist for the following simplification of the Laplace–Young PDE. These
closed-form solutions will be used in Section 4 for convergence studies of the
numerical methodology we propose in Section 3.

Assuming the slope of the solution of the Laplace–Young boundary value problem
((1)–(2)) is steep, i.e., |∇u| � 1, we can approximate the PDE and the boundary
condition, by ignoring the 1 in the denominator of the differential operator T (·),
and obtain the following boundary value problem:

∇ · T̃ (u)= u in �,(20)

Eν1 · T̃ (u)= cos γ on ∂�1,(21)

Eν2 · T̃ (u)= cos γ on ∂�2,(22)

where
T̃ (u)=

∇u
|∇u|

.

This approximation is called the “steep slope approximation” [King et al. 1999] of
the Laplace–Young boundary value problem, and unbounded closed-form solutions
of this boundary value problem are known for two types of domains: the unbounded
corner domain of Figure 2, left [King et al. 1999] and the circular cusp domains
of Figure 4 [Aoki 2007]. Also, it has been shown that the exact solutions of this
boundary value problem are good asymptotic approximations of the solutions of the
original Laplace–Young equation on the same domains [Miersemann 1993; Aoki
2007]. We shall refer to this boundary value problem as the asymptotic Laplace–
Young boundary value problem. Note that this boundary value problem is a rare
case of a nonlinear PDE with nonlinear boundary conditions for which one can find
closed-form solutions in some nontrivial domains.

2.2.1. Closed-form solutions. Corner domain (Figure 2, left, γ + α < π/2): Let
u ∈C2(�) be a solution of the boundary value problem (20)–(22) on the unbounded
corner domain defined as in (3)–(5) with the boundary functions

f1(x)= x tanα, f2(x)=−x tanα.

If γ +α < π/2, then u is given as the following closed-form expression in terms
of the polar coordinate variables r and θ :

(23) u(r, θ)=
cos θ −

√
k2− sin2 θ

kr
,

where k = sinα/cos γ . This precise property of the asymptotic function in (8) was
first observed in [King et al. 1999].
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1
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�
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Figure 4. Circular cusp domains.

Circular cusp domain (Figure 4, γ 6= π/2): Let u ∈ C2(�) be a solution of the
boundary value problem (20)–(22) with γ 6= π/2 and with the domain defined as

� :=


{
(x, y) ∈ R2

\

(
B 1

2a

(
0, 1

2a

)
∪ B
−

1
2b

(
0, 1

2b

))}
for b < 0,{

(x, y) ∈
(

B 1
2b

(
0, 1

2b

)
\B 1

2a

(
0, 1

2a

))}
for b > 0,

where Br (xo, yo) is the open disc of radius r centered at (xo, yo), i.e.,

Br (xo, yo)= {(x, y) ∈ R2
: (x − xo)

2
+ (y− yo)

2 < r2
}.

A closed-form expression for u is given by

(24) u(p, q)= Ap2
− 2

√
1− A2(q − q0)2 p− A(q − q0)

2
+ Aq2

0 ,

where

A =
2 cos γ
a− b

, q0 =
a+ b

2
,

and p and q are the coordinate variables of the tangent cylindrical coordinate system
introduced in [Moon and Spencer 1961], depicted in Figure 5 and defined as

p =
x

x2+ y2 , q =
y

x2+ y2 .

This closed-form solution of the asymptotic Laplace–Young equation first appears
in [Aoki 2007]. Note that lim(x,y)→(0,0) p =∞ and the solution (24) behaves like
1/x2 as x → 0, hence it exhibits a more severe singularity than the singularity
of the asymptotic Laplace–Young PDE in a corner domain, which features a 1/r
singularity.
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q = constant > 0

q = constant < 0

p = constant < 0 p = constant > 0

x

y

Figure 5. Tangent cylindrical coordinate system.

2.2.2. Model Problems 3 and 4. For the numerical experiments on the asymptotic
Laplace–Young equation we consider the following model problems on the corner
and cusp domains of Figure 3.
Let u ∈ C2(�) be the function that satisfies the boundary value problem

∇ · T̃ (u)= u in �,

Eν1 · T̃ (u)= cos γ1 on ∂�1,

Eν2 · T̃ (u)= cos γ2 on ∂�2,

u = uexact on ∂�3.

Here with Eν1, Eν2, Eν3 are the exterior unit normal vectors on the boundaries ∂�1,
∂�2, ∂�3, while γ1, γ2 are the contact angles, and uexact is the closed-form solutions
given in (23) or (24).

The bounded open domain � and boundaries ∂�1,2,3 are defined as in (16)–(17);
see Figure 3. The boundary functions and the contact angles are chosen for each
model problem as tabulated in Table 3, resulting in model problems with unbounded

Name f1(x) f2(x) γ1 γ2 unbd?

MP 3 x tan(π/7) −x tan(π/7) π/6 π/6 corner yes
MP 4 −

√
52− x2+ 5

√
102− x2− 10 π/6 π/6 circular cusp yes

Table 3. Model Problems 3 and 4: asymptotic Laplace–Young
equation in domains with a corner and a cusp. MP 3 has α = π/7
and γ +α < π/2, resulting in a solution that is unbounded at (0,0).
MP 4 has γ 6= π/2, and its solution is also unbounded at (0,0).
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solutions. The closed-form solutions of these two model problems are given by
(23) and (24), respectively.

3. Numerical method

In this section, we propose a numerical methodology to accurately find global
numerical approximations of singular solutions of the Laplace–Young equation
in domains with a corner or a cusp. The starting point of our approach is the
finite volume element method (FVEM) [Bank and Rose 1987; Aoki and De Sterck
2011] or the Galerkin finite element method (FEM) [Strang and Fix 1973; Brenner
and Scott 1994], and two simple but crucial additional steps are made to arrive
at a method that can capture the singular behavior. The first step is to consider a
change of variable, with the new solution variable being smoother than the capillary
height variable u and more amenable to accurate numerical approximation. The
second step is to solve the PDE numerically in a new coordinate system, which
allows us to accurately represent the discontinuous behavior of the new solution
variable at the singular point. We describe these two crucial ingredients of our
methodology along with the FEM and FVEM discretizations, and show in the
numerical results of Section 4 that this approach leads to a global approximation
method for singular solutions of the Laplace–Young equation that recovers the proper
asymptotic behavior, and is more accurate and has better convergence properties
than numerical methods that were considered previously.

3.1. Change of variable. From the asymptotic analysis results (10)–(15) we ob-
serve that the solutions we wish to approximate have the asymptotic behavior

u(x, y)= O
(

1
f1(x)− f2(x)

)
as x→ 0

=
O(1)

f1(x)− f2(x)
as x→ 0.

This implies that, if we transform the unknown function u(x, y) as follows, the new
unknown function v(x, y) is a bounded function:

u(x, y)=
v(x, y)

f1(x)− f2(x)
.

We aim to approximate the solution of the boundary value problem, u(x, y), by
numerically approximating the new unknown function v(x, y). Since v(x, y) is
bounded while u(x, y) is unbounded, we expect a better quality of numerical
approximation.

3.2. Change of coordinates. An appropriate choice of coordinate system is es-
sential for the asymptotic analysis of unbounded solutions of the Laplace–Young
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equation, as shown in [Miersemann 1993; Scholz 2004; Aoki 2007; Aoki and Siegel
2012]. We have observed that an appropriate choice of coordinate system is also
beneficial for the numerical approximation of unbounded solutions.

For MP 1, we can observe as follows that the new unknown function v is
discontinuous at the origin. From (9), we know that the solution u of MP 1 behaves
like (cos θ −

√
k2− sin2 θ)/kr near the origin r = 0. This gives that the new

unknown function v behaves like (cos θ −
√

k2− sin2 θ)/k near the origin. Hence,
as r → 0, v approaches different values depending on the angle θ , so the new
unknown function v has a jump discontinuity at the origin. Our idea is to expand
the point of singularity on the boundary into a boundary line segment through a
coordinate transformation in order to accurately approximate the discontinuous
behavior of v.

For MP 2, since the boundaries for the cusp domain are curved boundaries, we
would need special boundary elements (e.g., isoparametric elements) to accurately
represent the cusp domain when approximating the unknown function through finite
element approximation in the standard (x, y) coordinate system. However, the
change to (s, t) coordinates introduced in [Aoki and Siegel 2012] and illustrated in
Figure 6 transforms a cusp domain into a rectangular domain, and hence no special
treatment is needed for curved boundaries.

We use this (s, t) coordinate system for numerical simulation on domains with
a corner or a cusp at (0, 0). The (s, t) coordinate transformation as depicted in
Figure 6 is given by

t =
2y− ( f1+ f2)

f1− f2
, s = x .

The Cartesian coordinates can be expressed using the above coordinate system as

x = s, y =
t ( f1(s)− f2(s))+ ( f1(s)+ f2(s))

2
=

1+ t
2

f1(s)+
1− t

2
f2(s).

We have y = f1(x) when t = 1 and y = f2(x) when t = −1, so the domain of
interest in the curvilinear (s, t) coordinate system can be written as (see Figure 6)

(25) �= {(s, t) ∈ R2
: 0< s < 1, −1< t < 1}.

With some calculation, the left-hand side of the Laplace–Young PDE can be
rewritten in the curvilinear coordinate system as

∇·T (u)=
∂

∂s
ux

√

1+u2
x+u2

y

+
f ′1− f ′2
f1− f2

ux
√

1+u2
x+u2

y

+
∂

∂t

(
2

f1− f2

u y
√

1+u2
x+u2

y

+

(
−

f ′1+ f ′2
f1− f2

− t
f ′1− f ′2
f1− f2

)
ux

√

1+u2
x+u2

y

)
,
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f1(x)

f2(x)

10
x

y

s

t
1

1

−1

0

t =
2y − (f1 + f2)

f1 − f2

s = x

x = s

y =
1 + t

2
f1(s) +

1 − t

2
f2(s)

Figure 6. Coordinate transformation.

where

ux =
vs

f1− f2
−
v( f ′1− f ′2)
( f1− f2)2

− vt
( f ′1+ f ′2)+ t ( f ′1− f ′2)

( f1− f2)2
, u y =

2vt

( f1− f2)2
.

The boundary conditions on ∂�1 and ∂�2 can be written as

(26) Eν1,2 ·T (u)= Eν1,2 ·ŝ

(
f1− f2

2
ux

√

1+u2
x+u2

y

)

+Eν1,2 · t̂

(
u y

√

1+u2
x+u2

y

+
−( f ′1+ f ′2)−t ( f ′1− f ′2)

2
ux

√

1+u2
x+u2

y

)
=

√
1+ f ′1,2(s)

2 cos γ1,2 on ∂�1,2.

The boundary condition for boundary ∂�3 of MPs 1 and 2 is as in (26) but with
zero on the right-hand side. The left-hand side and the boundary conditions of the
asymptotic Laplace–Young PDE in the (s, t) coordinate system can be obtained
by just neglecting the 1 in the denominator in the expressions above. Note that the
point (x, y) = (0, 0) corresponds to the line segment (s = 0, t ∈ [−1, 1]) in the
(s, t) coordinate system.

3.3. Discretized boundary value problem. In the numerical results of Section 4
we approximate the new unknown function v(s, t) in the new coordinate variables
s and t numerically on the Cartesian grid in (s, t)-space, as shown in Figure 7(a),
and for comparison we also perform some calculations on the corner domain of
Figure 7(b) without a change of coordinates. We now describe the Galerkin finite
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(a) (s, t) space
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(b) a corner domain in (x, y) space
(without change of coordinates)

Figure 7. Finite elements and control volumes for the numerical
methods. The thin lines give the finite element triangulation, which
is used in both the FEM and the FVEM. The thick lines give the
control volumes that are used in the FVEM. The grid in panel (a)
can be used for corner domains or for cusp domains (depending
on the boundary functions f1 and f2 that enter into the coordinate
transformation formulas), and the grid in panel (b) is used for
comparison simulations for corner domains (without coordinate
transformation).

element method (FEM) and the finite volume element method (FVEM) discretiza-
tions.

3.3.1. Galerkin finite element method discretization. We follow the construction
of the finite element space presented in Chapter 3 of Brenner and Scott [1994].
Let Nnode be the number of nodes created by finite element triangulation of the
domain and N be the set of indices of the nodes, i.e., N= {1, 2, . . . , Nnode}. The
triangulation of the domain is as depicted in Figure 7(a) (or Figure 7(b) for the
corner problem without a change of coordinates). Also, we let NDirichlet be the
indices of the nodes on the boundary with Dirichlet boundary condition. That is to
say, for MPms 3 and 4,

(si , ti ) ∈ ∂�3⇒ i ∈ NDirichlet,

where (si , ti ) is the location of the i-th node, and for MPs 1 and 2 NDirichlet=∅ since
there is no Dirichlet boundary. Let φi (s, t) be the standard continuous piecewise
linear nodal basis function (tent function) that corresponds to node i in the finite
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element triangulation on domain �. We have

φi (s j , t j )= δi, j ,

where δi, j is the Kronecker delta function. We approximate the unknown function
v with a linear combination of these basis functions, i.e.,

v ≈ vh
:=

Nnode∑
i=1

ciφi .

The {c1, c2, . . . , cNnode} are the unknowns of the discretized boundary value problem.
The Galerkin finite element discretization of MPs 1 and 2 can then be written as
follows (the discretization of MPs 3 and 4 can be derived similarly):∫

�

(
∇ · T

( ∑Nnode
i=1 ciφi

f1(s)− f2(s)

))
φ j dA =

∫
�

∑Nnode
i=1 ciφi

f1(s)− f2(s)
φ j dA(27)

for j ∈ N\NDirichlet,

ci

f1(si )− f2(si )
= uexact(si , ti ) for i ∈ NDirichlet.(28)

By the divergence theorem we can rewrite (27) as∫
∂�

(
ν · T

( ∑Nnode
i=1 ciφi

f1(s)− f2(s)

))
φ j dl −

∫
�

(
T
( ∑Nnode

i=1 ciφi

f1(s)− f2(s)

))
· ∇φ j dA

=

∫
�

Nnode∑
i=1

ci
φiφ j

f1(s)− f2(s)
dA

for j ∈ N\NDirichlet.

By imposing the boundary conditions (26), we obtain the following system of
equations:

(29)
∫
�

(
T
( ∑Nnode

i=1 ciφi

f1(s)− f2(s)

))
· ∇φ j dA−

Nnode∑
i=1

ci

∫
�

φiφ j

f1(s)− f2(s)
dA

=

∫
∂�1

√
1+ f ′1(s)

2 cos γ1φ j dl +
∫
∂�2

√
1+ f ′2(s)

2 cos γ2φ j dl

for j ∈ N\NDirichlet.

After some calculation we can rewrite (29) together with (28) as the following
system of nonlinear equations:
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(30)
∫ 1

t=−1

∫ 1

s=0
(φ j )s

(
f1− f2

2
uh

x
√

1+(uh
x)

2
+(uh

y)
2

)
+(φ j )t

( uh
y

√

1+(uh
x)

2
+(uh

y)
2
+
−( f ′1+ f ′2)−t ( f ′1− f ′2)

2
uh

x
√

1+(uh
x)

2
+(uh

y)
2

)
ds dt

−

Nnode∑
i=1

ci

∫ 1

t=−1

∫ 1

s=0
φiφ j ds dt

=

∫
∂�1

√
1+ f ′1(s)

2 cos γ1φ j dl+
∫
∂�2

√
1+ f ′2(s)

2 cos γ2φ j dl

for j ∈ N\NDirichlet,

ci = uexact(xi , yi ) for i ∈ NDirichlet,

where

uh
x =

Nnode∑
i=1

ci

(
(φi )s

f1− f2
−
(φi )( f ′1− f ′2)
( f1− f2)2

− (φi )t
( f ′1+ f ′2)+ t ( f ′1− f ′2)

( f1− f2)2

)
,(31)

uh
y =

Nnode∑
i=1

ci
2(φi )t

( f1− f2)2
(32)

and (φi )s and (φi )t are the partial derivatives of φi with respect to s and t . We
can construct a system of nonlinear equations by integrating each of the terms in
(30) numerically. Note that although we are integrating the unbounded functions
vhφ j/( f1(s)− f2(s)), due to the change of coordinates the area element dA be-
comes ( f1(s)− f2(s))/2 ds dt , hence the integrand becomes 2vhφ j , a piecewise
quadratic polynomial; hence we avoid singular integration. We solve this system
of nonlinear equations with the Levenberg–Marquardt method to obtain the un-
knowns {c1, c2, . . . , cNnode}. This gives a numerical approximation for v, and hence
a numerical approximation of the solution of the boundary value problem u.

3.3.2. Finite volume element method discretization. The finite volume element
method (FVEM) is a type of Petrov–Galerkin method that uses piecewise constant
functions as test functions in the weak form, instead of using the finite element
basis functions as in the Galerkin FEM. The test functions for the FVEM are chosen
as follows:

ψ j (s, t)=

{
1 if (s, t) ∈� j ,

0 otherwise,

where the � j are control volumes constructed as in [Bank and Rose 1987] (note
that in [Bank and Rose 1987] the control volumes are called “boxes”). As depicted
in Figure 7(a) (and Figure 7(b)), the control volumes {� j }

Nnode
j=1 are constructed by
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first computing the centroids of the finite element triangles, and then connecting
those element centroids with the midpoints of the finite element triangle edges.
This construction divides each finite element triangle into three quadrilaterals. The
control volume � j for finite element node j is then constructed as the union of the
quadrilaterals adjacent to node j .

By substituting the test functions φ j by ψ j in the Galerkin finite element dis-
cretization (27) and after some calculation, we obtain the following system of
nonlinear equations for the FVEM, where ux and u y are defined as in (31) and (32):

(33)
∫
∂� j

Eν ·ŝ
(

f1− f2

2
uh

x
√

1+(uh
x)

2
+(uh

y)
2

)
+ Eν · t̂

( uh
y

√

1+(uh
x)

2
+(uh

y)
2
+
−( f ′1+ f ′2)−t ( f ′1− f ′2)

2
uh

x
√

1+(uh
x)

2
+(uh

y)
2

)
dl

−

Nnode∑
i=1

ci

∫∫
� j

φi ds dt

=

∫
∂�1∩∂� j

√
1+ f ′1(s)

2 cos γ1 dl+
∫
∂�2∩∂� j

√
1+ f ′2(s)

2 cos γ2 dl

for j ∈ N\NDirichlet.

Again, we avoid singular integration by the change of coordinates, hence the
integration can be done numerically without any special treatment for singular inte-
gration. We solve the resulting system of nonlinear equations using the Levenberg–
Marquardt method.

Note that we choose the triangulations of Figures 7(a) and 7(b) symmetric with
respect to the t = 0 and y= 0 axes, respectively. While this is not a requirement, we
made this choice because some of our model problems are symmetric with respect
to the t = 0 and y = 0 axes, and this choice of grid leads to numerical solutions
that closely retain this symmetry.

The FEM is known to achieve optimality in the energy norm for linear elliptic
PDEs, but it does not have a local conservation property. The FVEM has a local
conservation property like the finite volume method; however, it does not necessarily
produce an optimal approximation. We have conducted numerical experiments
using both methods, and the results we obtained were very similar. For brevity,
we mainly present the numerical experiment results obtained by the FVEM in this
paper, except in a few places where we compare them with the Galerkin FEM.

4. Numerical results

We now show that the numerical approximations we obtain with the computational
methodology proposed in Section 3 for singular solutions of the Laplace–Young
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(a) MP 1-1: corner problem
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(b) MP 2a-1: cusp problem

Figure 8. MPs 1-1 and 2a-1. FVEM solution on the (s, t)-type
grid of Figure 7(a) with 33 × 65 nodes. Surface plots of the
unbounded capillary surfaces in the corner and cusp domains.

equation in domains with a corner or a cusp are accurate global approximations. As
an initial illustration, surface plots for two numerical approximations of singular so-
lutions of the Laplace–Young equation in domains with a corner and with a cusp are
shown in Figure 8. In what follows, we first show how our numerical methods obtain
accurate global solutions for unbounded solutions of the Laplace–Young equation in
domains with a corner or a cusp, by comparing with known asymptotic expansions
and formal asymptotic series. We then numerically investigate the convergence
behavior of the methods we propose using known closed-form unbounded solutions
for the asymptotic Laplace–Young equation. The numerical results confirm that
the computational methods we propose are accurate and have good convergence
properties, and that they can be used with confidence to numerically investigate
open problems on asymptotic solutions of the Laplace–Young equation in Section 5.

4.1. Laplace–Young equation: asymptotic behavior. We now investigate how well
our numerical solutions can approximate the singular behavior by comparing the
numerical solutions to known asymptotic solutions for the Laplace–Young equation.

MP 1: corner problem. As given in (8), the leading-order term of the asymptotic
series solution of the Laplace–Young equation at a sharp corner is known. In
Figure 9, we plot a horizontal cross-section (a cross-section along the x-axis or s-
axis; see Figure 6) of the numerical approximation and the asymptotic approximation
in log-log scale. In Figure 10, we plot a vertical cross-section (a cross-section along
the line x = 1/25 or s = 1/25; see Figure 6) of the numerical approximation and
the asymptotic approximation.

In order to illustrate the crucial benefits of the change of variable and change
of coordinates that are the essential building blocks of the numerical methodology
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we proposed in Section 3, we compare four different choices for obtaining the
numerical approximation using the FVEM: with or without change of variable, and
with or without change of coordinates. The only published work on numerical
approximation of singular capillary surfaces [Scott et al. 2005] also uses the FVEM,
but it does not use a change of variable nor a change of coordinates, and thus
corresponds to Figures 9 and 10.

As can be seen in Figures 9 and 10, the change of variable and the change of
coordinates proposed in Sections 3.1 and 3.2 are very beneficial for the accuracy of
the numerical approximations on a domain with a sharp corner near the singularity.
Note that we cannot conduct a numerical convergence study for these unbounded
solutions of the Laplace–Young equation, as there is no known closed-form solution.

MP 2: cusp problem. We now consider the Laplace–Young equation in a domain
with a cusp. Unbounded cusp solutions are known to have a more severe singularity
than the sharp corner problem. The leading-order term of the asymptotic series
solution is known; see (11). Also, as shown in Lemma 2.3 of [Aoki and Siegel
2012], the first two terms of the formal asymptotic series ũ are known:

(34) ũ =
cos γ1+ cos γ2

f1(s)− f2(s)
−

√
1−

(cos γ1(t + 1)+ cos γ2(t − 1)
2

)2 f ′1(s)− f ′1(s)
f1(s)− f2(s)

.

The formal asymptotic series of a boundary value problem is a series that satisfies
the PDE and the boundary condition asymptotically, but, as opposed to the case of
an asymptotic expansion, a bound on the error has not been proven. (There is no
O(·) term in (34), but there is one in the asymptotic expansion (11).)

As can be seen in Figure 11, the numerical solution we obtain for MP 2 with the
change of variable and the change of coordinates proposed in Sections 3.1 and 3.2
accurately approximates the singular behavior.

Although it is not known if the second-order term of the formal asymptotic series
of this problem is in fact the second-order term of the asymptotic series solution, it
can be seen in Figure 11 that the numerical solution appears to match better with the
second-order formal asymptotic series than with the first-order asymptotic solution.
It is particularly interesting that the domain where the asymptotic approximation is
a good approximation seems to expand by adding a second term to the asymptotic
series.

4.2. Asymptotic Laplace–Young equation: convergence study. In the previous
section, we have shown that the numerical approximations with a change of variable
and a change of coordinates as proposed in Sections 3.1 and 3.2 exhibit the correct
singular behavior for singular solutions of the Laplace–Young equation. Since our
interest is to obtain global approximations which are accurate both at the singularity
and away from the singularity, we now show that the numerical solution in fact
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Figure 9. MPs 1-1, 1-2 and 1-3 (unbounded corner solutions).
Panels (a) and (b) show FVEM solutions on the (x, y)-type grid of
Figure 7(b) with 1089 nodes (no change of coordinates). Panels (c)
and (d) show FVEM solutions on the (s, t)-type grid of Figure 7(a)
with 33 × 65 nodes (with change of coordinates). Panels (a) and
(c) are for computation of the original variable u, and panels (b)
and (d) are for computation of the transformed variable v. The
log-log plots show a comparison of the numerical solutions and the
first-order asymptotic approximations in a horizontal cross section
at y=0 or t=0. Panel (d) clearly gives the most accurate numerical
solutions.



NUMERICAL STUDY OF UNBOUNDED CAPILLARY SURFACES 25

−0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02
0

5

10

15

20

25

30

35

40

−1 −0.5 0 0.5 1
0

5

10

15

20

25

30

35

40
Model Problem 1-1

Model Problem 1-2

Model Problem 1-3

y

Leading order term of the asymptotic solution
Numerical solution

−2 0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

u
(

1 2
5
,y

)

(a) without change of coordinates
and without change of variable

−0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02
0

5

10

15

20

25

30

35

40

−1 −0.5 0 0.5 1
0

5

10

15

20

25

30

35

40
Model Problem 1-1

Model Problem 1-2

Model Problem 1-3

y

Leading order term of the asymptotic solution
Numerical solution

−2 0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

u
(

1 2
5
,y

)
(b) without change of coordinates

and with change of variable

Model Problem 1-1

Model Problem 1-2

Model Problem 1-3

u
(

1 2
5
,t

)

t
−1 −0.5 0 0.5 1
0

5

10

15

20

25

30

35

40

Leading order term of the asymptotic solution
Numerical solution

−2 0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

−1 −0.5 0 0.5 1
0

5

10

15

20

25

30

35

40

(c) with change of coordinates
and without change of variable

u
(

1 2
5
,t

)

t

Model Problem 1-1

Model Problem 1-2

Model Problem 1-3

−1 −0.5 0 0.5 1
0

5

10

15

20

25

30

35

40

−1 −0.5 0 0.5 1
0

5

10

15

20

25

30

35

40

Leading order term of the asymptotic solution
Numerical solution

−2 0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

(d) with change of coordinates
and with change of variable

Figure 10. MPs 1-1, 1-2, and 1-3 (unbounded corner solutions).
Panels (a) and (b) show FVEM solutions on the (x, y)-type grid of
Figure 7(b) with 1089 nodes (no change of coordinates). Panels (c)
and (d) show FVEM solutions on the (s, t)-type grid of Figure 7(a)
with 33× 65 nodes (with change of coordinates). Panels (a) and (c)
are for computation of the original variable u, and panels (b) and
(d) are for computation of the transformed variable v. The plots
show a comparison of the numerical solutions and the first-order
asymptotic approximations in a vertical cross section at x = 1/25

or s = 1/25 (the grid points closest to the singular point). Panel
(d) clearly gives the most accurate numerical solutions.
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Figure 11. MPs 2a-1, 2a-2 and 2a-3 (unbounded cusp solutions).
FVEM solutions on the (s, t)-type grid of Figure 7(a) with 33×65
nodes (with change of coordinates and with change of variable).
The log-log plots in the left panels show a comparison of the
numerical solutions with the first-order asymptotic solution in a
horizontal cross section at t = 0. The log-log plots in the right
panels show a comparison of the numerical solutions with the first
two terms of the formal asymptotic series in a horizontal cross-
section at t = 0. It is clear that accurate numerical solutions are
obtained.

converges to the exact solution everywhere. It would be desirable to conduct a
numerical convergence study for the Laplace–Young equation, but there is no known
closed-form singular solution, and hence we cannot conduct a numerical conver-
gence study. As we have discussed in Section 2.2, there are known exact solutions
of the asymptotic Laplace–Young equation, and it is known that they have the same
singular behavior as the corresponding solutions of the Laplace–Young equation.
We therefore conduct a numerical convergence study for the asymptotic Laplace–
Young equation in corner and cusp domains. Since the exact solution is in the L1

function space but not in L2, we conduct the convergence study in the L1 norm.
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Figure 12. MP 3 (unbounded corner solution for asymptotic
Laplace–Young). FVEM solutions on (s, t)-type grids (Figure 7(a))
and on (x, y)-type grids (Figure 7(b)), with and without change
of variable. The plots show L1 convergence of the numerical
solutions obtained by the FVEM to the closed-form solution. The
plots indicate that all four approaches converge, but it is clear that
the method with change of variable and with change of coordinates
converges significantly faster (with nearly second-order accuracy)
than the other approaches.

MP 3: corner problem. As can be seen in Figure 12, the FVEM numerical ap-
proximation with change of variable and change of coordinates as proposed in
Sections 3.1 and 3.2 converges to the closed-form solution nearly quadratically,
whereas the other approaches (no change of variable or no change of coordinates)
only converge linearly.

MP 4: cusp problem. We have also conducted a numerical convergence study for
the circular cusp problem, where the solution has a more severe singularity than
for the corner problem. For this problem, we have used both the Galerkin finite
element method (FEM) and the finite volume element method (FVEM) to show
that both numerical schemes work well with the change of variable and the change
of coordinates proposed in Sections 3.1 and 3.2. As can be seen in Figure 13, both
the FEM and the FVEM achieve near-quadratic convergence with the change of
variable and change of coordinates, while only linear convergence can be achieved
without change of variable.

5. Conjectures on open problems

As shown in the previous section, we can obtain a globally accurate approxima-
tion of unbounded solutions of the Laplace–Young equation using the numerical
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Figure 13. MP 4 (unbounded cusp solution for asymptotic
Laplace–Young). FVEM and FEM solutions on (s, t)-type grids
(Figure 7(a), with change of coordinates), with and without change
of variable. The plots show L1 convergence of the numerical
solutions obtained by the FVEM and FEM to the closed-form
solution. The plots indicate that all four approaches converge,
but it is clear that the methods with change of variable converge
significantly faster (with nearly second-order accuracy).

methodology proposed in Section 3. We now numerically approximate the solutions
of two problems where the singular behavior is not known yet analytically. Our
numerical results will allow us to formulate conjectures on asymptotic behavior
for these open problems, which may guide further analytical study of these open
problems.

5.1. Open problem 1: osculatory cusp with nonsupplementary contact angles.
As stated in Section 2.1.2, the leading-order asymptotic behavior of the unbounded
solution of the Laplace–Young equation at an osculatory cusp is not known: In
summary, a proof for the leading-order asymptotic behavior could not be obtained
in [Aoki and Siegel 2012] for the osculatory cusp because the authors were not able
to determine the formal asymptotic series. As shown in Lemma 2.2 of that paper,
the first two terms of the formal asymptotic series are known for the osculatory
cusp case up to an additive constant in the coefficient of the second-order term, i.e.,

(35) ũ =
cos γ1+ cos γ2

f1(s)− f2(s)

+

(
−

√
1−

(cos γ1(t + 1)+ cos γ2(t − 1)
2

)2
+C1

)
f ′1(s)− f ′1(s)
f1(s)− f2(s)

,

where ũ asymptotically satisfies the boundary value problem, C1 = 0 if the cusp is
not an osculatory cusp, and C1 is unknown if it is an osculatory cusp. One can see
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from the proofs in [Aoki and Siegel 2012] that the unknown additive constant C1 is
the elusive key to the proof of the leading-order behavior of the osculatory cusp
problem. The coefficient C1 is unknown and may depend on the specific functional
form of the boundary functions f1(s) and f2(s).

Physical intuition suggests that the singular behavior of the unbounded capillary
surface near a sharp corner or a cusp may be governed only by the distance between
the two boundaries forming the sharp corner or cusp. In other words, one may think
that the asymptotic behavior should only depend on f1(s)− f2(s) and its derivatives
and not on f1(s) and f2(s) separately. This would imply that the formal asymptotic
series would be the same for the four MPs 2a-2 and 2b, since f1(s)− f2(s)=7/24 x3

for all these cases. If so, then C1 = 0 is required also for the osculatory cusps of
MPs 2b, since C1 = 0 for the regular cusp of MP 2a-2. But it is also possible that
C1 depends on the precise functional form of f1(s) and f2(s).

In order to investigate this, we now numerically approximate the second-order
term of the formal asymptotic series by the following change of variable for the
unknown function u:

(36) u(s, t)=
cos γ1+ cos γ2

f1(s)− f2(t)
+w(s, t)

f ′1(s)− f ′2(s)
f1(s)− f2(s)

.

We numerically approximate the new unknown functionw(s, t) in (s, t) coordinates,
and we plot the second-order term w(s, t)( f ′1(s)− f ′2(s))/( f1(s)− f2(s)) (or equiv-
alently, u(s, t)− (cos γ1 + cos γ2)/( f1(s)− f2(t))) obtained from the numerical
approximation in Figure 14.

As can be seen in Figure 14, the known second-order term of the formal as-
ymptotic series for the regular cusp (MP 2a-2) is approximated correctly using
the change of variable (36). Also, Figure 14 shows that the second-order term of
the formal asymptotic series of the osculatory cusp case differs from the regular
cusp case and is shifted up by constants, consistent with (35). These numerical
results guide us in conjecturing that the additive constant C1 of the coefficient of the
second-order formal asymptotic series for the osculatory cusp changes depending
on the leading-order term of the boundary functions f1(s) and f2(s), and is strictly
greater than 0. The numerical evidence from Figure 14 indeed indicates that C1 is
not zero for osculatory cusps and that the asymptotic behavior depends on f1(s)
and f2(s), and not just on the difference f1(s)− f2(s). This conjecture on the
unknown constant C1 in (35), obtained from numerical investigation, can guide
future analytical study of this case.

5.2. Open problem 2: infinite-curvature cusp with supplementary contact angles.
Another open problem on the singular behavior of the Laplace–Young equation in
a cusp domain is the infinite-curvature boundary cusp (i.e., limx→0 f ′′1 (x)=∞ or
limx→0 f ′′2 (x)=∞) with supplementary contact angles (i.e., γ1+ γ2 = π ). It was
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Figure 14. MPs 2a-2 (unbounded cusp solution) and 2b (un-
bounded osculatory cusp solution, open problem). FVEM solutions
on an (s, t)-type grid (Figure 7(a)) with 33× 65 nodes, with change
of variable. The plots show vertical cross sections at s = 1/25. The
left panel shows how the numerical solution tracks the second-order
term of the formal asymptotic series. The right panel supports the
conjecture that C1 > 0 in (35).

proven in [Aoki and Siegel 2012] that the cusp solution is bounded if the contact
angles are supplementary angles and the boundaries forming the cusp have finite
curvatures (but it is unbounded if the contact angles are not supplementary).

We conduct numerical experiments for MP 2c (infinite curvature cusp) without
change of variable. Lemma 2.1 of [Aoki and Siegel 2012] gives that the solutions
of MPs 2c-1 and 2c-3 are unbounded, and MP 2c-2 is the supplementary contact
angle case with unknown behavior.

As can be seen in Figure 15, the numerical solution surface is bounded if the
contact angles are supplementary for this case, where the boundaries forming a
cusp have infinite curvature at the cusp. We have conducted various other numerical
experiments; however, we were not able to find any evidence of unbounded solutions
if the contact angles are supplementary angles. Guided by these numerical results
we conjecture that the solution of the Laplace–Young equation in a domain with a
cusp is always bounded if the contact angles of the boundaries forming the cusp
are supplementary angles. We also note that, as an additional check on the validity
of our numerical approach, we have conducted further numerical experiments with
cusps with finite curvature boundaries and with the same contact angles as MPs 2c,
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Figure 15. MPs 2c-1, 2c-2, and 2c-3 (infinite curvature cusp). It
is known that the solutions for 2c-1 and 2c-3 are unbounded, but
the behavior for 2c-2 is an open problem. FVEM solutions on
an (s, t)-type grid (Figure 7(a)) with 33 × 65 nodes, with change
of variable. Surface plots of the capillary surfaces are shown.
The numerical result for MP 2c-2 supports the conjecture that the
solution is bounded in this case.

and we have confirmed numerically the theoretical prediction that the solution is
bounded for supplementary contact angles, and unbounded otherwise.

To conclude, we conjecture that the capillary surface in a cusp domain is bounded
if the contact angles of the boundaries forming the cusp are supplementary angles,
even if the curvatures of the boundaries are infinite. This conjecture on the open
problem of the asymptotic behavior of capillary surfaces in domains with a cusp
and supplementary contact angles, obtained from numerical investigation, can guide
further analytical study of this case.

6. Conclusion

We have proposed a methodology for the numerical study of unbounded capillary
surfaces in domains with a sharp corner or a cusp. The methodology was developed



32 YASUNORI AOKI AND HANS DE STERCK

by incorporating knowledge obtained from asymptotic analysis into a finite element
based approximation method. It contains two simple but important ingredients that
are combined with the finite volume element method (FVEM) [Bank and Rose
1987; Aoki and De Sterck 2011] or the Galerkin finite element method (FEM)
[Strang and Fix 1973; Brenner and Scott 1994]. The first ingredient is to consider a
change of variable, with the new solution variable being smoother than the capillary
height variable and more amenable to accurate numerical approximation. The
second ingredient is to solve the PDE numerically in a new coordinate system that
is inspired by asymptotic analysis work, which allows us to accurately represent the
discontinuous behavior of the new solution variable at the singular point. We have
shown in extensive numerical tests in domains with a sharp corner or a cusp that
this approach leads to a global approximation method for singular solutions of the
Laplace–Young equation that recovers the proper asymptotic behavior, and is more
accurate and has better convergence properties than numerical methods that were
considered for singular capillary surfaces before [Scott et al. 2005]. Although we
have only considered the Laplace–Young equation and its steep slope approximation,
it is likely that the methodology we have proposed can also be useful for other
nonlinear elliptic PDEs with singularities. One important limitation of our approach
is that in its present form it only works for problems with one singular point.
Extension to problems with multiple singular points is a subject for further research.

The main mathematical contribution of this paper is that we were able to formulate
conjectures for two open problems on the asymptotic behavior of capillary surfaces
in domains with a cusp. These conjectures are derived from numerical investigation
of these open problems using the numerical methodology we propose, and they
may guide future analytical work on these open problems.
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DUAL R-GROUPS OF THE INNER FORMS OF SL(N)

KUOK FAI CHAO AND WEN-WEI LI

We study the Knapp–Stein R-groups of the inner forms of SL(N) over
a nonarchimedean local field of characteristic zero, by using a restriction
from the inner forms of GL(N). As conjectured by Arthur, these R-groups
are then shown to be naturally isomorphic to their dual avatars defined
in terms of L-parameters. The 2-cocycles attached to R-groups can be
described as well. The proofs are based on the results of K. Hiraga and
H. Saito. We also construct examples to illustrate some new phenomena
which do not occur in the case of SL(N) or classical groups.
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1. Introduction

Let G be a connected reductive group over a local field F and G(F) be the locally
compact group of the F-points of G. The study of the tempered representations
of G(F) is a crucial ingredient of the monumental work of Harish-Chandra on
his Plancherel formula. Denote by 5temp(G) the set of isomorphism classes of
irreducible tempered representations, and by52,temp(G) its subset of representations
which are square-integrable modulo the center. Roughly speaking, elements in
5temp(G) can be obtained as subrepresentations of I G

P (σ ), where P = MU is
a parabolic subgroup, σ ∈ 52,temp(M), and I G

P (σ ) is the normalized parabolic
induction. Assuming the knowledge of square-integrable representations, the study
of 5temp(G) then boils down to that of the decomposition of I G

P (σ ), for P and σ
as above.
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Knapp, Stein, and Silberger (for the nonarchimedean case) described the decom-
position of I G

P (σ ) in terms of the Knapp–Stein R-group Rσ . More precisely, we
have a central extension of groups

1→ C×→ R̃σ → Rσ → 1

defined using the normalized intertwining operators RP(w, σ ). It is the set5−(R̃σ )
of the irreducible representations of R̃σ by which C× acts by z 7→ z · id which
governs the decomposition of I G

P (σ ). Equivalently, we are given a cohomology class
cσ ∈ H 2(Rσ ,C×) attached to this central extension. The group Rσ itself suffices to
determine whether I G

P (σ ) is reducible or not. To extract further information, such
as the description of elliptic tempered representations, some knowledge about R̃σ
is also needed. We refer the reader to [Arthur 1993, Section 2] for details.

On the other hand, the tempered part of the local Langlands correspondence
predicts a map φ 7→ 5φ which assigns a finite subset 5φ of 5temp(G) to every
bounded L-parameter φ ∈8bdd(G), taken up to equivalence, such that

5temp(G)=
⊔

φ∈8bdd(G)

5φ.

The internal structure of the tempered L-packets 5φ is conjectured to be controlled
by the S-group Sφ := ZĜ( Im(φ)). More precisely, following [Arthur 2006], one
has to introduce a central extension

1→ Z̃φ→ S̃φ→ Sφ→ 1

of finite groups defined in terms of Sφ . The L-packet 5φ should be in bijection with
a set 5(S̃φ, χG) of representations of S̃φ , where χG is a character of Z̃φ coming
from Galois cohomology. The relevant definitions will be reviewed later in this
article.

The tempered local Langlands correspondence is expected to behave well under
normalized parabolic induction, namely, for P = MU as above and φM ∈8bdd(M),
we deduce φ ∈ 8bdd(G) by composing φM with the inclusion L M → LG of L-
groups, which is well defined up to conjugacy. Then 5φ should be the union of
the irreducible constituents of I G

P (σ ), where σ ranges over the elements of 5φM . A
natural question arises: is it possible to describe Rσ , or even R̃σ , in terms of the
S-groups?

For archimedean F this has been answered by Shelstad [1982]; in that case, the
extension R̃σ → Rσ splits and Rσ is abelian of exponent two. For general F of
characteristic zero, Arthur proposed a generalization [1989b, Section 7] as follows.
For every φ ∈8bdd(G) coming from φM ∈82,bdd(M) (that is, a parameter for M
which is square-integrable modulo the center), he introduced the dual R-group (also
known as the endoscopic R-group) Rφ ' Sφ/SφM and a subgroup Rφ,σ ⊂ Rφ for
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every σ ∈5φM . Arthur conjectures a natural isomorphism

Rφ,σ ' Rσ .

This has been verified for quasisplit classical groups and unitary groups by
Arthur [2013] and Mok [2012], respectively. In their construction of L-packets,
the dual R-groups play a pivotal role through the local intertwining relations; see
[Arthur 2013, Chapter 2]. It turns out that in these cases, we have Rφ = Rφ,σ and
R̃σ → Rσ splits; see [Arthur 2013, Section 6.5]. Similar results were obtained
independently in [Ban and Zhang 2005; Goldberg 2011; Ban and Goldberg 2012]
for nonarchimedean F . For quaternionic unitary groups, see [Hanzer 2004].

We shall assume hereafter that F is a nonarchimedean local field of characteristic
zero.

Another good test ground for Arthur’s conjectures is the group SL(N ) and its
inner forms. Indeed, the case N = 2 is the genesis of endoscopy [Labesse and
Langlands 1979]; for general N , the local Langlands correspondence for the inner
forms G] of SL(N ) is established in [Hiraga and Saito 2012], at least in the tempered
case. This is based on the local Langlands correspondence for the inner forms G of
GL(N ), which satisfies the following nice properties:

• The L-packets 5φ for G are all singletons.

• For any parabolic subgroup P = MU and σ ∈5temp(M), the induced repre-
sentation I G

P (σ ) is irreducible.

In fact, the latter property holds for all unitary σ , known as Tadić’s property (U0)
[Sécherre 2009].

The (tempered) local Langlands correspondence for G] can be obtained by
restriction from G(F) to G](F); the procedure is somehow dual to the natural
projection of L-groups

pr : LG � LG].

The same recipe can be applied to any Levi subgroup M , with respect to M]
:=

M ∩G].
The method of restriction provides a convenient device, but we still have to

study the internal structure of L-packets for G] and their behavior under normalized
parabolic induction. For the quasisplit case G]

= SL(N ), such issues can be
addressed by the multiplicity-one property of Whittaker models. In that case, the
Knapp–Stein R-groups are studied in depth in [Gelbart and Knapp 1981; 1982;
Shahidi 1983; Tadić 1992; Goldberg 1994]. Roughly speaking, let σ ]∈52,temp(M])

which lies in the L-packet5φ] . We may choose σ ∈52,temp(M) so that σ ] ↪→ σ |M] .
Set π := I G

P (σ ), which is irreducible. Then Rσ ] is described in terms of

X G(π)= {η ∈ (G(F)/G](F))D
: η⊗π ' π}
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and its analogue X M(σ ) for the Levi subgroup M with respect to M], where
(G(F)/G](F))D means the group of continuous characters of G(F)/G](F). It
is then easy to relate Rσ ] with Rφ] , and we deduce a canonical isomorphism
Rφ] = Rφ],σ ] ' Rσ ] as well as a splitting for R̃σ ] � Rσ ] . Note that we used the
notations φ], σ ], etc. to denote the objects attached to G] and its Levi subgroups.

Whittaker models are no longer available for the nonquasisplit inner forms G]

of SL(N ). What saves the day is that Hiraga and Saito [2012] defined a central
extension

1→ C×→ SG(π)→ X G(π)→ 1

and related it to the central extension of S-groups alluded to above. This allows us
to study the internal structure of the L-packets obtained by restriction. In our main
theorem, Theorem 6.2.4, we will prove, among other things, that there is

(i) a canonical isomorphism Rφ],σ ] ' Rσ ] as conjectured by Arthur;

(ii) a “concrete” description of the dual R-groups for G], namely,

Rφ] ' X G(π)/X M(σ ),

Rφ],σ ] ' Z M(σ )⊥/X M(σ );

(iii) a description of the class cσ ] ∈ H 2(Rσ ],C×) attached to R̃σ ] � Rσ ] , in terms
of the obstruction for extending the representation ρ of S̃

φ
]
M

to the preimage

of Rφ,σ ] in S̃φ] .

We refer the reader to Section 4 for unexplained notations. Note that the description
of cσ ] is also conjectured by Arthur; see [Arthur 1996, Page 537; 2008, Section 3;
2013, Section 2.4] for further discussions.

Arthur’s conjecture on R-groups for the inner forms of SL(N ) is thus verified.
The examples are probably more interesting, however. In Section 6.3 we will give
conceptual constructions of φ] and σ ] as above such that

(i) R̃σ ] � Rσ ] is not split, or

(ii) Rφ],σ ] ( Rφ] .

Such phenomena do not occur to the quasisplit classical groups, the quaternionic
unitary groups, or SL(N ). The first example is perhaps more surprising, since R̃σ ]�
Rσ ] always splits for generic inducing data. Keys [1987, Section 6] constructed
a Knapp–Stein R-group with nonsplit cocycle in the nonconnected setting; our
example seems to be the only known case for connected reductive groups. In both
examples, the relation between Rσ ] and the S-groups is crucial.

In view of the possible applications to automorphic representations, one should
also consider certain nontempered unitary representations, namely, those appearing
in the A-packets; see Remark 6.2.6 for a short discussion.
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Shortly after the release of the first version of our preprint, we were informed of
an independent work of Choiy and Goldberg [2012] that treats the same problems
except that of cocycles. Despite some overlap, their work has a completely different
technical core, namely the transfer of Plancherel measures between inner forms,
which should have wide-ranging applications.

Organization of this article. In Section 2, we recapitulate the formalism of normal-
ized intertwining operators and Knapp–Stein R-groups. We follow the notations
in [Arthur 1989a; 1993] closely. In particular, the R-group Rσ is regarded as a
quotient of the isotropy group Wσ , instead of a subgroup.

In Section 3, we set up a general formalism of restriction of representations.
These results are scattered in [Shahidi 1983; Keys 1987; Tadić 1992; Hiraga and
Saito 2012], just to mention a few. In view of the possible sequels of this work,
the behavior under restriction of normalized intertwining operators is treated in
generality.

A special assumption is made in Section 4 (Hypothesis 4.0.2), namely, that the
parabolically induced representations in question should be irreducible. We are
then able to deduce finer information on R-groups and their cocycles in this setting.
The arguments are not too difficult, but require some careful manipulations.

In Section 5, we will specialize to the inner forms of SL(N ) and reformulate the
results of Hiraga and Saito [2012] on the local Langlands correspondence and the
S-groups. In order to study parabolic induction, we also have to generalize these
results to the Levi subgroups.

In Section 6, we recapitulate Arthur’s definition of dual R-groups via the om-
nipresent commutative diagram in Proposition 6.1.1. The results obtained earlier
can then be easily assembled, and Arthur’s conjecture on R-groups for the inner
forms of SL(N ) (Theorem 6.2.4) follows.

2. Preliminaries

2.1. Conventions. Local fields.Throughout the article, F always denotes a nonarchi-
medean local field of characteristic zero. We set.

• 0F : the absolute Galois group of F , defined with respect to a chosen algebraic
closure F ;

• WF : the Weil group of F ;

• WDF :=WF ×SU(2): the Weil–Deligne group of F ;

• | · | = | · |F : the normalized absolute value of F ;

• qF : the cardinality of the residue field of F .

When discussing the canonical family of normalizing factors for GL(N ) and its
inner forms, we will also fix a nontrivial additive character ψF : F→ C×.
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The usual Galois cohomology over F is denoted by H•(F, · ). The continuous
cohomology of WF is denoted by H•cont(WF , · · · ); the groups of continuous cocycles
are denoted by Z•cont(WF , · · · ).

Groups and representations. For an F-group scheme G, the group of its F-points is
denoted by G(F); subgroups of G mean the closed subgroup schemes. The identity
connected component of G is denoted by G0. The center of G is denoted by ZG .
Centralizers (respectively normalizers) in G are denoted by ZG( · ) (respectively
NG( · )). The algebraic groups over C are identified with their C-points.

The derived group of G is denoted by Gder. Now assume G to be connected
reductive. A simply connected cover of Gder, which is unique up to isomorphism,
is denoted by GSC→ Gder. We denote the adjoint group of G by GAD := G/ZG .
For every subgroup H of G, we denote by Hsc (respectively Had) the preimage of
H in GSC (respectively image in GAD). The same formalism pertains to connected
reductive C-groups as well.

The definitions of the dual group LG = Ĝ o WF and the L-parameters will be
reviewed in Section 3.5.

The symbol Ad( · · · ) denotes the adjoint action of an abstract group on itself,
namely Ad(x) : g 7→ gxg−1.

For any division algebra D over F and n ∈Z≥1, we denote by GLD(n) the group
of invertible elements in EndD(Dn), where Dn is viewed as a right D-module. It is
also regarded as a connected reductive F-group.

The representations considered in this article are all over C-vector spaces. For a
connected reductive F-group G, we define the following.

• 5(G): the set of equivalence classes of irreducible smooth representations of
G(F);

• 5unit(G): the subset consisting of unitary (that is, unitarizable) representations;

• 5temp(G): the subset consisting of tempered representations;

• 52,temp(G): the subset consisting of unitary representations which are square-
integrable modulo the center.

For an abstract group S, we will also denote by 5(S) the set of its irreducible
representations up to equivalence.

The central character of π ∈5(G) is denoted by ωπ . The group of morphisms
(respectively the set of isomorphisms) in the category of representations of G(F)
is denoted by HomG( · · · ) (respectively IsomG( · · · )).

For any topological group H , we set

H D
:= {χ : H → C×, continuous character}.
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For any representation π of G(F) and any η ∈ G(F)D , we write ηπ := η⊗π for
abbreviation. Also note that π and ηπ have the same underlying C-vector spaces.
If M is a subgroup of G and π is a smooth representation of G(F), we shall denote
the restriction of π to M(F) by π |M .

Combinatorics. Let G be a connected reductive F-group. We employ the following
notations in this article. Let M be a Levi subgroup.

• P(M): the set of parabolic subgroups of G with Levi component M ;

• L(M): the set of Levi subgroups of G containing M ;

• F(M): the set of parabolic subgroups of G containing M ;

• W (M) := NG(M)(F)/M(F): the Weyl group (in a generalized sense) relative
to M ;

The Levi decompositions are written as P = MU , where U denotes the unipotent
radical of P . For M chosen, the opposite parabolic of P = MU is denoted by
P=MU . When we have to emphasize the role of G, the notations PG(M), LG(M),
FG(M), and W G(M) will be used.

Let w ∈W (M) with a representative w̃ ∈ G(F). For σ ∈5(M), we define w̃σ
to be the representation on the same underlying vector space, with the new action

(w̃σ )(m) := σ(w̃−1mw̃), m ∈ M(F).

The equivalence class of w̃σ depends only on w ∈W (M), and we will write wσ
instead, if there is no confusion.

Define X(G) := HomF−grp(G,Gm) and aG := Hom(X(G),R). For every Levi
subgroup M , there is a canonically split short exact sequence of finite-dimensional
R-vector spaces

0→ aG→ aM � aG
M → 0.

The linear duals of these spaces are denoted by a∗G , etc. We also write aG,C :=

aG ⊗R C, etc. Sometimes we also write aP instead of aM if P = MU .
The Harish-Chandra map HG : G(F)→ aG is the homomorphism characterized

by
〈χ, HG(x)〉 = log |χ(x)|F , χ ∈ X(G).

For λ ∈ a∗G,C and π ∈5(G), we define πλ ∈5(G) by

(1) πλ := e〈λ,HG( · )〉⊗π.

Fix a minimal parabolic subgroup P0 = M0U0 of G. We define 10, 1∨0 to be the
set of simple roots and coroots, which form bases of (aG

M0
)∗ and aG

M0
, respectively.

The set of positive roots is denoted by 60, and its subset of reduced roots by
6red

0 . They form a bona fide root system. For every P = MU ⊃ P0, we define
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1P ⊂ 6P ⊂ 6
red
P by taking the set of nonzero restrictions to (aG

M)
∗ of elements

in 10 ⊂ 60 ⊂ 6
red
0 . To each α ∈ 6P we may associate the coroot α∨ ∈ aG

M : it is
defined as the restriction of the coroot in 1∨0 . For a given P , the objects above
are independent of the choice of P0. We can emphasize the role of G by using the
notations 1G

P , etc. whenever needed.

Induction. We always consider a parabolic subgroup P = MU of G. The modulus
character of P(F) is denoted by δP , that is,

(left Haar measure)= δP · (right Haar measure).

The usual smooth induction functor is denoted by Ind( · · · ). The normalized
parabolic induction functor from P to G is denoted by I G

P ( · ) := IndG
P (δ

1/2
P ⊗ · ).

Recall that for σ ∈ 5(M) with underlying vector space Vσ , we use the usual
model to realize I G

P (σ ) as the space of functions ϕ : G(F)→ Vσ such that ϕ is
invariant under right translation by an open compact subgroup of G(F), and that
ϕ(umx) = δP(m)1/2σ(m)(ϕ(x)) for all m ∈ M(F), u ∈ U (F). The group G(F)
acts on this function space by the right regular representation.

For σ, σ ′ ∈5(M) and f ∈ HomM(σ, σ
′), the induced morphism is denoted by

I G
P ( f ); it sends ϕ to f (ϕ).

2.2. Normalized intertwining operators. Our basic reference for normalized inter-
twining operators is [Arthur 1993]. Consider the following data.

• G: a connected reductive F-group.

• M : a Levi subgroup of G.

• P, Q ∈ P(M).

• σ : M(F)→ AutC(Vσ ): a smooth representation of M(F) of finite length.

• λ ∈ a∗M,C.

For every α ∈1P , we denote by rα the smallest positive rational number such
that rα ·α∨ lies in the lattice HM(M(F)). We define

α̌ := rαα∨.(2)

By recalling (1), we form the normalized parabolic induction I G
P (σλ), I G

Q (σλ).
Their underlying spaces are denoted by I G

P (Vσλ), I G
Q (Vσλ). The standard intertwin-

ing operator
JQ|P(σλ) : I G

P (σλ)−→ I G
Q (σλ)

is defined by the absolutely convergent integral

(3) (JQ|P(σλ)ϕ)(x)=
∫

UP (F)∩UQ(F)\UQ(F)
ϕ(ux) du, x ∈ G(F),
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when 〈Re(λ), α∨〉 � 0 for all α ∈ 6red
P ∩6

red
Q

; see [Waldspurger 2003, IV.1] for
the precise meaning of absolute convergence. Recall that upon choosing a special
maximal compact open subgroup K ⊂ G(F) in good position relative to M , these
induced representations can be realized on a vector space that is independent of λ.
It is known that JQ|P(σλ) is a rational function in the variables

{q−〈λ,α̌〉F : α ∈1P}.

In particular, as a function in λ, JQ|P(σλ) admits a meromorphic continuation
to a∗M,C. When σ ∈ 5temp(M), it is known that (3) is absolutely convergent for
〈Re(λ), α∨〉 > 0 for all α ∈ 6red

P ∩6
red
Q

. Moreover, as a meromorphic family of
operators, it satisfies ordλ=0(JQ|P(σλ))≥−1.

Henceforth we assume σ irreducible, that is, σ ∈5(M). Take any P ∈ P(M).
Define the j-functions as

j (σλ) := JP|P(σλ)JP|P(σλ).(4)

It is known that λ 7→ j (σλ) a scalar-valued meromorphic function, which is
not identically zero. Moreover, j (σλ) is independent of P and admits a product
decomposition

j (σλ)=
∏
α∈6red

P

jα(σλ),

where jα denotes the j-function defined relative to the Levi subgroup Mα ∈ L(M)
such that 6Mα,red

M = {±α}.
Now assume σ ∈ 52,temp(M). In this paper, we define Harish-Chandra’s µ-

function as the meromorphic function

µ(σλ) := j (σλ)−1.

Accordingly, µ also admits a product decomposition µ=
∏
α µα . It is analytic and

nonnegative for λ ∈ ia∗M . Note that our definitions of j-functions and µ-functions
depend on the choice of Haar measures on unipotent radicals. In particular, our
µ-function differs from that in [Waldspurger 2003, V.2] by some harmless constant.

Definition 2.2.1 (cf. [Arthur 1989a, Section 2]). In this article, a family of normal-
izing factors is a family of meromorphic functions on the a∗M,C-orbits in 5(M), for
all Levi subgroup M of G, written as

rQ|P(σλ), P, Q ∈ P(M), σλ ∈ a∗M,C

satisfying the following conditions. First of all, we define the corresponding
normalized intertwining operators as

RQ|P(σλ) := rQ|P(σλ)
−1 JQ|P(σλ),
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which is a meromorphic family (in λ) of intertwining operators I G
P (σλ)→ I G

Q (σλ).
We shall also assume that a family of normalizing factors is chosen for every

proper Levi subgroup.

(R1) For all P, P ′, P ′′ ∈ P(M), we have RP ′′|P(σλ)= RP ′′|P ′(σλ)RP ′|P(σλ).

(R2) If σ ∈5unit(M), then

RQ|P(σλ)= RP|Q(σ−λ̄)
∗, λ ∈ a∗M,C.

In particular, RQ|P(σ ) is a well-defined unitary operator.

(R3) This family is compatible with conjugacy, namely,

RgQg−1|g Pg−1(gσλ)= `(g)RQ|P(σλ)`(g)−1

for all g ∈ G(F), where `(g) is the map ϕ( · ) 7→ ϕ(g−1
· ).

(R4) We have
rQ|P(σλ)=

∏
α∈6red

P ∩6
red
Q

r M̃α

Pα |Pα
(σλ),

where Pα := P∩Mα , and r Mα

Pα |Pα
comes from the family of normalizing factors

for Mα.

(R5) Let S= LU ∈F(M) containing both P and Q. Then RQ|P(σλ) is the operator
deduced from RL

P∩L|Q∩L(σλ) by the functor I G
S ( · ).

(R6) The function λ 7→ rQ|P(σλ) is rational in the variables {q−〈λ,α̌〉F : α ∈1P}.

(R7) If σ ∈ 5temp(M), the meromorphic function λ 7→ rQ|P(σλ) is invertible
whenever Re〈λ, α∨〉> 0 for all α ∈1P .

Observe that (R2) is equivalent to saying rQ|P(σλ)= rP|Q(σ−λ̄) for σ ∈5unit(M),
as the unnormalized operators JQ|P(σλ) satisfy a similar condition. Similarly, (R3)
is equivalent to saying rgQg−1|g Pg−1(gσλ)= rQ|P(σλ).

The fundamental result about the normalizing factors is that they exist [Arthur
1989a, Theorem 2.1].

Remark 2.2.2. According to Langlands [1976, Appendix 2], there is a conjectural
canonical family of normalizing factors rQ|P(σλ) in terms of local factors, namely,

rQ|P(σλ)= ε(0, ρ∨Q|P ◦φλ, ψF )
−1L(0, φλ, ρ∨Q|P)L(1, φλ, ρ

∨

Q|P)
−1,

where

• φλ is the Langlands parameter for σλ;

• ûQ (resp. ûP ) denotes the Lie algebra of the unipotent radical of the dual
parabolic subgroup Q̂ (respectively P̂) in Ĝ;
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• ρQ|P is the adjoint representation of L M on ûQ/(ûQ ∩ ûP), and ρ∨Q|P denotes
its contragredient;

• ψF : F→ C× is a chosen nontrivial additive character.

We will invoke this description only in the case G = GLF (n). In that case, the
local factors in sight are essentially those associated with pairs (φ1, φ2) where
φ1, φ2 are among the L-parameters parametrizing the components of σ . Such Artin
local factors are known to agree with their representation-theoretic avatars, say,
those defined by Rankin–Selberg convolution or by the Langlands–Shahidi method.

Remark 2.2.3. The construction of normalizing factors can be reduced to the case
where M is a maximal proper Levi subgroup of G and σ ∈52,temp(M), as illustrated
in [Arthur 1989a]. Let us give a quick sketch of this reduction.

(i) In view of (R4), we are led to the case M maximal proper. Moreover, it
suffices to verify (R3) for the representatives in G(F) of the elements in W (M) :=
NG(F)(M)/M(F), which has at most two elements.

(ii) Assume that σ ∈5temp(M). By the classification of tempered representations,
there exists a parabolic subgroup R = MRUR of M and τ ∈5temp(MR) such that
σ ↪→ I M

R (τ ). The pair (M, τ ) is unique up to conjugacy. There is a unique element
P(R) in P(MR), characterized by the properties

• P(R)⊂ P ,

• P(R)∩M = R.

Consequently, parabolic induction in stages gives I G
P I M

R (τ )= I G
P(R)(τ ). The same

construction works when P is replaced by Q. Set

rQ|P(σλ) := rQ(R)|P(R)(τλ).

In view of (R5) together with parabolic induction in stages, we see that RQ|P(σλ)

is the restriction of RQ(R)|P(R)(σλ) to I G
P (σλ). The required conditions can be

readily verified.

(iii) For general σ , we may realize it as the Langlands quotient I M
R (τµ)� σ , where

R = MRUR is a parabolic subgroup of M , τ ∈5temp(MR), and µ ∈ a∗MR
satisfies

Re〈µ, β∨〉>0 for all β ∈1M
R . The triplet (M, τ, µ) is again unique up to conjugacy.

Let P, Q ∈ P(M). Define P(R), Q(R) ∈ P(MR) as before and set

rQ|P(σλ) := rQ(R)|P(R)(τλ+µ).

Recall that
Ker[I M

R (τµ)� σ ] = Ker(J M
R|R(τµ)).

The condition (R7) applied to τµ tells us that Ker(J M
R|R
(τµ))= Ker(RM

R|R
(τµ)).

The same is true for µ replaced by µ+λ. Using (R5), we see that RQ(R)|P(R)(τλ+µ)
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factors into RQ|P(σλ) on I G
P (σλ). All conditions except (R2) follow from this. The

proof of (R2) requires more effort to deal with the unitarizability of Langlands
quotients; the reader can consult [Arthur 1989a, Page 30] for details.

(iv) Reverting to our original assumption that M is maximal proper and

σ ∈52,temp(M),

it clearly remains to verify conditions (R1), (R2), (R3), (R6), (R7). Furthermore,
one can reduce (R3) to the assertion that rwPw−1|wPw−1(w(σλ)) = rP|P(σλ), for
w ∈W (G) being the nontrivial element in W (M) if it exists.

2.3. Knapp–Stein R-groups. Fix a family of normalizing factors for G. Assume
henceforth that M is a Levi subgroup of G and σ ∈52,temp(M). Define the isotropy
group

Wσ := {w ∈W (M) : wσ ' σ }.

Fix P ∈ P(M). For w ∈W (M) with a representative w̃ ∈ G(F), we define the
operator rP(w̃, σ ) ∈ IsomG(I G

P (σ ), I G
P (w̃σ )) by

(5) rP(w̃, σ ) : I G
P (σ )

R
w−1 Pw|P (σ )

−−−−−−−→ I G
w−1 Pw(σ )

[`(w̃):φ 7→φ(w̃−1
· )]

−−−−−−−−−−→ I G
P (w̃σ ).

We notice the following property: for any w,w′ ∈ W (M) with representatives
w̃, w̃′ ∈ G(F), we have

(6) rP(w̃w̃
′, σ )= rP(w̃, w̃

′σ) ◦ rP(w̃
′, σ ).

Assume noww∈Wσ . Choose a representative w̃ ofw and σ(w̃)∈ IsomM(w̃σ, σ )

to define the operator

RP(w̃, σ ) := I G
P (σ (w̃)) ◦ rP(w̃, σ ).

The class RP(w̃, σ ) mod C× is independent of the choices of σ(w̃) and the
representative w̃. We also have

RP(w̃, σ ) ∈ AutG(I G
P (σ )),

RP(w̃, σ )RP(w̃
′, σ )= RP(w̃w̃

′, σ ) mod C×, w,w′ ∈Wσ .

Now we can define the Knapp–Stein R-group as follows.

W 0
σ := {w ∈Wσ : RP(w̃, σ ) ∈ C× id},

Rσ :=Wσ/W 0
σ .

We will also make use of the following alternative description of Rσ .
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Proposition 2.3.1. The subgroup W 0
σ is the Weyl group of the root system on aM

composed of the multiples of the roots in {α ∈6red
P : µα(σ )= 0}.

Given any Weyl chamber a+σ ⊂ aM for the aforementioned root system, there is
then a unique section Rσ ↪→ Wσ that sends r ∈ Rσ to the representative w ∈ Wσ

such that wa+σ = a+σ . Consequently, we can write Wσ =W 0
σ o Rσ .

In the literature, Rσ is sometimes viewed as a subgroup of Wσ in this manner;
see, for example, [Goldberg 2006].

Write Vσ (respectively I G
P (Vσ )) for the underlying vector space of the represen-

tation σ (respectively I G
P (σ )). It follows that w 7→ RP(w̃, σ ) induces a projective

representation of Rσ on I G
P (Vσ ), where w̃ ∈ G(F) is any representative of w ∈Wσ .

We denote this projective representation provisionally by r 7→ RP(r, σ ), for r ∈ Rσ .
There is a standard way to lift RP( · , σ ) to an authentic representation of some

group R̃σ which sits in a central extension

1→ C×→ R̃σ → Rσ → 1,

such that C× acts by z 7→ z · id. Namely, we can set R̃σ to be the group of elements
(r,M[r ])∈ Rσ×AutC(I G

P (Vσ )) such that M[r ] mod C× gives RP(r, σ ). The lifted
representation, denoted by r̃ 7→ RP(r̃ , σ ), is then r̃ = (r,M[r ]) 7→ M[r ]. Such a
central extension by C× that lifts RP( · , σ ) is unique up to isomorphism.

Note that the central extension above can also be described by the class

cσ ∈ H 2(Rσ ,C×)

coming from the C×-valued 2-cocycle cσ defined by

(7) RP(r̃1r2, σ )= cσ (r1, r2)RP(r̃1, σ )RP(r̃2, σ ), r1, r2 ∈ Rσ ,

where we choose a preimage r̃ ∈ R̃σ for every r ∈ Rσ .

Theorem 2.3.2 (Harish-Chandra; [Silberger 1978]). Fix a preimage r̃ ∈ R̃σ for
every r ∈ Rσ . Then the operators {RP(r̃ , σ ) : r ∈ Rσ } form a basis of EndG(I G

P (σ )).

Following Arthur, we reformulate this fundamental result as follows. Let

5σ (G) := {irreducible constituents of I G
P (σ )}/',

5−(R̃σ ) := {ρ ∈5(R̃σ ) : for all z ∈ C× ρ(z)= z · id}.

Note that 5σ (G), 5−(R̃σ ) are both finite sets, and each ρ ∈ 5−(R̃σ ) is finite-
dimensional.

Corollary 2.3.3. Let R be the representation of R̃σ ×G(F) on I G
P (Vσ ) defined by

R(r̃ , x)= RP(r̃ , σ )I G
P (σ, x), r̃ ∈ R̃σ , x ∈ G(F).
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Then there is a decomposition

(8) R'
⊕

ρ∈5−(R̃σ )

ρ�πρ,

where ρ 7→ πρ is a bijection from 5−(R̃σ ) to 5σ (G), characterized by (8).

Consequently, I G
P (σ ) is irreducible if and only if Rσ = {1}.

Remark 2.3.4. When G is quasisplit and σ is generic with respect to a given
Whittaker datum for M , the work of Shahidi [1990] furnishes

(i) a canonical family of normalizing factors rQ|P(σ );

(ii) a canonically defined homomorphism w 7→ RP(w, σ );

(iii) a canonical splitting of the central extension 1→ C×→ R̃σ → Rσ → 1.

These properties are not expected in general. Indeed, we see in Example 6.3.3
that (iii) may fail.

Remark 2.3.5. The formalism above depends not only on (M, σ ), but also on the
choice of P ∈P(M). One can easily pass to another choice Q ∈P(M) by transport
of structure using RQ|P(σ ). For example, one has

rQ(w̃, σ )= RP|Q(w̃σ )
−1rP(w̃, σ )RP|Q(σ ),

RQ(w̃, σ )= RP|Q(σ )
−1 RP(w̃, σ )RP|Q(σ )

for all w ∈W (M) with a representative w̃ ∈ G(F) and some chosen σ(w̃).

3. Restriction

Let G, G] be connected reductive F-groups such that

Gder ⊂ G]
⊂ G.

3.1. Restriction of representations. In this subsection, we will review the basic
results in [Tadić 1992, Section 2; Hiraga and Saito 2012, Chapter 2] concerning the
restriction of a smooth representation from G(F) to G](F). The objects associated
to G] are endowed with the superscript ], for example, π ] ∈5(G]).

Proposition 3.1.1 [Silberger 1979; Tadić 1992, Lemma 2.1 and Proposition 2.2].
Let π ∈5(G). Then π |G] decomposes into a finite direct sum of smooth irreducible
representations. Each irreducible constituent of π |G] has the same multiplicity.

Conversely, every π ] ∈ 5(G]) embeds into π |G] for some π ∈ 5(G). If the
central character ωπ] is unitary, one can choose π so that ωπ is also unitary.

Proposition 3.1.2 [Tadić 1992, Corollary 2.5]. Let π1, π2 ∈5(G). The following
are equivalent:
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(i) HomG](π1, π2) 6= {0}.

(ii) π1|G] ' π2|G] .

(iii) There exists η ∈ (G(F)/G](F))D such that ηπ1 ' π2.

For π ∈5(G), we define a finite “packet” of smooth irreducible representations
of G](F) as

5π := {irreducible constituents of π |G]}/' .

Consequently, Proposition 3.1.2 implies that 5(G]) =
⊔
π 5π , when π is taken

over the (G(F)/G](F))D-orbits in 5(G).

Proposition 3.1.3 [Tadić 1992, Proposition 2.7]. Let π ∈5(G) and assume that
ωπ is unitary. Let P be one of the following properties of smooth irreducible
representations of G(F) or G](F):

(i) unitary,

(ii) tempered,

(iii) square-integrable modulo the center,

(iv) cuspidal.

Then we have equivalences of the form

[π satisfies P] ⇐⇒ [for some π ] ∈5π , π
] satisfies P]

⇐⇒ [for all π ] ∈5π , π
] satisfies P].

Now comes the decomposition of π |G] .

Definition 3.1.4. Let π ∈5(G) with the underlying C-vector space Vπ . Note that
Vηπ = Vπ for all η ∈ (G(F)/G](F))D . We introduce the groups

X G(π) := {η ∈ (G(F)/G](F))D
: ηπ ' π},

SG(π) := 〈I G
η ∈ IsomG(ηπ, π) : η ∈ X G(π)〉 ⊂ AutG](π).

Observe that IsomG(ηπ, π) is a C×-torsor by Schur’s lemma, and an element
I G
η ∈ SG(π) uniquely determines η. The group law is given by composition in

AutC(Vπ ), namely, by

IsomG(ηπ, π)× IsomG(η
′π, π)

= IsomG(η
′ηπ, η′π)× IsomG(η

′π, π)→ IsomG(η
′ηπ, π)

for all η, η′ ∈ X G(π).
Thus we obtain a central extension of locally compact groups

(9) 1→ C×→ SG(π)→ X G(π)→ 1,

where the first arrow is z 7→ z · id and the second one is I G
η 7→ η.
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Also note that X G(π)= X G(ξπ), SG(π)= SG(ξπ) for any ξ ∈ (G(F)/G](F))D .
Note that implicit in the notations above is the reference to G], which is usually

clear from the context. Indications to G] will be given when necessary.
It is easy to see that X G(π) is finite abelian. As in the setting of R-groups, we

define the finite set

5−(SG(π)) := {ρ ∈5(SG(π)) : for all z ∈ C×, ρ(z)= z · id}.

Theorem 3.1.5 [Hiraga and Saito 2012, Lemma 2.5 and Corollary 2.7]. Let S=
S(π) be the representation of SG(π)×G](F) on Vπ defined by

S(I, x)= I ◦π(x), I ∈ SG(π), x ∈ G](F).

Then there is a decomposition

(10) S'
⊕

ρ∈5−(SG(π))

ρ�π ]ρ,

where ρ 7→ π
]
ρ is a bijection from 5−(SG(π)) to 5π , characterized by (10).

3.2. Relation to parabolic induction. Let P be a parabolic subgroup of G with a
Levi decomposition P = MU . In this article, we denote systematically

P] := P ∩G],

M]
:= M ∩M].

Then P] is a parabolic subgroup of G] with Levi decomposition P] = M]U , since
every unipotent subgroup of G is contained in Gder. The map P 7→ P] (respectively
M 7→ M]) induces a bijection between the parabolic subgroups (respectively Levi
subgroups) of G and G], which leaves the unipotent radicals intact. We also have
a canonical identification W (M]) = W (M). In what follows, we will fix Haar
measures on the unipotent radicals of parabolic subgroups of G and G], which are
compatible with the identifications above.

Obviously, the modulus functions satisfy δP(m)= δP](m) for all m ∈ M](F).

Lemma 3.2.1 [Tadić 1992, Lemma 1.1]. Let σ ∈5(M). Then we have the following
isomorphism between smooth representations of G](F):

I G
P (σ )|G] −→ I G]

P] (σ |M]),

ϕ 7→ ϕ|G](F),

which is functorial in σ .

Proof. Upon recalling the definitions of I G
P (σ ) and I G]

P] (σ |M]) as function spaces,
the assertion follows from the canonical isomorphisms

P](F)\G](F)= (P]\G])(F)−→∼ (P\G)(F)= P(F)\G(F)
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and the fact that δP |M] = δP] . �

The next result will not be used in this article; we include it only for the sake of
completeness. Recall that the normalized Jacquet functor r G

P is the left adjoint of
I G

P . The same is true for r G]

P] .

Lemma 3.2.2. Let π ∈ 5(G). The restriction of representations induces an iso-
morphism

r G
P (π)|M] −→∼ r G]

P] (π |G])

between smooth representations of M](F), which is functorial in π .

Proof. The claim is evident. �

Proposition 3.2.3. Let M be a Levi subgroup of G. Then the inclusion map M ↪→G
induces an isomorphism between locally compact abelian groups:

M(F)/M](F)−→∼ G(F)/G](F).

Proof. The inclusion map induces an isomorphism M/M] ↪→ G/G] as F-tori.
Hence the short exact sequence 1→ M]

→ M→ M/M]
→ 1 and its avatar for G

provide a commutative diagram of pointed sets with exact rows:

1 // G](F) // G(F) // (G/G])(F) // H 1(F,G])

1 // M](F)

OO

// M(F)

OO

// (M/M])(F) // H 1(F,M]).

OO

Fix a parabolic subgroup P of G with a Levi decomposition P = MU . The
rightmost vertical arrow factorizes as

H 1(F,M])→ H 1(F, P])→ H 1(F,G]).

The first map is an isomorphism whose inverse is induced by P]� P]/U = M].
It is well known that the second map is injective, hence so is the composition. A
simple diagram chasing shows M(F)/M](F)−→∼ G(F)/G](F), as asserted. �

Corollary 3.2.4. The restriction map induces an isomorphism

(G(F)/G](F))D
−→∼ (M(F)/M](F))D.

Here is a trivial but important consequence: any η∈ (M(F)/M](F))D is invariant
under the W (M)-action.
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3.3. Relation to intertwining operators. Let M be a Levi subgroup of G. First of
all, observe that there is a natural decomposition

a∗M = a∗M] ⊕ b∗,

where

b∗ := X(M/M])⊗Z R ↪→ a∗G .

Henceforth, we shall identify a∗M] as a vector subspace of a∗M . We shall do the same
for their complexifications. This is compatible with restrictions in the following
sense:

(σλ)|M] = (σ |M])λ, σ ∈5(M), λ ∈ a∗M],C
.

Lemma 3.3.1. Let σ ∈5(M), P, Q ∈ P(M). For λ ∈ a∗M],C
in general position,

the following diagram is commutative:

I G
P (σλ)|G]

'

��

JQ|P (σλ) // I G
Q (σλ)|G]

'

��

I G]

P] (σλ|M])
JQ]|P] (σλ|M] )

// I G]

Q] (σλ|M]),

where the vertical isomorphisms are those defined in Lemma 3.2.1.

Proof. It suffices to check this for Re(λ) in the cone of absolute convergence of the
integrals (3) defining JQ|P and JQ]|P] . The commutativity then follows from (3)
and the definition of the isomorphism in Lemma 3.2.1. �

Proposition 3.3.2. Let σ ∈ 52,temp(M), σ ] ∈ 52,temp(M]) such that σ ] ↪→ σ |M] .
Then, for all λ ∈ a∗M],C

, we have µ(σλ)= µ(σ
]
λ); more precisely,

µα(σλ)= µα(σ
]
λ) for all α ∈6red

P =6
red
P] , P ∈ P(M).

Proof. In view of our choice of measures on unipotent radicals, the identities of
µ-functions follow from (4) and Lemma 3.3.1. �

Proposition 3.3.3. Let σ ∈5(M) and η ∈ (G(F)/G](F))D . Then we have

j (σ )= j (ησ ).

In particular, for σ ∈52,temp(M), we have µ(σ)= µ(ησ).
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Proof. In view of the definition of j-function (4), it suffices to observe that for all
P, Q ∈ P(M) and λ ∈ a∗M,C in general position, the following diagram commutes:

ηI G
P (σλ)

JQ|P (σλ) //

'

��

ηI G
Q (σλ)

'

��
I G

P (ησλ) JQ|P (ησλ)

// I G
Q (ησλ),

where the vertical arrows are given by ϕ( · ) 7→ η( · )ϕ( · ); note that we used the
natural identification HomG(π1, π2) = HomG(ηπ1, ηπ2) for all π1, π2 ∈ 5(G).
Indeed, the commutativity can be seen from the definition (3) of JQ|P( · ) when
Re(λ) lies in the cone of absolute convergence. �

Theorem 3.3.4. One can choose a family of normalizing factors for G such that

rQ|P(σλ)= rQ|P(ησλ)

for all (M, σ ), P, Q ∈ P(M) and η ∈ (G(F)/G](F))D, which is unitary. Given
such a family of normalizing factors, one can define normalizing factors rQ]|P](σ

]
λ)

for those σ ] such that ωσ ] is unitary by setting

(11) rQ]|P](σ
]
λ) := rQ|P(σλ), λ ∈ a∗M],C

,

where σ ∈5(M) is as in Proposition 3.1.1 with ωσ unitary.
Moreover, let σ , σ ] be as above and ι : σ ] ↪→ σ |M] be an embedding. Let

P, Q∈P(M),w∈W (M) with a representative w̃∈G](F). The following diagrams
of G](F)-representations are commutative:

I G
P (σλ)

RQ|P (σλ) // I G
Q (σλ)

I G]

P] (σ
]
λ)

?�

OO

RQ]|P] (σ
]
λ )

// I G]

Q] (σ
]
λ),
?�

OO
I G

P (σλ)
rP (w̃,σλ) // I G

P (w̃(σλ))

I G]

P] (σ
]
λ)

rP] (w̃,σ
]
λ )

//
?�

OO

I G]

P] (w̃(σ
]
λ))

?�

OO

for λ ∈ a∗M,C in general position, where the vertical arrows are given by

I G]

P] (σ
]
λ)

I G]

P]
(ι)

−−−→ I G]

P] (σλ|M])
∼
−→ I G

P (σλ)|G] .

Observe that the asserted invariance under η-twist is satisfied by Langlands’
conjectural family of normalizing factors in Remark 2.2.2, since they are defined in
terms of local factors through the adjoint representation of L M on the Lie algebra
of Ĝ.
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Proof. We will show that rQ|P(σλ)= rQ|P(ησλ) by reviewing the construction in
Remark 2.2.3. More precisely, we will start from the square-integrable case and
show that the equality is preserved throughout the inductive construction.

To begin with, suppose that M is maximal proper and σ ∈52,temp(M). Suppose
that rQ|P(σλ) is chosen so that (R1), (R2), (R3), (R6), (R7) are satisfied. Put
rQ|P(ησλ) := rQ|P(σλ). Then all the conditions above except (R1) are trivially
satisfied for ησ . As for (R1), all that we need to check is that when Q = P ,

rP|Q(σλ)rQ|P(σλ)= j (ησλ), λ ∈ a∗M,C.

By Proposition 3.3.3, the right hand side is equal to j (σλ), hence the equality holds.
This completes the case of σ ∈52,temp(M).

Suppose now σ ∈5temp(M). By the classification of tempered representations,
we may write σ ↪→ I M

R (τ ) for some parabolic subgroup R = MRUR of M and
τ ∈ 52,temp(MR). Twisting everything by η, we obtain ησ ↪→ I M

R (ητ) in the
classification of tempered representations. We have rQ|P(σ ) = rQ(R)|P(R)(τ ) =

rQ(R)|P(R)(ητ) by the previous case; on the other hand, the inductive construction
of normalizing factors says that rQ|P(ησ ) = rQ(R)|P(R)(ητ), hence rQ|P(ησ ) =

rQ|P(σ ).
The case of general σ is similar. We may write σ as the Langlands quotient

I M
R (τµ)� σ , where R = MRUR is as before, τ ∈5temp(MR), and Re〈µ, α∨〉> 0

for all α ∈1M
R . Twisting everything by η, we have I M

R (ητµ)� ησ , which is still
a Langlands quotient. The inductive construction of normalizing factors says that
rQ|P(σ ) = rQ(R)|P(R)(τµ+λ). Repeating the arguments for the previous case, it
follows that rQ|P(σ )= rQ|P(ησ ).

Now we can check that

rQ]|P](σ
]
λ) := rQ|P(σλ)

is well defined. Recall that ωσ ] and ωσ are assumed to be unitary. If σ ′ is another
choice such that σ ] ↪→ σ |M] and ωσ ′ is unitary, there exists η such that σ ' ησ ′.
This would imply that η|ZG(F) is unitary, hence so is η itself. Therefore rQ|P(ησλ)=

rQ|P(σλ).
Finally, the commutativity of the diagram results from Lemma 3.3.1 and (11). �

3.4. Relation to R-groups. In this subsection, we will fix

• a parabolic subgroup P = MU of G;

• the corresponding parabolic subgroup P] := P ∩G]
= M]U of G];

• σ ] ∈52,temp(M]);

• σ ∈52,temp(M) such that σ ] ↪→ σ |M] .

Given σ ], the existence of such a σ is guaranteed by Propositions 3.1.1 and 3.1.3.
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Lemma 3.4.1 (cf. [Goldberg 2006, Lemma 2.3]). Under the identification W (M)=
W (M]), we have W 0

σ =W 0
σ ]

.

Proof. Since both sides are generated by root reflections, it suffices to fix α ∈6red
P =

6red
P] and show that sα ∈ W 0

σ if and only if sα ∈ W 0
σ ]

, where sα denotes the root
reflection with respect to α.

By [Waldspurger 2003, Proposition IV.2.2], µα(σ ) = 0 implies sασ ' σ . The
same is true for σ ] instead of σ . According to the description of W 0

σ (respectively
W 0
σ ]

) in terms of µ-functions, we obtain

µα(σ )= 0⇔ sα ∈W 0
σ (respectively µα(σ ])= 0⇔ sα ∈W 0

σ ]
).

On the other hand, Proposition 3.3.2 implies µα(σ ) = µα(σ ]). The assertion
follows immediately. �

Definition 3.4.2. Set

L(σ ) := {η ∈ (M(F)/M](F))D
: there exists w ∈W (M), wσ ' ησ },

L(σ ]) := {η ∈ (M(F)/M](F))D
: there exists w ∈W (M), wσ ' ησ,wσ ] ' σ ]}.

These are subgroups of (M(F)/M](F))D . Indeed, let

η, η′ ∈ L(σ ) and w,w′ ∈W (M)

such that ησ ' wσ , η′σ ' w′σ . Then one has

(12) η′ησ ' η′wσ = wη′σ ' ww′σ.

Hence ηη′ ∈ L(σ ). The case of L(σ ]) is similar. Note that X M(σ )⊂ L(σ ])⊂ L(σ ).
There is an obvious counterpart for the Weyl group, namely,

W σ := {w ∈W (M) : there exists η ∈ (M(F)/M](F))D, wσ ' ησ }.

It is clear that W σ ⊃ Wσ . On the other hand, Proposition 3.1.2 implies that
W σ ⊃Wσ ] .

The following result is clear in view of the preceding definitions.

Lemma 3.4.3. There is a homomorphism given by

0 :W σ −→ L(σ )/X M(σ )w 7→ the [η mod X M(σ )] such that wσ ' ησ,

which satisfies the following.

(i) 0 is surjective.

(ii) Ker(0)=Wσ .

(iii) The preimage of L(σ ])/X M(σ ) is Wσ ]Wσ .
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Definition 3.4.4. Let

0 :W σ/Wσ −→
∼ L(σ )/X M(σ )

be the isomorphism obtained from 0 in the previous Lemma.

Proposition 3.4.5 [Goldberg 2006, Proposition 3.2]. Set

Rσ [σ ]] := (Wσ ∩Wσ ])/W 0
σ ]
,

which is legitimate by Lemma 3.4.1. This is a subgroup of Rσ ] .

(i) The homomorphism 0 induces an isomorphism

0 : Rσ ]/Rσ [σ ]] −→∼ L(σ ])/X M(σ ).

(ii) If Rσ = {1}, or equivalently, if I G
P (σ ) is irreducible, then 0 induces an isomor-

phism Rσ ] −→∼ L(σ ])/X M(σ ). Consequently, Rσ ] is abelian in this case.

Proof. Lemma 3.4.3 gives an isomorphism

Wσ ]/(Wσ ∩Wσ ])−→
∼ L(σ ])/X M(σ )

that can be viewed as a restriction of 0. By Lemma 3.4.1, we can take the quotients
by W 0

σ =W 0
σ ]

on the left hand side. The first assertion follows immediately.
For the second assertion, it suffices to note that Rσ [σ ]] embeds into Rσ as well,

since W 0
σ =W 0

σ ]
. �

3.5. L-parameters. Let G be a connected reductive F-group equipped with a qua-
sisplit inner twist

ψ : G×F F→ G∗×F F .

We identify Ĝ with Ĝ∗, thus LG = LG∗. The reader should recall that the
definition of the complex reductive group Ĝ∗ and the 0F -action thereof depend
on the choice of a 0F -stable splitting (B∗, T ∗, (Eα)α∈1(B∗,T ∗)) (also known as an
F-splitting) of G∗(F); see [Kottwitz 1984, Section 1]. These choices permit us
to define a correspondence M∗ ↔ L M∗ between the conjugacy classes of Levi
subgroups of G∗ and their dual avatars inside LG∗. Using the inner twist ψ , it also
makes sense to say if a Levi subgroup M∗ of G∗ comes from G; this notion only
depends on the conjugacy classes of Levi subgroups.

For any Levi subgroup M of G, there is a canonical bijection between W G(M)
and W Ĝ(M̂) coming from the bijection between roots and coroots.

An L-parameter for G∗ is a homomorphism

φ :WDF →
LG∗ = LG

such that
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• φ is an L-homomorphism, that is, the composition of φ with the projection
LG→WF equals WDF →WF ;

• φ is continuous;

• the projection of Im(φ) to Ĝ is formed of semisimple elements.

Two L-parameters φ1, φ2 are called equivalent, denoted by φ1 ∼ φ2, if they
are conjugate by Ĝ. We say that φ is bounded if the projection of Im(φ) to Ĝ is
bounded (that is, relatively compact); this property depends only on the equivalence
class of φ.

Given an L-parameter φ, we define

Sφ := ZĜ( Im(φ)).

The connected component S0
φ is a connected reductive subgroup of Ĝ. We record

the following basic properties.

(i) The Levi subgroups L M∗ ⊂ L M which contain Im(φ) minimally are conjugate
by S0

φ .

(ii) Letting L M∗ be a Levi subgroup containing Im(φ) minimally, Z0F ,0
M̂∗

is a
maximal torus of S0

φ .

Indeed, these assertions follow from [Borel 1979, Proposition 3.6] and its proof
applied to the subgroup Im(φ) of LG.

So far, everything depends only on the quasisplit inner form G∗. We say that φ
is G-relevant if M∗φ corresponds to a Levi subgroup of G; in this case, we write
M∗φ = Mφ . Put

8(G) := {φ :WDF →
LG, φ is a G-relevant L-parameter}/∼,

8bdd(G) := {φ ∈8(G) : φ is bounded},

82,bdd(G) := {φ ∈8bdd(G) : Mφ = G}.

Since the relevance condition is vacuous if G = G∗, we have 8(G)⊂8(G∗),
etc.

Now let G] be a subgroup of G such that Gder ⊂ G]
⊂ G. We will study the

lifting of L-parameters from G] to G, which is in some sense dual to the restriction
of representations. In what follows, the L-groups of G and G] will be defined using
compatible choices of quasisplit inner twists and F-splittings.

There is a natural, 0F -equivariant central extension

1→ Ẑ ]→ Ĝ
pr
−→ Ĝ]→ 1

which is dual to G]
→ G; here Ẑ ] is the C-torus dual to G/G].
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For φ ∈8(G), we shall set φ] := pr ◦φ ∈8(G]). When this equality holds, φ
is called a lifting of φ].

Theorem 3.5.1. For any φ] ∈8(G]), there exists a lifting φ ∈8(G) of φ] which
is unique up to twists by H 1

cont(WF , Ẑ ]). If φ] ∈ 8bdd(G]) (respectively φ] ∈
82,bdd(G])), then φ can be chosen so that φ ∈8bdd(G) (respectively φ ∈82,bdd(G)).

Note that by local class field theory, H 1
cont(WF , Ẑ ]) parametrizes the continuous

characters of (G(F)/G](F))D .

Proof. The existential part is just [Labesse 1985, Théorème 8.1] and the uniqueness
follows easily. Assume that φ] ∈8bdd(G]) (respectively φ] ∈82,bdd(G])) and let
φ be any lifting of φ]; we have to show that there exists a continuous 1-cocycle
a :WF→ Ẑ ] such that the twisted L-parameter aφ is bounded (respectively bounded
and satisfying Maφ = Mφ = G).

Note that there exists a central isogeny of connected reductive groups

G]
×C→ G

given by multiplication, where C is some subtorus of Z0
G . Hence C→G/G] is also

an isogeny. By duality, we obtain a 0F -equivariant central isogeny of connected
reductive complex groups

Ĝ→ Ĝ]× Ĉ .

Let φ′ be the composition of φ (projected to the Ĝ component) with the afore-
mentioned central isogeny. Let us show that Im(φ′) is bounded upon twisting φ.
The first component of φ′ is automatically bounded since φ] is. On the other hand,
Ĉ is isogenous to Ẑ ], therefore, upon replacing φ by aφ for some suitable 1-cocycle
a :WF→ Ẑ ], the second component can be made bounded. Hence aφ is a bounded
L-parameter.

To finish the proof, it remains to observe that, assuming φ]=pr◦φ, the preimage
of M]

φ]
in Ĝ is equal to Mφ . �

Here we record a construction related to inner forms which will be required
later. Recall that the inner forms of G∗ are parametrized by H 1(F,G∗AD). Kottwitz
[1984, Section 6] defined the “abelianization” map ab1

: H 1(F,G∗AD)→ (Z0F

ĜSC
)D

between pointed sets. Hence we can associate to G a character χG of Z0F

ĜSC
, in the

following way:

(13) {inner forms of G∗}=H 1(F,G∗AD)
ab1

−→ (Z0F

ĜSC
)D, G 7→[χG : Z

0F

ĜSC
→C×].

4. Restriction, continued

This section is devoted to the study of restriction under parabolic induction. As
before, we fix connected reductive F-groups G, G] such that Gder ⊂ G]

⊂ G. We
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also fix a Levi subgroup M of G and P ∈ P(M). The bijection between Levi
subgroups (respectively parabolic subgroups) M 7→ M] (respectively P 7→ P]) is
defined in Section 3.2.

The normalizing factors for G, G] are chosen as in Theorem 3.3.4 for the
representations with unitary central character.

Let σ ∈5(M). We shall make the following (rather restrictive) hypothesis on σ
throughout this section.

Hypothesis 4.0.2. We assume that π := I G
P (σ ) is irreducible.

4.1. Embedding of central extensions.

Proposition 4.1.1. Let σ ∈5(M) and π := I G
P (σ ) ∈5(G).

(i) Under the identification of Corollary 3.2.4, we have X M(σ ) ↪→ X G(π).

(ii) Let ω ∈ X M(σ ), I M
ω ∈ IsomM(ωσ, σ ). Define the operator I G

ω as the composi-
tion of

Aω : ωI G
P (σ )→ I G

P (ωσ), ϕ 7→ ω( · )ϕ( · ),

with I G
P (I

M
ω ) : I

G
P (ωσ)−→

∼ I G
P (σ ). Then I G

ω ∈ IsomG(ωπ, π).

(iii) We have the following commutative diagram of groups with exact rows:

1 // C× // SG(π) // X G(π) // 1

1 // C× // SM(σ )
?�

OO

// X M(σ )
?�

OO

// 1,

where the arrow SM(σ )→ SG(π) is the map I M
ω 7→ I G

ω defined above.

Proof. It follows from the definition that I G
ω ∈ SG(π) for all ω ∈ X M(σ ), hence

X M(σ )⊂ X G(π). On the other hand, I G
ω is simply the map ϕ 7→ ω( · )I M

ω (ϕ( · )).
It is clear that I M

ω 7→ I G
ω is a group homomorphism. The commutativity of the

diagram is then clear. �

We denote by K0(5−(SM(σ ))) the space of virtual characters of SM(σ ) gener-
ated by the elements of5−(SM(σ )). Similarly, K0(5σ ) denotes the space of virtual
characters of M](F) generated by the elements of 5σ . The bijection ρ 7→ π

]
ρ in

Theorem 3.1.5 extends to an isomorphism K0(5−(SM(σ )))−→∼ K0(5σ ). Assuming
π = I G

P (σ ) irreducible, we have the analogous isomorphism

K0(5−(SG(π)))−→∼ K0(5π ),

as well as the linear maps

IndSG(π)

SM (σ )
: K0(5−(SM(σ )))→ K0(5−(SG(π))),

I G]

P] : K0(5σ )→ K0(5π ),
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given by the usual induction and normalized parabolic induction, respectively. Note
that Lemma 3.2.1 is invoked here.

Proposition 4.1.2. The following diagram commutes:

K0(5−(SG(π)))
' // K0(5π )

K0(5−(SM(σ )))
'

//

IndSG (π)
SM (σ )

OO

K0(5σ ).

I G]

P]

OO

To prove this, some harmonic analysis on the groups SM(σ ), SG(π) is needed.
These groups are infinite; nonetheless, the usual theory carries over, as we are
only concerned about the representations in 5−(SG(π)), 5−(SM(σ )) or their
contragredients. The worried reader may reduce SG(π)→ X G(π) (respectively
SM(σ )→ X M(σ )) to a central extension by µm := {z ∈ C× : zm

= 1} for some
m ∈ Z, which is always possible.

Proof. Let σ ] ∈5σ and ρ ∈5−(SM(σ )) be the corresponding element. Define

τ := IndSG(π)

SM (σ )
(ρ) ∈ K0(5−(SG(π))),

π ] := I G]

P] (σ
]) ∈ K0(5π ).

We have to show that τ corresponds to π ]. To begin with, set

σ [I M
ω ] := σ( · ) ◦ I M

ω : M(F)→ AutC(Vσ ), I M
ω ∈ SM(σ ),

where Vσ is the underlying vector space of σ . Then (σ [I M
ω ], σ ) is a smooth ω-

representation of M(F), that is,

σ [I M
ω ](xy)= ω(y)σ [I M

ω ](x)σ (y), x, y ∈ M(F).

This notion appears in the study of automorphic induction, and more generally it
fits into the formalism of twisted endoscopy; cf. [Lemaire 2010, Section 0.4]. It is
easy to see that 2σ [I M

σ ] := Tr σ [I M
σ ] is well defined as a distribution on M(F). We

may restrict σ [I M
ω ] to M](F); by abuse of notations, the corresponding distribution,

which is also well defined by Proposition 3.1.1, is again denoted by 2σ [I M
σ ]. The

same definition applies to π .
Theorem 3.1.5 implies the following identity of distributions on M](F):

(14) 2σ ] =
1

|X M(σ )|

∑
ω∈X M (σ )

Tr(ρ∨)(I M
ω ) ·2σ [I

M
ω ],

where ρ∨ is the contragredient of ρ and I M
ω ∈ SM(σ ) is any preimage ω; the

summand does not depend on the choice of I M
ω .
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Define Z M(σ ) to be the subgroup of elements ω ∈ X M(σ ) such that every
preimage of ω in SM(σ ) is central. Define Z G(π) similarly. The sum in (14) can be
taken over Z M(σ ), since ρ|C× = id implies that Tr(ρ∨) is zero outside the center.

Let π ]1 ∈ K0(5π ) be the character corresponding to τ . By the same reasoning,
there is an identity of distributions on G](F)

(15) 2
π
]

1
=

1
|X G(π)|

∑
η∈Z G(π)

Tr(τ∨)
(
I G
η

)
·2π [I G

η ],

where I G
η ∈ SG(π) is any preimage of η, as before. It remains to show that

2
π
]
1
( f ])=2π]( f ]) for every f ] ∈ C∞c (G

](F)).
Choose a special maximal compact open subgroup K ⊂ G(F) in good position

relative to M , and set K ]
:= K ∩G](F). Equip K and K ] with appropriate Haar

measures that are compatible with the Iwasawa decomposition; see [Waldspurger
2003, I.1]. The parabolic descent of characters implies

(16) 2π]( f ])=2σ ]( f ]P])=
1

|X M(σ )|

∑
ω∈Z M (σ )

Tr(ρ∨)
(
I M
ω

)
·2σ [I M

σ ]( f ]P]),

where

f ]P](m)= δ
1/2
P (m)

∫∫
U (F)×K ]

f ](k−1muk) du dk, m ∈ M](F).

Since τ = IndSG(π)

SM (σ )
(ρ), we have

Tr(τ∨)(I G
η )=


1

|X M(σ )|

∑
ξ∈X G(π)

Tr(ρ∨)((I G
ξ )
−1 I M

η I G
ξ ), if η∈ X M(σ ), I M

η 7→ I G
η ,

0, otherwise,

where I G
ξ ∈ SG(π) is any preimage of ξ ; cf. [Serre 1967, Proposition 20]. This

may be rewritten as

Tr(τ∨)(I G
η )=


|X G(π)|

|X M(σ )|
Tr(ρ∨)(I M

η ), if η ∈ X M(σ )∩ Z G(π), I M
η 7→ I G

η ,

0, otherwise.

We claim that 2π [I G
ω ]( f ])=2σ [I M

ω ]( f ]P]) if I M
σ 7→ I G

σ ∈ SG(π). First of all,
note that 2π [I G

ω ] is the normalized parabolic induction of 2σ [I M
ω ] in the setting

of ω-representations [Lemaire 2010, Sections 1.7 and 3.8]. Hence we have the
parabolic descent of ω-characters [Lemaire 2010, Théorème 3.8.2], namely,

2π [I G
ω ]( f )=2σ [I M

ω ]( fP,ω), f ∈ C∞c (G(F)),
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where

fP,ω(m)= δ
1/2
P (m)

∫∫
U (F)×K

ω(k) f (k−1muk) du dk, m ∈ M(F).

To prove the claim, let us sketch how to “restrict” the ω-character relation above to
G](F). There exists a compact open subgroup C ⊂ ZG(F) such that

(i) C ∩G](F)= {1},

(ii) C ⊂ K ,

(iii) ω and ωσ are trivial on C , and

(iv) the multiplication maps C ×G](F) ↪→ G(F) and C ×M](F) ↪→ M(F) are
submersive.

Define 1C to be the constant function 1 on C . Choose the unique Haar measure
on C such that the submersions above preserve measures locally. Given that
f ] ∈C∞c (G

](F)), we set f = vol(C)−11C⊗ f ] on C×G](F), and zero elsewhere.
For such f , by inspecting the proof of [Lemaire 2010, Proposition 1.8.1], we may
redefine fP,ω by taking the double integral of f (k−1muk) over U (F)×K ], so that
fP,ω = vol(C)−11C ⊗ f ]P] on C ×M](F) and zero elsewhere. Therefore

2π [I G
ω ]( f )=2π [I G

ω ]( f ]),

2σ [I M
σ ]( fP,ω)=2σ [I M

σ ]( f ]P]).

Hence our claim follows.
All in all, (15) becomes

2
π
]

1
( f ])=

1
|X M(σ )|

∑
ω∈X M (σ )∩Z G(π)

Tr(ρ∨)(I M
ω ) ·2σ [I

M
ω ]( f ]P]),

where I M
σ ∈ SM(σ ) is any preimage of ω and I M

σ 7→ I G
σ ∈ SG(π). In comparison

with (16), it suffices to show that 2σ [I M
ω ]( f ]P])= 0 if ω ∈ Z M(σ ) but ω /∈ Z G(π).

Indeed, for I ∈ SG(π), we have

2σ [I M
ω ]( f ]P])=2π [I

G
ω ]( f ])= TrS(I G

ω , f ])= TrS(I−1 I G
ω I, f ]),

since S is a representation of SG(π)×G](F). Since I is arbitrary and S|C××{1}= id,
we conclude that 2σ [I M

ω ]( f ]P]) 6= 0 only if ω ∈ Z G(π). �

4.2. Description of R-groups. Let w ∈W (M) with a chosen representative

w̃ ∈ G](F).
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Recall the operator rP(w̃, σ ) : I G
P (σ ) → I G

P (w̃σ ) defined in (5), which is the
composition of Rw−1 Pw|P(σ ) : I G

P (σ )→ I G
w−1 Pw|P(σ ) with the isomorphism

`(w̃) : I G
w−1 Pw(σ )→ I G

P (w̃σ ), ϕ( · ) 7→ ϕ(w̃−1
· ).

For η ∈ (G(F)/G](F))D , recall the isomorphism Aη defined as

ηI G
P (σ )→ I G

P (ησ ), ϕ( · ) 7→ η( · )ϕ( · ).

Note that the representations σ , ησ , w̃σ , and ηw̃σ share the same underlying
vector space Vσ . As usual, we will compose the operators above after appropriate
twists by η or w̃. For example, given η, η′, we may define AηAη′ , which is equal
to Aηη′ : ηη′ I G

P (σ )→ I G
P (ηη

′σ).

Proposition 4.2.1. Let

L(σ )⊂ (M(F)/M](F))D

be the subgroup defined in Definition 3.4.2. Upon identifying M(F)/M](F) and
G(F)/G](F), we have

L(σ )⊂ X G(π).

If σ ∈52,temp(M), equality holds.

Proof. Let η ∈ L(σ ). By definition, there exists w ∈W (M) with a representative
w̃ ∈ G](F) such that ησ ' w̃σ . Hence ηπ ' I G

P (ησ )' I G
P (w̃σ ). There is also an

isomorphism rP(w̃
−1, w̃σ ) : I G

P (w̃σ )−→
∼ I G

P (σ ). Hence ηπ ' π .
Assume σ ∈ 52,temp(M) and let η ∈ X G(π). Then I G

P (ησ ) ' I G
P (σ ). By

[Waldspurger 2003, Proposition III.4.1], there exists w ∈W (M) with wσ ' ησ . �

Henceforth we take w ∈ W σ . Take any η ∈ L(σ ) whose class modulo X M(σ )

equals 0(w) (see Lemma 3.4.3). Then η is of finite order by Proposition 4.2.1; in
particular, η is unitary. For any isomorphism

i : ησ −→∼ w̃σ,

we deduce an isomorphism

Ad(i) : SM(ησ )→ SM(w̃σ ), I 7→ i I i−1
=: Ad(i)I.

By the obvious identifications SM(σ )= SM(ησ )= SM(w̃σ ) (without using i),
one can view Ad(i) as an automorphism of SM(σ ). It leaves C× intact and covers
the identity map X M(ησ )−→∼ X M(w̃σ ), and hence induces a bijection

5−(SM(σ ))→5−(SM(σ )), ρ 7→ ρ ◦Ad(i).

We shall write
w̃ρ := ρ ◦Ad(i).
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The puzzling notation will be justified by Lemma 4.2.3.
Henceforth, we adopt the following convention: for I G

η ∈ SG(π), we regard
Ad(I G

η ) as an automorphism of SM(σ ) via the embedding SM(σ ) ↪→ SG(π) pro-
vided by Proposition 4.1.1.

Lemma 4.2.2. Let η, w̃, and i : ησ −→∼ w̃σ be as above. As automorphisms of
SM(σ ), we have

Ad(i)= Ad(I G
η )

for every I G
η ∈ SG(π) in the preimage of η.

Proof. Given η, the assertion is independent of the choice of I G
η . Let us consider

the specific choice as follows:

I G
η := rP(w̃

−1, w̃σ ) ◦ I G
P (i) ◦ Aη : ηI G

P (σ )→ I G
P (σ ).

By the definition of the embedding SM(σ ) ↪→ SG(π) and that of Aη, one
sees that Ad(Aη) induces the identity map SM(σ ) −→∼ SM(ησ ). Similarly, the
functorial properties of rP(w̃

−1, · ) imply that Ad(rP(w̃
−1, w̃σ )) induces the iden-

tity map SM(w̃σ ) −→∼ SM(σ ). One can readily check that Ad(I G
P (i)) induces

Ad(i) : SM(ησ )−→∼ SM(w̃σ ). Hence the assertion follows. �

Before stating the next result, recall that σ , w̃σ , and ησ share the same underlying
space Vσ .

Lemma 4.2.3. Let ρ ∈5−(SM(σ )) and σ ] ∈5σ . By identifying the groups SM(σ ),
SM(w̃σ ), and SM(ησ ), the following are equivalent:

(i) ρ ∈5−(SM(σ )) corresponds to σ ] ↪→ σ |M] .

(ii) ρ ∈5−(SM(w̃σ )) corresponds to w̃σ ] ↪→ w̃σ |M] .

(iii) w̃ρ ∈5−(SM(ησ )) corresponds to w̃σ ] ↪→ ησ |M] .

(iv) w̃ρ ∈5−(SM(σ )) corresponds to w̃σ ] ↪→ σ |M] .

Proof. Recall that ρ corresponds to σ ] ↪→ σ |M] means that ρ�σ ] ↪→S(σ ), where
S(σ ) is the SM(σ )×M](F)-representation on Vσ defined in Theorem 3.1.5.

The first two properties are equivalent by a transport of structure via Ad(w̃) :
M]
→M]. The last two properties are evidently equivalent. Finally, the equivalence

between the second and the third properties follows by pulling ρ back via Ad(i) :
SM(ησ )−→∼ SM(w̃σ ). �

Now, recall that Z M(σ ) is the projection to X M(σ ) of the center of SM(σ ).
Temporarily fix a preimage I G

η for every η ∈ X G(π) and define

(17) Z M(σ )⊥ := {η ∈ X G(π) : for all ω ∈ Z M(σ ), I G
η I G

ω = I G
ω I G

η } ⊃ X M(σ ).
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Proposition 4.2.4. Let σ , w, and η be as before. For any σ ] ∈5σ (respectively ρ ∈
5−(SM(σ ))), we have w̃σ ] ' σ ] (respectively w̃ρ ' ρ) if and only if η ∈ Z M(σ )⊥.

Proof. Let ρ ∈ 5−(SM(σ )) be the representation corresponding to σ ] ∈ 5σ by
Theorem 3.1.5. By Lemma 4.2.3, it suffices to show that w̃ρ ' ρ if and only if
η ∈ Z M(σ )

⊥.
The elements in 5−(SM(σ )) are described by a variant of the Stone–von Neu-

mann theorem for the central extension 1→C×→ SM(σ )→ X M(σ )→ 1. Namely,
consider the data (L , ρ0) where

• L is a maximal abelian subgroup of SM(σ );

• ρ0 is an irreducible representation of L such that ρ0(z)= z for all z ∈ C× ⊂ L .

Then ρ := IndSM (σ )
L (ρ0) is an element of5−(SM(σ )). Every ρ ∈5−(SM(σ )) arises

in this way. Moreover, the isomorphism class of ρ is determined by its central
character. These facts are standard consequences of Mackey’s theory. See [Kazhdan
and Patterson 1984, 0.3] and the remark after Proposition 4.1.2.

We have w̃ρ = ρ ◦Ad(I G
η ) by Lemma 4.2.2. To conclude the proof, it suffices to

show that Ad(I G
η ) fixes the central character of ρ if and only if η ∈ Z M(σ )⊥. This

is immediate. �

Corollary 4.2.5. Assume σ ∈ 52,temp(M) and σ ] ∈ 5σ . Then we have L(σ ]) =
Z M(σ )⊥, and the map 0 in Proposition 3.4.5 is an isomorphism

0 : Rσ ]→ Z M(σ )⊥/X M(σ ), wW 0
σ ]
7→ ηX M(σ )

where w ∈Wσ ] and η ∈ Z M(σ )⊥ satisfy the relation

wσ ' ησ.

Proof. This results immediately from the definition of L(σ ]). �

4.3. Cocycles.

Definition 4.3.1. Suppose for a moment that H is a finite group and N is a normal
subgroup of H . Let ρ be an irreducible representation of N and assume that
hρ := ρ ◦Ad(h)−1

' ρ for all h ∈ H . This is a necessary condition for extending
ρ to an irreducible representation of H , but not sufficient in general. Recall the
following construction of an obstruction cρ ∈ H 2(H/N ,C×) for extending ρ, where
C× is equipped with the trivial H/N -action. We can choose intertwining operators
ρ(h) ∈ IsomN (hρ, ρ) for each h ∈ H , such that

ρ(nh)= ρ(n)ρ(h), ρ(hn)= ρ(h)ρ(n)
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for every h ∈ H , n ∈ N . Note that either of the equations above implies the other.
There is a C×-valued 2-cocycle cρ characterized by

(18) ρ(h1h2)= cρ(h1, h2)ρ(h1)ρ(h2), h1, h2 ∈ H.

One readily checks that cρ factors through H/N×H/N , and thus defines a class
cρ ∈ H 2(H/N ,C×). This cohomology class only depends on ρ itself.

The formalism can also be generalized to the case where H, N are central
extensions of finite groups by C×, and ρ(z)= z · id for all z ∈ C×.

Let us return to the formalism of the previous subsection. In particular, we
assume P = MU ⊂ G and σ ∈52,temp(M) with the underlying vector space Vσ .
Set π := I G

P (σ ) as usual. For every η∈ Z M(σ )⊥, we fixw∈W (M), a representative
w̃ ∈ G](F), and an isomorphism

i : ησ −→∼ w̃σ.

Let ρ ∈ 5−(SM(σ )) be corresponding to σ ] ∈ 5σ . Proposition 4.2.4 implies
that w̃ρ ' ρ for every η as above. Equivalently, ρ ◦Ad((I G

η )
−1) ' ρ for every

I G
η ∈ SG(π) in the preimage of η by Lemma 4.2.2. We will use the shorthand

ηρ := ρ ◦Ad((I G
η )
−1).

As in Definition 4.3.1, one considers the problem of extending ρ to the preimage
of Z M(σ )⊥ in SG(π). Recall that Z M(σ )⊥/X M(σ )= Rσ ] by Corollary 4.2.5. The
goal of this subsection is to describe the obstruction class cρ ∈ H 2(Rσ ],C×) so
obtained.

Recall that in Theorem 3.1.5, we have defined an SM(σ )×M](F)-representation
S = S(σ ) on Vσ . Analogously, we define S(ησ ) and S(w̃σ ); all of them are
realized on Vσ . We fix an embedding ι : ρ � σ ] ↪→ S(σ ) of SM(σ )× M](F)-
representations. By Lemma 4.2.3, the same map gives ι : ρ� w̃σ ] ↪→S(w̃σ ) and
ι : ρ� σ ] ↪→S(ησ ) with appropriate equivariances.

Lemma 4.3.2. For η, w̃, and σ ] fixed as before, we define S′(ησ ) to be the
SM(ησ )×M](F)-representation on Vσ defined by

S′(ησ )(I, x)=S(ησ )(Ad(I G
η )
−1 I, x), I ∈ SM(ησ ), x ∈ M](F).

Then the map ι induces an embedding of SM(ησ )×M](F)-representations

ι : ηρ� σ ] ↪→S′(ησ ),

and there exists a unique equivariant isomorphism

α� σ ](w̃)−1
:
ηρ� σ ] −→∼ ρ� w̃σ ],
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for some α ∈ IsomSM (σ )(
ηρ, ρ) and σ ](w̃) ∈ IsomM](w̃σ ], σ ]), which makes the

following diagram commutative:

S′(ησ )
i
'

// S(w̃σ )

ηρ� σ ]

ι

OO

α�σ ](w̃)−1
// ρ� w̃σ ].

ι

OO

Observe that the pair (α, σ ](w̃)−1) is unique up to {(z, z−1) : z ∈ C×}.

Proof. The SM(ησ )-action on S′(ησ ) makes i equivariant. The leftmost vertical
arrow comes from the original embedding ι :ρ�σ ] ↪→S(ησ ) by an Ad(I G

η )
−1-twist.

The images of the vertical arrows are characterized as the σ ] (respectively w̃σ ])-
isotypic parts under the M](F)-action. Proposition 4.2.4 implies that σ ] ' w̃σ ].
Therefore there must exist an equivariant isomorphism ηρ � σ ] −→∼ ρ � w̃σ ]

that makes the diagram commute. Such an isomorphism must be of the form
α� σ ](w̃)−1. �

Lemma 4.3.3. Write rP :=rP(w̃, σ ) and rP] :=rP](w̃, σ
]). There is a commutative

diagram

I G
P (σ )

rP // I G
P (w̃σ )

ρ� I G]

P] (σ
])

id�rP]

//

I G]

P]
(ι)

OO

ρ� I G]

P] (w̃σ
])

I G]

P]
(ι)

OO

whose arrows are equivariant for the SM(w̃σ ) × G](F) and SM(σ ) × G](F)-
actions.

Proof. Without loss of generality, we may assume ρ = HomM](σ ], σ ), that is, the
multiplicity space. The embedding ι : ρ�σ ] ↪→ σ can be taken to be ε⊗v 7→ ε(v).
Then the commutativity of the diagram follows by applying Theorem 3.3.4 to
each ε ∈ HomM](σ ], σ ). The equivariance of the horizontal arrows results from
Theorem 3.3.4 and the functorial properties of rP(w̃, · ), rP](w̃, · ). �

Lemma 4.3.4. With the notations of Lemma 4.3.2, there is a commutative diagram

I G
P (ησ )

rP (w̃,σ )
−1
◦I G

P (i) // I G
P (σ )

ηρ� I G]

P] (σ
])
α�RP] (w̃,σ

])−1
//

I G]

P]
(ι)

OO

ρ� I G]

P] (σ
]),

I G]

P]
(ι)

OO
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where we set RP](w̃, σ
]) := σ ](w̃) ◦ rP](w̃, σ

]), by using the pair (α, σ ](w̃)−1) of
isomorphisms in Lemma 4.3.2.

Proof. This is the concatenation of the diagram in Lemma 4.3.3 and the one in
Lemma 4.3.2, after applying I G]

P] ( · ). �

Proposition 4.3.5. Let cρ be the obstruction of extending ρ to the preimage of
Z M(σ )⊥ in SG(π), and cσ ] the class attached to Rσ ] in (7). Then we have

cρ = c−1
σ ]

in H 2(Rσ ],C×).

Proof. Fix ι : ρ � σ ] ↪→ σ . Also fix a set of representatives w̃ ∈ G](F) for each
w∈ Rσ ] . For each η, together with the auxiliary choice i :ησ −→∼ w̃σ , the top row of
the diagram in Lemma 4.3.4 gives an operator I G

η ◦A−1
η : I

G
P (ησ )−→

∼ I G
P (σ ) for some

I G
η ∈ SG(π). The isomorphism Aη :ηI G

P (σ )−→
∼ I G

P (σ ) has no effect after restriction.
Therefore Lemma 4.3.4 asserts that I G

η is pulled-back to α� RP](w̃, σ
])−1 under

I G]

P] (ι).
Now we can forget i and vary I G

η in the preimage of η in SG(π), which is a
C×-torsor. Regard α = α(I G

η ) as a function of I G
η ; it is well defined once we have

pinned down the operator σ ](w̃) coupled with α.
Suppose that η is replaced by ηω, where ω ∈ X M(σ ); accordingly, I G

η is replaced
by I G

η I G
ω , where I M

ω ∈ SM(σ ) lies in the preimage of ω and I M
ω 7→ I G

ω . This does
not affect the chosen data w̃ and ι. On the other hand, the diagram in Lemma 4.3.4
says that α� RP](w̃, σ

])−1 is replaced by

α ◦ ρ(I M
ω )� RP](w̃, σ

])−1.

It follows that we can pin down the operators σ ](w̃), and introduce a well-defined
function

I G
η 7→ α(I G

η ) ∈ IsomSM (σ )(
ηρ, ρ),

for every I G
η in the preimage of η ∈ Z M(σ )⊥ in SG(π), such that

• I G
η is pulled-back to α(I G

η )� RP](w̃, σ
])−1 under I G]

P] (ι);

• α(I G
η I G

ω )= α(I
G
η )ρ(I

M
ω ) for every ω ∈ X M(σ ) and I M

ω in its preimage.

Such a family of intertwining operators meets the requirements of Definition 4.3.1.
Thus the obstruction can be accounted by the C×-valued 2-cocycle cρ given by

α(I G
ξ I G

η )= cρ(wξ , wη)α(I G
ξ )α(I

G
η ), ξ, η ∈ Z M(σ )⊥,

where wη ∈ Rσ ] denotes the element determined by η as in Corollary 4.2.5. The
same is true for wξ .
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On the other hand, writewη 7→ w̃η for the map that picks the chosen representative
for wη ∈ Rσ ] . Equation (7) defines a 2-cocycle cσ ] . For every ξ, η ∈ Z M(σ )⊥, we
obtain

RP](w̃ξη, σ
])= RP](w̃ηξ , σ

])= cσ ](wη, wξ )RP](w̃η, σ
])RP](w̃ξ , σ

]).

All in all, the pull-back of I G
ξ I G

η by I G]

P] (ι) equals

cρ(wξ , wη)cσ ](wη, wξ )
−1
· (the pull-back of I G

ξ ) ◦ (the pull-back of I G
η ).

Therefore cρ(wξ , wη)= c′
σ ]
(wξ , wη) := cσ ](wη, wξ ). It is routine to check that

c′
σ ]
: (Rσ ])2→ C× is also a 2-cocycle. Denote by c′

σ ]
the cohomology class of c′

σ ]
.

It remains to show that c′
σ ]
= c−1

σ ]
. We use the following observation: let A be a

finite abelian group acting trivially on C×; we claim that there is an injective group
homomorphism

comm : H 2(A,C×)→ Hom
( 2∧

A,C×
)
, c 7→ [x ∧ y 7→ c(y, x)c(x, y)−1

],

where c is any 2-cocycle representing the class c. Indeed, let

1→ C×→ Ã→ A→ 1

be the central extension corresponding to c. Then (x, y) 7→ c(y, x)c(x, y)−1 is just
the commutator pairing of this central extension. The injectivity results from the
elementary fact that such an extension splits if and only if Ã is commutative.

Apply this to A = Rσ ] . Since comm(c′
σ ]
)= comm(c−1

σ ]
), we deduce c′

σ ]
= c−1

σ ]
,

as asserted. �

5. The inner forms of SL(N)

5.1. The groups. Fix N ∈ Z≥1 and let G∗ := GLF (N ). Let A be a central simple
algebra over F of dimension N 2. There exist n ∈ Z≥1 and a central division algebra
D over F satisfying

n2
· dimF D = N 2,

such that A is isomorphic to EndD(Dn). The division F-algebra D is uniquely
determined by A. We put

Nrd := the reduced norm of A,

GLD(n) := A×,

SLD(n) := Ker(Nrd : A×→ Gm).

We can regard A× as a reductive F-group. It is well known that A 7→ A× induces
a bijection between the central simple F-algebras of dimension N 2 and the inner
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forms of G∗. Given A, or equivalently, given (n, D) as above, we shall always
write

G := GLD(n).

Under an inner twist ψ :G×F F −→∼ G∗×G F , the determinant map det :G∗→Gm

corresponds to Nrd : G→ Gm. Since the parametrization of the inner forms of an
F-group G∗ only depend on G∗AD, the map A 7→ SLD(n) establishes a bijection
between the central simple F-algebras of dimension N 2 and the inner forms of
SLN (F). We write

G]
:= SLD(n)= Gder.

Note that G(F)/G](F)= (G/G])(F)= F×, since H 1(F,G]) is trivial by the
Hasse principle.

As mentioned in Section 3.5, the inner twist ψ gives a correspondence between
Levi subgroups: the Levi subgroups of G is of the form

M =
r∏

i=1

GLD(ni ), n1+ · · ·+ nr = n,

and the corresponding Levi subgroup of G∗, well defined up to conjugacy, is simply

M∗ =
r∏

i=1

GLF (ni · dimF D).

The L-groups of G and G] are easily described. We have

Ĝ = Ĝ∗ = GL(N ,C),

Ĝ] = PGL(N ,C),

ĜSC = (Ĝ])SC = SL(N ,C),

ZĜSC
= Z

(Ĝ])SC
= µN (C) := {z ∈ C× : zN

= 1}.

These complex groups are endowed with the trivial Galois action, thus LG= Ĝ×WF

and LG]
= Ĝ]×WF . The inclusion G] ↪→G is dual to the quotient homomorphism

GL(N ,C)→ PGL(N ,C).
It is also possible to describe the characters χG = χG] in (13) explicitly. Observe

that 0F acts trivially on ZĜSC
, and one can identify the Pontryagin dual of ZĜSC

=

µN (C), denoted by Z D
ĜSC

, with Z/NZ: a class e ∈ Z/NZ corresponds to the
character z 7→ ze. For the inner form G = GLD(n) of G∗ = GLF (N ), we have

(19) χG ∈ Z D
ĜSC

corresponds to (n mod N ) ∈ Z/NZ.

Later on, the results of Section 4 will be applied to the tempered representations
of G(F). This is justified by the following general result.
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Theorem 5.1.1 [Sécherre 2009]. Let P = MU be a parabolic subgroup of G and
σ ∈5unit(M). Then I G

P (σ ) is irreducible. In particular, Hypothesis 4.0.2 is satisfied
by σ .

Note that the tempered case is already established in [Deligne et al. 1984].

5.2. Local Langlands correspondences. This subsection is a summary of [Hiraga
and Saito 2012, Chapter 11].

Local Langlands correspondence for GLD(n). Using the local Langlands corre-
spondence for G∗, we can define the notion of G∗-generic elements in 8(G): a
parameter φ ∈ 8(G) ⊂ 8(G∗) is called G∗-generic if it parametrizes a generic
representation of G∗(F). This defines a subset 8G∗-gen(G) of 8(G).

Theorem 5.2.1 [Hiraga and Saito 2012, Lemmas 11.1 and 11.2]. Let G =GLD(n)
and G∗ = GLF (N ) as in Section 5.1. There exists a subset 5G∗-gen(G) of 5(G)
satisfying

• 5G∗-gen(G)⊃5temp(G),

• 5G∗-gen(G) is stable under twists by (G(F)/G](F))D ,

and a canonically defined bijection between 5G∗-gen(G) and 8G∗-gen(G), denoted
by π ↔ φ, such that

5G∗-gen(G) oo
∼ // 8G∗-gen(G)

5temp(G) oo
∼ //

?�

OO

8bdd(G)
?�

OO

52,temp(G) oo
∼ //

?�

OO

82,bdd(G).
?�

OO

The correspondence satisfies the following compatibility properties.

(i) When G = G∗, the usual Langlands correspondence for GLF (N ) is recovered.

(ii) Given π↔ φ and a ∈ H 1
cont(WF , ZĜ), let η be the character of G(F) deduced

from a by local class field theory. Then we have ωπ ↔ aφ.

(iii) Given a Levi subgroup M =
∏

i∈I GLD(ni ) of G, let σ :=�i∈Iσi ∈5temp(M).
Let φM ∈8bdd(M) such that σ ↔ φM and let φ be the composition of φM with
some L-embedding L M ↪→ LG. Then, for any P ∈ P(M), we have

I G
P (σ )↔ φ.

Note that, in the last assertion, I G
P (σ ) is irreducible according to Theorem 5.1.1.

The definitions of 5G∗-gen(G) and π ↔ φ are based upon the local Langlands
correspondence for G∗ and the Jacquet–Langlands correspondence for essentially
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square-integrable representations. We refer the reader to [Hiraga and Saito 2012,
Section 11] for details; the compatibility properties are also implicit. Only the
tempered/bounded case of the theorem will be used in this article.

Local Langlands correspondence for SLD(n). Let G = GLD(n) and G]
= Gder =

SLD(n), so that the formalism in Section 3 is applicable. The idea is to define
the packets 5φ] via restriction, by combining the results in Sections 3.1 and 3.5.
Let 8G∗-gen(G]) be the set of φ] ∈ 8(G]) such that φ ∈ 8G∗-gen(G) for some
lifting φ of φ] (hence for all liftings, since twisting by characters does not affect
G∗-genericity). For any φ] ∈8G∗-gen(G]), define the corresponding packet by

5φ] :=5π , π ↔ φ for some lifting φ ∈8G∗-gen(G).

By Proposition 3.1.2 and Theorem 3.5.1, the definition of 5φ] does not depend on
the choice of lifting.

On the other hand, set

5G∗-gen(G])=
⊔
π

5π ,

where π ranges over the (G(F)/G](F))D-orbits in 5G∗-gen(G). Our version of the
local Langlands correspondence for G] is stated as follows.

Theorem 5.2.2 [Hiraga and Saito 2012, Chapter 12]. We have

5temp(G])⊂5G∗-gen(G]),

and there is a decomposition

(20) 5G∗-gen(G])=
⊔

φ]∈8G∗-gen(G])

5φ],

which restricts to
5temp(G])=

⊔
φ]∈8temp(G])

5φ],

52,temp(G])=
⊔

φ]∈82,temp(G])

5φ] .

Proof. The assertion follows from Proposition 3.1.3, Theorems 5.2.1 and 3.5.1, and
Proposition 3.1.2. �

Note that each packet 5φ] is finite. From the endoscopic point of view, in order
to justify the correspondence (20), one has to explicate

(i) the internal structure of the packets 5φ] ,

(ii) their relation to S-groups,

(iii) the endoscopic character identities for G].
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We will recall the definition of S-groups (or, more precisely, their component
groups, called S-groups) in the next subsection, then summarize its relation to the
internal structure of packets; this is one of the main results in [Hiraga and Saito
2012]. The character identities will not be used in this article; we refer the interested
reader to [Hiraga and Saito 2012, Theorem 12.7].

Normalizing factors. Choose a nontrivial additive character ψF : F→ C×. Now
we can exhibit a canonical family of normalizing factors for G and G] with respect
to ψF .

Let us begin with G. According to the construction in Remark 2.2.3, it suffices
to consider the case of inducing representations σ ∈52,temp(M), where M is a Levi
subgroup of G. When D = F , or equivalently, G = G∗ = GLF (N ), the formula
in Remark 2.2.2 furnishes a family of normalizing factors in the tempered case,
by the Langlands–Shahidi method. To pass to the nonquasisplit case, we use the
preservation of µ-functions by Jacquet–Langlands correspondence [Aubert and
Plymen 2005, Theorem 7.2] (up to a harmless constant depending only on D and n).

From Theorem 3.3.4, we deduce a canonical family of normalizing factors for
G], at least for the inducing representations σ ] whose central character is unitary.
In what follows, the normalized intertwining operators for G and G] are assumed
to be defined with respect to these factors.

5.3. Identification of S-groups. Generalities. To begin with, we summarize the
definition of the S-groups in the nonquasisplit case by following [Arthur 2006].

Definition 5.3.1. Let G be a connected reductive F-group. Choose a quasisplit
inner twist ψ : G×F F→ G∗×F F as well as an F-splitting for G∗(F) to define
the L-groups. Let φ ∈8(G∗). We set

Sφ,ad := ZĜ( Im(φ))/Z0F

Ĝ
−→∼ (ZĜ( Im(φ))ZĜ)/ZĜ ⊂ ĜAD,

Sφ,sc := the preimage of Sφ,ad in ĜSC,

Sφ := π0(Sφ,ad, 1),

S̃φ := π0(Sφ,sc, 1).

From the central extension 1→ ZĜSC
→ Sφ,sc→ Sφ,ad→ 1, we obtain another

central extension
1→ Z̃φ→ S̃φ→ Sφ→ 1,

where
Z̃φ := ZĜSC

/(ZĜSC
∩ S0

φ,sc)= Im[ZĜSC
→ S̃φ].

Remark 5.3.2. When G is an inner form of SL(N ), we recover the definition of
the modified S-groups in [Hiraga and Saito 2012].
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The relevance condition of L-parameters intervenes in the following result. Recall
that we have defined a character χG of Z0F

ĜSC
in (13).

Lemma 5.3.3 [Hiraga and Saito 2012, Lemma 9.1]. If φ ∈8(G), then

χG : Z
0F

ĜSC
→ C×

is trivial on ZĜSC
∩ S0

φ,sc.

By abuse of notations, the so-obtained character of Z0F

ĜSC
/(ZĜSC

∩ S0
φ,sc)⊂ Z̃φ is

still denoted by χG . Also note that χG depends only on GAD.

Proof. Let us reproduce the proof in [Hiraga and Saito 2012] here. Let M = Mφ be
a minimal Levi subgroup of G through which φ factorizes (we used the relevance
condition here). By the recollections in Section 3.5, Z0F ,0

M̂sc
is a maximal torus in

S0
φ,sc. Therefore

S0
φ,sc ∩ ZĜSC

= Z0F ,0
M̂sc
∩ Z0F

ĜSC
,

and the last group is contained in Ker(χG) by [Arthur 1999, Corollary 2.2]. �

Consider the familiar situation Gder ⊂ G]
⊂ G (cf. Section 3.5), so that we have

the 0F -equivariant central extension

1→ Ẑ ]→ Ĝ
pr
−→ Ĝ]→ 1.

Let φ ∈ 8(G) and φ] := pr ◦ φ ∈ 8(G]). The definitions above pertain to
(G], φ]) as well. Set

X G(φ) := {a ∈ H 1
cont(WF , Ẑ ]) : aφ ∼ φ}.

This is a finite abelian group (cf. the proof of Theorem 3.5.1).

Lemma 5.3.4. Let s ∈ Sφ],ad, regarded as an element of Ĝ]/Z0F

Ĝ]
. Then s determines

a class a ∈ H 1
cont(WF , Ẑ ]) characterized by

(21) s̃φ(w)s̃−1
= a(w)φ(w), w ∈WDF ,

where

• s̃ ∈ Ĝ is a lifting of s,

• a :WF → Ẑ ] is some 1-cocycle representing a, inflated to WDF .

This induces an exact sequence

Sφ→ Sφ]→ X G(φ)→ 1.
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Proof. Choose a lifting s̃ ∈ Ĝ. Since s centralizes φ], there exists a continuous
function a :WDF → Ẑ ] satisfying (21). It is straightforward to check that a is
inflated from a 1-cocycle WF→ Ẑ ]. The 1-cocycle a does depend on the choice of
s̃, but its class a ∈ H 1

cont(WF , Ẑ ]) is uniquely determined by s; it is also obvious
that s 7→ a is a homomorphism. Conversely, every s that satisfies (21) for some
s̃, a clearly belongs to Sφ],ad. Hence the image of s 7→ a equals X G(φ), by the very
definition of X G(φ).

If s is mapped to the trivial class in X G(φ), we may choose s̃ so that s̃φs̃−1
= φ;

therefore s comes from Sφ,ad, and vice versa. Hence we have an exact sequence of
locally compact groups

Sφ,ad→ Sφ],ad→ X G(φ)→ 1.

By a connectedness argument, we may pass from the S-groups to the S-groups
that give the asserted exact sequence. �

The case of the inner forms of SL(N ). Let us revert to the situation where

G = GLD(n),

G∗ = GLF (N ),

G]
= SLD(n),

χG : ZĜSC
= µN (C)→ C×.

It is well known that Sφ = {1} for every φ ∈ 8(G∗). Indeed, ZĜ( Im(φ)) is a
principal Zariski open subset in some linear subspace of MatN×N (C), and thus is
connected; so is its quotient by Z0F

Ĝ
= ZĜ = C×.

Let φ] ∈8(G]) with a lifting φ ∈8(G). Hence Lemma 5.3.4 yields a canonical
isomorphism

Sφ] −→
∼ X G(φ).

Assume henceforth that φ] ∈8G∗-gen(G]), so φ ∈8G∗-gen(G) as well. The local
Langlands correspondence for G (Theorem 5.2.1) is thus applicable. Since the
local Langlands correspondence is compatible with twisting by characters, we have
X G(φ)= X G(π), where π ↔ φ. Therefore we deduce the natural isomorphism

(22) Sφ] −→
∼ X G(π), where π ↔ φ, φ] = pr ◦φ.

Also observe that χG induces a character of Z̃φ] by Lemma 5.3.3, since 0F acts
trivially on ZĜSC

.

Theorem 5.3.5 [Hiraga and Saito 2012, Lemma 12.5]. Let φ] ∈ 8G∗-gen(G])

with a chosen lifting φ ∈ 8G∗-gen(G). Let π ∈ 5G∗-gen(G) such that π ↔ φ
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by Theorem 5.2.1. Then there exists a homomorphism

3 : S̃φ]→ SG(π)

such that the following diagram is commutative with exact rows:

1 // Z̃φ]

χG

��

// S̃φ]

3

��

// Sφ]

'

��

// 1

1 // C× // SG(π) // X G(π), // 1

where the rightmost vertical arrow is that of (22).
Moreover,3 is unique up to Hom(X G(π),C×), that is, up to the automorphisms

of the lower central extension, and upon identifying Sφ] and X G(π), this diagram
is a push-forward of central extensions by χG .

Note that the assertions about uniqueness and the push-forward are evident; the
upshot is the existence of 3.

Let φ], φ, π be as above. Put

5(S̃φ], χG) := {ρ ∈5(S̃φ]) : for all z ∈ Z̃φ], ρ(z)= χG(z) id}.

The homomorphism 3 in Theorem 5.3.5 induces a bijection

5(S̃φ], χG)−→
∼ 5−(SG(π)).

Recall that in the local Langlands correspondence for G] (Theorem 5.2.2), the
packet 5φ] attached to φ] is defined as 5π , the set of irreducible constituents of
π |G] . Combining Theorem 3.1.5 with Theorem 5.3.5, we arrive at the following
description of the packet 5φ] .

Corollary 5.3.6. Let φ], φ, π be as above. Let Hom(X G(π),C×) act on 5φ] via
the canonical isomorphisms 5φ] =5π =5−(SG(π)). Then there is a bijection

5(S̃φ], χG)−→
∼ 5φ],

which is canonical up to the Hom(X G(π),C×)-action on 5φ] .

When G is quasisplit, χG will be trivial and 5(S̃φ], χG)=5(Sφ]); the bijection
in Corollary 5.3.6 can then be normalized by choosing a Whittaker datum for G];
cf. [Hiraga and Saito 2012, Chapter 3]. In general, however, there is no reason to
expect a canonical choice of the bijection 5(S̃φ], χG)−→

∼ 5φ] .

5.4. Generalization. Consider the following abstract setting.

• Let M , M], M]

0 be connected reductive F-groups such that M has a split inner
form M∗, and

Mder ⊂ M]

0 ⊂ M]
⊂ M.
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• For π ∈5(M), let SM(π) and X M(π) be the groups defined in Section 3.1
relative to M], and denote by SM

0 (π), X M
0 (π) the groups defined relative to

M]

0 .

• Assume that there are subsets 5gen(M) and 8gen(M) of 5(M) and 8(M),
respectively, together with a “local Langlands correspondence” π ↔ φ be-
tween 5gen(M) and 8gen(M) that is compatible with twist by characters, as in
Theorem 5.2.1. We define 8gen(M]) (respectively 8gen(M

]

0)) to be the set of
L-parameters that lift to 5gen(M]) (respectively 5gen(M

]

0)) via Theorem 3.5.1.

• Assume that Sφ = {1} for every φ ∈8gen(M).

Let φ ∈ 8gen(M) and π ∈ 5gen(M) such that π ↔ φ. As before, we deduce
L-parameters φ] ∈8gen(M]) and φ]0 ∈8gen(M

]

0). First of all, let • be one of the
subscripts “ad” or “sc”. We have

Sφ],• ⊂ S
φ
]

0,•
and S0

φ],•
⊂ S0

φ
]

0,•
.

In view of the definitions in Section 5.3, we deduce natural isomorphisms µ, µ̃ that
fit into the following commutative diagram:

(23)

Sφ]
µ // S

φ
]

0

S̃φ]

OO

µ̃ // S̃
φ
]
0

OO

Z̃φ]

OO

µ̃ // //

χM   

Z̃
φ
]

0
.

OO

χM~~
C×

Secondly, we have X M(π) ⊂ X M
0 (π) as subgroups of M(F)D. Consequently,

SM(π) ⊂ SM
0 (π). Iterating the arguments for (22), we obtain the commutative

diagram

(24)

Sφ]
' //

� _

µ

��

X M(π)� _

��
S
φ
]

0

' // X M
0 (π).
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Theorem 5.4.1. Let φ, φ], φ]0, and π be as above. Assume that there exists a
homomorphism 30 : S̃φ]0

→ SM
0 (π) such that the following diagram is commutative

with exact rows:

(25)

1 // Z̃
φ
]

0

χM

��

// S̃
φ
]

0

30

��

// S
φ
]

0

'

��

// 1

1 // C× // SM
0 (π)

// X M
0 (π)

// 1.

Then, by setting 3 := 30 ◦ µ̃ : S̃φ] → SM
0 (π) (cf. (23)), the image of 3 lies in

SM(π) and the analogous diagram below is commutative:

(26)

1 // Z̃φ]

χM

��

// S̃φ]

3

��

// Sφ]

'

��

// 1

1 // C× // SM(π) // X M(π) // 1.

Consequently, there is a bijection

5(S̃φ], χG)−→
∼ 5φ],

which is canonical up to the Hom(X G(π),C×)-action on 5φ] .

Proof. Let s̃ ∈ S̃φ] , denote by s its image in Sφ] , and set s0 := µ(s) ∈ S
φ
]
0
. Let

η ∈ X M
0 (π) be the character coming from 3(s̃) :=30(µ̃(s̃)) ∈ SM

0 (π). Then, by
(25) and (23), η is the image of s0 under S

φ
]

0
−→∼ X M

0 (π); using (24), it is also the
image of s under Sφ] −→

∼ X M(π). If we can show 3(s̃) ∈ SM(π) for all s̃, the
rightmost square in (26) will commute. Since the square

SM(π)
� _

��

// // X M(π)
� _

��

SM
0 (π)

// // X M
0 (π)

is commutative and cartesian for trivial reasons, it follows that 3(s̃) ∈ SM(π).
Hence the image of 3 lies in SM(π). This also finishes the commutativity of the
rightmost square in (26).

Consider the leftmost square in (26). It follows from (23) that, for all z ∈ Z̃φ] ,
we have

3(z)=30(µ̃(z))= χM(µ̃(z))= χM(z).

Hence the leftmost square is commutative as well.
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The bijection 5(S̃φ], χG)−→
∼ 5φ] follows easily from the previous assertions,

as in the proof of Corollary 5.3.6. �

Remark 5.4.2. The conditions of Theorem 5.4.1 are satisfied if M is a Levi sub-
group of GLD(n), say of the form

M =
∏
i∈I

GLD(ni ),
∑
i∈I

ni = n

and
M]

0 := Mder =
∏
i∈I

SLD(ni ).

We simply set 5gen(M) :=5M∗-gen(M) and 8gen(M) :=8M∗-gen(M) by a straight-
forward generalization of the definitions in Section 5.2. The correspondence π↔ φ

follows from that in Theorem 5.2.1, applied to each index i ∈ I . The group M] can
be any intermediate group between M]

0 and M , including the important case where

M]
:= M ∩SLD(n)=

{
(xi )i∈I ∈ M :

∏
i∈I

Nrd(xi )= 1
}
.

Therefore, Theorem 5.3.5 and Corollary 5.3.6 can be generalized to the Levi
subgroups of SLD(n).

Indeed, it suffices to verify the commutativity of the diagram (25). Writing
π =�i∈Iπi and φ = (φi )i∈I , the results in Section 5.3 applied to each i ∈ I gives
a commutative diagram similar to (25), except that its bottom row is the central
extension

(27) 1→ (C×)I
→

∏
i∈I

SGLD(ni )(πi )→ X G
0 (π)→ 1

and χM is replaced by ∏
i∈I

χGLD(ni ) : Z̃φ]0
→ (C×)I .

To obtain the desired short exact sequence, it remains to take the push-forward of
(27) by the multiplication map (C×)I

→ C×.

6. The dual R-groups

6.1. A commutative diagram. As in Section 5.1, we take

G = GLD(n), G∗ = GLF (N ), G]
= SLD(n).

We also fix a Levi subgroup M of G and set M]
:= M ∩G].

To define the dual groups LG, L M , etc., we fix a quasisplit inner twist ψ :
G×F F−→∼ G∗×F F which restricts to a quasisplit inner twist M×F F−→∼ M∗×F F ,
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as well as an F-splitting for G∗ that is compatible with M∗. Therefore there is a
canonical L-embedding L M ↪→ LG. The same is true for LG] and L M].

As usual, the natural projections LG→ LG] and L M→ L M] are denoted by pr.
Put

AM̂] := Z M̂] = Z0F ,0
M̂]

↪→ Ĝ].

Consider φM ∈82,bdd(M). Let φ be its composition with L M ↪→ LG. Set

φ
]
M := pr ◦φM ∈82,bdd(M]) and φ] := pr ◦φ ∈8bdd(G]).

Every φ] ∈8bdd(G]) is obtained in this way (recall Theorem 3.5.1).
The construction of the dual R-group associated to φ], denoted by Rφ] , is given

as follows. Define

Nφ],ad := NS
φ],ad

(AM̂]),

Nφ] := π0(Nφ],ad, 1),

Wφ] :=W (Sφ],ad, AM̂]) ↪→W Ĝ(M̂),

W 0
φ]
:=W (S0

φ],ad, AM̂]) GWφ],

Rφ] :=Wφ]/W 0
φ]
.

The meaning of W ( · · · , · · · ) is as follows: for any pair of complex groups a ⊂ A,
the symbol W (A, a) denotes the group NA(a)/Z A(a). Note that W 0

φ]
is the Weyl

group associated to some root system, as S0
φ],ad is connected and reductive.

Since the centralizer of AM̂] in the connected reductive group S0
φ],ad is con-

nected, there exists a canonical injection W 0
φ]
↪→Nφ] . From the results recalled

in Section 3.5, the torus AM̂] is a maximal torus in S0
φ],ad. Using the conjugacy of

maximal tori, one sees that the inclusion map Nφ],ad ↪→ Sφ],ad induces a canonical
isomorphism Nφ]/W 0

φ]
−→∼ Sφ] .

On the other hand, we also have canonical injections

S
φ
]
M
↪→ Sφ],

S
φ
]
M
↪→Nφ] .

The first one follows from the fact that

Z0F

M̂]
= Z0F

Ĝ]
Z0F ,0

M̂]
;

see [Arthur 1999, Lemma 1.1]. The injectivity of the second map follows; moreover,
its image is characterized as the elements fixing AM̂] pointwise.

The relations among these groups are recapitulated in the following result.
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Proposition 6.1.1 [Arthur 1989b, Section 7]. The groups above fit into a commuta-
tive diagram

1

��

1

��

W 0
φ]

��

W 0
φ]

��
1 // S

φ
]
M

// Nφ]
//

��

Wφ]
//

��

1

1 // S
φ
]
M

// Sφ] //

��

Rφ] //

��

1

1 1

whose rows and columns are exact.

The arrow Sφ]→ Rφ] is uniquely determined by the other terms in this diagram;
cf. the proof of Lemma 6.2.1 below.

The same constructions can be applied to φ and φM . The corresponding objects
are denoted by Wφ , W 0

φ , etc.

Upon identifying W Ĝ(M̂) and W G(M), we can make Wφ] act on the tempered
L-packet 5φ] . For any σ ] ∈5φ] , define

Wφ],σ ] := StabW
φ]
(σ ]),

W 0
φ],σ ]
:= StabW 0

φ]
(σ ]),

Rφ],σ ] :=Wφ],σ ]/W 0
φ],σ ]

.

The last object Rφ],σ ] , viewed as a subgroup of Rφ] , is what we want to compare
with the Knapp–Stein R-group Rσ ] .

6.2. Identification of R-groups. Retain the notations of the previous subsection
and fix a parabolic subgroup P ∈ P(M). We shall always make the identifica-
tion W G(M) = W G]

(M]). The results in Section 4 are applicable to tempered
representations of M(F) by Theorem 5.1.1.

Henceforth, let σ ∈52,temp(M) (respectively π ∈5temp(G)) be the representa-
tions corresponding to φM (respectively φ) by Theorem 5.2.1. Then we have

π ' I G
P (σ ).
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Recall that we have defined canonical isomorphisms

Sφ] −→
∼ X G(π) and S

φ
]
M
−→∼ X M(σ )

in Section 5.3-5.4. By inspecting the construction in Lemma 5.3.4, we see that
these two isomorphisms are compatible with the embeddings S

φ
]
M
↪→ Sφ and

X M(σ ) ↪→ X G(σ ). Therefore we obtain γ : X G(π)/X M(σ )−→∼ Sφ]/Sφ]M
.

Lemma 6.2.1. Define an isomorphism

0̂−1
: X G(π)/X M(σ )

γ
−→ Sφ]/Sφ]M

−→∼ Wφ]/W 0
φ]
=: Rφ],

where the second arrow is given by Proposition 6.1.1. Then it is characterized by
the equation

ησ ' wσ

whenever
0̂−1(η mod X M(σ ))= w mod W 0

φ]
,

for all η ∈ X G(π) and w ∈Wφ] .

As the notation suggests, we set 0̂ to be the inverse of 0̂−1.

Proof. The equation ησ ' wσ clearly characterizes 0̂−1. Let η ∈ X G(π) and
a ∈ H 1

cont(WF , Ẑ ]) which corresponds to η, together with a chosen 1-cocycle a
in the cohomology class of a. Since L(σ ) = X G(π) by Proposition 4.2.1, there
exists w ∈W G(M) such that ησ 'wσ . On the dual side, it implies that there exists
t ∈ NĜ(M̂) representing w, such that

tφt−1
= aφ.

This implies that t mod ZĜ belongs to Sφ],ad, and its class [t] in Sφ] corresponds
to η (recall the construction in Lemma 5.3.4).

On the other hand, we have t ∈ Nφ],ad and its class [t] in Nφ] is mapped to [t]
under the arrow Nφ] � Sφ] in Proposition 6.1.1. One can also apply the arrow
Nφ] � Wφ] to [t]; since Wφ] is identified as a subgroup of W G(M), the image is
simply w.

Upon some contemplation of the diagram in Proposition 6.1.1, one can see that
the image of [t] under Sφ]→ Rφ] is just w modulo W 0

φ]
, completing the proof. �

Recall that we have defined the group W σ ⊂W G(M). In view of Lemma 3.4.3
and Proposition 4.2.1, we have a canonical isomorphism

0 :W σ/Wσ −→
∼ X G(π)/X M(σ ).

This is to be compared with 0̂ :Wφ]/W 0
φ]
−→∼ X G(π)/X M(σ ).
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Proposition 6.2.2. We have

(i) W σ =Wφ] ,

(ii) Wσ =W 0
φ]

,

(iii) 0 = 0̂.

In particular, Rφ] ' X G(π)/X M(σ ).

Proof. The first assertion follows from the definition of W σ and Theorem 3.5.1.
Hence 0 and 0̂ can be regarded as two surjective homomorphisms from Wφ]

onto X G(π)/X M(σ ). However, they admit the same characterization (of the form
ησ ' wσ ) by Lemmas 6.2.1 and 3.4.3, and hence are equal. This proves the
remaining two assertions. �

Proposition 6.2.3. For all σ ] ∈5φ] , we have that

(i) Wσ ] =Wφ],σ ] ,

(ii) W 0
σ ]
=W 0

φ],σ ]
,

(iii) the restriction of 0̂ to Wφ],σ ]/W 0
φ],σ ]

induces an isomorphism

Wφ],σ ]/W 0
φ],σ ]
−→∼ Z M(σ )⊥/X M(σ ).

In particular, Rφ],σ ] = Rσ ] , and the isomorphisms 0, 0̂ from these R-groups
onto Z M(σ )⊥/X M(σ ) coincide (recall Proposition 3.4.5 and Corollary 4.2.5).

Remainder: the group Z M(σ )⊥ above is defined in (17).

Proof. Our proof is based on the previous result. The first assertion follows
immediately from the disjointness of tempered L-packets. By Lemma 3.4.1 and
the fact that Wσ =W 0

σ , we have

W 0
φ],σ ]
=W 0

φ]
∩Wσ ] =Wσ ∩Wφ]

=W 0
σ ]
∩Wσ ] =W 0

σ ]
.

The second assertion follows and the third assertion is then immediate from
Proposition 4.2.4. �

Note that the proof for the isomorphism 0̂ : Rφ],σ ] −→∼ Z M(σ )⊥/X M(σ ) is
independent of the Knapp–Stein theory.

The behavior of the local Langlands correspondence (Theorem 5.2.2) for G] and
its Levi subgroups can now be summarized as follows.

Theorem 6.2.4. Let G,G] and P = MU , P] = M]U be as before. For φ]M in
8bdd(M]), let φ] ∈8bdd(G]) be the composition of φ]M with L M] ↪→ LG].
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(i) For every ρ ∈5(S̃
φ
]
M
, χM), parametrizing an irreducible representation σ ] ∈

5
φ
]
M

, the map

I G]

P] (σ
]),

regarded as a virtual character of G](F), corresponds to that of Ind
S̃
φ]

S̃
φ
]
M

(ρ).

(ii) For any σ ] as above, I G]

P] (σ
]) is irreducible if and only if Z M(σ )⊥ = X M(σ )

for some (equivalently, for any) σ ∈5temp(M) such that σ ] ↪→ σ |M] .

(iii) If φ]M ∈82,bdd(M]), we have natural isomorphisms

Rφ] ' X G(π)/X M(σ ),

Rφ],σ ] ' Rσ ] ' Z M(σ )⊥/X M(σ ),

where we set π := I G
P (σ ) ∈5temp(G), for any choice of σ ∈52,temp(M) such

that σ ] ↪→ σ |M] .

(iv) For φ]M , σ ], and ρ as above, the class cσ ] ∈ H 2(Rσ ],C×) of (7) corresponds
to c−1

ρ , where cρ ∈ H 2(Rφ],σ ],C×) is the obstruction for extending ρ to a
representation of the preimage in S̃φ] of Rφ],σ ] (see Definition 4.3.1).

If G] is quasisplit, Z M(σ )⊥ = X G(π) and R̃σ ]→ Rσ ] splits.

As mentioned in the Introduction, this settles Arthur’s conjectures on R-groups
for G].

Proof. The first part is nothing but a special case of Proposition 4.1.2. The second
part then results from the proof of Proposition 4.2.4; the independence of the choice
of σ is clear. The third part results from Propositions 6.2.2 and 6.2.3. The fourth
part is the combination of Proposition 4.3.5 and Theorem 5.4.1.

Finally, SG(π) is commutative when G] is quasisplit, as χG = 1. Hence we have
Z M(σ )⊥ = X G(π) and ρ can always be extended in that case. �

Remark 6.2.5. The decomposition of I G]

P] (σ
]) depends on φ]M , but not on the

element σ ]. This is not expected to hold for other groups.

Remark 6.2.6. We have limited ourselves to the tempered representations. How-
ever, if the local Langlands correspondence (Theorem 5.2.2) and Theorem 5.3.5 can
be extended to Arthur parameters ψ] :WDF × SU(2)→ LG] (see [Arthur 1989b,
Section 6]), our results should be applicable to Arthur packets 5ψ] as well, except
the part concerning the Knapp–Stein R-groups Rσ ] . Note that the crucial lifting
Theorem 3.5.1 also holds for Arthur parameters; see [Labesse 1985, Remarque 8.2].
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6.3. Examples. The next example on R-groups will be constructed using Steinberg
representations, whose definitions are reviewed below.

Definition 6.3.1. For the moment, we assume G to be any connected reductive
F-group. Fix a minimal parabolic subgroup P0 of G. The Steinberg representation
StG of G is the virtual character of G(F) given by

StG :=
∑

P⊃P0
P=MU

(−1)dim aG
M I G

P (δ
−1/2
P 1M),

where the sum ranges over the parabolic subgroups P containing P0 and 1M denotes
the trivial representation of M(F).

The basic fact [Casselman 1973] is that StG comes from a smooth irreducible
representation in52,temp(G), which we denote by the same symbol StG . It is clearly
independent of the choice of P0.

Lemma 6.3.2. For G as in Definition 6.3.1 and a subgroup G] satisfying

Gder ⊂ G]
⊂ G,

we have
StG |G] ' StG] .

In particular, the group X G(StG) defined in Section 3.1 is trivial.

Proof. Recall the bijection P 7→ P] := P ∩G] between the parabolic subgroups
of G and G]. Since (1L)|L] = 1L] for any Levi subgroup L of G, the first isomor-
phism follows by comparing the formulas defining StG and StG] , together with
Lemma 3.2.1. Hence the restriction of StG to G] is irreducible. It follows from
Theorem 3.1.5 that X G(StG)= {1}. �

Let us revert to the setting G = GLD(n) and G]
= SLD(n).

Example 6.3.3. We now set out to construct an example in which R̃σ ]→ Rσ ] does
not split for every σ ] ↪→ σ |M .

First of all, there exists GLD(m), for some choice of D,m, and a representation
τ ∈52,temp(GLD(m)) such that SGLD(m)(σ ) is noncommutative. Indeed, for m = 1
and D equal to the quaternion algebra over F , Arthur exhibits [2006, Page 215] an
L-parameter φτ ∈82,temp(D×) such that

• S̃
φ
]
τ

is isomorphic to the quaternion group of order 8;

• Z̃φτ corresponds to {±1}.

In fact, φτ factors through a homomorphism Gal(K/F)→ PGL(2,C), where K is
a biquadratic extension of F , whose image is generated by the elements

[1
0

0
−1

]
and[ 0

1
1
0

]
in PGL(2,C).
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Since χD× is injective on Z̃φτ by (19), Theorem 5.3.5 entails that SD×(τ ) is
noncommutative.

Take η, ω ∈ XGLD(m)(τ ) so that their preimages in SGLD(m)(τ ) do not commute.
Let c (respectively d) be the order of η (respectively ω). Put St := StGLD(m) and
take

M := GLD(m)×
∏

1≤i≤c
1≤ j≤d

GLD(m),

G := GLD(m(cd + 1)),

σ := τ � �
1≤i≤c
1≤ j≤d

ηi−1ω j−1St,

π := I G
P (σ ) for some P ∈ P(M).

Here X M(σ ) is defined relatively to M]
:=G]

∩M where G]
= SLD(m(cd+1)).

The presence of St forces X M(σ ) to be trivial, by Lemma 6.3.2. Hence σ ] := σ |M]

is irreducible, and it is parametrized by the 1-dimensional character χM : Z̃φ]M
→C×.

According to Theorem 6.2.4, the central extension R̃σ ] � Rσ ] splits if and only if
ρ can be extended to S̃φ] . This is the case if and only if SG(π)� X G(π) splits,
by Theorem 5.3.5. Hence it suffices to show the noncommutativity of SG(π).

Put L := GLD(m)× GLD(mcd) ∈ LG(M) and set ν := I L
P∩L(σ ). We claim

η, ω ∈ SL(ν). Indeed, the GLD(m)-component of L does not cause any problem.
As for the GLD(mcd)-component, take representatives w̃η, w̃η in SLD(mcd) of the
cyclic permutations

wη : 1→ · · · → c→ 1,

wω : 1→ · · · → d→ 1

of the indexes i and j , respectively. Then the intertwining operators Jη, Jω are
given by the operators in (5) using w̃η, w̃ω. Furthermore, Jη and Jω commute with
each other; this follows from (6) and the obvious fact that w̃η and w̃ω can be chosen
to commute.

From our choice of η, ω, it follows that the preimages of η, ω in SL(ν) do not
commute. Since SL(ν) ↪→ SG(π) by Proposition 4.1.1, SG(π) is noncommutative,
as required.

Example 6.3.4. Now we set out to show that the inclusion Rφ],σ ] ⊂ Rφ] is proper
in general. By Theorem 6.2.4 and the notations therein, it amounts to showing that
Z M(σ )⊥ ( X G(π) in general.

As in the previous example, we take some m ≥ 1, a central division F-algebra
D, and τ ∈ 52,temp(GLD(m)) such that XGLD(m)(τ ) contains η, ω with noncom-
muting preimages in SGLD(m)(σ ). Take another τ ′ ∈ 52,temp(GLD(m)) such that
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XGLD(m)(τ ′)= 〈η〉. Denote by d the order of ω. We take

M := GLD(m)×
∏

1≤ j≤d
GLD(m),

G := GLD(m(d + 1)),

σ := τ � �
1≤ j≤d

ω j−1τ ′,

π := I G
P (σ ) for some P ∈ P(M).

Therefore X M(σ )=〈η〉 (defined relative to M]
=M∩G] with G]

:=SLD(m(d+1))
as before), and SM(σ ) is commutative. In particular Z M(σ )= X M(σ )= 〈η〉.

On the other hand, a variant of the arguments in the previous example show that
ω, η ∈ X G(π) with noncommuting preimages in SG(π). Hence ω ∈ X G(π) and
ω /∈ Z M(σ )⊥, as required.

Note that such τ , τ ′ do exist when D is the quaternion algebra over F and m = 1;
in that case η, ω are identified with quadratic characters of F×. Indeed, a candidate
of τ is given in the previous example. On the other hand, to construct τ ′ for a given
η, we are reduced to constructing τ ′′ ∈52,temp(GLF (2)) with XGLF (2)(τ ′′)= {1, η}
and then taking τ to be the Jacquet–Langlands transfer of τ ′′.

To finish the construction, let E be the quadratic extension of F determined by
η and let θ : E×→ C× be a continuous character. Set τ ′′ := IndE/F (θ) (the local
automorphic induction; cf. [Jacquet and Langlands 1970, Theorem 4.6]). Then
ητ ′′ = τ ′′. From [Labesse and Langlands 1979, Pages 738–739], one sees that τ ′′

is cuspidal and |XGLF (2)(τ ′′)| = 2 for general θ , which suffices to conclude.
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AUTOMORPHISMS AND QUOTIENTS OF
QUATERNIONIC FAKE QUADRICS

AMIR DŽAMBIĆ AND XAVIER ROULLEAU

A Q-homology quadric is a normal projective algebraic surface with the
same Betti numbers as the smooth quadric in P3. A smooth Q-homology
quadric is either rational or of general type with vanishing geometric genus.
Smooth minimal Q-homology quadrics of general type are called fake quad-
rics. Here we study quaternionic fake quadrics, that is, fake quadrics whose
fundamental group is an irreducible lattice in PSL2(R)× PSL2(R) derived
from a division quaternion algebra over a real number field. We provide
examples of quaternionic fake quadrics X with a nontrivial automorphism
group G and compute the invariants of the quotient X/G and of its mini-
mal desingularization Z. In this way we provide examples of singular Q-
homology quadrics and minimal surfaces Z of general type with q = pg = 0
and K 2= 4 or 2 which contain the maximal number of disjoint (−2)-curves.
Conversely, we also show that if a smooth minimal surface of general type
has the same invariant as Z and same number of (−2)-curves, then we can
construct geometrically a surface of general type with c2

1 = 8, c2 = 4.

1. Introduction

In this paper we will be interested in Q-homology quadric surfaces, which are
normal projective algebraic surfaces with the same Betti numbers as the quadric
surface in P3, that is, b1 = 0 and b2 = 2. A smooth Q-homology quadric S has the
following numerical invariants: pg(S)= q(S)= 0, e(S)= c2(S)= 4, and c2

1(S)= 8.
By the classification theory of algebraic surfaces, such S is either a Hirzebruch
surface6n (with60=P1

×P1) or S is of general type. The latter S is either minimal
or has at most one exceptional curve. Blowing down this (−1)-curve we obtain a
fake projective plane, that is, a smooth minimal surface of general type with the
same Betti numbers as the projective plane P2, being an example of a Q-homology
projective plane. By the analogy with fake projective planes, we define a fake
quadric to be a minimal smooth Q-homology quadric of general type (see [Barth et al.
2004, p. 231; Hirzebruch 1987, p. 780; Iskovskikh and Shafarevich 1989, p. 195]).
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All known fake quadrics have H×H, the product of two copies of the complex
upper half plane, as the universal covering. Hence, such a fake quadric X is of the
form X = 0\H×H, where 0 is a torsion-free and cocompact discrete subgroup in
Aut(H×H), the group of holomorphic automorphisms of H×H. Essentially, we
distinguish between two classes of such quotients according to the structure of 0.

One class of fake quadrics consists of surfaces 0\H×H with the property that
the group 0 is reducible. By reducible we mean that there exists a subgroup of
finite index 0′ = 01×02 of 0 such that the group 0i acts on H and Ci =H/0i is a
smooth algebraic curve. This case is now well understood and the full classification
of these fake quadrics, named also fake quadrics isogenous to a higher product, has
been achieved by Bauer, Catanese and Grunewald in [Bauer et al. 2008]. In practice,
this classification and construction is done geometrically by classifying triples
(C1,C2,G) of two smooth curves Ci of general type and a group G, such that G
acts faithfully and freely on the surface C1×C2 and the quotient (C1×C2)/G has
the asked invariants.

In this paper we will focus on fake quadrics of the other class, which we call
quaternionic fake quadrics. These fake quadrics are Shimura surfaces, that is,
quotients of H×H by cocompact irreducible arithmetic lattices 0 in Aut(H)×
Aut(H), defined by an indefinite quaternion algebra over a totally real number field.
Within the general framework of Prasad and Yeung on fake compact symmetric
Hermitian spaces the quaternionic fake quadrics belong to the class of so-called
arithmetic fake A1; see [Prasad and Yeung 2012].

Using the previous work of Kuga, the first quaternionic fake quadrics have been
constructed in [Shavel 1978]. We know that these surfaces are rigid and thus that
there are only a finite number of them, but at the moment we do not have a complete
list of all these surfaces. We have a list of commensurability classes of fake quadrics
defined by quaternion algebras over quadratic fields (see [Džambić 2013]).

The situation for quaternionic fake quadrics is very similar to the case of fake
projective planes. By the theorem of Klingler (and also Yeung), all fake projective
planes are quotients of the 2-dimensional complex unit ball B2 by cocompact
arithmetic lattices 0 ⊂ PU(2, 1). This provides an arithmetic construction of
these surfaces, but it is generally not easy to handle and construct these sur-
faces geometrically, for instance, as a quotient or ramified cover of some known
surfaces.

In order to remedy this situation, Keum [2012; 2008; 2006] studied quotients
of fake projective planes by groups of automorphisms. In this way, he obtained
surfaces of general type with geometric genus pg = 0 and was able to rebuild a
fake projective plane by only knowing the properties of the quotient surface.

The aim of this paper is to study automorphisms of quaternionic fake quadrics
and the quotients of these surfaces by groups of automorphisms. Let X = 0\H×H
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be a Shimura surface. We say that a curve C ↪→ X is a Shimura curve if it is a
totally geodesic submanifold of X .

The first main result we obtain is the following:

Theorem A. An automorphism of a smooth Shimura surface X = 0\H×H has
only finitely many fixed points or it is an involution whose fixed point set is a disjoint
union of smooth Shimura curves.

An automorphism of a quaternionic fake quadric X has only finitely many fixed
points. There exist quaternionic fake quadrics X with automorphism group isomor-
phic to

Z/2Z, (Z/2Z)2, D4, D6, D8, or D10,

where Dn is the dihedral group with order 2n.

Let us remark that the knowledge of surfaces of general type with pg = 0
and a large automorphism group can be interesting to check whether the Bloch
conjecture holds (see, for example, [Inose and Mizukami 1979]). The computations
in [Džambić 2013] lead us to the conjecture that the order of the automorphism
group of a quaternionic fake quadric is always less or equal 24 (see Section 4).

The second aim of this paper is to study the minimal desingularization of the
quotient of a quaternionic fake quadric by a group of automorphisms, in order to
obtain new surfaces with pg = 0.

Theorem B. Let X be a quaternionic fake quadric and G a finite group of auto-
morphisms of X. The minimal desingularization Z of the quotient X/G has the
following numerical invariants:

G c2
1(Z) c2(Z) Singularities on X/G Minimal κ(Z)

Z/2Z 4 8 4A1 yes 2
Z/3Z 2 10 2A3,1+ 2A2 ? 2
Z/6Z −4 16 2A6,1+ 2A5 no ?
Z/8Z −2 14 A8,3+ A8,5 no ?

Z/10Z −12 24 2A10,1+ 2A9 no ?
(Z/2Z)2 2 10 6A1 yes 2

D4 0 12 4A1+ A4,3+ A4,1 no ≥ 1
D8 −1 13 4A1+ A8,3+ A8,5 no ?

Here, κ indicates the Kodaira dimension of the surface Z.

We obtain also results and restrictions for the groups Z/4Z, Z/5Z and D3. We
note that the surfaces of general type we obtain have vanishing geometric genus
and could be therefore interesting from the point of view of the classification of
surfaces with pg = 0. We intend to study these surfaces more closely, regarding,
for instance, the fundamental groups in a future paper.
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A curve C on a surface is called nodal if C ' P1 and C2
=−2. A nodal curve

is the resolution of a nodal singularity. The surfaces Z we obtain as the quotient of
a fake quadric by an automorphism group (Z/2Z)n, n ∈ {1, 2} have the maximum
number of nodal curves (the so-called Miyaoka bound [1984]). If minimal, the
surfaces obtained by taking a quotient by the groups Z/3Z and D3 have also the
maximum number of quotient singularities. Similarly to Keum’s construction of
fake projective planes, we can reverse the construction.

Proposition C. Let Z be a smooth minimal surface of general type with q = pg = 0.

(a) Suppose that c2
1 = 4, 2, or 1, Pic(Z) has no 2-torsion, and that there is a

birational map Z → Y onto a surface containing 8− c2
1 nodal singularities

A1. There exists a smooth minimal surface of general type S with invariants
c2

1 = 2c2 = 8 and a (Z/2Z)m-cover S→ Y ramified over the nodes, with m
such that 2m

= 8/c2
1.

(b) Suppose that c2
1= 2, Pic(Z) has no 3-torsion, and that there is a birational map

Z → Y onto a surface with 2A3,1+ 2A2 singularities. There exist a smooth
surface S with invariants c2

1 = 2c2 = 8 and a (Z/3Z)-cover Z→ Y ramified
over the singularities of Y .

The proof of part (a) of this proposition uses mainly the results of Dolgachev,
Mendes Lopes, and Pardini [Dolgachev et al. 2002] and illustrates their theory. The
proof of part (b) is more original because it mixes two types of singularities.

The paper is structured as follows: We begin recalling the known facts on
quotients of surfaces (Section 2) and on quaternionic fake quadrics (Section 3).
In Section 4, we provide examples of fake quadrics having a large group of au-
tomorphisms, we then compute the quotients surfaces (Section 5) and reverse
the construction in the opposite direction: starting with a surface with the same
invariants as the quotient, we construct a surface with c2

1 = 2c2 = 8 (Section 6).

2. Generalities on quotients of a surface

In this section we recall results from the theory of quotient surface singularities and
their resolution. The main reference for these topics is [Barth et al. 2004]; see also
[Roulleau 2012].

Let S be a smooth algebraic surface and let G be a group of automorphisms
acting on S. We denote by S/G the quotient surface and by π : Z → S/G the
minimal desingularization map. If G = 〈σ 〉 is cyclic, we will often write S/σ to
denote the quotient S/〈σ 〉.

Proposition 2.4 (topological Lefschetz formula). Let σ be an automorphism acting
on S and Sσ the fixed point set of σ . We have
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e(Sσ )=
j=4∑
j=0

(−1) j Tr(σ |H i (S,Z)mt),

where H i (S,Z)mt is the group H i (S,Z) modulo torsion.

Note that for a fake quadric X we have q = pg = 0; thus

H 1(X,Z)mt = {0}, H 2(X,Z)⊗C= H 1(X, �X ).

Corollary 2.5. Let X be a fake quadric and σ an automorphism of order n > 1
acting on G. We have e(Xσ ) = 2 or 4. If σ = τ 2 for an automorphism τ (for
example, if n is prime to 2), we have e(Xσ )= 4.

Proof. Since X is a fake quadric, the space H 1(X, �X ) is 2-dimensional and is
generated by the classes of 2-curves in the Néron–Severi group. As an automorphism
preserves the canonical divisor, the invariant subspace of H 1(X, �X ) is at least
one-dimensional. Therefore the trace of σ on H 1(X, �X ) is 2 or 0. If we suppose
that this action is not trivial, then 2 divides the order of σ , moreover we see that
the action of σ 2 is always trivial. �

Let ξ be a primitive n-th root of unity. Let us recall that for 1 ≤ q ≤ n − 1
coprime to n, the quotient of C2 by the action of

(x, y)→ (ξ x, ξq y)

has a unique singularity, called an An,q singularity. For n,m > 0 two numbers, we
write [n,m] for n− 1/m. The An,q singularity is resolved by a Hirzebruch–Jung
string (see [Barth et al. 2004]), that is, a chain of smooth rational curves C1, . . . ,Ck

such that Ci intersects Ci±1 transversally in one point for 2≤ i ≤ k−1 and C2
i =−ni

with integers ni ≥ 2 determined by the relation

n
q
= [n1, [n2, . . . , [nk−1, nk] . . . ]].

As is conventional, we denote An,n−1 by An−1.
Let S be a surface with pg = q = 0 and let σ be an automorphism of order n ≥ 2

such that the fixed points of the σ k, k = 1, . . . , n− 1 are isolated.

Proposition 2.6 (holomorphic Lefschetz fixed point formula [Atiyah and Singer
1968, p. 567]). Let Sσ be the fixed point set of σ . Then

1=
∑
s∈Sσ

1
det(1− dσ |TS,s)

,

where dσs |TS,s denotes the action of σ on the tangent space TS,s .
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Suppose moreover that the automorphism σ has prime order p. Let ξ be a
primitive p-th root of unity. Let ri be the number of isolated fixed points of σ
whose image in S/σ are Ap,i singularities.

Proposition 2.7 (Zhang’s formula [2001, Lemma 1.6]). We have

p−1∑
i=1

ri ai (p)= 1

where

ai (p)=
1

p− 1

p−1∑
j=1

1
(1− ξ j )(1− ξ i j )

.

In particular, we have

a1(p)= 1
12(5− p), a2(p)= 1

24(11− p), a3(5)= 1
4 , a4(5)= 1

2 .

Let 1 ≤ i < p and 1 ≤ k < p be such that ik ≡ 1 mod p. As Ap,i = Ap,k ,
the notations for ri and rk in Zhang’s formula can be confusing. However, as
ai (p)= ak(p), there should be no trouble in taking the convention that ri + rk is
the total number of Ap,i = Ap,k singularities, rather that choosing a representative
i or k for every such pair (i, k).

Let us recall that an automorphism of a vector space is called a reflection if all
its eigenvalues but one are equal to 1. Let S be a surface and G an automorphism
group acting on S. Suppose that for every automorphism of G the fixed point set is
finite. Let s be a fixed point of G; recall (see [Barth et al. 2004]):

Lemma 2.8. The action of the group G on the tangent space TS,s is faithful and
contains no reflections.

In particular, if G is cyclic of order n, the singularity type of the image of the
fixed point s in the quotient S/G is always An,q with q prime to n.

Lemma 2.9. The Euler number of S/G is given by the formula

e(S/G)=
1
|G|

(e(S)+
∑
n≥2

(n− 1)e(Sn)),

where Sn =
{
s ∈ S

∣∣ |Stab(G, s)| = n
}
. The Euler number of the minimal resolution

Z is the sum of e(S/G) and the number of irreducible components of the exceptional
curves of the resolution π : Z→ S/G.

Let C1, . . . ,Ck be the irreducible components of the one dimensional fibers of
π : Z → S/G. We have the relations K Z = π

∗KS/G −
∑i=k

i=1 ai Ci , for rational
numbers ai such that K Z Ck =−2−C2

k and Ckπ
∗KS/G = 0. Moreover, we have the
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equality K 2
S/G=K 2

S/|G|, where |G| is the order of G. As KS is ample, the canonical
Q-divisor KS/G is ample and π∗KS/G is nef. We remark also that K 2

Z ≤ K 2
S/G .

Recall that the Kähler lemma implies that for a dominant rational map between
varieties, the pull back map among the spaces of sections of sheaves of holomorphic
forms are injective, therefore we obtain (see also [Roulleau 2012] for a proof in the
case of surfaces):

Lemma 2.10. Let S be a surface with q = pg = 0. The minimal resolution Z of the
quotient of S by a group G has also q = pg = 0.

Suppose that S is moreover minimal of general type and the fixed points of
automorphisms in G are isolated.

Lemma 2.11. If K 2
Z = 0, the surface Z has Kodaira dimension κ ≥ 1. If K 2

Z > 0,
the surface Z has Kodaira dimension κ = 2.

Proof. (We follow the ideas from [Keum 2008].) The quotient surface has q= pg=0
and thus χ(OZ )= 1. Let m ≥ 1 be an integer. Then

−mK Zπ
∗KS/G =−mK 2

S/G =−
8
|G|

m < 0;

therefore H 0(Z ,−mK Z ) = {0} for every m ≥ 1. Let m ≥ 2; then from the Serre
duality and Riemann–Roch we obtain

H 0(Z ,mK Z )= χ(OZ )+
m(m− 1)

2
K 2

Z + h1(Z ,mK Z ).

If K 2
Z > 0, it immediately follows that Z is of general type. If K 2

Z = 0, the surface
has h0(Z , 2K Z ) 6= 0 and cannot be rational by the Castelnuovo criterion. Moreover,
as χ = 1 it cannot be a ruled surface. Suppose that Z is an Enriques surface. As
K 2

Z = 0, it is a minimal surface, but this is impossible because h0(Z , 3K Z ) 6= 0;
therefore κ > 0. �

3. Automorphisms of smooth Shimura surfaces and generalities on
quaternionic fake quadrics

Let us give a more detailed description of Shimura surfaces and quaternionic fake
quadrics. First, recall that a lattice 0 < PSL2(R)× PSL2(R) ∼= Aut H× Aut H

is irreducible if it is not commensurable with a product 01 ×02 of two discrete
subgroups 01, 02 ⊂ PSL2(R). Equivalently, the image of 0 under the projection
onto one of the factors PSL2(R) is a dense subgroup of PSL2(R). Irreducible
lattices in PSL2(R)×PSL2(R) can be constructed arithmetically in the following
way. Let k be a totally real number field of degree g = [k : Q] ≥ 2, and let
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B = (α, β)k := 〈1, i, j, i j〉k , with i2
= α ∈ k, j2

= β ∈ k, i j =− j i , be a quaternion
algebra over k such that

(3-1) B⊗Q R =
∏

ρ∈Hom(k,R)

Bρ ∼= M2(R)×M2(R)× HR× · · ·× HR︸ ︷︷ ︸
g−2

.

Here, Bρ = (αρ, βρ)R and HR = (−1,−1)R denotes the skew field of Hamiltonian
quaternions. Let Ok be the ring of integers of k and O a maximal order in B, that
is, a maximal subring of B which is a complete Ok-lattice in B. Finally, let O1 be
the subgroup of all elements in O of reduced norm one.

The isomorphism (3-1) induces an embedding of O1 into SL2(R)×SL2(R) by
taking the element γ ∈O1 to the pair (γ ρ1, γ ρ2) ∈ SL2(R)×SL2(R), where γ ρi is
the image of γ in Bρi . The group O1 then acts on H×H as a group of fractional
linear transformations. Namely, if (z, w) ∈H×H is a point and an element γ ∈O1

is identified with two matrices γ ρ1 and γ ρ2 ∈ SL2(R), then

γ (z, w)= (γ ρ1 z, γ ρ2w).

After dividing out by the ineffective kernel, one considers the group

01
O =O1/{±1} ⊂ PSL2(R)×PSL2(R)

and it can be proven that 01
O is an irreducible lattice in PSL2(R)×PSL2(R). More-

over, this lattice is cocompact if and only if B is a division quaternion algebra (see
[Vignéras 1980, p. 104]). In general we say that a subgroup 0⊂PSL2(R)×PSL2(R)

is an arithmetic lattice if there exists k, B, ρ1, ρ2,O as above such that 0 is com-
mensurable with 01

O. Since PSL2(R)× PSL2(R) is a semisimple real Lie group
of real rank 2, the famous arithmeticity theorem of Margulis [1991, Theorem (A),
p. 298] (or see [Zimmer 1984, Theorem 6.1.2, p. 114]) states that any irreducible
lattice 0 in PSL2(R)×PSL2(R) is an arithmetic lattice.

Let 0 be irreducible and cocompact (arithmetic) lattice in PSL2(R)×PSL2(R)

and X0 := 0\H×H be the orbit space of the discontinuous action of 0 on H×H.
Then, there is a natural structure of compact algebraic surface on X0 . Such a surface
X0 is called (compact) Shimura surface and can be seen as the compact analog of
a Hilbert modular surface. We know that X0 is smooth if 0 is torsion free. The
numerical invariants of a smooth X0 are computed in [Matsushima and Shimura
1963]; see also [Shavel 1978]. It follows that a smooth X0 is a fake quadric if and
only if c2(X0)= 4 (see [Shavel 1978]).

Let us now study automorphisms of smooth Shimura surfaces X0 = 0\H×H

where 0 is a cocompact and irreducible torsion-free lattice in Aut H × Aut H.
Let µ : H×H→H×H be the involution exchanging the two factors. The group
Aut(H×H) is the semidirect product of Aut H×Aut H by the group generated by µ.
Let N0 (resp. N00) be the normalizer of 0 in Aut(H×H) (resp. in Aut H×Aut H);
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N00 is a subgroup of N0 of index 1 or 2. The following result is crucial for our
computations.

Theorem 3.12. The automorphism group of the smooth Shimura surface X0 is
(isomorphic to) N0/0. An automorphism has only finitely many fixed points or it
is an involution whose fixed point set is a union of smooth Shimura curves.

There exists an involution with a purely one-dimensional fixed point set if and
only if N0 6= N00.

An automorphism of a fake quadric has only finitely many fixed points.

Proof. Since H×H is the universal covering of X0 , every automorphism σ of X0
lifts to an automorphism γ of H×H; this γ normalizes 0 and two elements γ, γ ′

both represent σ if and only if γ−1γ ′ ∈ 0. Hence, σ defines an element γ0 of the
group N0/0. Conversely, for a class γ0 ∈ N0/0, the map σ : X → X defined
by σ(0x)= γ0x = γ0γ−1γ x = 0γ x is an automorphism of X . We thus proved
that Aut(X)= N0/0.

We say that σ ∈Aut(X)= N0/0, with σ = γ0 ∈ N0/0, is a factor preserving
automorphism if γ is in N00.

Let us denote by F0 a fundamental domain in H×H of 0. Let σ ∈ Aut(X)
be a nontrivial factor preserving automorphism and let s be a fixed point, with
representative (z1, z2) in F0. Let γ ∈ N00 be a representative of σ such that
γ (z1, z2)= (γ

ρ1 z1, γ
ρ2 z2)= (z1, z2). The point s is an isolated fixed point of σ if

and only if γ has finitely many fixed points in F0.
Since (γ ρ1 z1, γ

ρ2 z2) = (z1, z2), z1 is a fixed point of γ ρ1 and z2 is a fixed
point of γ ρ2 . The only automorphisms of H with fixed points in H are elliptic
transformations or the identity. An elliptic transformation has a unique fixed point
in H.

By Shimizu’s theorem [1963, Theorem 2], γ ρ1 is trivial if and only if γ ρ2 is
trivial. Since we supposed that σ is nontrivial, at least one — and thus both — of
the γ ρi are elliptic elements of PSL2(R). Thus the point (z1, z2) is the unique fixed
point of γ in H×H, therefore the point s is an isolated fixed point of σ .

Suppose now that σ ∈ Aut(X) is not a factor preserving automorphism. Let
γ ′ ∈ N0 a representative of σ ∈ N0/0. There exists γ = (γ1, γ2)∈Aut H×Aut H

such that γ ′ = γµ ∈ Aut(H×H). Suppose that σ has an infinite number of fixed
points. Then by the above discussion, the factor preserving automorphism σ 2 (with
representative (γµ)2 = (γ1γ2, γ2γ1)) must be the identity and (γ1γ2, γ2γ1) must be
in 0. Let s = 0(z1, z2) be a fixed point of σ . There exists λ ∈ 0 such that

(γ1z2, γ2z1)= λ(z1, z2).

After the change of the representative γ ′ by λ−1γ ′, we can assume that λ= 1, thus
z2 = γ2z1, γ1γ2z1 = z1 and γ1γ2z2 = z2. Since (γ1γ2, γ2γ1) is in the group 0 in
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which a nontrivial element has no fixed points, we obtain that γ2γ1 = γ1γ2 = 1.
Since γ1γ2 = 1, the point (t, γ2t) (for t ∈ H) satisfies

γ ′(t, γ2t)= (t, γ2t),

therefore there are no isolated fixed points for σ and its fixed point set is purely
one-dimensional. The image of the disk 1 = {(t, γ2t) | t ∈ H} in X is a smooth
Shimura curve (see, for instance, [Granath 2002, Chapter 7]) fixed by σ .

Assume now that X0 is a quaternionic fake quadric and that the fixed locus C
of σ is a smooth curve. The topological Lefschetz formula (see Corollary 2.5)
implies that the genus of the irreducible components of C is negative, thus the
automorphism has only a finite number of fixed points. �

Remark 3.13. Note that according to Theorem 3.12 and the proof of Corollary 2.5,
the quotient of a quaternionic fake quadric by a group G is a Q-homology quadric
if and only if each automorphism σ ∈ G has 4 fixed points, otherwise this quotient
is a Q-homology projective plane. All the cyclic groups G which we will study in
Section 5 give examples of Q-homology quadrics, with the only possible exception
for automorphisms of order 4.

4. Quaternionic fake quadrics with nontrivial automorphism groups

As already mentioned, a series of examples of quaternionic fake quadrics has been
constructed in [Shavel 1978]. There, the author concentrates on arithmetic lattices
0 ⊇ 01

O which are defined by quaternion algebras over real quadratic fields of class
number one. More recently, in [Džambić 2013], more examples of quaternionic
quadrics associated with quaternion algebras over quadratic fields have been found.
In this section we will give examples of some known quaternionic fake quadrics
together with their automorphism groups. We refer the reader to [Vignéras 1980]
and [Deuring 1968] for generalities on arithmetic theory of quaternion algebras.

Let us first make a few general observations, before we discuss the exam-
ples in detail. For technical reasons it is more practical to consider the group
PGL+2 (R)×PGL+2 (R), where PGL+2 (R)= GL+2 (R)/R

∗ and GL+2 (R) is the group
of all 2×2 matrices with positive determinant, instead of PSL2(R)×PSL2(R). We
identify PGL+2 (R)× PGL+2 (R) with the group Aut H×Aut H of factor preserving
holomorphic automorphisms.

From the point of view of Theorem 3.12 we will be interested only in automor-
phism subgroups G ≤ N0/0 = Aut(X0) of factor preserving automorphisms, that
is, with N0 = N00 <Aut H×Aut H, which we will do in the following. In all the
considered examples the normalizers N0 will be normalizers of maximal orders
and all such lattices can be described arithmetically as follows (see [Borel 1981]).
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If X0 is a quaternionic fake quadric, there is an associated tuple (k, ρ1, ρ2, B,O)
as described in Section 3. The quaternion algebra B is for fixed ρ1, ρ2 uniquely de-
termined (up to isomorphism) by the reduced discriminant dB = v1 · · · vr , the formal
product over finite places vi of k where B is ramified, that is, B⊗k kvi � M2(kvi ).
This is a special case of H. Hasse’s deep classification theorem for simple algebras
over number fields (see [Deuring 1968, VII.5, Satz 9, p. 119] or [Vignéras 1980,
Chapitre III, Théorème 3.1, p. 74] ). Hence, (k, ρ1, ρ2, B,O)= (k, ρ1, ρ2, dB,O).
In the following we will often abbreviate such a datum which determines the quater-
nion algebra B with B(k, dB) or B(k, v1 · · · vr ). Let us fix a datum B(k, v1 · · · vr )

and let B+ be the group of all x ∈ B∗ such that the reduced norm Nrd(x) is totally
positive. It is known that

(4-1) N0+O = {x ∈ B+ | xOx−1
=O}/k∗

is a maximal lattice. N0+O contains 01
O and 01

O is normal in N0+O with N0+O/0
1
O
∼=

(Z/2Z)l an elementary abelian 2-group with l ≥ r and r is the number of ramified
places in B (see [Shavel 1978], for instance). If the class number of k is one (as
will be the case in all the considered examples) there is an alternative description
of N0+O as

(4-2) N0+O =
{
α = %

ε1
1 · · · %

εr
r λτ ∈ B∗

∣∣ Nrd(α) totally positive,

τ ∈ k∗, λ ∈O∗, εi ∈ {0, 1}, Nrd(%i ) divides dB
}
/k∗

(see [Shavel 1978, p. 223]). It follows that a quaternionic fake quadric X0 with
0 ⊇ 01

O will have an elementary abelian 2-group as the automorphism group
Aut(X0). All Shavel’s examples will provide such automorphism groups.

A fake quadric with automorphism group Z/2Z. There are examples of quater-
nionic fake quadrics X0 whose automorphism group is Z/2Z and, as mentioned
above, they already appear in [Shavel 1978].

For example, let k =Q(
√

2) and let B = B(k, p3p7) be the (unique) quaternion
algebra over k which is ramified exactly at the two finite primes p3 and p7 of k
lying over the rational primes 3 and 7 respectively. Since k has the class number
one, there is the unique (up to conjugation) maximal order O in B. Consider the
group 01

O. By [Shavel 1978, Proposition 4.7], X01
O

is smooth. By the already
mentioned general result of Matsushima and Shimura [1963], q(X01

O
) = 0. The

Chern number c2(X01
O
) is computed via the volume formula of Shimizu (see [Shavel

1978, Theorem 3.1]). Since the prime 3 is inert and 7 is decomposed in k, this
formula gives c2(X01

O
)= 8. The normalizer of 01

O is N0+O and by [Shavel 1978,
Proposition 1.3 and Proposition 1.4], we have

Aut(X01
O
)∼= L1/L2 = 〈[p3], [p7]〉 ∼= (Z/2Z)2,
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where L1 is the group of principal fractional ideals of type (p3)(p7)I 2 (I a principal
fractional ideal) for which one can find a totally positive generator and L2 consists
of all principal ideals of type (a2) with a ∈ k (see also [Shimura 1967, Section 3.12]).
Let 0p3 be the kernel of the canonical homomorphism

N0+O −→ L1/L2 −→ 〈[p7]〉.

By Shavel’s criterion [1978, Theorem 4.11], 0p3 is torsion free and as [0p3 :0
1
O]= 2,

X0p3
is a fake quadric with Aut(X0p3

)∼= Z/2Z.

A fake quadric with automorphism group (Z/2Z)2. Consider again k = Q(
√

2)
and now the quaternion algebra B = B(k, p2p5) over k which is ramified exactly
at the two finite places p2 and p5. Again there is the unique maximal order O in
B and as in the previous example, Shavel’s results show that X01

O
is smooth. The

prime 2 is ramified and 5 is inert in k and therefore Shimizu’s volume formula gives
c2(X01

O
) = 4. Hence X01

O
is a fake quadric. With the same arguments as in the

previous example Aut(X01
O
) is isomorphic to (Z/2Z)2.

A fake quadric with automorphism group of order 20. Consider k =Q(
√

5) and
the quaternion algebra B = B(k, p2p5) over k which is ramified exactly at the
primes p2 and p5. In this case the group 01

O (where O is again a maximal order
in B), contains torsion elements of order 5 and no other torsions (see [Shavel 1978,
Proposition 4.7 and Theorem 4.8]).1 Volume formula of Shimizu gives in this case
c2(X01

O
)= 4/5. Let us now give a torsion-free subgroup 0 < 01

O of index 5. The
corresponding surface X0 will be a fake quadric. Since p2 is ramified in B, there is
a prime ideal P2 in O lying over p2 and satisfying P2

2 = p2O. Let

O1(P2)= {x ∈O1
| x ≡ 1 mod P2}

and 01
O(P2) the image of O1(P2) in 01

O. The group 01
O(P2) is a normal subgroup

in01
O and the index can be computed via the localization of B at p2. Namely, observe

first that01
O/0

1
O(P2) is isomorphic to the factor group O1/O1(P2). This is because

−1 is in O1(P2). Let Op2 be the maximal order in Bp2 , that is, Op2 =O⊗Ok Okp2
,

where Okp2
is the ring of integers in kp2 . Its maximal ideal P̂2 is the topological

closure of P2. By the strong approximation property, O1/O1(P2)∼=O1
p2
/O1

p2
(P̂2).

Note that B1
p2
=O1

p2
, since Op2 is the subring of Bp2 consisting of elements whose

reduced norm is less or equal 1. We use a theorem of C. Riehm [1970, Theorem 7]
by which

O1
p2
/O1

p2
(P̂2)∼= ker

(
(Op2/P̂2)

∗ Nr
−→ (Okp2

/p2)
∗
)
∼= ker

(
F∗16

Nr
−→ F∗4

)
∼= Z/5Z

1In Theorem 4.8 of [Shavel 1978], the symbol
(

p
)

for p = 2 should be read as the Kronecker
symbol; that is,

( d
2
)
= 1⇔ d ≡±1 mod 8 and =−1⇔ d ≡±3 mod 8.
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(Here Nr is the surjective homomorphism of multiplicative groups arising from
the norm map for the field extension F16/F4.) Since 01

O(P2) is embedded in
O1

p2
(P̂2)/± 1 and the latter group is a pro-2-group (again by [Riehm 1970]) it

cannot contain elements of order 5. Therefore, 01
O(P2) is a torsion-free group

and X01
O(P2) is a fake quadric. Since 01

O contains a 5-torsion and 01
O normalizes

01
O(P2), X01

O(P2) contains an automorphism of order 5. In order to determine
the full automorphism group Aut(X01

O(P2)) we first need to find the normalizer
of 01

O(P2). By definition, elements of N0+O normalize O, that is, xOx−1
= O.

Let γ ∈ 01
O(P2). Since the class number of k is one, every two-sided O-ideal is

principal and we can choose 52 ∈ O such that 52O = P2. Moreover, as P2 is
uniquely determined by the property that the Ok-ideal Nrd(P2) is p2, we can choose
52 such that Nrd(52)= 2. Then γ =±(1+m52) with m ∈O. For x ∈ N0+O we
have xγ x−1

= 1+ xm52x−1
= 1+m′x52x−1 with some m′ ∈ O. The element

x52x−1 lies in O and Nrd(x52x−1) = Nrd(52) = 2. Since P2 = 〈52〉 is the
unique prime ideal over 2, x52x−1

∈P2 and xγ x−1
∈ 01

O(P2). It follows that the
normalizer of 01

O(P2) is N0+O. This leads to an exact sequence

(4-3) 1−→ 01
O/0

1
O(P2)−→ N0+O/0

1
O(P2)−→ N0+O/0

1
O −→ 1

which we can write abstractly as

1−→ Z/5Z−→ Aut(X01
O(52)

)−→ Z/2Z×Z/2Z−→ 1.

Let λ ∈ O1 satisfy λ5
= −1, that is, λ gives rise to a 5-torsion in 01

O. Then λ
satisfies the equation λ2

−
1+
√

5
2 λ+ 1= 0 over k. We can assume that λ generates

01
O/0

1
O(P2). Let g = λ+1. The reduced norm of g is Nrd(g)= (λ+1)(λ̄+1)=

Nrd(λ) + Trd(λ) + 1 = 2 + 1+
√

5
2 =

5+
√

5
2 , where Trd is the reduced trace and

x 7→ x̄ is the standard involution of first kind on B. Since 5+
√

5
2 is a totally positive

generator of the prime ideal over 5, g defines an element of N0+O (see (4-2)). On
the other hand g2

= (λ+ 1)2 = λ2
+ 2λ+ 1 =

( 1+
√

5
2 λ− 1

)
+ 2λ+ 1 =

( 5+
√

5
2

)
λ.

This shows that g has order 10 in N0+O and hence gives an element of order 10
in N0+O/0

1
O(P2). Moreover the image of g in N0+O/0

1
O is not trivial. Using the

computer algebra system PARI, we can check that both ramified primes p2 and
p5 are not split in k(

√
−2). This implies that k(

√
−2) ⊂ B (see [Shavel 1978,

Proposition 4.5]) and we can take
√
−2 as the generator 52 of P2. Hence, 52,

considered as an element of N0+O, is of order 2 and the images of g and 52 in
N0+O/0

1
O generate this group.

Lemma 4.14. Let g and 52 be elements constructed above. Then in N0+O we have
the relation 52g52 = g−1 modulo 01

O(P2).

Proof. The element 52 generates P2. Consider g and 52 as the elements of the
localization Bp2 of B at p2. This is a division quaternion algebra over kp2 and has a
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representation
Bp2 = Lp2 ⊕52Lp2,

where Lp2 is the unique unramified quadratic extension of kp2 (see [Vignéras 1980,
p. 34]). For every t ∈ Lp2 we have t52 =52 t̄ , where t̄ is the Galois-conjugate of
t in Lp2 . The element g lies in kp2(λ)= kp2(ξ5) which is an unramified quadratic
extension of kp2 , so Lp2 = kp2(λ). Therefore g ∈ Lp2 and g52 =52ḡ. Because gḡ
is in k∗ we have that ḡ = g−1 considered as an element of N0+O ⊂ B∗p2

/k∗p2
. This

gives a relation
52g52 = g−1

in N0+O, since 52
2 = 1 in N0+O. Also, g and 52g52 = g−1 are not equal modulo

01
O(P2) because this would imply that g2

∈01
O(P2). But as 01

O(P2) is torsion-free
and g2 is of finite order, this is impossible. �

Proposition 4.15. With above notations we have

Aut(X01
O(P2))∼= D10.

Proof. By the above discussion, Aut(X01
O(P2)) is of order 20 and is generated by

elements g of order 10 and 52 of order 2 satisfying 52g52 = g−1. The only group
of order 20 with these relations is D10. �

A fake quadric with automorphism group of order 8. We consider k = Q(
√

5)
and B = B(k, p2p11), the unique quaternion algebra ramified exactly at the primes
p2 and p11. Since 2 is inert and 11 is decomposed in k, Shimizu’s volume formula
gives c2(X01

O
)= 4

5·12(4− 1)(11− 1)= 2 as the value of the second Chern number
of the quotient X01

O
, where again 01

O is the norm-1 group of a maximal order in B.
As before, results of [Shavel 1978] show that 01

O contains only torsion elements of
order 2 and no other torsions (Here, observe that 2 is split in Q(

√
−15), hence, by

[Shavel 1978, Theorem 4.8] there are no elements of order 3 in 01
O, and note that

there are no elements of order 5 because 11≡ 1 mod 5 which implies that p11 is
split in k(ξ5) ). Since p11 is ramified in B, there is the unique prime ideal P11 in O
such that P2

11 = p11O. Consider the principal congruence subgroup

O1(P11)= {x ∈O1
| x ≡ 1 mod P11}

and 0O(P11) its image in 01
O. It is a normal subgroup in 01

O. The quotient
01
O/0

1
O(P11) is isomorphic to O1/±O1(P11) because −1 /∈O1(P11). In order to

compute the latter quotient we change over to the localization at the prime p11. Let

Bp11 = B⊗k kp11 = B⊗k Q11.

This is the unique division quaternion algebra over Q11. We write Op11 =O⊗Ok Z11
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for its maximal order. As in the previous example let P̂11 denote the prime ideal
of Op11 . We have

O1/O1(P11)∼=O1
p11
/O1

p11
(P̂11)

by the strong approximation theorem. By Riehm’s result [1970, Theorem 7],

O1
p11
/O1

p11
(P̂11)∼= ker

(
(Op11/P̂11)

∗ Nr
−→ (Okp11

/p11)
∗
)
∼= ker

(
F∗121 −→ F∗11

)
.

Since F121 = F11(ξ12), where ξ12 denotes a primitive twelfth root of unity we
conclude that O1

p11
/O1

p11
(P̂11) is isomorphic to µ12 = 〈ξ12〉. Hence

01
O/0

1
O(P11)∼=O1

p11
/±O1

p11
(P̂11)∼= µ6 = 〈ξ6〉.

Let us now define an intermediate group

0 = {x ∈ 01
O | x mod P11 ∈ 〈ξ

2
6 〉 ⊂ µ6}.

0 < 01
O is a subgroup of index 2, hence c2(X0)= 4. Moreover, 0 is torsion-free

since it cannot contain elements of order 2. For if an order-two element x is in 0,
then its image x mod P11 in 01

O/0
1
O(P11) lies in a cyclic group 〈ξ 2

6 〉 of order three,
hence it must be the identity. But this means that x is in 01

O(P11). On the other
hand 01

O(P11) is torsion-free because it embeds in a pro-11 group O1
p11
(P̂11)/± 1.

This contradicts the assumption on x . All this shows that X0 is a fake quadric.

Proposition 4.16. Let N0+O be defined as in (4-1). Then N0+O is the normalizer of
0 and N0+O/0 is isomorphic to D4.

Proof. As a subgroup of index 2 in 01
O the group 0 is normal in 01

O. On the other
hand, for the same reason as in the previous example, 01

O(P11) as well as 01
O is

normal subgroup in N0+O. This already implies that 0 is normal in N0+O because
any conjugate of 0 will be a subgroup between 01

O(P11) and 01
O of index 2 in 01

O.
There is only one such group, namely 0, since 01

O/0
1
O(P11) ∼= Z/6Z. Similar

exact sequence as (4-3) now shows that Aut(X0) is an extension of Z/2Z by the
Klein’s four group. Since the 2-torsions in 01

O come from embeddings of fourth
roots of unity into O there is λ ∈O1 such that λ2

=−1. Let g = λ+ 1. Then, as
Trd(λ) = 0, we have Nrd(g) = (λ+ 1)(λ̄+ 1) = 2 and also g2

= (λ+ 1)2 = 2λ
which implies that g defines an element of order 4 in N0+O and hence an element
of order 4 in N0+O/0. Moreover, the image of g in N0+O/0

1
O is not trivial. Since

both prime divisors 2 and π11 of the reduced discriminant do not split in k(
√
−π11)

(as can be checked using PARI, for instance), the element511=
√
−π11 is in B and

moreover 511 defines an element of N0+O of order 2 such that the images of 511

and g in N0+O/0
1
O generate this group. Same argument as in Lemma 4.14 gives a

relation between 511 and g: consider 511 as the generator of the prime ideal P11.
Locally, Bp11 can be written as Bp11 = Lp11 ⊕511Lp11 , where Lp11 = kp11(ξ12) is
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the unique unramified quadratic extension of kp11
∼= Q11 with the multiplication

rule t511 = 511 t̄ for all t ∈ Lp11 . The element g is in Lp11 , namely g = 1+ ξ 3
12.

Then g511=511ḡ=511(1+ξ12
3)=511(1+ξ 9

12). In N0+O the relations ḡ= g−1

and 52
11 = 1 hold, hence 511g511 = g−1 in N0+O. Also g 6= g−1 modulo 0,

since otherwise g2 would be in 0 which is not possible because g2 is torsion and
0 torsion-free. N0+O/0 is isomorphic to D4 which is the only group of order
8 generated by two elements 511 of order 2 and g of order 4 with h 6= g2 and
511g511 = g−1. �

Remark 4.17. Considering k =Q(
√

13), the quaternion algebra B = B(k, p2p3),
and 0 = 01

O(P3), the arguments as in the examples before will show that X01
O(P3)

is a fake quadric whose automorphism group is isomorphic to D4.

A fake quadric with automorphism group D6. This time we consider the quadratic
field k = Q(

√
2) and the quaternion algebra B = B(k, p2p3). The norm-1 group

01
O of a maximal order in B contains torsion elements of order 3, but no elements

of order 2, because p3 is decomposed in k(
√
−1). The second Chern number of

the quotient X01
O

is c2(X01
O
) = (9− 1)/6 = 4/3. Let 01

O(P2) be the principal
congruence subgroup corresponding to the prime ideal P2 ⊂ O, defined by the
relation P2

2 = p2O. Again by Riehm’s theorem and with arguments as in Section 4,
01
O(P2) is torsion-free normal subgroup in 01

O of index 3, hence X01
O(P2) is a fake

quadric. The automorphism group Aut(X01
O(P2)) is isomorphic to the factor group

N0+O/0
1
O(P2).

which is an extension of 01
O/0

1
O(P2)∼= Z/3Z by N0+O/0

1
O
∼= Z/2Z×Z/2Z.

Proposition 4.18. We have Aut(X01
O(P2))∼= D6.

Proof. Let λ ∈O1 be an element with λ3
=−1 and g = λ+ 1. Such λ exists since

01
O contains 3-torsions. We can take ±λ to be the generator of 01

O/0
1
O(P2). Since

Trd(λ)= 1, we have Nrd(g)= 3 which implies that g defines an element in N0+O.
Additionally g2

= λ2
+ 2λ+ 1 = 3λ which means that g has order 6 considered

as an element of N0+O. The totally positive element π2 = 2+
√

2 ∈ k generates
p2 and since neither π3 = 3 nor π2 are split in k(

√
−π2), 52 =

√
−π2 lies in B

and defines an element in N0+O of order 2 such that the classes of g and 52 in
N0+O/0

1
O generate this group. In particular, 52 is a generator of P2. Locally

Bp2 = Lp2 ⊕52Lp2 , where Lp2 =Q2(ξ6) is the unramified quadratic extension of
kp2
∼=Q2. As in previous examples, g lies in Lp2 and 52g52 = ḡ = g−1 in N0+O.

This gives a relation 52g52 = g−1 in N0+O/0
1
O(P2). As 52 is not a power of g,

the finite group generated by g and 52 is isomorphic to D6. �
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Automorphism groups of order 16 and 24. There are more examples of quater-
nionic fake quadrics with a nontrivial automorphism group. For instance, all exam-
ples in Shavel’s paper have Z/2Z or (Z/2Z)2 as the full group of automorphisms.
As in previous examples we show

Proposition 4.19. Let B(Q(
√

2), p2, p7) be the indefinite quaternion algebra over
k = Q(

√
2) with reduced discriminant dB = p2p7 and 01

O(P7) the congruence
subgroup in 01

O corresponding to a maximal order O in B with respect to the prime
ideal P7 of O lying over the ramified prime p7. Then X01

O(P7)
is a fake quadric

with the automorphism group Aut(X01
O(P7)

)∼= D8.

Proof. The proof goes along the same lines as in the examples before. By Riehm’s
Theorem, 01

O/0
1
O(P7) ∼= Z/4Z and we obtain c2(X01

O(P7)
) = 4 by Shimizu’s

formula. By Shavel’s criterion for the existence of torsions, we find that the
maximal order O contains a primitive eighth root of unity λ which leads to an
element of order 4 in 01

O. We can take λ as a generator of this quotient. As in the
examples before take g = 1+ λ. Then, as λ satisfies λ2

−
√

2λ+ 1 = 0 over k,
Nrd(g) = Nrd(λ+ 1) = 2+

√
2, hence g defines an element in N0+O. We have

g2
= λ2
+ 2λ+ 1=

√
2λ+ 2λ= (2+

√
2)λ. Hence, g is an element of order 8 in

N0+O and its image in N0+O/0
1
O is not trivial. The rational prime 7 is split in k, so

there are two possible choices of p7. Fix a prime p7= 〈π7〉 (π7= 3+
√

2 say). Both
π7 as well as π2 are ramified in k(

√
−π7), hence

√
−π7 ∈ B defines an element

57 ∈ B which defines an order-2 element in N0+O. As in the previous examples we
have 57g57 = ḡ because locally in Bp7 , 57 =

√
−π7 generates the unique prime

ideal of the maximal order Op7 and g lies in the unramified quadratic extension
Lp7 =Q7(ξ8). This gives a relation 57g57 = g−1 in N0+O/0

1
O(P7). Also 57 is

not a power of g modulo 01
O(P7) since the reduced norms of57 and g are different

primes. The only group of order 16 with these relations is D8. �

Let us finally sketch the construction of a fake quadric with an automorphism
group of order 24.

Proposition 4.20. Let B(Q(
√

3), p2, p3) be the indefinite quaternion algebra over
k = Q(

√
3) ramified over the prime ideals p2 and p3 and let 01

O(P2P3) G 0
1
O

be the principal congruence subgroup with respect to the principal ideal P2P3

of a maximal order O ⊂ B lying over p2p3. Then X01
O(P2P3)

is a fake quadric
with |Aut(X01

O(P2P3)
)| = 24. The automorphism group Aut(X01

O(P2P3)
) contains a

cyclic subgroup of order 12.

Remark 4.21. The full automorphism group in this case has order 24. To our
knowledge, this is the largest known automorphism group of a fake quadric. The
precise abstract group structure of Aut(X01

O(P2P3)
) is not known to us, since the

local method, used in previous examples does not apply directly in this case.
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Proof. That X01
O(P2P3)

has the correct numerical invariants follows again from
Riehm’s Theorem, Shimizu’s formula and the observation that for the index we
have [01

O : 0
1
O(P2P3)] = [0

1
O : 0

1
O(P2)][0

1
O : 0

1
O(P3)]. By Shavel’s criterion,

B contains k(ξ12) where ξ12 is a primitive twelfth root of unity, hence there is an
element λ ∈O with λ6

=−1. To show that 01
O(P2P3) is torsion-free we have to

exclude the existence of 6-torsions in 01
O(P2P3). But since the reduced trace of λ

is ±
√

3 which is not congruent 2 modulo p2p3, λ is not contained in 01
O(P2P3).

The element g = λ+ 1 has norm Nrd(g)= 2+
√

3 which is a totally positive unit
of Ok unit, hence g lies in 0+O =O+/O∗k , where O+ denotes the group of all units
whose reduced norm is totally positive. The group 0+O is an index-2-extension of
01
O since the fundamental unit 2+

√
3 is totally positive. Also g2

= (2+
√

3)λ
which shows that g has order 12 in 0+O G N0+O. The image of g in N0+O/0

1
O is

not trivial and the discussion in [Shavel 1978, pp. 223–224] shows that N0+O/0
∗

O
is generated by the class of an element 5 ∈ N0+O with Nrd(5) = π2π3 where
p2 = 〈π2〉, p3 = 〈π3〉 (note that the generators π2 and π3 cannot be chosen totally
positive). Therefore, Aut(X01

O((P2P3))
) is of order 24 and is an extension of Z/6Z

by the Klein’s four group. �

5. Computations of the quotient surfaces

Let S be a quaternionic fake quadric, G a group of automorphisms of S, S/G the
quotient surface and let π : Z→ S/G be the minimal desingularization map.

Let us first study the case where G is generated by an involution σ .

Proposition 5.22. An involution σ has 4 fixed points. The invariants of Z are

K 2
Z = 4, c2 = 8, q = pg = 0, h1,1

= 5.

The surface Z is minimal of general type.

Proof. By Lefschetz’s formula (Proposition 2.6), 1=
∑

s=σ(s)
1
4 , therefore σ has 4

fixed points. Their images in S/σ are 4 A1 singularities, resolved by 4 (−2)-curves
on Z . The invariants of Z are easy to compute.

The surface Z is of general type and is minimal because K Z is the pullback of
the nef divisor KS/G . �

Proposition 5.23. Let G = 〈σ 〉 ∼= Z/3Z. The singularities of the quotient surface
S/G are 2A3,1+ 2A3,2. The resolution Z has general type, and

K 2
Z = 2, c2=10, q = pg = 0.

Proof. We use the notations of Zhang’s formula (Proposition 2.7). In this case this
formula gives r1+ r2 = 4. An A3,1 singularity is resolved by a (−3)-curve, and
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we have

K 2
Z =

8
3
−

r1

3
.

Therefore r1= 2 and r2= 2. The singularities of S/G are 2A3,1+2A3,2. Moreover,
as q = pg = 0, we have c2 = 10. Z is of general type by Lemma 2.11. �

Proposition 5.24. There is no quaternionic fake quadric S with G = (Z/3Z)2 ⊂

Aut S.

Proof. Let σ1, σ2 be the two generating elements of G. Let p be one of the 4 fixed
points of σ1 (see Proposition 5.23). Since σ1 and σ2 commute, the set of fixed
points of σ1 is sent to itself by σ2, indeed there are two orbits of 2 elements because
of the different local type of the action of σ1. Now σ2 has order three, hence it
acts trivially on these 2 orbits and the conclusion is that there are 4 fixed points for
the action of the whole group G. The faithful action of G on the tangent space of
p can be diagonalized, hence there are elements with one eigenvalue equal to 1,
contradicting Lemma 2.8 and Theorem 3.12. �

Proposition 5.25. Let G=Z/4Z. The singularities of the quotient S/G are 2A4,1+

2A4,3 or A1+ 2A4,3. The invariants of the resolution Z are

K 2
Z = 0, c2 = 12, q = pg = 0

in the first case, and in the second case Z is minimal and satisfies

K 2
Z = 2, c2 = 10, q = pg = 0.

Remark 5.26. Proposition 5.34 gives an example of the first case.

Proof. Let s be a fixed point of an order 4 automorphism σ acting on S. As the
involution σ 2 has only isolated fixed points, the eigenvalues of σ acting on TS,s

cannot be (i,−1) or (−i,−1). Let a, b, c be the number of fixed points such that
the eigenvalues of σ are (i, i), (−i,−i) and (i,−i) respectively. The Lefschetz
holomorphic fixed point formula implies

−
a
2i
+

b
2i
+

c
2
= 1 and a+ b+ c = 4 or 2,

thus there are two cases:

(1) a = b = 1 and c = 2. The singularities of S/G are 2A4,1+ 2A4,3.

(2) a = b = 0 and c = 2. In this case, the singularities of S/G are A1 + 2A4,3

because σ 2 has 4 fixed points.



110 AMIR DŽAMBIĆ AND XAVIER ROULLEAU

An A4,1 singularity is resolved by a (−4)-curve Ck and an A4,3 singularity is
resolved by a chain of three (−2)-curves and we have

K Z = π
∗KS/σ −

k=2∑
k=1

1
2Ck,

thus K 2
Z =

8
4 − 2= 0 in the first case. Additionally,

e(S/σ)= 1
4(4+ (4− 1)4)= 4,

thus c2(Z) = 4+ 8 = 12. The invariants in the second case are computed in a
similar way. �

Proposition 5.27. Let G = Z/5Z. The singularities of S/G are 4A5,2 or A5,1 +

2A5,2+ A5,4 or 2A5,1+ 2A5,4. The invariants of the surface Z are, respectively,

K 2
Z = 0

c2 = 12
or

K 2
Z =−1

c2 = 13
or

K 2
Z =−2

c2 = 14,

and in any case q = pg = 0.

Remark 5.28. (1) In Proposition 5.31 below, we give an example of a surface such
that the quotient by an order 5 automorphism has 2A5,1+ 2A5,4 singularities.

(2) By the same kind of arguments as for (Z/3Z)2 (see Proposition 5.24), there is
no fake quadric S with (Z/5Z)2 ⊂ Aut S.

Proof. Using the notations of Proposition 2.7, the number of fixed points r1+ r2+

r3+ r4 equals 4. As e(S/σ)= 1
5(4+ (5− 1)4)= 4, Zhang’s formula yields

(a1, . . . , a4)=
(
0, 1

4 ,
1
4 ,

1
2

)
,

with ∑
4airi = r2+ r3+ 2r4 = 4.

Thus r1 = r4. Therefore the possibilities for (r1, r2, r3, r4) are (0, i, j, 0) with
i + j = 4, or (1, i, j, 1) with i + j = 2, or (2, 0, 0, 2). The singularities on the
quotient are, respectively,

4A5,2 or A5,1+ 2A5,2+ A5,4 or 2A5,1+ 2A4.

A singularity A5,i (i = 1, . . . , 4) contributes (respectively)

−
9
5 ,−

2
5 ,−

2
5 , 0

to K 2
Z . Thus the self-intersection number is

K 2
Z =

1
5(8− 9r1− 2(r2+ r3)),
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and according to the possible tuples (r1, . . . , r4) as above: K 2
Z = 0, or K 2

Z =−1,
or K 2

Z = −2. As e(S/G) = 4, we get c2 = 12, 13, or 14 according to the three
possible singular loci.

Let us justify our computation of K 2
Z . An A5,1-singularity is resolved by a

(−5)-curve C5, thus we have to add− 3
5C5 to the canonical divisor. This contributes(

−
3
5C5

)2
=−

9
5 to K 2

Z . On the other hand, an A5,2-singularity is resolved by a chain
of two curves C2,C3 with C2

k =−k. We have to add − 2
5C3−

1
5C2 to π∗KS/G , and

the contribution to K 2
Z is (2

5C3+
1
5C2

)2
=−

2
5 .

Finally, note that A5,3= A5,2, and the A5,4-singularity does not contribute to K 2
Z . �

Proposition 5.29. If G = Z/6Z, then S/G has singularities 2A6,1 + 2A6,5. The
minimal resolution Z has invariants

K 2
Z =−4, c2 = 16, q = pg = 0.

Proof. Let s be a fixed point of an order 6 automorphism σ . Let α be a primitive third
root of unity. By Lemma 2.8, the action of σ on TS,s has eigenvalues (−α, (−α)a) or
(−α2, (−α2)a) with a= 1 or 5. Let r1, r2 and r3 be respectively the number of fixed
points of σ with eigenvalues (−α,−α), (−α2,−α2) and (−α,−α5). Lefschetz
fixed point formula (Proposition 2.6) implies the relation

r1

(1+α)2
+

r2

(1+α2)2
+ r3 = 1,

therefore r1 = r2 and −r1+r3 = 1. By Corollary 2.5, σ has 2 or 4 fixed points. The
only possibility for (r1, r3) is therefore (1, 2). The singularities are 2A6,1+ 2A6,5

and the minimal resolution Z of S/σ has K 2
Z =

8
6 − 2 · 8

3 =−4. Moreover e(Z)=
1
6(4+ 5 · 4)+ 2+ 2 · 5= 16. �

Let us study the case G = Z/8Z.

Proposition 5.30. Let σ be an order 8 element acting on S. The singularities of
S/σ are 2A8,3+ 2A8,5. The resolution Z of the quotient surface is a surface with

K 2
Z =−2, c2(Z)= 14, q = pg = 0.

Proof. Let p be a fixed point of σ and let ξ(p) be a primitive eighth root of unity
such that σ acts on TS,p with eigenvalues ξ(p) and ξqp

(p) for qp ∈ {0, . . . , 7}. There
are no reflections, so we have ξ j

(p) 6= 1 and ξ jqp
(p) 6= 1 for j = 1, . . . , 7, thus qp is

prime to 2: qp ∈ {1, 3, 5, 7}. Let a1, a3, a5 and a7 be the number of fixed points p
with qp = 1, 3, 5 or 7 respectively. We have

∑
ai = 2 or 4. By summing over the

powers σ k for k = 1, . . . , 7 in the formula of the holomorphic Lefschetz theorem,
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we get

7=
∑
p∈Sσ

k=7∑
k=1

1
det(1− dσ k |TS,p)

,

and thus

7=
u=3∑
u=0

k=7∑
k=1

a2u+1

(1− ξ k)(1− ξ k(2u+1))
=

7
4a1+

5
4a3+

9
4a5+

21
4 a7.

The possibilities for (a1,. . .,a4) are (4,0,0,0), (2,1,1,0), (1,0,0,1) and (0,2,2,0).
For t2 of order 4, we have seen that the singularities of S/σ 2 are 2A4,1+ 2A4,3

or A1 + 2A4,3. Thus the only possibility for (a1, . . . , a4) is (0, 2, 2, 0), and the
singularities of S/σ are 2A8,3+ 2A8,5. The Euler number of S/σ is

e(S/σ)= 1
8(4+ 7 · 4)= 4.

Since 8
3 = 3− 1

3 and 8
5 = 2− 1

3− 1
2

we get

e(Z)= 4+ 2 · 2+ 2 · 3= 14.

It is easy to check that a singularity A8,3 decreases K 2
Z by 1 and a singularity A8,5

decreases K 2
Z by 1

2 , thus we obtain K 2
Z =

8
8 − 2 · 1− 2 · 1

2 =−2. �

Proposition 5.31. Let S be a fake quadric with G = Z/10Z⊂ Aut(S). The singu-
larities of the quotient surface S/G are 2A10,1+ 2A10,9. The resolution Z has the
invariants

K 2
=−12, c2 = 24, q = pg = 0.

Proof. Let σ be an automorphism of order 10 acting on S. It has 2 or 4 fixed points.
As the involution σ 5 has 4 fixed points, σ cannot have 2 fixed points. Therefore

e(S/G)=
1

10
(4+ (10− 1)4)= 4.

Let ξ be a primitive fifth root of unity and p a fixed point. There exist a= a(p) and
b= b(p) integers invertible mod 5 such that the action of σ on TS,p has eigenvalues
(−ξa,−ξ ba). The Lefschetz holomorphic fixed point formula yields

1=
∑
p∈Sσ

1
(1+ ξa)(1+ ξab)

.

For b = 1, 2, 3, 4, the sum

c(b)=
a=4∑
a=1

1
(1+ ξa)(1+ ξab)
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is equal to−4, 1, 1, 6, respectively. Recall again that A10,3= A10,7. For k ∈{1, 3, 9},
let rk be the number of points in Sσ giving an A10,k singularity. The Lefschetz fixed
point formula gives

4=−4r1+ r3+ 6r9.

Taking care of the relation r1+ r3+ r9 = 4, we have the following possibilities for
(r1, r3, r9): (0, 4, 0), (1, 2, 1) and (2, 0, 2).

The resolution of an A10,3-singularity is a chain of 3 curves C2,C ′2,C4 with
intersection numbers (−2)− (−2)− (−4). We have to add − 1

5(C2+C ′2+C4) to
π∗KS/G . Each singularity contributes (− 1

5(C2+C ′2+C4))
2
=−

6
5 to K 2

Z .
Similarly, the resolution of an A10,1-singularity is a (−10)-curve C10. An A10,1-

singularity decreases K 2
S/G by (− 8

10C10)
2
=−

32
5 .

When the singularities of S/G are respectively 4A10,3, A10,1+ 2A10,3+ A10,9

and 2A10,1+2A10,9, we have: K 2
Z =

8
10−4 · 65 =−4, K 2

Z =
8

10−
32
5 −2 · 65−0=−8

and K 2
Z =

8
10 − 2 · 32

5 =−12, respectively. The Euler number of Z is respectively
4+ 4 · 2= 12, 4+ 1+ 2 · 2+ 9= 18 and 4+ 2+ 2 · 9= 24. Only the last case is
possible because 12 has to divide K 2

Z + e(Z). �

Proposition 5.32. Let G = (Z/2Z)2. The quotient surface S/G contains 6 A1

singularities. The surface Z is minimal of general type and has the invariants

K 2
Z = 2, c2 = 10, q = pg = 0.

Proof. A faithful representation of G on a 2-dimensional space contains reflections,
therefore by Lemma 2.8, there are no points fixed by the whole G. The group G
contains 3 involutions. Each of these involutions has 4 isolated fixed points whose
image in X are 2A1 singularities. Thus there are 6A1 singularities on S/G and we
have

e(Z)= e(S/G)+ 6= 1
4(4+ 12)+ 6= 10.

Moreover, K Z = π
∗KS/G is nef and K 2

S/G = K 2
S/4= 2. By Lemma 2.10, we have

q = pg = 0. �

Remark 5.33. (a) Fabrizio Catanese and Miles Reid pointed out to us that a mini-
mal surface of general type with c2

1= 2c2= 8, pg= 0 and automorphism group
containing G = (Z/2Z)3 such that each involution has only isolated points
must deform, therefore (Z/2Z)3 cannot be a subgroup of the automorphism
group of a quaternionic fake quadric, which is a rigid surface. The complete
argument is as follows: The minimal resolution Z of the quotient Y = X/G
of a fake quadric X by G would be a numerical Godeaux surface, that is, a
surface with c2

1 = 1 and with the maximal number of nodal curves, being equal
to 7. We do not know whether such a surface exists, but from coding theory
one would have a covering S→ Y with group G ramified only over the nodes.
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The covering surface S would have c2
1 = 8, pg = 0. However, the Kuranishi

family of deformations for the surface Z has dimension greater or equal to
the expected dimension, which is 8= 10χ − 2c2

1, and the 7 nodes impose at
most 1 condition each, because of the morphism of the global deformation
space to the local deformation space of the singularities. Therefore this family
of 7-nodal numerical Godeaux surfaces would have 1 modulus, and therefore
also the above surfaces S would vary in moduli. However, quotients of the
bidisk by an irreducible subgroup are rigid, for instance, by a theorem of Jost
and Yau.

(b) For G = Z/4Z×Z/2Z, the quotient surface S/G has singularities 2A1+ 2A3

and the desingularization Z has invariants K 2
Z = 1, c2 = 11, q = pg = 0. We

do not know if a fake quadric S with such automorphism subgroup exists.

Proposition 5.34. Let G = D4 acting on the fake quadric S. The singularities of
S/G are 4A1+ A4,3+ A4,1. The resolution Z of the quotient surface has invariants

K 2
Z = 0, c2(Z)= 12, q = pg = 0.

The elements of order 4 in D4 have 4 fixed points.

Proof. Let t and a be the generators of D4 such that t4
= 1, a2

= 1 and at = t3a.
The elements of order 4 are t and t3. The elements of order 2 are a, ta, t2a, t3a
and t2.

There cannot be a point of S that is fixed by the whole group G because any faith-
ful 2-dimensional representation of G contains a reflection (x, y)→ (x,−y) and
thus such a point would lie on a curve fixed by an involution, but an automorphism
of S has only isolated fixed points.

First case: Suppose that t has 4 fixed points, Fix(t) = {p1, ap1, p2, ap2}. The
Euler number of S/G is

e(S/G)= 1
8(4+ (2− 1)(4 · 4)+ (4− 1)4)= 4.

The singularities on S/G are 4A1+ A4,3+ A4,1 and therefore

e(Z)= 4+ 4+ 3+ 1= 12.

Moreover K 2
Z =

8
8 + (−

1
2)

2(−4)= 0.
Second case: Suppose that t has 2 fixed points, Fix(t)= {p1, ap1}. The Euler

number of e(S/G) would be

1
8(4+ (2− 1)18+ (4− 1)2)= 7

2 ,

but this is not an integer. �
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Proposition 5.35. Suppose that the dihedral group D8 of order 16 acts on fake
quadric S. The singularities of S/D8 are 4A1+ A8,3+ A8,5. The resolution Z of
the quotient surface has invariants

K 2
Z =−1, c2(Z)= 13, q = pg = 0.

Proof. Let t and a be generators of D8 such that t8
= a2
= 1 and at = t7a. Order 8

elements in G are t, t3, t5, t7; order 4 elements are t2, t6; order 2 elements are a,
ta, t2a, t3a, t4a, t5a, t6a, t7a and t4.

By the discussion on order 8 elements, t has 4 fixed points, say p1, ap1, p2, ap2.
Let p be a fixed point of an involution σ 6= t4. The orbit of p under G consists of
8 elements, each is a fixed point of an involution 6= t4. The quotient surface has
1
8 · 8 · 4A1+ A8,3+ A8,5 singularities. We have

e(S/G)= 1
16(4+ 1 · (8 · 4)+ 7 · 4)= 4,

and e(Z)= 4+ 4+ 2+ 3= 13. Moreover K 2
Z =

8
16 − 1− 1

2 =−1. �

6. Reconstruction of a surface knowing its quotient

Miyaoka [1984] gives a bound on the number of disjoint (−2)-curves on a minimal
smooth surface Y . This implies in particular that if c2

1 = 4, 2 or 1 and χ(OY )= 1,
there are at most 4, 6 and 7 such curves respectively. The surfaces with c2

1 = 4, 2
we obtained as quotient of quaternionic fake quadrics reach that bound. For the
cases c2

1 = 2 these surfaces seem to be the first known ones with that property.
Dolgachev, Mendes Lopes, and Pardini [2002] study rational surfaces with the

maximal number of (−2)-curves. For that aim they use and develop the theory of
(Z/2Z)n-covers ramified over A1 singularities. Using their results, we obtain:

Proposition 6.36. Let Y be a smooth minimal surface of general type with q =
pg = 0 and 2Pic(Y )= 0.

(a) If c1(Y )2 = 4, c2(Y ) = 8 and Y contains 4 disjoint (−2)-curves C1, . . . ,C4,
then there exists a double cover of Y ramified over the curves Ci . The minimal
model of this covering has invariants c2

1 = 2c2 = 8 and q ≤ 1.

(b) If c1(Y )2 = 2, c2(Y )= 10 and Y contains 6 disjoint (−2)-curves C1, . . . ,C6,
then there exists a bidouble cover of Y ramified over the curves Ci . The
minimal model of this covering has invariants c2

1 = 2c2 = 8 and q ≤ 2.

(c) If c1(Y )2 = 1, c2(Y )= 11 and Y contains 7 disjoint (−2)-curves C1, . . . ,C7,
then there exists a (Z/2Z)3-cover of Y ramified over the curves Ci . The
minimal model of this covering has invariants c2

1 = 2c2 = 8 and q ≤ 2.
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Let F2 be the field with 2 elements. Let C1, . . . ,Ck be k (−2)-curves on a
smooth surface Y . Let

ψ : F2
k
→ Pic(Y )⊗ F2

be the homomorphism sending v = (v1, . . . , vk) to
∑
vi Ci . We say that the curve

C j appears in the kernel kerψ if there is a vector v = (v1, . . . , vk) in kerψ such
that v j = 1. For v in kerψ , we denote by Lv an element of Pic(Y ) such that
2Lv =

∑
vi Ci (we sometimes identify elements of F2 with 0, 1 in Z). We have:

Proposition 6.37 [Dolgachev et al. 2002, Proposition 2.3]. Suppose that 2Pic(Y ) is
zero. There exists a unique smooth connected Galois cover π : Z→ Y such that the
Galois group of π is G =Hom(kerψ,Gm), the branch locus of π is the union of the
Ci appearing in kerψ and the surface Z obtained by contracting the (−1)-curves
over the (−2)-curves in Y has invariants

K 2
Z = 2r K 2

Y c2(Z)= χ(OZ )= 2rχ(OY )− k2r−3 and κ(Z)= κ(Y ),

where r = dim V .

Proof of Proposition 6.36. We have to prove that for our surface Y , kerψ has
the required dimension and that all the curves appear in kerψ . For c2

1(Y ) = 4
and 2, we have b2(Y ) = h1,1(Y ) = 6, 8 and 9 respectively. As we supposed that
2Pic(Y )=0, the space Pic(Y )⊗F2 is h1,1-dimensional. As pg=0, it has moreover a
nondegenerate intersection pairing and therefore the dimension of a totally isotropic
space in Pic(Y )⊗ F2 is at most

[
h1,1/2

]
= 3, 4, and 4 dimensional respectively.

The image of ψ is the totally isotropic space generated by the curves Ci , therefore
the dimension r of kerψ is at least 1, 2 and 3 respectively.

A smooth double cover of a surface with n nodes can exist only if n is divisible
by 4 (see [Dolgachev et al. 2002]). Therefore the vectors v = (v1, . . . , vk) in kerψ
(of dimension ≤ 7) have weight 4, that is, the number of indices j such that v j = 1
is 4.

In case (a), kerψ is one-dimensional, generated by w1 = (1, 1, 1, 1). For (b),
as every vector in kerψ has weight 4, by [Beauville 1980, Lemme 1], we have
k ≥ 2r

− 1 and thus r ≤ 2 and r ≤ 3 respectively. Moreover, it is easy to check that
in the case (b), the space kerψ is (up to permutation of the basis vectors) generated
by w1 = (1, 1, 1, 1, 0, 0) and w2 = (1, 1, 0, 0, 1, 1).

In case (c) [Beauville 1980, Lemme 1] implies that kerψ is (up to permuta-
tion) generated by w1 = (1, 0, 0, 1, 1, 0, 1), w2 = (0, 1, 0, 1, 0, 1, 1) and w3 =

(0, 0, 1, 0, 1, 1, 1).
The surface Z obtained by contracting the (−1)-curves over the (−2)-curves Ci

is minimal because no surface with c2
1 = 3c2 = 9 has an order 2 automorphism. �

Let us give a bound on the irregularity.
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Lemma 6.38. Let Y be a surface of general type with χ = 1 and q = 0 containing
a 2-divisible set of 4 (−2)-curves. Let Y ′→ Y be the double cover. Then q(Y ′)≤ 1.

Proof. As q(Y ) = 0, the involution σ on Y ′ given by the cover Y ′→ Y acts as
multiplication by−1 on H 0(Y ′, �Y ′). Therefore, σ acts trivially on

∧2 H 0(Y ′, �Y ′).
As pg(Y )= 0, the map

∧2 H 0(Y ′, �Y ′)→ H 0(Y ′,
∧2
�Y ′) must be 0. Let Y ′→ Y ′′

be the blow-down map of the 4 (−1)-curves over the 4 nodal curves of Y . If
q(Y ′′) ≥ 1, Castelnuovo–De Franchis Theorem implies that there is a fibration
onto a curve B of genus q(Y ′′). By [Zucconi 2003], we get that q(Y ′′)≤ 2 and if
q(Y ′′)= 2, then Y ′′ is an étale bundle of genus 2 fibers onto a genus 2 curve B and
K 2

Y ′′ = 8. In that case, there is a commutative diagram

Y ′′ → X
↓ ↓

B → P1

where the vertical maps are genus 2 fibrations and X is the surface obtained by
contracting the 4 (−2)-curves on Y . This diagram is obtained from B→ P1 by
taking base change and normalizing. Since Y ′′→ X is unramified in codimension 1,
the 6 fibers of X → P1 occurring at the 6 branch points of B → P1 are double.
Since X has only 4 singular points, X→P1 has at least two double fibers contained
in the smooth locus of X, but a multiple fiber on a genus 2 fibration cannot exist
(because of the adjunction formula). Thus q ≤ 1. �

Let us now consider a smooth minimal surface of general type Z with K 2
= 2,

c2 = 10, q = pg = 0 such that there is a birational map onto a surface Y with
singularities 2A3,1+ 2A3,2.

Proposition 6.39. Suppose that 3Pic(Z)= 0. There exists a smooth triple cover X
of Y ramified precisely over the singularities of Y . The surface X is of general type
and has invariants c2

1 = 2c2 = 8.

Proof. Let D1, D2 be the (−3)-curves over the singularities A3,1 and let D3, . . . , D6

be the (−2)-curves over the singularities A3,2, with indices satisfying D3 D4 =

D5 D6 = 1. Let W → Y be the blow-up at the intersection points of D3, D4 and of
D5, D6. Let C1, . . . ,C6 be the strict transforms of the Di in W . Let

ψ : F3
6
→ Pic(W )⊗ F3 = H 2(W, F3)

be the homomorphism sending v = (v1, . . . , vk) to
∑
vi Ci . The image of ψ is a

totally isotropic subspace in H 2(W, F3). As b2(W ) = 10, this image is at most
5-dimensional and therefore dim kerψ ≥ 1. Let v = (v1, . . . , v6) ∈ kerψ , v 6= 0.
We choose the representatives of F3 in {0, 1, 2}. There exists a unique invertible
sheaf L such that

3L =
∑

vi Ci .
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Let T be the triple cover of W ramified over the r curves Ci such that vi 6= 0.
The surface T is smooth outside the curves Ci with vi = 2. Let R be the minimal
resolution of T and let f : R → W be the composite map. By [Urzúa 2010,
Propositions 2.2, 4.1 and 4.3], the invariants of R are

K R =num f ∗
(
KW +

2
36
)
, c2(R)= 3c2(W )− 4r, χ(OR)= 3χ(OW )−

1
3r,

where 6 is the sum of the r curves Ci such that vi 6= 0. Therefore r = 3 or 6 and

K 2
R = 0, c2(R)= 36− 4r, χ(OW )= 3− 1

3r.

As there are at least 3 curves Ci in the branch locus, one of the curves C3, . . . ,C6 is
in that branch locus. Say it is C3. Let E be the exceptional curve going through C3.
As C3 E = C4 E = 1 and E

∑
vi Ci is divisible by 3, it forces C4 to be also in

the branch locus and thus r = 6 (and dim kerψ = 1). The inverse image of the 6
(−3)-curves are (−1)-curves. By the formula giving K R , the inverse image of the
two exceptional curves are (−3)-curves meeting two (−1)-curves. We can therefore
effectuate 8 blow-downs and we obtain a fake quadric. It has general type because
Y has general type, it is minimal because the quotient of a fake plane by an order 3
automorphism with 4 isolated fixed points has 4A2 singularities. �
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DISTANCE OF BRIDGE SURFACES FOR LINKS WITH
ESSENTIAL MERIDIONAL SPHERES

YEONHEE JANG

Bachman and Schleimer gave an upper bound for the distance of a bridge
surface of a knot in a 3-manifold which admits an essential surface in the
exterior. Here we give a sharper upper bound for the distance of a bridge
surface of a link when the manifold admits an essential meridional sphere
in the exterior.

1. Introduction

Let L be a link in a closed orientable 3-manifold M. A closed orientable surface F
embedded in M is called a Heegaard surface of M if it cuts M into two handlebodies.
We call this decomposition a Heegaard splitting of M. We say that L is in bridge
position with respect to a Heegaard surface F if the intersection of L and each
handlebody is trivial, namely, the intersection together with some arcs on F bounds
mutually disjoint disks. We call F a (g, n)-bridge surface (or a bridge surface in
brief) of L , where g is the genus of F and n is the half of the number |L ∩ F | of
the components of L ∩ F . In particular, we call a (0, n)-bridge surface an n-bridge
sphere of L . Throughout this paper, we assume n ≥ 3 for all n-bridge spheres.

Since the distance of a Heegaard splitting was introduced in [Hempel 2001] as a
measure of complexity, it has been studied by various authors; see, for example,
[Evans 2006; Hartshorn 2002; Kobayashi and Rieck 2009; Scharlemann and Tomova
2006]. This concept can be generalized to the distance of bridge surfaces of links
in closed orientable 3-manifolds (see Section 2 for details). As generalizations
of results from [Hartshorn 2002; Scharlemann and Tomova 2006], Bachman and
Schleimer [2005] and Tomova [2007] gave upper bounds for the distance of a
bridge surface of a knot in a 3-manifold when there exist essential surfaces in the
knot exterior and alternate bridge surfaces, respectively, in terms of their Euler
characteristics. Ido [2013] gave a refinement of the upper bound of [Tomova 2007]
in the case where the genus of the bridge surface is 0.

This research is partially supported by a Grant-in-Aid for JSPS Research Fellowships for Young
Scientists.
MSC2010: 57M25.
Keywords: bridge surfaces for links, distance of bridge surfaces.
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Figure 1. dBS(L , F)= 0 and dT (L , F)= 1.

In Theorem 1.1 and Corollary 1.3 below we give a refinement of Bachman
and Schleimer’s upper bound for the distance of bridge surfaces under some extra
assumptions. (For detailed definitions, see Section 2.) For a surface S in M , we
denote by SL the surface Cl(S \ N (L)), where N (L) is a regular neighborhood of
L in M.

Theorem 1.1. Let L be a link in a closed orientable irreducible 3-manifold M
which is in bridge position with respect to a Heegaard surface F. Suppose that
there exists a c-essential sphere S in M intersecting L transversely in at least 4
points. Then dBS(L , F)≤−χ(SL)= |∂SL | − 2.

Bachman and Schleimer’s upper bound in this setting is −χ(SL)+ 2, which
equals |∂SL |.

We will denote by dBS(L , F) and dT (L , F) the definitions of distance given in
[Bachman and Schleimer 2005] and [Tomova 2007], which disagree slightly. In
general, it is easy to see that dBS(L , F)≤ dT (L , F)≤ dBS(L , F)+ 2. If we focus
on bridge spheres for links in the 3-sphere S3, we have:

Proposition 1.2. For an n-bridge sphere F of a link L in S3,

• if dBS(L , F)≥ 1, then dT (L , F)= dBS(L , F), and

• if dBS(L , F)= 0, then dT (L , F)= 0 or 1.

The links and the 3-bridge spheres in Figure 1 give examples for which the two
distances do not coincide, since dBS(L , F) = 0 and dT (L , F) = 1. In fact, this
always holds when L is nonsplit and either L is composite or F is perturbed.

The following is a direct consequence of Theorem 1.1 and Proposition 1.2.

Corollary 1.3. Let L be a link in the 3-sphere S3 and F an n-bridge sphere of L.
Suppose that there exists a c-essential sphere S in M intersecting L transversely in
at least 4 points. Then dT (L , F)≤−χ(SL)= |∂SL | − 2.

As a consequence of Theorem 1.1 and Corollary 1.3, we obtain:

Corollary 1.4. Let L be an arborescent link in the 3-sphere S3. Then dBS(L , F)≤2
and dT (L , F)≤ 2 for any minimal bridge sphere F of L.
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Corollary 1.5. Let L be a link in the 3-sphere S3 and F a minimal bridge sphere
such that dBS(L , F) > 2 or dT (L , F) > 2. Then L is a hyperbolic link and the
double branched covering M2(L) of S3 branched along L is a hyperbolic manifold.

Corollary 1.5 implies Corollary 6.2 of [Bachman and Schleimer 2005], which
asserts the hyperbolicity of links admitting bridge surfaces with distance greater
than 2. In fact, arborescent links are known to be hyperbolic except for some special
cases (see [Bonahon and Siebenmann 2010; Futer and Guéritaud 2009; Jang 2011,
Proposition 3]). On the other hand, the double branched covering M2(L) of S3

branched along an arborescent link L is a graph manifold, and hence not hyperbolic.
Thus, the latter assertion in Corollary 1.5 is meaningful. We remark that, in fact,
the hyperbolicity of M2(L) implies the hyperbolicity of the link L (see [Kojima
1996; 1998]). Also, we conjecture that the assumptions on the minimality of the
bridge spheres in Corollaries 1.4 and 1.5 are unnecessary. Specifically, we make
the following conjectures:

(1) dBS(L , F) ≤ 2 and dT (L , F) ≤ 2 for any bridge sphere F of an arborescent
link L in the 3-sphere S3.

(2) For a link L in S3 which admits a bridge sphere F such that dBS(L , F) > 2 or
dT (L , F)> 2, the link L is a hyperbolic link and the double branched covering
M2(L) of S3 branched along L is a hyperbolic manifold.

Statements (1) and (2) are known to be true except for 3-bridge Montesinos links (see
the proof of Corollaries 1.4 and 1.5). In fact, they are true if any nonminimal bridge
sphere of a 3-bridge Montesinos link has distance at most 2 (or if any nonminimal
bridge sphere of a 3-bridge Montesinos link is perturbed, which implies that the
distance is at most 1).

2. Definitions and notation

Our conventions mostly follow [Bachman and Schleimer 2005], though we modify
some of the definitions since we treat only meridional spheres in this paper, while
Bachman and Schleimer treated more general surfaces.

Throughout this paper, M is a closed orientable 3-manifold and L is a link in
M. We denote the manifold Cl(M \ N (L)) by ML . For a surface F embedded in
M that intersects L transversely, we denote the surface F ∩ML by FL and call it a
meridional surface (with respect to L). A simple closed curve on FL is inessential
on FL if it bounds a disk on FL or it bounds an annulus on FL together with a
boundary component of FL . We say that the curve is essential on FL if it is not
inessential on FL . A compressing disk for FL is a disk D embedded in ML so that
F ∩ D = ∂D is an essential simple closed curve on FL . A cut-disk for FL is the
intersection Dc

= D ∩ML , where D(⊂ M) is a disk such that D ∩ F = ∂D is an
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compressing disk cut-disk

Figure 2. c-disks.

essential simple closed curve on FL and |D ∩ N (L)| is a meridian disk (i.e., D
intersects L transversely in one point). A c-disk for FL is either a compressing disk
or a cut-disk for FL (see Figure 2). We say that a surface F ⊂ M is c-essential
if there are no c-disks for FL , FL is not boundary parallel in ML and F is not a
2-sphere that bounds a 3-ball in ML .

Let L be a link in M which is in a bridge position with respect to a Heegaard
surface F of M. We denote by C(FL) the curve complex of FL , that is, each vertex
of C(FL) corresponds to the isotopy class of an essential simple loop in FL and
k+ 1 distinct vertices form a k-simplex if and only if there are mutually disjoint
representatives of the corresponding isotopy classes. For two vertices v and v′ of
C(FL), we denote by d(v, v′) the number of 1-simplexes in the shortest path (of
1-simplexes) connecting v and v′. For two sets A and B of vertices of C(FL), we
define d(A, B) by the minimum of {d(v, v′) | v ∈ A, v′ ∈ B}. Let V0 and V1 be the
closures of the two components of M \ F , and let Hi = Vi ∩ML (i = 0, 1). For each
i = 0, 1, we denote by DBS(Hi ) (resp. DT (Hi )) the set of the vertices of C(FL) with
representatives bounding c-disks (resp. compressing disks) in Hi . We define the
distances dBS(L , F) and dT (L , F) of L with respect to F as d(DBS(H0),DBS(H1))

and d(DT (H0),DT (H1)), respectively.
Let V be a handlebody and T the union of trivial arcs properly embedded in V .

We say that a finite graph 6 properly embedded in V is a spine of (V, T ) if V \6
is homeomorphic to ∂V ×[0, 1) and the projection V \6 ∼= ∂V ×[0, 1)→ [0, 1)
has no maxima on T . Let L be a link in M which is in a bridge position with
respect to a Heegaard surface F of M , and let V0 and V1 be the closures of the two
components of M \ F . For each i = 0, 1, let 6i be the spine of (Vi , L ∩ Vi ) and
let pi : Vi \6i (∼= ∂Vi × [0, 1))→ [0, 1) be the projection as above. Define maps
ϕ0 : [0, 1)→

(
0, 1

2

]
and ϕ1 : [0, 1)→

[ 1
2 , 1

)
by ϕ0(t)= 1

2(1−t) and ϕ1(t)= 1
2(1+t).

A sweep-out of F with respect to L is a map h : M→ [0, 1] defined by h(6i )= i
and h|Vi\6i = ϕi ◦ pi (i = 0, 1).

3. Proof of the main theorem

In this section, we prove Theorem 1.1, and also Proposition 1.2 and Corollary 1.3.
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Proof of Theorem 1.1. If dBS(L , F) ≤ 1, then dBS(L , F) < −χ(SL) = |∂SL | − 2
always holds since |∂SL | ≥ 4 by the hypothesis. Hence, we may assume that
dBS(L , F) ≥ 2. Let H0, H1, 60 and 61 be as in the previous section, and let
h : M→ [0, 1] be a sweep-out of F with respect to L . Set FL(t) = h−1(t)∩ML .
Let H0(t) be the closure of the component of ML \ FL(t) that contains 60, and
H1(t) the closure of ML \ H0(t). Let ε0 be chosen just larger than the radius of
N (L) but small enough so that S meets H0(ε0) and H1(1−ε0) in c-disks for FL(ε0)

and FL(1− ε0). Then the surface FL(t) is homeomorphic to FL for every value
t ∈ [ε0, 1− ε0], and we can take a homeomorphism

8 :

1−ε0⋃
t=ε0

FL(t)→ FL ×[ε0, 1− ε0]

such that 8(FL(t))= FL×{t}. Let π = pr1◦8, where pr1 : FL×[ε0, 1−ε0]→ FL

is the projection onto the first factor. Hence, for a loop γ on FL(t), the image π(γ )
is a loop on FL .

Note: The results referred to throughout this proof are from [Bachman and Schleimer
2005].

We assume that the essential meridional sphere S is in standard position as in
the proof of the main theorem of that reference. Namely,

• Each boundary component of SL lies on ∂FL(t) for some t ∈ (ε0, 1− ε0). If
some boundary component of S is contained in ∂FL(t), we consider t a critical
value for S.

• All critical points of h|SL are nondegenerate (i.e., maxima, minima, or saddles).
We will refer to any such critical point whose height is between ε0 and 1− ε0

and to any meridional boundary component as a critical submanifold (of S).

• The heights of any two critical submanifolds of S are distinct.

Let t0 be the supremum of t ∈ [ε0, 1− ε0] such that there is a loop in S ∩ FL(t)
which bounds a c-disk for FL(t) in H0(t). Likewise, let t1 be the infimum of
t ∈ [ε0, 1−ε0] such that some loop in S∩ FL(t) bounds a c-disk for FL(t) in H1(t).
Since dBS(L , F)≥ 2, we may assume that ε0 < t0 < t1 < 1− ε0 by Claims 5.4–5.6.

Choose ε > 0 sufficiently small so that there is no critical values in [t0−ε, t0+ε]
and in [t1− ε, t1+ ε] other than t0 and t1. By the definition of t0, there is a loop
γ0 ⊂ S ∩ FL(t0− ε) which bounds a c-disk for FL(t0− ε) in H0(t0− ε). Similarly,
there is a loop γ1⊂ S∩FL(t1+ε) which bounds a c-disk for FL(t1+ε) in H0(t1+ε).

We see that S ∩ FL(t0+ ε) contains a loop essential on SL . To this end, assume
on the contrary that every component of S ∩ FL(t0+ ε) is inessential on SL . By
the definition of t0, a component of S ∩ FL(t0+ ε) is inessential also on FL(t0+ ε)
since, otherwise, S ∩ H0(t0+ ε) is a c-disk. Note that there is no essential spheres
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or decomposing spheres for L by the assumption that dBS(L , F)≥ 2 together with
Theorem 1. Hence, we can isotope S so that SL ⊂ H1(t0+ ε), which is impossible
by Claim 5.2. Similarly, we can see that S∩ FL(t1− ε) contains a loop essential on
SL . Cut SL along loops on S∩ FL(t0+ε) and S∩ FL(t1−ε) which are essential on
SL . Let S′ be the closure of one of the components which meets both FL(t0+ ε)
and FL(t1− ε). Note that every loop on SL is separating since S is a sphere, and
that every component of SL \ S′ contains at least two boundary components of SL .
Thus, the Euler characteristic χ(S′) is bigger than or equal to χ(SL)+ 2.

Let α0 (resp. α1) be a component of ∂S′∩ FL(t0+ε) (resp. ∂S′∩ FL(t1−ε)). By
Claim 5.9, every loop of S∩ FL(t) for every regular value t ∈ [t0, t1] of h|S is either
essential on both FL(t) and SL or inessential on both FL(t) and SL . In particular,
the loops α0 and α1 are essential also on FL(t0+ ε) and FL(t1− ε), respectively.
Since we chose a sufficiently small ε, we may assume that the images π(γ0) and
π(α0) on FL are disjoint. Similarly, we assume that π(γ1) and π(α1) on FL are
disjoint. By Claim 5.7 and Lemma 5.12, we see that the distance dBS(π(α0), π(α1))

is bounded above by the number of essential critical submanifolds on S′. (Here, an
essential critical submanifold is a critical submanifold P of S′ such that neither of
the boundary components of a small horizontal neighborhood of P in S′ does not
bound a disk on S′. See [Bachman and Schleimer 2005] for detail.) Note that the
number of essential critical submanifolds on S′ equals −χ(S′).

Hence, we have

dBS(π(γ0), π(γ1))≤ dBS(π(γ0), π(α0))+ dBS(π(α0), π(α1))+ dBS(π(α1), π(γ1))

≤ dBS(π(α0), π(α1))+ 2

≤−χ(S′)+ 2

≤−χ(SL).

This completes the proof of Theorem 1.1. �

Proof of Proposition 1.2. Let V0 and V1 be the closures of the two components of
S3
\ F , and let Hi = Cl(Vi \ N (L)) (i = 0, 1).
We first assume that dBS(L , F)= n ≥ 1, and let c0, . . . , cn are essential loops

on FL realizing the distance dBS(L , F). Namely, c0 and cn bounds c-disk in H0

and H1, respectively, and ci−1 ∩ ci =∅ for i = 1, . . . , n. Assume that c0 bounds a
cut-disk Dc in H0. Since V0 is a 3-ball by the hypothesis and c0 is essential in FL ,
H0 \ Dc has two components H 1

0 and H 2
0 neither of which is homeomorphic to a

solid torus, and c1 lies on ∂H 1
0 and ∂H 2

0 , say ∂H 1
0 . Then, we can find a compressing

disk D for FL in ∂H 2
0 , disjoint from Dc

∪c1, and we replace c0 with ∂D. Similarly,
in the case where cn bounds a cut-disk in H1, we can replace cn with a loop c′n
which bounds a compressing disk in H1 and is disjoint from cn−1. Hence, we have
dT (L , F)= n = dBS(L , F).
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Assume that dBS(L , F)= 0. Then there is a loop c which bounds c-disks in both
H0 and H1. By using an argument similar to that for the previous case, we can find
loops c′ and c′′ that bound compressing disks in H0 and H1, respectively, and are
mutually disjoint. Hence, we have dT (L , F)≤ 1. �

Proof of Corollary 1.3. By Proposition 1.2, we have dT (L , F)=max{1, dBS(L , F)}.
Since dBS(L , F) ≤ −χ(SL) by Theorem 1.1 and −χ(SL) ≥ 2 by the hypothesis,
we have dT (L , F)≤−χ(SL). �

4. Applications

In this section, we prove Corollaries 1.4 and 1.5.
A (2-string) trivial tangle is a pair of a 3-ball and the union of two arcs trivially

embedded in the 3-ball, that is, the arcs together with some arcs on the boundary
of the 3-ball bound disjoint disks. A rational tangle is an ambient isotopy class
of a trivial tangle with its boundary fixed. It is well known that rational tangles
can be parametrized by rational numbers, called the slopes of rational tangles. A
Montesinos pair is a pair of a 3-manifold and a 1-submanifold which is built from
the pair, called a hollow Montesinos pair, (illustrated in either half of Figure 3) by
plugging some of the holes with rational tangles of finite slopes.

An arborescent link is a link in the 3-sphere S3 obtained by gluing some Mon-
tesinos pairs in their boundaries. In particular, we call a link obtained from a
hollow Montesinos pair of the form shown on the left in Figure 3 by plugging
the holes with rational tangles of finite slopes r1, r2, . . . , rm a Montesinos link,
and denote it by M1(r1, r2, . . . , rm). We call m the length of the Montesinos link
M1(r1, r2, . . . , rm) when neither of r1, r2, . . . , rm is an integer. Similarly, we denote
by M2(r1, r2, . . . , rm) the arborescent link obtained from a hollow Montesinos pair
of the form shown on the right in Figure 3 by plugging the holes with rational
tangles of finite slopes r1, r2, . . . , rm .

Lemma 4.1. Let L be an arborescent link in S3 which has bridge index at least 3,
and suppose that L does not admit an essential Conway sphere (i.e., a c-essential
sphere in S3 intersecting L transversely in exactly 4 points). Then L is equivalent
to a Montesinos link of length 3 as illustrated in Figure 4. In that figure, each circle
with a rational number ri (i = 1, 2, 3) inside represents a rational tangle of slope ri .

Figure 3. Hollow Montesinos pairs.
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Figure 4. A Montesinos link M1(r1, r2, r3).

essential Conway spheres

Figure 5. Essential Conway spheres in Montesinos pairs.

Proof. Let L be an arborescent link in S3 and suppose that L does not admit an
essential Conway sphere. Then L is obtained from a Montesinos pair of one of the
forms shown in Figure 3 by plugging the holes with rational tangles of finite slopes
(see [Bonahon and Siebenmann 2010, Theorem 3.4] or [Jang 2011, Theorem 4]).
That is, L is equivalent to a Montesinos link M1(r1, r2, . . . , rm1) or an arborescent
link M2(r1, r2, . . . , rm2) for some rational numbers ri ’s. Moreover, the m1 and m2

cannot be bigger than 3 and 1, respectively, since otherwise L admits an essential
Conway sphere as illustrated in Figure 5, which contradicts the hypothesis.

We note that M2(r1) is equivalent to the Montesinos link M1(−1/2, 1/2,−1/r1).
Moreover, we can easily see that M1(r1, r2, . . . , rm1) admits a 2-bridge presentation
if the length of M1(r1, r2, . . . , rm1) is 1 or 2, which contradicts the assumption that
the bridge index of L is at least 3. Thus, L is equivalent to a Montesinos link of
length 3, which is the desired result. �

Proof of Corollary 1.4. Let L be an arborescent link in S3 and F a bridge sphere of
L . If there is an essential tori or an essential Conway sphere in the complement
of L , then the distances dBS(L , F) and dT (L , F) are at most 2 by [Bachman and
Schleimer 2005, Theorem 5.1] together with Theorem 1.1 and Corollary 1.3. Thus,
in the rest of the proof, we assume that there is no essential tori or essential Conway
spheres. By Lemma 4.1, the link L is equivalent to a Montesinos link of length 3
(see Figure 4).

Figure 6. A 3-bridge sphere for a Montesinos link.
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Assume that F is a minimal bridge sphere (that is, a 3-bridge sphere) of L . By
[Jang 2013], we may assume that F is (equivalent to) the 3-bridge sphere F0 in
Figure 6 without loss of generality. Let B1 be the 3-ball bounded by F containing
two of the three rational tangles and B2 the other 3-ball bounded by F (see Figure 6),
and let Hi be the closure of Bi \ N (L) (i = 1, 2). Let c0, c1 and c2 be the loops
on FL as illustrated in Figure 7. Then c0 bounds a cut-disk in H1, c2 bounds a
compressing disk in H2, and c1 is disjoint from c0∪c2. These imply dBS(L , F)≤ 2.
Moreover, by Proposition 1.2, we have dT (L , F)≤ 2. �

Proof of Corollary 1.5. If the distances are greater than two, then, by [Bachman
and Schleimer 2005, Theorem 5.1] together with Theorem 1.1 and Corollary 1.3,
there is no essential tori in the exterior of L , no essential Conway spheres for
L , no essential spheres nor essential annuli. By [Bachman and Schleimer 2005,
Corollary 6.2], L is a hyperbolic link. Moreover, the double branched cover M2(L)
of S3 branched along L has a trivial JSJ decomposition. Thus, M2(L) is either a
Seifert fibered space or a hyperbolic manifold. In the former case, we obtain that
either L is a Montesinos link or the complement of L admits a Seifert fibration,
which contradicts Corollary 1.4 or the fact that L is hyperbolic, accordingly. Hence,
M2(L) must be hyperbolic. �

Figure 7. Curves realizing distance 2.
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Let M be a factor of type III with separable predual and with normal states
ϕ1, . . . , ϕk, ω with ω faithful. Let A be a finite-dimensional C∗-subalgebra
of M. Then it is shown that there is a unitary operator u ∈ M such that
ϕi ◦Ad u= ω on A for i = 1, . . . , k. This follows from an embedding result
of a finite-dimensional C∗-algebra with a faithful state into M with finitely
many given states. We also give similar embedding results of C∗-algebras
and von Neumann algebras with faithful states into M. Another similar
result for a factor of type II1 instead of type III holds.

1. Introduction

Let M be a factor of type III with separable predual. Then two nonzero projections e
and f in M are equivalent, that is, there exists a partial isometry v ∈ M such that
v∗v= e, vv∗= f . If, furthermore, e and f are different from the identity operator 1,
then there is a unitary operator u ∈ M such that u∗eu = f . This shows that there
is an abundance of unitaries in M , so one might expect stronger results arising
from these unitaries. That is what is done in the present paper. We show that if ϕ
and ω are faithful normal states in M and A⊂M is a finite-dimensional C∗-algebra,
then there exists a unitary operator u ∈ M such that the restrictions ϕ ◦ Ad u|A
and ω|A are equal, where Ad u is the inner automorphism x 7→ u∗xu of M . (See
Corollary 2.2 for a more precise and general statement.)

This actually follows from an embedding result of a finite-dimensional C∗-
algebra A with a faithful state into M with finitely given normal states. This result
is then applied to obtain a similar result for the C∗-algebra of the compact operators
on a separable Hilbert space. Furthermore, we have more general embedding results
in Section 3 for C∗-algebras and von Neumann algebras with faithful states into a
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type III factor M such that a finite number of normal states on M coincide after the
embedding.

If M is not of type III, the corresponding result is false in general, but if M is
a factor of II1, ω = τ is the trace and A ∼= Mn(C), the matrix algebra of complex
n× n-matrices, then the corresponding result to the unitary equivalence on A holds
for ω = τ and any ϕ. This will be shown in Section 4.

There exist results of a similar nature to the ones above in the literature. In
[Connes and Størmer 1978], it has been shown that if M is of type III1 and ε > 0
then there is a unitary operator u ∈ M with

‖ϕ ◦Ad u−ω‖< ε.

If one takes a pointwise weak limit point of the automorphisms of the form Ad u
in the above, then one finds a completely positive unital map π : M → M with
ϕ ◦π = ω.

In the nonseparable case, it has recently been shown by Ando and Haagerup
[2013] that for some factors of type III1 constructed as ultraproducts, all faithful
normal states are unitarily equivalent.

In the C∗-algebra case it has been shown in [Kishimoto et al. 2003] that if ϕ
and ω are pure states of a separable C∗-algebra A with the same kernel for their
GNS-representations, then there is an asymptotically inner automorphism α of A
such that ϕ ◦α = ω.

Our result gives an exact equality for two states, not an approximate one, but
only on a finite-dimensional C∗-subalgebra A.

2. Factors of type III

In this section we state and prove our main result.

Theorem 2.1. Let M be a type III factor with separable predual and ϕ1, . . . , ϕk

normal states on M. Let A be a finite-dimensional C∗-algebra and ρ a faithful state
on A. Then there exists a unital injective homomorphism π : A→ M with

ϕi ◦π = ρ, i = 1, . . . , k.

After proving this theorem, we will prove that it implies the following corollary.

Corollary 2.2. Let M be a factor of type III with separable predual. Let A be a
finite-dimensional C∗-subalgebra of M. Let ϕ1, . . . , ϕk and ω be normal states
on M and assume that ω is faithful. Then there exists a unitary operator u ∈ M
such that

ϕi ◦Ad u|A = ω|A, i = 1, . . . , k.
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Before starting preliminaries of our proof of Theorem 2.1, we give an outline of
our method for the case A ∼= Md(C).

After diagonalizing the density matrix of ρ, what we have to find is a system of
matrix units {ei j } in M for which we have ϕn(ei j )= δi jλi for all n = 1, . . . , k and
i, j = 1, . . . , d, where the λi are eigenvalues of the density matrix of ρ. We first
choose ei i satisfying this condition. Then we choose e12, e13, . . . , e1d inductively
so that we have various identities saying that the values of certain linear functionals
applied to a certain partial isometry are all zero at each induction step. This is
done by a version of a noncommutative Lyapunov theorem, and what we need
is a special case of [Akemann and Anderson 1991, Theorem 2.5(1)]. Since the
statement and its proof are short, we include them here in the form we need, for
the sake of convenience of the reader.

Lemma 2.3. Let M be a nonatomic von Neumann algebra and 8 : M → Cn a
σ -weakly continuous linear map. Then for any a ∈ M+,1, there exists a projection
p ∈ M such that 8(p)=8(a).

Proof. Let
D := {x ∈ M+,1 |8(x)=8(a)},

where M+,1 denotes the positive operators in the unit ball of M . Then D is a
nonempty σ -weakly compact convex set. Therefore, by the Krein–Milman theorem,
there exists an extremal point b of D. We show b is a projection. If b were not
a projection, then there exists δ ∈

(
0, 1

2

)
such that the spectral projection p of b

corresponding to (δ, 1− δ) is nonzero. By the assumption on M , pMsa p is an
infinite-dimensional real linear space while its range with respect to 8 is finite-
dimensional. This implies the existence of a nonzero y ∈ pMsa p such that8(y)= 0.
Setting t := δ/‖y‖, we have b± t y ∈ D. As we have b = (b+ t y)/2+ (b− t y)/2,
this contradicts the fact that b is extremal in D. �

We now construct appropriate matrix units by induction on the size of matrix
units.

Lemma 2.4. Let M be a type III factor with separable predual and ϕ1, . . . , ϕn

normal states on M. Let λi > 0, i = 1, . . . ,m with
∑

i λi = 1. Then there exists a
system of matrix units {ei j }i, j=1,...,m such that

ϕl(ei j )= δi jλi for all l = 1, . . . ,m.

Proof. For a projection p ∈ M satisfying 0 ≤ ϕl(p)= λ < 1 for l = 1, . . . , n and
0≤ t ≤ 1−λ, there exists a projection q orthogonal to p such that ϕl(q)= t . To see
this, we consider a σ -weakly continuous liner map 8 : M p̄→ Cn , where we write
p̄ = 1− p, given by 8(x)= (ϕl(x))nl=1, and apply Lemma 2.3 for a = t p̄/(1− λ).

Using this fact inductively, we have {ei i }.
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We next define partial isometries ui1, i = 1, . . . ,m, inductively such that ei j =

ui1u∗j1 satisfy the conditions of the lemma. Let u11 = e11 and assume that we have
found ui1, i = 1, . . . , k with k<m. Let v be a partial isometry in M with v∗v= e11,
vv∗ = ek+1,k+1. Then define a map

8 : e11 Me11→ Cnk

8(x) := (ϕl(vxu∗j1))l=1,...,n, j=1,...,k .

This map 8 is σ -weakly continuous and linear, so by using Lemma 2.3 with
a = e11/2, we obtain a projection p ∈ e11 Me11 such that 8(p)=8(e11)/2. Define

uk+1,1 := vp− v(1− p).

Since p ≤ e11, an easy computation shows that u∗k+1,1uk+1,1 = e11, uk+1,1u∗k+1,1 =

ek+1,k+1. Let ek+1, j = uk+1,1u∗j1 and e j,k+1 = u j1u∗k+1,1. Then the ei j , i, j ≤ k+1,
form a set of matrix units, and using the definition of 8 and that 8(p)=8(e11)/2,
we get for all l

ϕl(uk+1,1u∗j1)= ϕl
(
(2vp− v)u∗j1

)
= 2ϕl(vpu∗j1)−ϕl(vu∗j1)

= 0.

Thus
ϕl(e j,k+1)= ϕl(u j1u∗k+1,1)= ϕl(uk+1,1u∗j1)= 0,

completing the proof of the lemma. �

Proof of Theorem 2.1. First we consider the case A = Mm(C). We choose a
system of matrix units {vi j }i, j=1,...,m of A= Mm(C) which diagonalizes the density
matrix Dρ of ρ, that is, Dρ =

∑m
i=1 λivi i . As ρ is faithful, we have λi > 0 for all i .

By Lemma 2.4, we obtain a system of matrix units {ei j }i, j=1,...,m in M satisfying

ϕn(ei j )= δi jλi , n = 1, . . . , k, i, j = 1, . . . ,m.(1)

Define
π : Mm(C)→ M, π(vi j )= ei j .

Then π gives a unital homomorphism satisfying the desired condition.
For the general case A '

⊕b
k=1 Mnk (C), let m =

∑b
k=1 nk . Let ρ̂ be a faithful

extension of ρ to Mm(C). Applying the above result to Mm(C) and ρ̂, there exists
a unital homomorphism π̂ : Mm(C)→ M such that

ϕn ◦ π̂ = ρ̂, n = 1, . . . , k.

The restriction π := π̂ |A gives a unital homomorphism from A to M satisfying
ϕn ◦π = ρ, for n = 1, . . . , k. �
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Proof of Corollary 2.2. Let p be the unit of A. Considering A⊕C(1− p) instead
of A, we may assume that A contains the unit of M from the beginning.

First we consider the case A' Mm(C), m ∈N. Let { fi j }i, j=1,...,m , {vi j }i, j=1,...,m

be systems of matrix units of A and Mm(C), respectively. Let γ : Mm(C)→ A be
an isomorphism given by γ (vi j )= fi j .

Then ρ := ω ◦ γ is a faithful state on Mm(C). From Theorem 2.1, there exists
a unital homomorphism π : Mm(C)→ M such that ϕn ◦ π = ρ, n = 1, . . . , k.
The algebras A and π(Mm(C)) are subalgebras of M isomorphic to Mm(C) with
complete sets of matrix units { fi j } and {π(vi j )}. As in [Haagerup and Musat 2011,
Lemma 2.1], if v ∈ M is a partial isometry with v∗v = π(v11) and vv∗ = f11, then
u :=

∑m
i=1 π(vi1)v

∗ f1i is a unitary in M satisfying u fi j u∗ = π(vi j ). Hence we
have

ϕn ◦Ad u( fi j )= ϕn(π(vi j ))= ρ(vi j )= ω ◦ γ (vi j )= ω( fi j ),

that is, ϕn ◦Ad u|A = ω|A for n = 1, . . . , k.
For the general case A '

⊕b
l=1 Mnl (C), let { f (l)i j }i j=1,...,nl be a system of matrix

units of Mnl (C) for each l = 1, . . . , b. As M is of type III, for all l = 1, . . . , b,
the nonzero projections f (1)11 and f (l)11 are mutually equivalent. Hence, there exist
partial isometries v(l) ∈ M such that v(l)∗v(l) = f (l)11 and v(l)v(l)∗ = f (1)11 . Set
w(k,i)(l, j) := f (k)i1 v

(k)∗v(l) f (l)1 j , for k, l = 1, . . . , b, i = 1, . . . , nk , and j = 1, . . . , nl .
Then we have

w∗(k,i)(l, j) = f (l)j1 v
(l)∗v(k) f (k)1i = w(l, j)(k,i),

w(k,i)(l, j)w(l ′, j ′)(k′,i ′) = f (k)i1 v
(k)∗v(l) f (l)1 j f (l

′)
j ′1 v

(l ′)∗v(k
′) f (k

′)
1i ′

= δll ′δ j j ′ f
(k)
i1 v

(k)∗v(l) f (l)11 v
(l)∗v(k

′) f (k
′)

1i ′

= δll ′δ j j ′ f
(k)
i1 v

(k)∗v(l)v(l)
∗
v(k
′) f (k

′)
1i ′

= δll ′δ j j ′w(ki),(k′i ′),∑
(k,i)

w(k,i)(k,i) =
∑
i,k

f (k)i1 v
(k)∗v(k) f (k)1i =

∑
(k,i)

f (k)i i = 1.

Hence {w(k,i)(l, j)}(k,i),(l, j) give a system of matrix units of a C∗-subalgebra B
of M isomorphic to Mm , for m :=

∑b
k=1 nk . As w(ki)(k j) = f (k)i1 f (k)1 j = f (k)i j ,

{w(k,i)(l, j)} is an extension of { f (k)i j } and A is a subalgebra of B. We apply the above
argument to B ' Mm(C) and obtain a unitary u in M such that ϕi ◦Ad u|B = ω|B .
In particular, we obtain ϕi ◦Ad u|A = ω|A for i = 1, . . . , k. �

3. Embedding of operator algebras with faithful states

The above theorem can be extended to the algebra of the compact operators as
follows.
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Theorem 3.1. Let K (H) denote the set of all the compact operators on a separable
Hilbert space H. Let ρ be a faithful state on K (H). Let M be a factor of type III
with separable predual, ϕ1, ϕ2, . . . , ϕk normal states on M. Then there exists a
homomorphism π of K (H) into M such that

ϕn ◦π = ρ, n = 1, . . . , k.

Proof. We may assume that H is infinite-dimensional and ϕ1 is faithful — for
example, by adding a faithful state to the set of all the ϕi .

Let {vi j } be a system of matrix units of K (H) diagonalizing the density matrix Dρ

of ρ, that is, Dρ =
∑
∞

i=1 λivi i . As ρ is faithful, we have λi > 0 for all i .
We claim that there exists a system of matrix units {ei j }i, j∈N in M satisfying

ϕn(ei j )= δi jλi , n = 1, . . . , k, i, j = 1, 2, . . . .(2)

This is proved in the same way as in the proof of Theorem 2.1. �

A slight rewriting of the above theorem gives the following:

Corollary 3.2. Let B(H) be the set of all the bounded operators on a separable
Hilbert space H and ρ a faithful normal state on B(H). Let M be a factor of type III
with separable predual and ϕ1, ϕ2, . . . , ϕk normal states on M. Then there exists a
homomorphism π of B(H) into M such that

ϕn ◦π = ρ, n = 1, . . . , k.

We now consider an embedding of a C∗-algebra with a faithful state into a
type III factor with finitely many normal states.

Theorem 3.3. For a C∗-algebra A and a faithful state ω on A, the following
conditions are equivalent:

(i) The Hilbert space Hω in the GNS triple (Hω, πω, �ω) of ω is separable and
�ω is separating for πω(A)′′.

(ii) There exists a representation (H, ρ) of A on a separable Hilbert space H and
a faithful normal state σ on B(H) with ω = σ ◦ ρ.

(iii) For any factor M of type III with separable predual and its normal states
ϕ1, . . . , ϕn , there exists an injective homomorphism γ : A→M with ϕ j ◦γ =ω

for all j = 1, . . . , n.

Proof. Suppose condition (i) holds. Then �ω is cyclic for πω(A)′. Therefore,
using the separability of Hω, we have a sequence {xn}

∞

n=1 ⊂ (πω(A)
′)1 such that

{xn�ω : n ∈ N} spans Hω. Let x0 :=
√

1−
∑

n x∗n xn/2n , and define a state σ
on B(Hω) given by the density matrix

∑
∞

n=0|xn�ω〉〈xn�ω|/2n . This σ is faithful
and normal. Let ρ = πω. We can check σ ◦ ρ = ω. Hence (ii) holds.
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Now suppose condition (ii) holds. We show (iii). By Theorem 3.1, we have an
injective homomorphism π : K (H)→ M such that σ |K (H) = ϕ ◦π . We denote the
extension of π to B(H) by π̂ . Then from the way we have constructed π , we obtain
σ =ϕ◦π̂ . Define γ := π̂ ◦ρ : A→M . Then we obtain ϕ◦γ =ϕ◦π̂ ◦ρ= σ ◦ρ=ω.

Finally suppose condition (iii) holds, and we show this implies (i). To see this,
fix a factor M of type III with a faithful normal state ϕ, and let (Hϕ, πϕ, �ϕ) be
its GNS triple. We obtain γ as in (iii). Let K := πϕ ◦ γ (A)�ϕ and let β be the
restriction of πϕ ◦ γ to K . Then (K , β,�ϕ) is the GNS triple of ω. As �ϕ is
separating for πϕ(M), it is separating for β(A)′′, and (i) holds. �

As an immediate corollary, we obtain the following:

Corollary 3.4. Let N be a von Neumann algebra with separable predual and ψ a
faithful normal state on N. Then for any factor M of type III with separable predual
and a normal state ϕ on M , there exists an injective homomorphism π : N → M
with ϕ ◦π = ψ .

Another easy corollary is as follows, by a well-known result on the KMS condition
[Bratteli and Robinson 1997, Corollary 5.3.9].

Corollary 3.5. Suppose that we have a C∗-algebra A, a state ϕ on A, and a one-
parameter automorphism group {αt }t∈R such that these satisfy the KMS condition.
Then the pair (A, ϕ) satisfies the (equivalent) conditions in Theorem 3.3.

Remark 3.6. Note that a general faithful state on a C∗-algebra A does not satisfy
condition (i) of Theorem 3.3 at all, as shown in [Takesaki 1974] by an example due to
Pedersen. The C∗-algebra used by Takesaki is a very basic one, C([0, 1])⊗M2(C).
A slight modification of the argument there also works for a simple C∗-algebra
Aθ ⊗M2(C), where Aθ is the irrational rotation C∗-algebra.

In Theorem 3 of the same paper, Takesaki gives a sufficient condition for our
condition (i) in Theorem 3.3 and calls it the quasi-KMS condition, but it seems
difficult to check this condition for a given example.

Remark 3.7. In all the above cases, we considered embeddings into a type III factor,
but actually any properly infinite von Neumann algebra with separable predual
works. This is because if we have a properly infinite von Neumann algebra and
normal states on it, we simply restrict the states on a type III factor which is found
as a subalgebra of the original von Neumann algebra. It is easy to see that if a
von Neumann algebra with separable predual has a finite direct summand, this
type of embedding is impossible, so actually this embeddability characterize proper
infiniteness of a von Neumann algebra with separable predual.
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4. Factors of type II1

The direct analogue of Theorem 2.1 for finite factors is trivially false. For example,
if M is of type II1 with trace τ and ρ is not a trace on A, then the conclusion of
Theorem 2.1 for ϕ1 = τ is clearly false. However, if we restrict the choice of ω in
Corollary 2.2, we obtain a positive result.

Theorem 4.1. Let ϕ1, . . . , ϕk be normal states on a factor M of type II1 with
the unique trace τ . Let A be a C∗-subalgebra of M isomorphic to Mm(C) with
1 ∈ A. Then there exists a unitary operator u ∈ M satisfying ϕi ◦Ad u|A = τ |A for
i = 1, . . . , k.

Proof. We may assume that ϕ1 = τ is the unique trace on M . We proceed as in the
proof of Theorem 2.1. The only difference is that we take τ(ei i )= 1/m instead of
the proof of Lemma 2.4. �
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EIGENVALUES AND ENTROPIES UNDER THE
HARMONIC-RICCI FLOW

YI LI

In this paper, the author discusses the eigenvalues and entropies under the
harmonic-Ricci flow, which is the Ricci flow coupled with the harmonic map
flow. We give an alternative proof of results for compact steady and expand-
ing harmonic-Ricci breathers. In the second part, we derive some mono-
tonicity formulas for eigenvalues of the Laplacian under the harmonic-Ricci
flow. Finally, we obtain the first variation of the shrinker and expanding
entropies of the harmonic-Ricci flow.
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1. Introduction

Since the successful application of the Ricci flow to topological and geometric
problems, several analogous flows have been studied, including the harmonic-Ricci
flow [List 2006; Müller 2012], connection Ricci flow [Streets 2008], Ricci–Yang–
Mills flow [Streets 2007; 2010; Young 2008], and renormalization group flows [He
et al. 2008; Li 2012; Oliynyk et al. 2006; Streets 2009]. In this article, we study the
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eigenvalue problems of the harmonic-Ricci flow, which is the following coupled
system:

∂

∂t
g(t)=−2 Ricg(t)+ 4 du(t)⊗ du(t),(1-1)

∂

∂t
u(t)=1g(t)u(t).(1-2)

For convenience, we introduce a new symmetric 2-tensor Sg(t),u(t) whose compo-
nents Si j are defined by

Si j := Ri j − 2∂i u∂ j u.

Its trace is Sg(t),u(t) := gi j Si j = Rg(t)− 2|∇g(t)u(t)|2g(t).
Suppose that M is a compact Riemannian manifold. For any Riemannian metric

g and any smooth functions u, f , we have a number of functionals:

F(g, u, f )=
∫

M
(Rg + |∇g f |2g − 2|∇gu|2g)e

− f dVg,

E(g, u, f )=
∫

M
(Rg − 2|∇gu|2g)e

− f dVg,

Fk(g, u, f )=
∫

M
(k Rg + |∇g f |2g − 2k|∇gu|2g)e

− f dVg.

List [2006] and Müller [2012] showed that, as in the case of Perelman’s F-functional,
under the evolution equation

(1-3)

∂

∂t
g(t)=−2 Ricg(t)+ 4 du(t)⊗ du(t),

∂

∂t
u(t)=1g(t)u(t),

∂

∂t
f (t)=−1g(t) f (t)− Rg(t)+ |∇g(t) f (t)|2g(t)+ 2|∇g(t)u(t)|2g(t),

the evolution equation for the F-functional is

(1-4)
d
dt

F(g(t), u(t), f (t))= 2
∫

M
|Sg(t),u(t)+∇

2
g(t) f (t)|2g(t)e

− f (t) dVg(t)

+ 4
∫

M
|1g(t)u(t)−〈du(t), d f (t)〉g(t)|2g(t)e

− f (t) dVg(t),

which is nonnegative. Based on (1-4), we derive the following.

Theorem 1.1. Under the evolution equation (1-3), one has

(1-5)
d
dt

E(g(t), u(t), f (t))

= 2
∫

M
|Sg(t),u(t)|

2
g(t)e

− f (t) dVg(t)+ 4
∫

M
|1g(t)u(t)|2g(t)e

− f (t) dVg(t),
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and

(1-6)
d
dt

Fk(g(t), u(t), f (t))

= 2(k− 1)
∫

M
|Sg(t),u(t)|

2
g(t)e

− f (t) dVg(t)+ 2
∫

M
|Sg(t),u(t)

+∇
2
g(t) f (t)|2g(t)e

− f (t) dVg(t)+ 4(k− 1)
∫

M
|1g(t)u(t)|2g(t)e

− f (t) dVg(t)

+ 4
∫

M
|1g(t)u(t)−〈du(t), d f (t)〉g(t)|2g(t)e

− f (t) dVg(t).

As a corollary we give a new proof of the following result.

Corollary 1.2. There is no compact steady harmonic-Ricci breather unless the
manifold (M, g(t)) is Ricci-flat and u(t) is a constant.

To deal with the expanding harmonic-Ricci breather, we need the functionals

L+(g, u, τ, f )= τ 2
∫

M

(
Rg +

n
2τ
+1g f − 2|∇gu|2g

)
e− f dVg,

L+,k(g, u, τ, f )= τ 2
∫

M

(
k
(

Rg +
n

2τ

)
+1g f − 2k|∇gu|2g

)
e− f dVg.

Under the evolution equation

∂

∂t
g(t)=−2 Ricg(t)+ 4 du(t)⊗ du(t),

∂

∂t
u(t)=1g(t)u(t),

∂

∂t
f (t)=−1g(t) f (t)+ |∇g(t) f (t)|2g(t)− Rg(t)+ 2|∇g(t)u(t)|2g(t),

d
dt
τ(t)= 1,

we have:

Theorem 1.3. Under the evolution equation, one has

(1-7)
d
dt

L+(g(t), u(t), τ (t), f (t))

= 2τ(t)2
∫

M

∣∣∣Sg(t),u(t)+∇
2
g(t) f (t)+ 1

2τ(t)
g(t)

∣∣∣2
g(t)

e− f (t) dVg(t)

+ 4τ(t)2
∫

M
|1g(t)u(t)−〈du(t), d f (t)〉g(t)|2g(t)e

− f (t) dVg(t)
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and

(1-8)
d
dt

L+,k(g(t), u(t), τ (t), f (t))

= 2τ(t)2
∫

M
|Sg(t),u(t)+∇

2
g(t) f (t)+

1
2τ(t)

g(t)|2g(t)e
− f (t)dVg(t)

+ 2(k− 1)τ (t)2
∫

M
|Sg(t),u(t)+

1
2τ(t)

g(t)|2g(t)e
− f (t)dVg(t)

+ 4τ(t)2
∫

M
|1g(t)u(t)−〈du(t), d f (t)〉g(t)|2g(t)e

− f (t)dVg(t)

+ 4(k− 1)τ (t)2
∫

M
|1g(t)u(t)|2g(t)e

− f (t)dVg(t).

As a corollary, we obtain a new proof of the following.

Corollary 1.4. There is no expanding harmonic-Ricci breather on compact Rie-
mannian manifolds unless the manifold M is an Einstein manifold and u(t) a
constant.

The second part of this paper focuses on the eigenvalue of the Laplacian operator
under the harmonic-Ricci flow.

Theorem 1.5. If (g(t), u(t)) is a solution of the harmonic-Ricci flow on a compact
Riemannian manifold M and λ(t) denotes the eigenvalue of the Laplacian 1g(t)

with eigenfunction f (t),

(1-9)
d
dt
λ(t) ·

∫
M

f (t)2 dVg(t)

= λ(t)
∫

M
Sg(t),u(t) f (t)2 dVg(t)−

∫
M

Sg(t),u(t)|∇g(t) f |2g(t) dVg(t)

+ 2
∫

M
〈Sg(t),u(t), d f (t)⊗ d f (t)〉g(t) dVg(t).

Equation (1-9) is a general formula to describe the evolution of λ(t) under
the harmonic-Ricci flow. Under a curvature assumption, we can derive some
monotonicity formulas for the eigenvalue λ(t). Set

(1-10) Smin(0) := min
x∈M

Sg(0),u(0)(x),

the minimum of Sg(t),u(t) over M at the time 0.

Theorem 1.6. Let (g(t), u(t))t∈[0,T ] be a solution of the harmonic-Ricci flow on a
compact Riemannian manifold M and let λ(t) denote the eigenvalue of the Laplacian
1g(t). Suppose that Sg(t),u(t)− αSg(t),u(t)g(t) ≥ 0 along the harmonic-Ricci flow
for some α ≥ 1

2 .
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(1) If Smin(0) ≥ 0, λ(t) is nondecreasing along the harmonic-Ricci flow for any
t ∈ [0, T ].

(2) If Smin(0) > 0, the quantity(
1− 2

n
Smin(0)t

)nα
λ(t)

is nondecreasing along the harmonic-Ricci flow for T ≤ n/(2Smin(0)).

(3) If Smin(0) < 0, the quantity(
1− 2

n
Smin(0)t

)nα
λ(t)

is nondecreasing along the harmonic-Ricci flow for any t ∈ [0, T ].

Corollary 1.7. Let (g(t), u(t))t∈[0,T ] be a solution of the harmonic-Ricci flow
on a compact Riemannian surface 6 and let λ(t) denote the eigenvalue of the
Laplacian 1g(t).

(1) Suppose that Ricg(t) ≤ εdu(t)⊗ du(t) where

ε ≤ 4
1−α

1− 2α
, α > 1

2 .

(i) If Smin(0) ≥ 0, λ(t) is nondecreasing along the harmonic-Ricci flow for
any t ∈ [0, T ].

(ii) If Smin(0) > 0, the quantity

(1− Smin(0) t)2αλ(t)

is nondecreasing along the harmonic-Ricci flow for T ≤ 1/Smin(0).
(iii) If Smin(0) < 0, the quantity

(1− Smin(0) t)2αλ(t)

is nondecreasing along the harmonic-Ricci flow for any t ∈ [0, T ].

(2) Suppose that

|∇g(t)u(t)|2g(t)g(t)≥ 2du(t)⊗ du(t).

(i) If Smin(0) ≥ 0, λ(t) is nondecreasing along the harmonic-Ricci flow for
any t ∈ [0, T ].

(ii) If Smin(0) > 0, the quantity

(1− Smin(0)t)λ(t)

is nondecreasing along the harmonic-Ricci flow for T ≤ 1/Smin(0).
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(iii) If Smin(0) < 0, the quantity

(1− Smin(0)t)λ(t)

is nondecreasing along the harmonic-Ricci flow for any t ∈ [0, T ].

When we restrict to the Ricci flow, we obtain:

Corollary 1.8. Let (g(t))t∈[0,T ] be a solution of the Ricci flow on a compact Rie-
mannian surface 6 and let λ(t) denote the eigenvalue of the Laplacian 1g(t).

(1) If Rmin(0)≥ 0, λ(t) is nondecreasing along the Ricci flow for any t ∈ [0, T ].

(2) If Rmin(0) > 0, the quantity (1− Rmin(0)t)λ(t) is nondecreasing along the
Ricci flow for T ≤ 1/Rmin(0).

(3) If Rmin(0) < 0, the quantity (1− Rmin(0)t)λ(t) is nondecreasing along the
Ricci flow for any t ∈ [0, T ].

Remark 1.9. Let (g(t))t∈[0,T ] be a solution of the Ricci flow on a compact Riemann-
ian surface 6 with nonnegative scalar curvature and let λ(t) denote the eigenvalue
of the Laplacian 1g(t). Then λ(t) is nondecreasing along the Ricci flow for any
t ∈ [0, T ].

Since

(1-11) µ(g, u) := inf
{

F(g, u, f )
∣∣∣ f ∈ C∞(M),

∫
M

e− f dVg = 1
}

is the smallest eigenvalue of the operator 1g,u := −41g + Rg − 2|∇gu|2g, we can
consider the evolution equation for this eigenvalue under the harmonic-Ricci flow.
To the operator 1g,u we associate a functional

(1-12) λg,u( f ) :=
∫

M
f1g,u f dVg.

When f is an eigenfunction of the operator 1g,u with the eigenvalue λ and nor-
malized by

∫
X f 2 dVg = 1, we obtain λg,u( f )= λ. Hence it suffices to study the

evolution equation for (d/dy)λg,u( f ) under the harmonic-Ricci flow.

Theorem 1.10. Suppose that (g(t), u(t)) is a solution of the harmonic-Ricci flow
on a compact Riemannian manifold M and f (t) is an eigenfunction of 1g(t),u(t),
that is, 1g(t),u(t) f (t)= λ(t) f (t) (where λ(t) is only a function of time t), with the
normalized condition

∫
M f (t)2 dVg(t) = 1. Then we have

(1-13)
d
dt
λ(t)=

d
dt
λg,u( f (t))=

∫
M

2〈Sg(t),u(t), d f (t)⊗ d f (t)〉g(t) dVg(t)

+

∫
M

f (t)2
(
|Sg(t),u(t)|

2
g(t)+ 2|1g(t)u(t)|2g(t)

)
dVg(t).
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List [2006] proved the nonnegativity of the operator Sg(t),u(t) is preserved by the
harmonic-Ricci flow. Hence we get the following.

Corollary 1.11. If Ricg(0)−2du(0)⊗ du(0) ≥ 0, the eigenvalues of the operator
1g(t),u(t) are nondecreasing under the harmonic-Ricci flow.

Remark 1.12. If we choose u(t)≡ 0, we obtain X. Cao’s result [2007].

There is another expression for dλ(t)/dt .

Theorem 1.13. Suppose that (g(t), u(t)) is a solution of the harmonic-Ricci flow
on a compact Riemannian manifold M and f (t) is an eigenfunction of 1g(t),u(t),
that is, 1g(t),u(t) f (t)= λ(t) f (t) (where λ(t) is only a function of time t), with the
normalized condition

∫
M f (t)2 dVg(t) = 1. Then we have

(1-14)
d
dt
λ(t)=

d
dt
λg,u( f (t))= 1

2

∫
M
|Sg(t),u(t)+∇

2
g(t)ϕ(t)|

2
g(t)e

−ϕ(t) dVg(t)

+
1
4

∫
M
|Sg(t),u(t)|

2
g(t)e

−ϕ(t) dVg(t)+

∫
M
|〈du(t), dϕ(t)〉g(t)|2e−ϕ(t) dVg(t)

+ 2
∫

M
|∇

2
g(t)u(t)|

2
g(t)e

−ϕ(t) dVg(t)−

∫
M
1g(t)(|∇g(t)u(t)|2g(t))e

−ϕ(t) dVg(t)

+
1
4

∫
M
|Sg(t),u(t)+ 4du(t)⊗ du(t)|2g(t)e

−ϕ(t) dVg(t),

where f (t)2 = e−ϕ(t).

Remark 1.14. When u ≡ 0, (1-14) reduces to J. Li’s formula [2007].

Suppose that M is a compact manifold of dimension n. For any Riemannian
metric g, any smooth functions u, f , and any positive number τ , we define

(1-15) W±(g, u, f, τ ) :=
∫

M
[τ(Sg + |∇g f |2g)∓ f ± n]

e− f

(4πτ)n/2
dVg.

Set

µ±(g, u, τ ) := inf
{

W±(g, u, f, τ )
∣∣∣ f ∈ C∞(M),

∫
M

e− f

(4πτ)n/2
dVg = 1

}
,

ν−(g, u) := inf{µ−(g, u, τ ) | τ > 0}, ν+(g, u) := sup{µ+(g, u, τ ) | τ > 0}.

The first variation of ν±(g(s), u(s)) is the following.

Theorem 1.15. Suppose that (M, g) is a compact Riemannian manifold and u
a smooth function on M. Let h be any symmetric covariant 2-tensor on M and
set g(s) := g + sh. Let v be any smooth function on M and u(s) := u + sv. If
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ν±(g(s), u(s)) = W±(g(s), u(s), f±(s), τ±(s)) for some smooth functions f±(s)
with

∫
M e− f±(s) dVg/(4πτ±(s))n/2 = 1 and constants τ±(s) > 0,

(1-16)
d
ds

∣∣
s=0ν±(g(s), u(s))= 4τ±

∫
M
v(1gu−〈du, d f±〉g)

e− f±

(4πτ±)n/2
dVg

− τ±

∫
M

(
〈h,Sg,u〉g +〈h,∇2

g f 〉g ±
trg h
2τ±

)
e− f± dVg

(4πτ±)n/2
,

where f± := f±(0) and τ± := τ±(0). In particular, the critical points of ν±( · , · )
satisfy

Sg,u +∇
2
g f ±

1
2τ±

g = 0, 1gu = 〈du, d f±〉g.

Consequently, if W±(g, u, f, τ ) and ν±(g, u) achieve their extremum, (M, g) is a
gradient expanding and shrinker harmonic-Ricci soliton according to the sign.

Corollary 1.16. Suppose that (M, g) is a compact Riemannian manifold and u
a smooth function on M. Let h be any symmetric covariant 2-tensor on M and
set g(s) := g + sh. Let v be any smooth function on M and u(s) := u + sv. If
ν±(g(s), u(s)) = W±(g(s), u(s), f±(s), τ±(s)) for some smooth function f±(s)
with

∫
M e− f±(s) dV/(4πτ±(s))n/2 = 1 and a constant τ±(s) > 0, and (g, u) is a

critical point of ν±( · , · ), then

Ricg =∓
1

2τ±
g, f± ≡ constant, u ≡ constant.

Thus, if W±(g, u, · , · ) achieve their minimum and (g, u) is a critical point of
ν±( · , · ), (M, g) is an Einstein manifold and u is a constant function.

Remark 1.17. In the situation of Corollary 1.16, by normalization, we my choose
f± = n/2 and u = 0.

2. Notation and commuting identities

Let M be a compact Riemannian manifold of dimension n. For any vector bundle
E over M , we denote by 0(M, E) the space of smooth sections of E . Set⊙2(M) : = {v = (vi j ) ∈ 0(M, T ∗M ⊗ T ∗M) | vi j = v j i },⊙2

+
(M) : = {g = (gi j ) ∈

⊙2(M) | gi j > 0}.

Thus
⊙2(M) is the space of all symmetric covariant 2-tensors on M , while

⊙2
+
(M)

is the space of all Riemannian metrics on M . The space of all smooth functions on
M is denoted by C∞(M).
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For a given Riemannian metric g ∈
⊙2
+
(M), the corresponding Levi-Civita

connection 0g = (0
k
i j ) is given by

(2-1) 0k
i j =

1
2 gk`(∂i g j`+ ∂ j gil − ∂`gi j )

where ∂i := ∂/∂x i for a local coordinate system {x1, . . . , xn
}. The Riemann tensor

Rmg = (Rk
i jl) is determined by

(2-2) Rk
i j` = ∂i0

k
j`− ∂ j0

k
i`+0

k
ip0

p
j`−0

k
jp0

p
i`.

The Ricci curvature Ricg = (Ri j ) is

(2-3) Ri j = gk`R`ki j .

The scalar curvature Rg of the metric g now is given by

(2-4) Rg = gi j Ri j .

For any tensor A = (Ak1···kq
j1··· jp

) the covariant derivative of A is

∇i Ak1···kq
j1··· jp
= ∂i Ak1···kq

j1··· jp
−

p∑
r=1

0m
i jr Ak1···kq

j1···m··· jp
+

q∑
s=1

0
ks
im Ak1···m···kq

j1··· jp
.

Next we recall the Ricci identity:

∇i∇j A`1···`q
k1···kp

−∇j∇i A`1···`q
k1···kp

=

q∑
r=1

Rlr
i jm A`1···m···`q

k1···kp
−

p∑
s=1

Rm
i jks

A`1···`q
k1···m···kp

.

In particular, for any smooth function f ∈ C∞(M), we have

∇i∇j f =∇j∇i f.

The Bianchi identities are

0= Ri jk`+ Rikl j + Ri`jk,(2-5)

0=∇q Ri jk`+∇i R jqk`+∇j Rqik`,(2-6)

and the contracted Bianchi identities are

0= 2∇ j Ri j −∇i Rg,(2-7)

0=∇i R jk −∇j Rik +∇
`R`ki j .(2-8)
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3. Harmonic-Ricci flow and the evolution equations

Motivated by the static Einstein vacuum equation, List [2006] introduced the
harmonic-Ricci flow (originally called the Ricci flow coupled with the harmonic
map flow). This flow is similar to the Ricci flow and is given by the coupled system

∂

∂t
g(t)=−2 Ricg(t)+ 4 du(t)⊗ du(t),(3-1)

∂

∂t
u(t)=1g(t)u(t)(3-2)

for a family of Riemannian metrics g(t) and a family of smooth functions u(t).
Locally, we have

(3-3)
∂

∂t
gi j =−2Ri j + 4∂i u · ∂ j u,

∂

∂t
u =1g(t)u(t).

Introduce a new symmetric tensor field Sg(t),u(t) = (Si j ) ∈
⊙2(M),

(3-4) Si j := Ri j − 2∂i u · ∂ j u.

Then its trace Sg(t),u(t) is equal to

(3-5) Sg(t),u(t) = gi j Si j = Rg(t)− 2|∇g(t)u(t)|2g(t).

The evolution equation for Rg(t) is

(3-6)
∂

∂t
Rg(t) =1g(t)Rg(t)+ 2|Ricg(t) |

2
g(t)+ 4|1g(t)u(t)|2g(t)

− 4|∇2
g(t)u(t)|

2
g(t)− 8〈Ricg(t), du(t)⊗ du(t)〉g(t).

Also, we have the evolution equation for |∇g(t)u|2g(t),

(3-7)
∂

∂t
|∇g(t)u(t)|2g(t) =1g(t)|∇g(t)u(t)|2g(t)− 2|∇2

g(t)u(t)|
2
g(t)− 4|∇g(t)u(t)|4g(t),

and the evolution equation for Sg(t),u(t),

(3-8)
∂

∂t
Sg(t),u(t) =1g(t)Sg(t),u(t)+ 2|Sg(t),u(t)|

2
g(t)+ 4|1g(t)u(t)|2g(t).

4. Entropies for harmonic-Ricci flow

Motivated by Perelman’s entropy, List [2006] introduced a similar functional for
the harmonic-Ricci flow:⊙2

+
(M)×C∞(M)×C∞(M)→ R, (g, u, f ) 7→ F(g, u, f )
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where

(4-1) F(g, u, f ) :=
∫

M
(Rg + |∇g f |2g − 2|∇gu|2g)e

− f dVg.

He also showed that if (g(t), u(t), f (t)) satisfies the system

(4-2)

∂

∂t
g(t)=−2 Ricg(t)+ 4 du(t)⊗ du(t)− 2∇2

g(t) f (t),

∂

∂t
u(t)=1g(t)u(t)−〈du(t), d f (t)〉g(t),

∂

∂t
f (t)=−1g(t) f (t)− Rg(t)+ 2|∇g(t)u(t)|2g(t),

the evolution of the entropy is given by

(4-3)
d
dt

F(g(t), u(t), f (t))

= 2
∫

M

(
|Sg(t),u(t)+∇

2
g(t) f (t)|2g(t)

+ 2|1g(t)u(t)−〈du(t), d f (t)〉g(t)|2g(t)

)
e− f (t) dVg(t)

≥ 0.

Remark 4.1. The system (4-2) is equivalent to

(4-4)

∂

∂t
g(t)=−2 Ricg(t)+ 4 du(t)⊗ du(t),

∂

∂t
u(t)=1g(t)u(t),

∂

∂t
f (t)=−1g(t) f (t)− Rg(t)+ |∇g(t) f (t)|2g(t)+ 2|∇g(t)u(t)|2g(t).

The same evolution of the entropy holds for system (4-4).

In particular, the entropy is nondecreasing and the equality holds if and only if
(g(t), u(t), f (t)) satisfies

(4-5)
Sg(t),u(t)+∇

2
g(t) f (t)= 0,

1g(t)u(t)−〈du(t), d f (t)〉g(t) = 0.

Definition 4.2. The E-functional is defined as⊙2
+
(M)×C∞(M)×C∞(M)→ R, (g, u, f ) 7→ E(g, u, f ),

where

(4-6) E(g, u, f ) :=
∫

M
(Rg − 2|∇gu|2g)e

− f dVg.
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Proposition 4.3. Under the evolution equation (4-4), one has

(4-7)
d
dt

E(g(t), u(t), f (t))

= 2
∫

M
|Sg(t),u(t)|

2
g(t)e

− f (t) dVg(t)+ 4
∫

M
|1g(t)u(t)|2g(t)e

− f (t) dVg(t).

Proof. Since Sg(t),u(t) = Rg(t)− 2|∇g(t)u(t)|2g(t) and

∂

∂t
Sg(t),u(t) =1g(t)Sg(t),u(t)+ 2|Sg(t),u(t)|

2
g(t)+ 4|1g(t)u(t)|2g(t),

∂

∂t
dVg(t) =−Sg(t),u(t) dVg(t),

we have

d
dt

E(g(t),u(t), f (t))

=

∫
M
(
∂

∂t
Sg(t),u(t))e− f (t) dVg(t)+

∫
M

Sg(t),u(t)
∂

∂t
(e− f (t) dVg(t))

=

∫
M
(1g(t)Sg(t),u(t)+ 2|Sg(t),u(t)|

2
g(t)+ 4|1g(t)u(t)|2g(t))e

− f (t) dVg(t)

+

∫
M

Sg(t),u(t)

(
−
∂

∂t
f (t)− Sg(t),u(t)

)
e− f (t) dVg(t)

= 2
∫

M
|Sg(t),u(t)|

2
g(t)e

− f (t) dVg(t)+ 4
∫

M
|1g(t)u(t)|2g(t)e

− f (t) dVg(t)

−

∫
M

Sg(t),u(t)

(
1g(t) f (t)− |∇g(t) f (t)|2g(t)+

∂

∂t
f (t)+ Sg(t),u(t)

)
e− f (t) dVg(t),

which implies (4-7). �

Definition 4.4. For any k ≥ 1 we define

(4-8) Fk(g, u, f ) :=
∫

M
(k Rg + |∇g f |2g − 2k|∇gu|2g)e

− f dVg.

Using the definition, it is easy to show that

(4-9) Fk(g, u, f )= (k− 1)E(g, u, f )+F(g, u, f ).

When k = 1, this is the F-functional.
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Theorem 4.5. Under the evolution equation (4-4), one has

(4-10)
d
dt

Fk(g(t), u(t), f (t))

= 2(k− 1)
∫

M
|Sg(t),u(t)|

2
g(t)e

− f (t) dVg(t)+ 2
∫

M
|Sg(t),u(t)

+∇
2
g(t) f (t)|2g(t)e

− f (t) dVg(t)+ 4(k− 1)
∫

M
|1g(t)u(t)|2g(t)e

− f (t) dVg(t)

+ 4
∫

M
|1g(t)u(t)−〈du(t), d f (t)〉g(t)|2g(t)e

− f (t) dVg(t).

Furthermore, the monotonicity is strict unless g(t) is Ricci-flat, u(t) is constant,
and f (t) is constant.

Proof. It immediately follows from (4-3) and (4-7). �

Set

(4-11) µk(g, u) := inf
{

Fk(g, u, f )
∣∣∣ f ∈ C∞(M),

∫
M

e− f dVg = 1
}
.

Then µk(g, u) is the lowest eigenvalue of −41g + k(Rg − 2|∇gu|2g).

5. Compact steady harmonic-Ricci breathers

In this section we give an alternative proof on some results on compact steady
harmonic-Ricci breathers that were proved in [List 2006; Müller 2012].

Definition 5.1. A solution (g(t), u(t)) of the harmonic-Ricci flow (1-1)–(1-2) is
called a harmonic-Ricci breather if there exist t1< t2, a diffeomorphismψ :M→M ,
and a constant α > 0 such that

g(t2)= αψ∗g(t1), u(t2)= ψ∗u(t1).

The cases α < 1, α = 1, and α > 1, correspond to shrinking, steady, and expanding
harmonic-Ricci breathers.

Theorem 5.2. If (g(t), u(t)) is a solution of the harmonic-Ricci flow on a compact
Riemannian manifold M , the lowest eigenvalue µk(g(t), u(t)) of the operator
−41g(t)+ k(Rg(t)− 2|∇g(t)u(t)|2g(t)) is nondecreasing under the harmonic-Ricci
flow. The monotonicity is strict unless g(t) is Ricci-flat and u(t) is constant.

Proof. The proof is similar to that given in [Li 2007]. For any t1 < t2, suppose that

µk(g(t2), u(t2))= Fk(g(t2), u(t2), fk(t2))

for some smooth function fk(x). Being an initial value, fk(x)= fk(x, t2) for some
smooth function fk(x, t) satisfying the evolution equation (4-4). The monotonicity
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formula (4-10) impliesµk(g(t2),u(t2))≥Fk(g(t1),u(t1), fk(t1))≥µk(g(t1),u(t1)).
This completes the proof. �

Corollary 5.3. On a compact Riemannian manifold, the lowest eigenvalues of
−1g(t) + (1/2)(Rg(t) − 2|∇g(t)u(t)|2g(t)) are nondecreasing under the harmonic-
Ricci flow.

Proof. Since µ2(g(t), u(t))/4 is the lowest eigenvalue of this operator, the result
immediately follows from Theorem 5.2. �

Corollary 5.4. There is no compact steady harmonic-Ricci breather unless the
manifold (M, g(t)) is Ricci-flat and u is a constant.

Proof. If (g(t), u(t)) is a steady harmonic-Ricci breather, then, for t1 < t2 given in
the definition, we have

µk(g(t1), u(t1))= µk(g(t2), u(t2)).

Hence, using Theorem 5.2, for any t ∈ [t1, t2], we must have

d
dt
µk(g(t), u(t))≡ 0.

Thus (M, g(t)) is Ricci-flat and u(t) is constant. �

6. Compact expanding harmonic-Ricci breathers

Inspired by [Li 2007], we define a new functional⊙2
+
(M)×C∞(M)×C∞(R)×C∞(M)→ R, (g, u, τ, f ) 7→W+(g, u, τ, f ),

where (τ = τ(t), t ∈ R).

(6-1) W+(g, u, τ, f ) := τ 2
∫

M

(
Rg +

n
2τ
+1g f − 2|∇gu|2g

)
e− f dVg.

Similarly, we define a family of functionals

(6-2) W+,k(g, u, τ, f ) := τ 2
∫

M

(
k
(

Rg +
n

2τ

)
+1g f − 2k|∇gu|2g

)
e− f dVg.

It’s clear that W+,1(g, u, τ, f )=W+(g, u, τ, f ).

Lemma 6.1. One has

W+(g, u, τ, f )= τ 2F(g, u, f )+
n
2
τ

∫
M

e− f dVg,

W+,k(g, u, τ, f )= τ 2Fk(g, u, f )+
kn
2
τ

∫
M

e− f dVg,

W+,k(g, u, τ, f )=W+(g, u, τ, f )+ (k− 1)
(
τ 2E(g, u, f )+ n

2
τ

∫
M

e− f dVg

)
.
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Proof. Since 1(e− f )= (−1 f + |∇ f |2)e− f , it follows that

W+(g, u, τ, f )− τ 2F(g, u, f )

=
n
2
τ

∫
M

e− f dVg + τ
2
∫

M
(1g f − |∇g f |2g)e

− f dVg

=
n
2
τ

∫
M

e− f dVg + τ
2
∫

M
1g(e− f ) dVg =

n
2
τ

∫
M

e− f dVg.

We can similarly prove the remaining two relations. �

Theorem 6.2. Under the coupled system

∂

∂t
g(t)=−2 Ricg(t)+ 4 du(t)⊗ du(t)− 2∇2

g(t) f (t),

∂

∂t
u(t)=1g(t)u(t)−〈du(t), d f (t)〉g(t),

∂

∂t
f (t)=−1g(t) f (t)− Rg(t)+ 2|∇g(t)u(t)|2g(t),

d
dt
τ(t)= 1,

the first variation formula for W+(g(t), u(t), τ (t), f (t)) is

(6-3)
d
dt

W+(g(t), u(t), τ (t), f (t))

= 2τ(t)2
∫

M
|Sg(t),u(t)+∇

2
g(t) f (t)+

1
2τ(t)

g(t)|2g(t)e
− f (t) dVg(t)

+ 4τ(t)2
∫

M
|1g(t)u(t)−〈du(t), d f (t)〉g(t)|2g(t)e

− f (t) dVg(t),

and the first variation formula for W+,k(g(t), u(t), τ (t), f (t)) is

(6-4)
d
dt

W+,k(g(t), u(t), τ (t), f (t))

= 2τ(t)2
∫

M
|Sg(t),u(t)+∇

2
g(t) f (t)+

1
2τ(t)

g(t)|2g(t)e
− f (t) dVg(t)

+ 2(k− 1)τ (t)2
∫

M
|Sg(t),u(t)+

1
2τ(t)

g(t)|2g(t)e
− f (t) dVg(t)

+ 4τ(t)2
∫

M
|1g(t)u(t)−〈du(t), d f (t)〉g(t)|2g(t)e

− f (t) dVg(t)

+ 4(k− 1)τ (t)2
∫

M
|1g(t)u(t)|2g(t)e

− f (t) dVg(t).

Proof. Under this coupled system, we first observe that

(6-5)
d
dt

(∫
M

e− f (t) dVg(t)

)
= 0.
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In fact, from ∂

∂t
dVg(t) =−Sg(t),u(t)−1g(t) f (t) dVg(t) we obtain

d
dt

(∫
M

e− f (t)dVg(t)

)
=

∫
M

(
−
∂

∂t
f (t)·dVg(t)+

∂

∂t
dVg(t)

)
e− f (t)

=

∫
M
[1g(t) f (t)+Sg(t),u(t)−Sg(t),u(t)−1g(t) f (t)]e− f (t)dVg(t)

=0.

Lemma 6.1 and the identity (6-5) imply

d
dt

W+(g(t), u(t), τ (t), f (t))

= τ(t)2
d
dt

F(g(t), u(t), f (t))+ 2τ(t)F(g(t), u(t), f (t))+
n
2

∫
M

e− f (t) dVg(t)

= 2τ(t)2
∫

M
|Sg(t),u(t)+∇

2
g(t) f (t)|2g(t)e

− f (t) dVg(t)

+ 4τ(t)2
∫

M
|1g(t)u(t)−〈du(t), d f (t)〉g(t)|2e− f (t) dVg(t)

+ 2τ(t)
∫

M
(Sg(t),u(t)+ |∇g(t) f (t)|2g(t))e

− f (t) dVg(t)+
n
2

∫
M

e− f (t) dVg(t),

which is (6-3). Using Lemma 6.1 and the same method, we can prove (6-4). �

Remark 6.3. Under the coupled system

∂

∂t
g(t)=−2 Ricg(t)+ 4 du(t)⊗ du(t),

∂

∂t
u(t)=1g(t)u(t),

∂

∂t
f (t)=−1g(t) f (t)+ |∇g(t) f (t)|2g(t)− Rg(t)+ 2|∇g(t)u(t)|2g(t),

d
dt
τ(t)= 1,

the same formulas (6-3) and (6-4) hold for W+ and W+,k .

Define

(6-6) µ+(g, u, τ ) := inf
{

W+(g, u, τ, f )
∣∣∣ f ∈ C∞(M),

∫
M

e− f dVg = 1
}
.

Lemma 6.4. For any α > 0, one has

(6-7) µ+(αg, u, ατ)= αµ+(g, u, τ ).

Proof. Set ḡ :=αg; then Rḡ=α
−1 Rg,1ḡ f =α−11g f , and |∇ḡu|2ḡ=α

−1
|∇g(t)u|2g.

Hence
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W+(ḡ, u, ατ, f )= α2τ 2
∫

M

(
Rg +

n
2ατ
+1ḡ f − 2|∇ḡu|2ḡ

)
e− f dVḡ

= ατ 2
∫

M

(
Rg +

n
2τ
+1g f − 2|∇g(t)u|2g

)
αn/2e− f dVg.

Since f 7→ f − (n/2) lnα is one-to-one and onto, by taking the infimum, we derive
µ+(αg, u, ατ)= αµ+(g, u, τ ). �

Definition 6.5. A solution (g(t), u(t)) of the harmonic-Ricci flow is called a har-
monic-Ricci soliton if there exists a one-parameter family of diffeomorphisms
ψt : M→ M , satisfying ψ0 = idM , and a positive scaling function α(t) such that

g(t)= α(t)ψ∗t g(0), u(t)= ψ∗t u(0).

The cases (∂/∂t)α(t)= α̇ < 0, α̇ = 0, and α̇ > 0 correspond to shrinking, steady,
and expanding harmonic-Ricci solitons, respectively. If the diffeomorphisms ψt are
generated by a (possibly time-dependent) vector field X (t) that is the gradient of
some function f (t) on M , the soliton is called a gradient harmonic-Ricci soliton
and f is called the potential of the harmonic-Ricci soliton.

Müller [2012] showed that if (g(t), u(t)) is a gradient harmonic-Ricci soliton
with potential f ,

0= Ricg(t)−2du(t)⊗ du(t)+∇2
g(t) f (t)+ cg(t),

0=1g(t)u(t)−〈∇g(t)u(t),∇g(t) f (t)〉g(t)

for some constant c.

Corollary 6.6. There is no expanding breather on compact Riemannian manifolds
other than expanding gradient harmonic-Ricci solitons.

Proof. The proof is similar to that given in [Li 2007]. Suppose there is an expanding
breather on a compact Riemannian manifold M . Then, by definition, we have

g(t2)= α8∗g(t1), u(t2)=8∗u(t1)

for some t1 < t2, where 8 be a diffeomorphism and the constant α > 1. Let f+(x)
be a smooth function where W+(g(t2), u(t2), τ (t2), f (t2)) attains its minimum.
Then there exists a smooth function f+(x, t) : M ×[t1, t2] → R with initial value
f+(x, t2)= f+(x) that satisfies the coupled system in Remark 6.3. Define a linear
function

τ : [t1, t2] → (0,+∞), τ (t2)= T + t2
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where T is a constant. By the monotonicity formula, we have

µ+(g(t2), u(t2), τ (t2))=W+(g(t2), u(t2), τ (t2), f+(t2))

≥W+(g(t1), u(t1), τ (t1), f+(t1))

≥ µ+(g(t1), u(t1), τ (t1)).

Lemma 6.4 and the diffeomorphic invariant property of the functionals shows

µ+(g(t1), u(t1), τ (t1))≤ αµ+(g(t1), u(t1), τ (t1)),

which yields
µ+(g(t1), u(t1), τ (t1))≥ 0,

since α > 1.
If we impose an additional condition τ(t2)= ατ(t1) and τ(t1)= T + t1, we have

τ(t)=
α(t − t1)− (t − t2)

α− 1
, T =

t2−αt1
α− 1

.

Then
τ(t2)n/2

Vg(t2)
=
[α(t2− t1)/(α− 1)]n/2

αn/2Vg(t1)
=
τ(t1)n/2

Vg(t1)
.

The mean value theorem tells us that there exists a time t̄ ∈ [t1, t2] with

0=
d
dt

∣∣∣
t=t̄

log
τ(t)n/2

Vg(t)

=
Vg(t̄)

τ(t̄)n/2
·
(n/2)τ (t̄)n/2−1Vg(t̄)− τ(t̄)n/2(d/dt)|t=t̄ Vg(t)

V 2
g(t̄)

=
n

2τ(t̄)
−

1
Vg(t̄)

∂

∂t

∣∣∣
t=t̄

Vg(t̄).

From the evolution equation for the volume element dVg(t), we have

d
dt

Vg(t)=

∫
M

∂

∂t
dVg(t)=

∫
M
(−Sg(t),u(t)−1g(t) f (t))dVg(t)=−

∫
M

Sg(t),u(t) dVg(t).

Putting these together yields

0=
n

2τ(t̄)
+

1
Vg(t̄)

∫
M

Sg(t̄),u(t̄) dVg(t̄) =
1

Vg(t̄)

∫
M

(
Sg(t̄),u(t̄)+

n
2τ(t̄)

)
dVg(t̄).

If we set f̄ = log Vg(t̄),

0=W+(g(t̄), u(t̄), τ (t̄), f̄ )≥ µ+(g(t̄), u(t̄), τ (t̄)).
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By the monotonicity of µ+ we obtain

0≤ µ+(g(t1), u(t1), τ (t1))≤ µ+(g(t̄), u(t̄), τ (t̄))≤ 0

Hence µ+(g(t1), u(t1), τ (t1)) = µ+(g(t2), u(t2), τ (t2)) = 0 and W+ = 0 on the
interval [t1, t2]. This indicates that the first variation of W+ must vanish. So the
expanding breather is a gradient soliton, that is,

Sg(t),u(t)+∇
2
g(t) f (t)+

1
2τ(t)

g(t)= 0.

Moreover, in this case 1g(t)u(t)= 〈du(t), d f (t)〉g(t). �

Because of (6-7), we define

(6-8) µ+,k(g, u, τ ) := inf
{

W+,k(g, u, τ, f )
∣∣∣ f ∈ C+∞(M),

∫
M

e− f dVg = 1
}
.

Due to Lemma 6.4, we still have

(6-9) µ+,k(αg, u, ατ)= αµ+,k(g, u, τ ).

Corollary 6.7. If (g(t), u(t)) is an expanding harmonic-Ricci breather on compact
Riemannian manifolds, M is an Einstein manifold and u(t) is constant.

Proof. Using the same method as in Corollary 6.6 and µ+,k , we can show that the
first variation of W+,k must vanish. Hence, from (6-4), one has

Sg(t),u(t)+∇
2
g(t) f (t)+

1
2τ(t)

g(t)= 0,

Sg(t),u(t)+
1

2τ(t)
g(t)= 0,

1g(t)u(t)= 〈du(t), d f (t)〉g(t),

1g(t)u(t)= 0.

The above four equations can be reduced to the coupled equation

Sg(t),u(t)+
1

2τ(t)
g(t)= 0=1g(t)u(t),

which indicates that u(t) is a constant and Ricg(t) =−(1/(2τ(t)))g(t). �

7. Eigenvalues of the Laplacian under the harmonic-Ricci flow

In this section we consider the eigenvalues of the Laplacian1g(t) under the harmonic-
Ricci flow
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∂

∂t
g(t)=−2 Ricg(t)+ 4 du(t)⊗ du(t),(7-1)

∂

∂t
u(t)=1g(t)u(t).(7-2)

Suppose that λ(t), which is a function of time t only, is an eigenvalue of the
Laplacian 1g(t) with an eigenfunction f (t)= f (x, t), that is,

(7-3) −1g(t) f (t)= λ(t) f (t).

Taking the derivative with respect to t , we get

−

(
∂

∂t
1g(t)

)
f (t)−1g(t)

(
∂

∂t
f (t)

)
=

( d
dt
λ(t)

)
f (t)+ λ(t)

∂

∂t
f (t).

Integrating the above equation with f yields

−

∫
M

f (t)
(
∂

∂t
1g(t)

)
f (t) dVg(t)−

∫
M

f (t)1g(t)

(
∂

∂t
f (t)

)
dVg(t)

=
d
dt
λ(t) ·

∫
M

f (t)2 dVg(t)+ λ(t)
∫

M
f (t)

∂

∂t
f (t) dVg(t).

Since

−

∫
M

f (t)1
(
∂

∂t
f (t)

)
dVg(t) =−

∫
M
1g(t) f (t) ·

∂

∂t
f (t) dVg(t)

= λ(t)
∫

M
f (t)

∂

∂t
f (t) dVg(t),

it follows that

(7-4)
d
dt
λ(t) ·

∫
M

f (t)2 dVg(t) =−

∫
M

f (t)
(
∂

∂t
1g(t)

)
f (t) dVg(t).

If we set vi j =−2Ri j + 4∂i u∂ j u,

∂

∂t
0k

i j =
1
2 gk`(∂iv`j + ∂ jvil − ∂`vi j ).

We temporarily omit all subscripts t . Multiplying with gi j on both sides, we obtain

gi j ∂

∂t
0k

i j =
1
2 gkl(2∇ ivli −∇l(gi jvi j ))= gkl

∇
ivil +∇

k S

= gkl
∇

i (−2Ril + 4∇i u∇lu)+∇k(R− 2|∇u|2)
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=−∇
k R+ 41u · ∇ku+ 4∇i u · ∇ i

∇
ku+∇k R− 4∇k

∇
i u · ∇i u

= 41u · ∇ku.

Therefore,

∂

∂t
(1 f )= ∂

∂t
(gi j
∇i∇j f )

=

(
∂

∂t
gi j
)
∇i∇j f + gi j

[
∂i∂ j

∂ f
∂t
−

(
∂

∂t
0k

i j

)
∂k f −0k

i j∂k
∂ f
∂t

]
=

(
∂

∂t
gi j
)
∇i∇j f +1g(t)

(
∂

∂t
f
)
− gi j

(
∂

∂t
0k

i j

)
∇k f

= (2Ri j − 4∇i u∇j u)∇ i
∇

j f − 41u · ∇ku∇k f +1g(t)

(
∂

∂t
f
)
.

Plugging this into (7-4), we derive

d
dt
λ(t) ·

∫
M

f (t)2 dVg(t)

=−2
∫

M
Ri j∇

i
∇

j f dV + 4
∫

M
f∇ i u∇ j u∇i∇j f dV + 4

∫
M

f1u · ∇ku∇k f dV .

The first term can be rewritten as

−2
∫

M
f Ri j∇

i
∇

j f dV =
∫

M
∇

i (2 f Ri j )∇
j f dV

= 2
∫

M
(∇ i f · Ri j + f · ∇ i Ri j )∇

j f dV

= 2
∫

M
Ri j∇

i f∇ j f dV +
∫

M
f∇j R∇ j f dV

= 2
∫

M
Ri j∇

i f∇ j f dV −
∫

M
R∇j ( f∇ j f ) dV

= λ

∫
R

f 2 dV −
∫

M
R|∇ f |2 dV + 2

∫
M

Ri j∇
i f∇ j f dV .

Hence( d
dt
λ(t)

) ∫
M

f (t)2 dVg(t)

= λ(t)
∫

M
Rg(t) f (t)2 dVg(t)+2

∫
M

Ri j∇
i f∇ j f dV −

∫
M

Rg(t)|∇g(t) f (t)|2g(t) dVg(t)

+ 4
∫

M
f (∇ i u∇ j u∇i∇j f +1u∇ku∇k f ) dV .
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On the other hand,∫
M

f∇ i u∇ j u∇i∇j f dV

=−

∫
M
∇i ( f∇ i u∇ j u)∇j f dV

=−

∫
M
(∇i f∇ i u∇ j u+ f1u∇ j u+ f∇ i u∇i∇

j u)∇j f dV

=−

∫
M

f1u〈∇u,∇ f 〉dV −
∫

M
∇

i u∇ j u∇i f∇j f dV −
∫

M
f∇ i u∇ j f∇i∇j u dV

and therefore

d
dt
λ(t)

∫
M

f (t)2dVg(t) = λ(t)
∫

M
Rg(t) f (t)2dVg(t)− 4

∫
M

f∇ i u∇ j f∇i∇j u dV

+ 2
∫

M
Si j∇

i f∇j f dV −
∫

M
Rg(t)|∇g(t) f (t)|2g(t) dVg(t).

The last term here can be simplified as follows:

−

∫
M

f∇ i u∇ j f∇i∇j u dV

=

∫
M
∇

j ( f∇i u∇j f )∇ i u dV

=

∫
M
(∇ j f∇i u∇j f + f∇ j

∇i u∇j f + f∇i u1 f )∇ i u dV

=

∫
M
|∇u|2|∇ f |2 dV +

∫
M

f1 f |∇u|2 dV +
∫

M
f∇ i u∇ j f∇i∇j u dV .

Consequently,

−2
∫

M
f∇ i u∇ j f∇i∇j u dV =

∫
M
|∇u|2|∇ f |2 dV − λ

∫
M

f 2
|∇u|2 dV .

Therefore we derive the following.

Theorem 7.1. If (g(t), u(t)) is a solution of the harmonic-Ricci flow on a compact
Riemannian manifold M and λ(t) denotes the eigenvalue of the Laplacian 1g(t),
then

(7-5)
d
dt
λ(t) ·

∫
M

f (t)2 dVg(t)

= λ(t)
∫

M
Sg(t),u(t) f (t)2 dVg(t)−

∫
M

Sg(t),u(t)|∇g(t) f (t)|2g(t) dVg(t)

+ 2
∫

M
〈Sg(t),u(t), d f (t)⊗ d f (t)〉 dVg(t).
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We set

(7-6) Smin(0) := min
x∈M

S(x, 0).

Theorem 7.2. Let (g(t), u(t))t∈[0,T ] be a solution of the harmonic-Ricci flow on a
compact Riemannian manifold M and let λ(t) denote the eigenvalue of the Laplacian
1g(t). Suppose that Sg(t),u(t)− αSg(t),u(t)g(t) ≥ 0 along the harmonic-Ricci flow
for some α ≥ 1

2 .

(1) If Smin(0) ≥ 0, λ(t) is nondecreasing along the harmonic-Ricci flow for any
t ∈ [0, T ].

(2) If Smin(0) > 0, the quantity(
1− 2

n
Smin(0)t

)nα
λ(t)

is nondecreasing along the harmonic-Ricci flow for T ≤ n/(2Smin(0)).

(3) If Smin(0) < 0, the quantity(
1− 2

n
Smin(0)t

)nα
λ(t)

is nondecreasing along the harmonic-Ricci flow for any t ∈ [0, T ].

Proof. By Theorem 7.1, we have

d
dt
λ(t)≥

∫
M Sg(t),u(t) f (t)2 dVg(t)∫

M f (t)2 dVg(t)
λ(t)+ (2α− 1)

∫
M Sg(t),u(t)|∇g(t) f (t)|2g(t)∫

M f (t)2 dVg(t)
.

By definition we have − f (t)1g(t) = λ(t) f (t). Integrating both sides yields that
λ(t)≥ 0. Since

∂

∂t
Sg(t),u(t) =1g(t)Sg(t),u(t)+ 2|Sg(t),u(t)|

2
g(t)+ 4|1g(t)u(t)|2g(t)

and |Sg(t),u(t)|
2
≥ (1/n)S2

g(t),u(t), it follows that

∂

∂t
Sg(t),u(t) ≥1g(t)Sg(t),u(t)+

2
n

S2
g(t),u(t).

The corresponding ODE

d
dt

a(t)=
2
n

a(t)2, a(t)= Smin(0)

has the solution

a(t)=
Smin(0)

1− (2/n)Smin(0)t
.
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Then the maximum principle implies Sg(t),u(t) ≥ a(t) and hence, using the assump-
tion that 2α− 1≥ 0,

d
dt
λ(t)≥ a(t)λ(t)+ (2α− 1)a(t)

∫
M |∇g(t) f (t)|2g(t) dVg(t)∫

M f (t)2 dVg(t)
.

By integration by parts, we note that∫
M
|∇ f |2 dV =−

∫
M

f ·1 f dV = λ
∫

M
f 2 dV,

which shows that
d
dt
λ(t)≥ a(t)λ(t)+ (2α− 1)a(t)λ= 2αa(t)λ(t)

and
d
dt

(
λ(t) · exp

(
−2α

∫ t

0
a(τ ) dτ

))
≥ 0.

This inequality clearly implies the desired result. If Smin(0)≥0, by the nonnegativity
of Sg(t) preserved along the harmonic-Ricci flow, we conclude that dλ(t)/dt ≥0. �

Corollary 7.3. Let (g(t), u(t))t∈[0,T ] be a solution of the harmonic-Ricci flow on a
compact Riemannian surface 6 and let λ(t) denote the eigenvalue of the Laplacian
1g(t).

(1) Suppose that Ricg(t) ≤ εdu(t)⊗ du(t) where

(7-7) ε ≤ 4
1−α

1− 2α
, α > 1

2 .

(i) If Smin(0) ≥ 0, λ(t) is nondecreasing along the harmonic-Ricci flow for
any t ∈ [0, T ].

(ii) If Smin(0) > 0, the quantity

(1− Smin(0) t)2αλ(t)

is nondecreasing along the harmonic-Ricci flow for T ≤ 1/Smin(0).
(iii) If Smin(0) < 0, the quantity

(1− Smin(0) t)2αλ(t)

is nondecreasing along the harmonic-Ricci flow for any t ∈ [0, T ].

(2) Suppose that

(7-8) |∇g(t)u(t)|2g(t)g(t)≥ 2du(t)⊗ du(t).

(i) If Smin(0) ≥ 0, λ(t) is nondecreasing along the harmonic-Ricci flow for
any t ∈ [0, T ].
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(ii) If Smin(0) > 0, the quantity

(1− Smin(0)t)λ(t)

is nondecreasing along the harmonic-Ricci flow for T ≤ 1/Smin(0).
(iii) If Smin(0) < 0, the quantity

(1− Smin(0)t)λ(t)

is nondecreasing along the harmonic-Ricci flow for any t ∈ [0, T ].

Proof. As above, we always omit subscripts t . In the surface case, we have
Ri j =

1
2 Rgi j . Then

Ti j := Si j −αSgi j =
R
2

gi j − 2∇i u∇j u−α(R− 2|∇u|2)gi j

=
(1

2 −α
)
Rgi j − 2∇i u∇j u+ 2α|∇u|2gi j .

For any vector V = (V i ), we calculate

Ti j V i V j
=
( 1

2 −α
)
R|V |2− 2(∇i uV i )2+ 2α|∇u|2|V |2

≥
( 1

2 −α
)
R|V |2− 2|∇u|2|V |2+ 2α|∇u|2|V |2.

If Ri j ≤ ε∇i u∇j u, then Ti j V i V j
= [( 1

2 −α)ε− 2+ 2α]|∇u|2|V |2 ≥ 0.
For the second case, we note that

Ti j V i V j
= Ri j V i V j

− 2∇i uV i
∇j uV j

−
R
2
|V |2+ |∇u|2|V |2

≥ Ri j V i V j
− |∇u|2|V |2−

R
2
|V |2+ |∇u|2|V |2 = 0.

Hence the corresponding results follow by Theorem 7.2. �

When we consider the Ricci flow, we have the following two results derived
from Corollary 7.3.

Corollary 7.4. Let (g(t))t∈[0,T ] be a solution of the Ricci flow on a compact Rie-
mannian surface 6 and let λ(t) denote the eigenvalue of the Laplacian 1g(t).

(1) If Rmin(0)≥ 0, λ(t) is nondecreasing along the Ricci flow for any t ∈ [0, T ].

(2) If Rmin(0) > 0, the quantity (1− Rmin(0)t)λ(t) is nondecreasing along the
Ricci flow for T ≤ 1/Rmin(0).

(3) If Rmin(0) < 0, the quantity (1− Rmin(0)t)λ(t) is nondecreasing along the
Ricci flow for any t ∈ [0, T ].
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Remark 7.5. Let (g(t))t∈[0,T ] be a solution of the Ricci flow on a compact Riemann-
ian surface6 with nonnegative scalar curvature and let λ(t) denote the eigenvalue of
the Laplacian 1g(t). Then λ(t) is nondecreasing along the Ricci flow for t ∈ [0, T ].

8. Eigenvalues of the Laplacian-type under the harmonic-Ricci flow

Recall that

(8-1) µ(g, u)= µ1(g, u)= inf
{

F(g, u, f )
∣∣ ∫

M
e− f dVg = 1

}
.

We showed that µ(g, u) is the smallest eigenvalue of the operator

−41g + Rg − 2|∇gu|2g.

Inspired by [Cao 2007; 2008], we define a Laplacian-type operators associated with
quantities g, u, c:

1g,u,c := −1g + c(Rg − 2|∇gu|2g),(8-2)

1g,u :=1g,u, 12
=−1g +

1
2(Rg − 2|∇gu|2g).(8-3)

Then µ(g, u) is the smallest eigenvalue of the operator 41g,u,1/4.
To the operator 1g,u we associate the functional

(8-4) C∞(M)→ R, f 7→ λg,u( f ) :=
∫

M
f1g,u f dVg.

When f is an eigenfunction of the operator 1g,u with the eigenvalue λ, that is,
1g,u f = λ f and is normalized by

∫
M f 2 dVg = 1, we obtain λg,u( f ) = λ. The

next lemma will deal with the evolution equation for λ( f (t)), where f (t) is an
eigenfunction of 1g(t),u(t) and the couple (g(t), u(t)) satisfies the harmonic-Ricci
flow. Set

(8-5) vi j := −2Si j =−2Ri j + 4∂i u · ∂ j u, v := gi jvi j .

The symmetric tensor field thus obtained is denoted by Vg(t),u(t) = (vi j ).

Lemma 8.1. Suppose that (g(t), u(t)) is a solution of the harmonic-Ricci flow on
a compact Riemannian manifold M and f (t) is an eigenfunction of 1g(t),u(t), that
is, 1g(t),u(t) f (t)= λ(t) f (t) (where λ(t) is only a function of time t only), with the
normalized condition ∫

M
f (t)2 dVg(t) = 1.

Then we have
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(8-6)
d
dt
λg(t),u(t)( f (t)

=

∫
M

f (t)
(
∇

ivik−
1
2∇kv

)
∇

k f (t) dVg(t)−

∫
M

f 2(t)
∂

∂t
|∇g(t)u(t)|2g(t) dVg(t)

+

∫
M

(
〈Vg(t),u(t),∇

2
g(t) f (t)〉g(t)+

1
2

(
∂

∂t
Rg(t)

)
f (t)

)
f (t) dVg(t).

Before proving the lemma, we recall a formula that is an immediate consequence
of the evolution equation:

(8-7)
∂

∂t
(1g(t) f )

=−gi pg jqvpq∇i∇j f − gi j gk`
∇iv j`∇k f + 1

2〈∇g(t)vg(t),∇g(t) f (t)〉g(t)

where the metric g(t) evolves by ∂gi j/∂t = vi j .

Proof. Using (8-7) and integration by parts, we get

d
dt
λg(t),u(t)( f (t))

=
∂

∂t

∫
M

(
−1g(t) f (t)+

(
Rg(t)

2
− |∇g(t)u(t)|2g(t)

)
f (t)

)
f (t) dVg(t)

=

∫
M

(
gi pg jqvpq∇i∇j f+gi j gkl

∇iv jl∇k f− 1
2〈∇g(t)vg(t),∇g(t) f (t)〉g(t)

)
f (t) dVg(t)

+

∫
M

(
−1g(t)

( ∂
∂t

f (t)
)
+

(
Rg(t)

2
− |∇g(t)u(t)|2g(t)

)
∂

∂t
f (t)

+

(
∂

∂t
( 1

2 Rg(t))−
∂

∂t
(|∇g(t)u(t)|2g(t))

)
f (t)

)
f (t) dVg(t)

+

∫
M

(
−1g(t) f (t)+

(
Rg(t)

2
− |∇g(t)u|2g(t)

)
f (t)

)
∂

∂t
( f (t) dVg(t))

=

∫
M

(
gi pg jqvpq∇i∇j f + 1

2

(
∂

∂t
Rg(t)

)
f (t)

)
f (t) dVg(t)

+

∫
M
(gi j gkl

∇iv jl∇k f − 1
2 gkl
∇lv∇k f ) f (t) dVg(t)

+

∫
M
1g(t),u(t) f (t)

(
∂

∂t
f (t) dVg(t)+

∂

∂t
( f (t) dVg(t))

)
−

∫
M

∂

∂t
(|∇g(t)u(t)|2g(t)) f (t)2 dVg(t).

Since f (t) is an eigenfunction of 1g(t),u(t), it follows that∫
M
1g(t),u(t) f (t)

(
∂

∂t
f (t) dVg(t)+

∂

∂t
( f (t) dVg(t))

)
= λ(t)

∂

∂t

∫
M

f (t)2 dVg(t)= 0

by the normalization condition. This completes the proof. �
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Using (3-6), we find that the first term in the right side of (8-6) can be written as∫
M

(
vi j∇

i
∇

j f + 1
2

(
∂

∂t
Rg(t)

)
f (t)

)
f (t)dVg(t)

=

∫
M

(
−2 f (t)〈Ricg(t),∇

2
g(t) f (t)〉g(t)+4 f (t)〈du(t)⊗du(t),∇2

g(t) f (t)〉g(t)
)

dVg(t)

+

∫
M

(
(1

21g(t)Rg(t)+|Ricg(t) |
2
g(t)) f (t)2+2 f (t)2|1g(t)u(t)|2g(t)

−2 f (t)2|∇2
g(t)u(t)|

2
g(t)−4 f (t)2〈Ricg(t),du(t)⊗du(t)〉g(t)

)
dVg(t)

=

∫
M

(
−2 f (t)〈Ricg(t),∇

2
g(t) f (t)〉g(t)+( 1

21g(t)Rg(t)+|Ricg(t) |
2
g(t)) f (t)2

)
dVg(t)

+

∫
M

(
4 f (t)〈du⊗du,∇2

g(t) f (t)〉g(t)−4 f 2
〈du(t)⊗du(t),Ricg(t)〉g(t)

+2 f (t)2|1g(t)u(t)|2g(t)−2 f (t)2|∇2
g(t)u(t)|

2
g(t)
)

dVg(t)

For the second term in (8-6), using the contracted Bianchi identities, one has∫
M
(gi j
∇iv jk −

1
2∇kv)∇

k f · f (t) dVg(t)

=

∫
M

(
gi j
∇i (−2R jk + 4∂ j u∂ku)

−
1
2∇k(−2Rg(t)+ 4|∇g(t)u(t)|2g(t))

)
∇

k f · f (t) dVg(t)

=

∫
M

4 f (t)1g(t)u(t)〈∇g(t)u(t),∇g(t) f (t)〉g(t) dVg(t)

+

∫
M
(4gi j
∇j u · ∇i∇ku− 2∇k |∇g(t)u(t)|2g(t))∇

k f · f (t) dVg(t)

=

∫
M

4 f (t)1g(t)u(t)〈∇g(t)u(t),∇g(t) f (t)〉g(t) dVg(t)

where in the last step we use the identity ∇k |∇u|2 = 2g pq
∇k∇pu · ∇qu. Therefore

(8-8)
d
dt
λg(t),u(t)( f (t))

=

∫
M

(
−2 f (t)〈Ricg(t),∇

2
g(t) f (t)〉g(t)+ ( 1

21g(t)Rg(t)+ |Ricg(t) |
2
g(t)) f (t)2

)
dVg(t)

+ 4 f (t)
∫

M

(
〈du(t)⊗du(t),∇2

g(t) f (t)〉g(t)− f (t)〈du(t)⊗du(t),Ricg(t)〉g(t)

+ 2 f (t)2|1g(u)u(t)|2g(t)− 2 f (t)2|∇2
g(t)u(t)|

2
g(t)

+ 4 f (t)1g(t)u(t)〈∇g(t)u(t),∇g(t) f (t)〉g(t)
)

dVg(t)

−

∫
M
(1g(t)|∇g(t)u(t)|2g(t)− 2|∇2

g(t)u(t)|
2
g(t)− 4|∇g(t)u(t)|4g(t)) f (t)2 dVg(t).
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The above evolution equation can be simplified as follows.

Theorem 8.2. Suppose (g(t), u(t)) is a solution of the harmonic-Ricci flow on a
compact Riemannian manifold M and f (t) is an eigenfunction of 1g(t),u(t), that
is, 1g(t),u(t) f (t)= λ(t) f (t) (where λ(t) is only a function of time t only), with the
normalized condition

∫
M f (t)2dVg(t) = 1. Then we have

(8-9)
d
dt
λg(t),u(t)( f (t))=

∫
M

2〈Sg(t), d f (t)⊗ d f (t)〉g(t) dVg(t)

+

∫
M

f (t)2
(
|Sg(t)|

2
g(t)+ 2|1g(t)u(t)|2g(t)

)
dVg(t).

Proof. Calculate∫
M

4 f (t)1g(t)u(t)〈∇g(t)u(t),∇g(t) f (t)〉g(t) dVg(t)

=−4
∫

M
∇i u[∇ i f · 〈∇u,∇ f 〉+ f (∇ i

〈∇u,∇ f 〉)] dV

=−4
∫

M
|〈∇u,∇ f 〉|2 dVg − 4

∫
M

f∇i u(〈∇ i
∇u,∇ f 〉+ 〈∇u,∇ i

∇ f ) dV .

By the same method, we have∫
M
−1g(t)|∇g(t)u(t)|2g(t) f (t)2 dVg(t)

=−

∫
M
|∇u|2(2 f1 f + 2|∇ f |2) dV

=−2
∫

M
|∇ f |2|∇u|2 dV − 2

∫
M

f1 f |∇u|2 dV .

However,∫
M

f1 f |∇u|2 dV =
∫

M
−∇i f · ∇ i ( f |∇u|2) dV

=−

∫
M
∇i f (∇ i f |∇u|2+ f∇ i

|∇u|2) dV

=−

∫
M
|∇u|2|∇ f |2 dV −

∫
M

f∇i f · ∇ i
|∇u|2 dV .

Therefore we arrive at∫
M
−1g(t)|∇g(t)u(t)|2g(t) f (t)2 dVg(t)

= 2
∫

M
f∇i f · ∇ i

|∇u|2 dV

= 4
∫

M
f (t)〈du(t)⊗ d f (t),∇2

g(t)u(t)〉g(t) dVg(t).
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Using the contracted Bianchi identities, we may simplify the term
∫

M
1
2 f 21R dV

as follows:∫
N

f (t)2

2
1g(t)Rg(t)dVg(t)

=−
1
2

∫
M
∇i R · ∇ i ( f 2)dV

=−

∫
M
∇i R · f∇ i f dV =−2

∫
M
∇

k Rki · f∇ i f dV

= 2
∫

M
Rki∇

k( f∇ j f )dV = 2
∫

M
Rki (∇

k f · ∇ j f + f∇k
∇

j f )dV

= 2
∫

M
〈Ricg(t),d f (t)⊗ d f (t)〉g(t)dVg(t)+ 2

∫
M

f (t)〈Ricg(t),∇
2
g(t) f (t)〉g(t)dVg(t).

Hence (8-8) becomes

d
dt
λg(t),u(t)( f (t))

=

∫
M

(
2〈Ricg(t), d f (t)⊗ d f (t)〉g(t)+ |Ricg(t) |

2
g(t) f (t)2

)
dVg(t)

+

∫
M

(
2|1g(t)u(t)|2g(t)+ 4|∇g(t)u(t)|4g(t)

)
f (t)2 dVg(t)

−

∫
M

4 f (t)2〈du(t)⊗ du(t),Ricg(t)〉g(t) dVg(t)

−

∫
M

4|〈∇g(t)u(t),∇g(t) f (t)〉g(t)|2 dVg(t)

=

∫
M

2〈Sg(t), d f (t)⊗ d f (t)〉g(t) dVg(t)

+

∫
M

f (t)2
(
|Ricg(t)−2du(t)⊗ du(t)|2g(t)+ 2|1g(t)u(t)|2g(t)

)
dVg(t)

where, by definition, Si j = Ri j − 2∂i u∂ j u. �

List [2006] proved that the nonnegativity of the operator Sg(t) is preserved by
the harmonic-Ricci flow. Hence we get the following.

Corollary 8.3. If Ricg(0)−2du(0)⊗ du(0) ≥ 0, the eigenvalues of the operator
1g(t),u(t) are nondecreasing under the harmonic-Ricci flow.

Remark 8.4. If we choose u(t)≡ 0, we obtain Cao’s result [2007].
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9. Another formula for d
dt
λ( f (t))

In this section we give another formula for d
dt
λ( f (t)) using a method similar to

that in [Li 2007]. Recall the formula

d
dt
λg(t),u(t)( f (t))=

∫
M

2〈Sg(t),u(t), d f (t)⊗ d f (t)〉g(t) dVg(t)

+

∫
M

f (t)2
(
|Sg(t),u(t)|

2
g(t)+ 2|1g(t)u(t)|2g(t)

)
dVg(t).

Consider the function ϕ determined by f 2(t)= e−ϕ(t). Then we have

d f =
−eϕdϕ

2 f
,
∇ f

f
=−
∇ϕ

2
,

1 f
f
=−

1
21ϕ+

1
4 |∇ϕ|

2.

Hence

2
d
dt
λg(t),u(t)( f (t))=

∫
M
〈Sg(t),u(t), dϕ(t)⊗ dϕ(t)〉g(t)e−ϕ(t) dVg(t)

+ 2
∫

M

(
|Sg(t),u(t)|

2
g(t)+ 2|1g(t)u(t)|2g(t)

)
e−ϕ dVg(t).

Using integration by parts and contracted Bianchi identities yields∫
M
〈Sg(t),u(t), dϕ(t)⊗ dϕ(t)〉g(t)e−ϕ(t) dVg(t)

=

∫
M

Si j∇
iϕ∇ jϕe−ϕ dV =−

∫
M

Si j∇
jϕ∇ i (e−ϕ) dV

=

∫
M

e−ϕ∇ i (Si j∇
jϕ) dV

=

∫
M
∇

i Si j · ∇
jϕ · e−ϕ dV +

∫
M

Si j∇
i
∇

jϕ · e−ϕ dV

=

∫
M
∇

i Ri j · ∇
jϕ · e−ϕ dVg +

∫
M

Si j∇
i
∇

jϕ · e−ϕ dV

+

∫
M
∇

i (−2∇i u∇j u)∇ jϕ · e−ϕ dVg

=
1
2

∫
M

R1(e−ϕ) dV +
∫

M
Si j∇

i
∇

jϕ · e−ϕ dV − 2
∫

M
(∇ i u∇j u)∇ i

∇
j (e−ϕ) dV .

Thus∫
M

Si j∇
i
∇

jϕ · e−ϕ dV

=

∫
M

Si j∇
iϕ∇ jϕe−ϕ dV − 1

2

∫
M

R1(e−ϕ) dV + 2
∫

M
(∇ i u∇j u)∇ i

∇
j (e−ϕ).
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On the other hand, one gets∫
M
|∇

2
g(t)ϕ(t)|

2
g(t)e

−ϕ(t) dVg(t) =

∫
M
∇i∇jϕ∇

i
∇jϕ · e−ϕ dV

=−

∫
M
∇jϕ · ∇i∇

i
∇

jϕ · e−ϕ dV −
∫

M
∇jϕ · ∇

i
∇

jϕ · ∇i (e−ϕ) dV

=−

∫
M
∇jϕ · ∇i∇

j
∇

iϕ · e−ϕ dV −
∫

M
∇jϕ · ∇

i
∇

jϕ · ∇i (e−ϕ) dV .

Since∫
M
∇jϕ · ∇

i
∇

jϕ · ∇i (e−ϕ) dV =−
∫

M
∇

i (∇jϕ · ∇i (e−ϕ))∇ jϕ dV

=−

∫
M
∇

jϕ · ∇ i
∇jϕ · ∇i (e−ϕ) dV −

∫
M
|∇ϕ|21(e−ϕ) dV,

which implies∫
M
∇jϕ · ∇

i
∇

jϕ · ∇i (e−ϕ)dV =−1
2

∫
M
|∇ϕ|21(e−ϕ) dV,

it follows that∫
M
|∇

2ϕ|2e−ϕ dV =−
∫

M
∇jϕ · ∇i∇

j
∇

iϕ · e−ϕ dV + 1
2

∫
M
|∇ϕ|21(e−ϕ) dV .

By the Ricci identity the term ∇ i
∇

j
∇

iϕ equals

∇i∇
j
∇

iϕ = g jk gil
∇i∇k∇lϕ = g jk gil(∇k∇i∇lϕ− R p

ikl∇pϕ)

=∇
j
∇i∇

iϕ− g jk gil Riklp∇
pϕ

=∇
j1ϕ+ g jk gil Rikpl∇

pϕ =∇ j1ϕ+ g jk Rkp∇
pϕ.

Hence

−

∫
M
∇jϕ · ∇i∇

j
∇

iϕ · e−ϕ dV

=−

∫
M
∇iϕ · ∇

j1ϕ · e−ϕ dV −
∫

M
Rkp∇

kϕ · ∇ pϕe−ϕ dV

=

∫
M
∇

j1ϕ · ∇j (e−ϕ)+
∫

M
Rkp∇

kϕ · ∇ p(e−ϕ) dV

=−

∫
M
1ϕ ·1(e−ϕ)−

∫
M

e−ϕ(∇ p Rkp · ∇
kϕ+ Rkp∇

p
∇

kϕ)

=−

∫
M
1(e−ϕ) ·1ϕ dV + 1

2

∫
M
∇k R · ∇k(e−ϕ) dV −

∫
M

e−ϕRkp∇
k
∇

pϕ dV

=−

∫
M
1(e−ϕ)(1ϕ+ 1

2 R)−
∫

M
Rkp∇

k
∇

pϕ · e−ϕ dV .
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Putting those formulas together, we obtain∫
M

2Si j∇
i
∇

jϕ · e−ϕ dV +
∫

M
|∇

2ϕ|2e−ϕ dV

=

∫
M

Si j∇
i
∇jϕ · e−ϕ dV +

∫
M
(−2∇i u∇j u)∇ i

∇
jϕ · e−ϕ dV

−

∫
M
1(e−ϕ)

(
1ϕ+

R
2
−

1
2 |∇ϕ|

2
)

dV

=

∫
M

Si j∇
iϕ∇ jϕ · e−ϕ dV −

∫
M
1(e−ϕ)(1ϕ+ R− 1

2 |∇ϕ|
2) dV

+ 2
∫

M
(∇i u∇j u · ∇ i

∇
j (e−ϕ)−∇i u∇j u · ∇ i

∇
jϕ · e−ϕ) dV .

Since f is an eigenfunction of λ, it induces

λ=−
1 f

f
+

R
2
− |∇u|2 = 1

21ϕ−
1
4 |∇ϕ|

2
+

R
2
− |∇u|2,

and therefore∫
M

2Si j∇
i
∇

jϕ · e−ϕ dV +
∫

M
|∇

2ϕ|2e−ϕ dV

=

∫
M

Si j∇
iϕ∇ jϕ · e−ϕ dV − 2

∫
M
1(|∇u|2) · e−ϕ dV

+ 2
∫

M
∇i u∇j (∇

i
∇

j (e−ϕ)−∇ i
∇

jϕ · e−ϕ) dV .

Plugging this into the expression of d
dt
λ( f (t)) yields

2 d
dt
λg(t),u(t)( f (t))

=

∫
M

Si j∇
iϕ∇ jϕ ·e−ϕ dV +

∫
M
|S|2e−ϕ dV +

∫
M
|S|2e−ϕ dV +4

∫
M
|1u|2e−ϕ dV

=

∫
M
|Sg(t),u(t)+∇

2
g(t)ϕ(t)|

2
g(t)e

−ϕ(t)dVg(t)+

∫
M
|Sg(t),u(t)|

2
g(t)e

−ϕ(t)dVg(t)

+4
∫

M
|1g(t)u(t)|2g(t)e

−ϕ(t)dVg(t)+2
∫

M
1g(t)|∇g(t)u(t)|2g(t)e

−ϕ(t)dVg(t)

+ 2
∫

M
∇i u∇j u

(
−∇

i
∇

j (e−ϕ)+∇ i
∇

jϕ ·e−ϕ
)
dV

Now define

I :=
∫

M
(∇i u∇j u·∇ i

∇
jϕ)e−ϕdV =−

∫
M
∇

i (∇i u∇j u·e−ϕ)∇ jϕdV

=−

∫
M
∇

jϕ(1u·∇j u·e−ϕ+∇i u∇ i
∇j u·e−ϕ−∇i u∇j u∇ iϕ·e−ϕ)dV

=−

∫
M
∇j u∇ jϕ1u·e−ϕdV−

∫
M
∇i u∇ jϕ∇ i

∇j u·e−ϕdV+
∫

M
|〈du,dϕ〉|2e−ϕdV,
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II : =
∫

M
∇i u∇j u∇ i

∇
j (e−ϕ) dV =

∫
M
∇

i
∇

j (∇i u∇j u)e−ϕ dV

=

∫
M
∇

i (∇ j
∇i u · ∇j u+∇i u1u)e−ϕ dV

=

∫
M
(1∇ i u · ∇i u+∇ i1u · ∇i u+ |∇2u|2+ |1u|2)e−ϕ dV,

III : =
∫

M
1(|∇u|2)e−ϕdV = 2

∫
M
∇

i (∇i∇j u · ∇ j u)e−ϕdV

= 2
∫

M
(1∇j u · ∇ j u+ |∇2u|2)e−ϕdV .

If we set
B := 2(III+ I− II),

then

B
2
=

∫
M

(
1∇i u · ∇ i u−∇i1u · ∇ i u+ |∇2u|2− |1u|2+ |〈du, dϕ〉|2

−∇i u · ∇ iϕ ·1u−∇i u · ∇ jϕ · ∇ i
∇j u

)
e−ϕ dV

=

∫
M
(Ri j∇

i u∇ j u+ |∇2u|2− |1u|2+ |〈du, dϕ〉|2

−∇i u · ∇ iϕ ·1u−∇i u · ∇ jϕ · ∇ i
∇j u)e−ϕ dV .

On the other hand,

−

∫
M
∇i u · ∇ iϕ ·1u · e−ϕ dV =

∫
M
(∇i u ·1u)∇ i (e−ϕ) dV

=−

∫
M
∇

i (∇i u ·1u)e−ϕ dV

=

∫
M
(−|1u|2−∇i u · ∇ i1u)e−ϕ dV

and

−

∫
M
∇i u∇ jϕ∇ i

∇j u · e−ϕ dV =
∫

M
∇i u∇ i

∇j u∇ j (e−ϕ) dV

=−

∫
M
∇

j (∇i u∇ i
∇j u)e−ϕ dV

=

∫
M
(−|∇2u|2−∇i u1∇ i u)e−ϕ dV .

Therefore

(9-1)
B
2
=

∫
M

(
−2|1u|2+ |〈du, dϕ〉|2− 2〈∇u,∇1u〉

)
e−ϕ dV .
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By definition,

1(|∇u|2)=1(∇ i u · ∇i u)= 2∇ i u ·1∇i u+ 2|∇2u|2.

So
1|∇u|2 = 2|∇2u|2+ 2(∇i1u+ Ri j∇

j u)∇ i u

= 2|∇2u|2+ 2Ri j∇
i u · ∇ j u+ 2〈∇u,∇1u〉.

Plugging this into (9-1) yields

B
2
=

∫
M

(
−2|1u|2+ |〈du, dϕ〉|2+ 2|∇2u|2−1|∇u|2+ 2Ri j∇

i u∇ j u
)
e−ϕ dV .

Since
2Ri j∇

i u∇ j u = 2(Si j + 2∇i u∇j u)∇ i u∇ j u

= 2Si j∇
i u∇ j u+ 4|∇u|4

=
1
4 |S+ 4 du⊗ du|2− 1

4 |S|
2,

it follows that
B
2
= III+I−II

=

∫
M

(
|〈du,dϕ〉|2−2|1u|2− 1

4 |S|
2
+2|∇2u|2+ 1

4 |S+4du⊗du|2
)
e−ϕ dV−III.

Hence

B=
∫

M

(
−4|1u|2+2|〈du,dϕ〉|2− 1

2 |S|
2
+4|∇2u|2+ 1

2 |S+4du⊗du|2
)
e−ϕ dV−2III.

Theorem 9.1. Suppose that (g(t), u(t)) is a solution of the harmonic-Ricci flow
on a compact Riemannian manifold M and f (t) is an eigenfunction of 1g(t),u(t),
that is, 1g(t),u(t) f (t)= λ(t) f (t) (where λ(t) is only a function of time t), with the
normalized condition

∫
M f (t)2 dVg(t) = 1. Then we have

d
dt
λ(t)

=
d
dt
λg(t),u(t)( f (t))

=
1
2

∫
M
|Sg(t),u(t)+∇

2
g(t)ϕ(t)|

2
g(t)e

−ϕ(t)dVg(t)+
1
4

∫
M
|Sg(t),u(t)|

2
g(t)e

−ϕ(t)dVg(t)

+

∫
M
|〈du(t), dϕ(t)〉g(t)|2e−ϕ(t) dVg(t)+ 2

∫
M
|∇

2
g(t)u(t)|

2
g(t)e

−ϕ(t) dVg(t)

+
1
4

∫
M
|Sg(t),u(t)+ 4 du(t)⊗ du(t)|2g(t)e

−ϕ(t) dVg(t)

−

∫
M
1g(t)(|∇g(t)u(t)|2g(t))e

−ϕ(t) dVg(t).
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Remark 9.2. When u ≡ 0, this equation reduces to Li’s formula [2007].

10. The first variation of expander and shrinker entropies

Suppose that M is a closed manifold of dimension n. We define

W± :
⊙2
+
(M)×C∞(M)×C∞(M)×R+→ R, (g, u, f, τ ) 7→W±(g, u, f, τ )

where

(10-1) W±(g, u, f, τ ) :=
∫

M

(
τ(Sg,u + |∇g f |2g)∓ f ± n

) e− f

(4πτ)n/2
dVg.

Set

µ±(g, u, τ ) := inf
{

W±(g, u, f, τ )
∣∣∣ f ∈ C∞(M),

∫
M

e− f

(4πτ)n/2
dVg = 1

}
,

ν±(g, u) := sup{µ±(g, u, τ ) | τ > 0}.

Lemma 10.1. Suppose ν±(g, u) = W±(g, u, f±, τ±) for some functions f± and
constants τ± satisfying ∫

M

e− f±

(4πτ±)n/2
dVg = 1, τ± > 0.

Then we must have

τ±(−21g f±+ |∇g f±|2g − Sg,u)± f±∓ n+ ν±(g, u)= 0,∫
M

f±e− f±

(4πτ)n/2
dVg =

n
2
∓ ν±(g, u).

Proof. Since g and u are fixed, we consider the corresponding Lagrangian multiplier
function

L±( f, τ ; λ) :=W±(g, u, f, τ )− λ
(∫

M

e− f

(4πτ)n/2
dVg − 1

)
.

Then the variation of L± in f direction is

δ f L±( f, τ ; λ)=
∫

M

(
2τ∇ i f∇i (δ f )∓ δ f + λδ f

) e− f

(4πτ)n/2
dVg

−

∫
M

(
τ(Sg,u + |∇g f |2g)∓ f ± n

)
δ f

e− f

(4πτ)n/2
dVg.

By the divergence theorem, we calculate∫
M
∇

i f · ∇i (δ f )
e− f

(4πτ)n/2
dVg =−

∫
M
∇i (∇

i f
e− f

(4πτ)n/2
)δ f dVg

=−

∫
M
(1g f − |∇g f |2g)δ f

e− f

(4πτ)n/2
dVg.
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Hence

δ f L±( f, τ ; λ)=
∫

M

(
τ(−21g f +|∇g f |2g− Sg,u)± f ∓n∓1+λ

)
δ f

e− f

(4πτ)n/2
dV .

This implies that

τ±(−21g f±+ |∇g f±|2g − Sg,u)± f±∓ n∓ 1+ λ± = 0.

Since f± satisfies the normalized condition, it follows that

0= λ±∓ 1+
∫

M

(
τ±(−21g f±+ |∇g f±|2g − Sg,u)± f±∓ n

) e− f±

(4πτ±)n/2
dVg.

From the identity∫
M
1g f

e− f

(4πτ)n/2
dVg =

∫
M
|∇g f |2g

e− f

(4πτ)n/2
dVg

and the definition (10-1), we obtain

ν±(g, u)=W±(g, u, f±, τ±)= λ±∓ 1,

and, consequently,

τ±(−21g f±+ |∇g f±|2g − Sg,u)± f±∓ n+ ν±(g, u)= 0.

The variation of L± with respect to τ indicates that

δτL±( f,τ ;λ)=
∫

M
δτ(Sg,u+|∇g f |2g)

e− f

(4πτ)n/2
dVg−λ

∫
M

(
−

n
2
δτ

τ

) e− f

(4πτ)n/2
dVg

+

∫
M

(
−

n
2
δτ

τ

)(
τ(Sg,u+|∇g f |2g)∓ f ±n

) e− f

(4πτ)n/2
dVg

=

∫
M
δτ

((
1− n

2

)
(Sg,u+|∇g f |2g)+

n
2τ
(λ± f ∓n)

)
e− f dVg

(4πτ)n/2
.

Using the first proved equation, we have

0=
∫

M

(
(ν±(g, u)± f±∓ n)

(
1− n

2

)
+

n
2
(ν±(g, u)± f±∓ n± 1)

) e− f± dVg

(4πτ±)n/2

=

∫
M

(
ν±± f±∓

n
2

) e− f±

(4πτ±)n/2
dVg

and therefore we obtain the second one. �

For a symmetric 2-tensor h = (hi j ) ∈
⊙2(M), we set

g(s) := g+ sh



178 YI LI

Then the variation of g(s) is

(10-2)
∂

∂s

∣∣∣
s=0

Rg(s) =−hi j Ri j +∇
i
∇

j hi j −1g(trg h).

Theorem 10.2. Suppose that (M, g) is a compact Riemannian manifold and u a
smooth function on M. Let h be any symmetric covariant 2-tensor on M and set
g(s) := g+ sh. Let v be any smooth function on M and u(s) := u+ sv. If

ν±(g(s), u(s))=W±(g(s), u(s), f±(s), τ±(s))

for some smooth functions f±(s) with∫
M

e− f±(s) dV/(4πτ±(s))n/2 = 1

and constants τ±(s) > 0,

d
ds

∣∣∣
s=0
ν±(g(s),u(s))=−τ±

∫
M

(
〈h,Sg,u〉g+〈h,∇2

g f 〉g±
1

2τ±
trg h

) e− f±

(4πτ±)n/2
dVg

+4τ±

∫
M
v(1gu−〈du,d f±〉g)

e− f±

(4πτ±)n/2
dVg,

where f± := f±(0) and τ± := τ±(0). In particular, the critical points of ν±( · , · )
satisfy

Sg,u +∇
2
g f ±

1
2τ±

g = 0, 1gu = 〈du, d f±〉g.

Consequently, if W±(g, u, f, τ ) and ν±(g, u) achieve their minimums, (M, g) is a
gradient expanding and shrinker harmonic-Ricci soliton according to the sign.

Proof. By definition, one has

d
ds
ν±(g(s), u(s))

=
d
ds

W±(g(s), u(s), f±(s), τ±(s))

=

∫
M

(
∂

∂s
τ±(s)(Sg(s),u(s)+ |∇g(s) f±(s)|2g(s))

)
e− f±(s)

(4πτ±(s))n/2
dVg(s)

+

∫
M

(
τ±(s)

∂

∂s
(Sg(s),u(s)+ |∇g(s) f±(s)|2g(s))∓

∂

∂s
f±(s)

)
e− f±(s)

(4πτ±(s))n/2
dVg(s)

+

∫
M

(
τ±(s)(Sg(s),u(s)+ |∇g(s) f±(s)|2g(s))∓ f±(s)± n

)
·
∂

∂s

(
e− f±(s)

(4πτ±(s))n/2
dVg(s)

)
.
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Since

∂

∂s
Sg(s),u(s) =

∂

∂s
Rg(s)− 2

∂

∂s
|∇g(s)u(s)|2g(s)

=
∂

∂s
Rg(s)− 2

(
∂

∂s
gi j
)
∇i u∇j u− 4gi j ∂

∂s
∇i u · ∇j u

=
∂

∂s
Rg(s)− 2(−gi pg jqh pq)∇i u∇j u− 4gi j

∇i

(
∂

∂s
u
)
∇j u

=
∂

∂s
Rg(s)+ 2h pq∇

pu∇qu− 4∇i

(
∂

∂t
u
)
∇

i u

and

∂

∂s

(
e− f±(s)

(4πτ±(s))n/2
dVg(s)

)
=

(
−
∂

∂s
f±(s)−

n
2τ±(s)

∂

∂s
τ±(s)

)
e− f±(s)

(4πτ±(s))n/2
dVg(s)+

e− f±(s)

(4πτ±(s))n/2
∂

∂s
dVg(s)

=

(
−
∂

∂s
f±(s)−

n
2τ±(s)

∂

∂s
τ±(s)+ 1

2 trg h
)

e− f±(s)

(4πτ±(s))n/2
dVg(s),

it follows that

d
ds
ν±(g(s), u(s))

=

∫
M

∂

∂s
τ±(s)(Sg(s),u(s)+ |∇g(s) f±(s)|2g(s))

e− f±(s)

(4πτ±(s))n/2
dVg(s)

+

∫
M

(
τ±(s)

(
∂

∂s
Rg(s)+ 2h pq∇

pu∇qu− 4∇i

(
∂

∂s
u
)
∇

i u

− h pq∇
p f∇q f + 2∇i

(
∂

∂s
f
)
∇

i f
)
∓
∂

∂s
f±(s)

)
e− f±(s)

(4πτ±(s))n/2
dVg(s)

+

∫
M

(
−
∂

∂s
f±(s)−

n
2τ±(s)

∂

∂s
τ±(s)+ 1

2 trg h
)

·
(
τ±(s)(Sg(s),u(s)+ |∇g(s) f±(s)|2g(s))∓ f±(s)± n

) e− f±(s)

(4πτ±(s))n/2
dVg(s).

From the equalities∫
M
1g trg h · e− f dVg =

∫
M

trg h ·1g(e− f ) dVg

=

∫
M

trg h(−1g f+|∇g, f |2g)e
− f dVg,
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M
∇

i
∇

j hi j · e− f dVg =

∫
M

hi j∇
i
∇

j (e− f ) dV

=

∫
M

hi j (−∇
i
∇

j f +∇ i f∇ j f )e− f dVg,∫
M
∇i

(
∂

∂s
f
)
∇

i f e− f dVg =

∫
M
−
∂

∂s
f (1g f − |∇g f |2g)e

− f dVg,∫
M
1g(e− f ) dVg =

∫
M
(−1g f + |∇g f |2g)e

− f dVg,

and Lemma 10.1, we obtain

d
ds

∣∣∣∣
s=0
ν±(g(s), u(s))

=

∫
M

∂

∂s

∣∣∣∣
s=0
τ±(s)(Sg,u + |∇g f |2g)

e− f±

(4πτ±)n/2
dVg

+

∫
M

(
τ±

(
− hi j Ri j +∇

i
∇j hi j −1g(trg h)+ 2h pq∇

pu∇qu

− 4∇iv∇
i u− h pq∇

p f∇q f + 2∇i

(
∂

∂s

∣∣∣∣
s=0

f (s)
)
∇

i f
)
∓
∂

∂s

∣∣∣∣
s=0

f (s)
)

·
e− f±

(4πτ±)n/2
dVg +

∫
M

(
−
∂

∂s

∣∣∣∣
s=0

f±(s)−
n

2τ±
(s) ∂
∂s

∣∣∣∣
s=0
τ±(s)+ 1

2 trg h
)

·
(
τ±(Sg,u + |∇g f±|2g)∓ f±± n

) e− f±

(4πτ±)n/2
dVg.

If we denote by B the last term and by A the remaining terms,

A =
∫

M

(
∂

∂s

∣∣∣∣
s=0
τ±(s)(|∇g f±|2g + Sg,u)

− τ±(hi j
∇i∇j f±+ hi j Si j + 4∇iv · ∇

i u)∓ ∂

∂s
f±

)
e− f±

(4πτ±)n/2
dVg

+

∫
M
τ±(1g f±− |∇g f±|2g)

(
trg h− 2 ∂

∂s

∣∣∣∣
s=0

f (s)
)

e− f±

(4πτ±)n/2
dVg.

The normalized condition

1=
∫

M

e− f±(s)

(4πτ±(s))n/2
dVg

implies

0=
∫

M

(
−
∂

∂s

∣∣∣∣
s=0

f±(s)−
n

2τ±
∂

∂s

∣∣∣∣
s=0
τ±(s)+ 1

2 trg h
)

e− f±(s)

(4πτ±(s))n/2
dVg.
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From Lemma 10.1, we conclude that

τ±Sg,u − τ±(|∇g f±|2g − 21g f±)=± f±∓ n+ ν±(g, u).

Therefore

τ±(Sg,u + |∇g f±|2g)∓ f±± n = 2τ±(|∇g f±|2g −1g f±)+ ν±(g, u).

Plugging this into the definition of B yields

B =
∫

M

(
−
∂

∂s

∣∣∣∣
s=0

f±(s)−
n

2τ±
∂

∂s

∣∣∣∣
s=0
τ±(s)+ 1

2 trg h
)

·
(
2τ±(|∇g f±|2g −1g f±)+ ν±(g, u)

) e− f±

(4πτ±)n/2
dVg

=

∫
M

(
−
∂

∂s

∣∣∣∣
s=0

f±(s)−
n

2τ±
∂

∂s

∣∣∣∣
s=0
τ±(s)+ 1

2 trg h
)

·
(
2τ±(|∇g f±|2g −1g f±)

) e− f±

(4πτ±)n/2
dVg

=

∫
M

(
−
∂

∂s

∣∣∣∣
s=0

f±(s)+ 1
2 trg h

)
2τ±(|∇g f±|2g −1g f±)

e− f±

(4πτ±)n/2
dVg,

where we use the fact that ∫
M
1g(e− f )dVg = 0.

Hence B cancels with the last term in A. Therefore the above variation equals

d
ds

∣∣∣∣
s=0
ν±(g(s), u(s))

=

∫
M

(
∂

∂s

∣∣∣∣
s=0
τ±(s)

(
|∇g f±|2g + Sg,u ±

n
2τ±

)
− τ±

(
hi j
∇i∇j f + hi j Si j

±
1

2τ±
trg h+ 4v(〈du, d f 〉−1gu)

))
e− f±

(4πτ±)n/2
dVg.

To prove the theorem, it is sufficient to show that∫
M

(
|∇g f±|2g + Sg,u ±

n
2τ±

)
e− f±

(4πτ±)n/2
dV = 0.

Since M is compact, we have

0=
∫

M
1g(e− f±)=

∫
M
(−1g f±+ |∇g f±|2g)e

− f± dV .
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Hence∫
M

(
|∇g f±|2+ Sg,u ±

n
2τ±

)
e− f±

(4πτ±)n/2
dV

=

∫
M

(
21g f±− |∇g f |2g + Sg,u ±

n
2σ±

)
e− f±

(4πτ±)n/2
dV .

Lemma 10.1 now indicates∫
M

(
|∇g f±|2+ Sg,u ±

n
2τ±

)
e− f±

(4πτ±)n/2
dV

=

∫
M

(
± f±∓ n+ ν±(g, u)

τ±
±

n
2

)
e− f±

(4πτ±)n/2
dV

=

∫
M

1
τ±

(
± f±∓

n
2
+ ν±(g, u)

)
e− f±

(4πτ±)n/2
dV

=
1
τ±

(
±

n
2
− ν±(g, u)∓ n

2
+ ν±(g, u)

)
= 0.

The sign + corresponds to the gradient expanding soliton and the sign − to the
gradient shrinker soliton. �

Corollary 10.3. Suppose that (M, g) is a compact Riemannian manifold and u
is a smooth function on M. Let h be any symmetric covariant 2-tensor on M
and set g(s) := g + sh. Let v be any smooth function on M and u(s) := u + sv.
If ν±(g(s), u(s))=W±(g(s), u(s), f±(s), τ±(s)) for some smooth function f±(s)
with

∫
M e− f±(s) dV/(4πτ±(s))n/2 = 1 and a constant τ±(s) > 0, and (g, u) is a

critical point of ν±( · , · ), then

Sg,u =∓
1

2τ±
g, f± ≡ constant.

Thus, if W±(g, u, · , · ) achieve their minimum and (g, u) is a critical point of
ν±( · , · ), (M, g, u) satisfies the static Einstein vacuum equation.

Proof. According to Lemma 10.1 and Theorem 10.2, we have

τ±(−21g f±+ |∇g f±|2g − Sg,u)± f±∓ n

=−ν± =−

∫
M

(
τ±(Sg,u + |∇g f |2g)∓ f±± n

) e− f±

(4πτ±)n/2
dVg,
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and hence

21g f±− |∇g f±|2g + Sg,u =

∫
M
(Sg,u + |∇g f±|2g)

e− f±

(4πτ±)n/2
dVg

=

∫
M
(Sg,u +1g f±)

e− f±

(4πτ±)n/2
dVg

=∓
n

2τ±
= Sg,u +1g f±.

From this we get 1g f± = |∇g f±|2g. After integrating on both sides, the functions
f± must be constant, which implies Sg ± (1/(2τ±))g = 0. �

Remark 10.4. In the situation of Corollary 10.3, by normalization, we my choose
f± = n/2.

Acknowledgements

The author thanks Professor Kefeng Liu, who teaches the author mathematics,
Professor Hongwei Xu, and other staff members at the Center of Mathematical
Science, where part of this work was done.

References

[Cao 2007] X. Cao, “Eigenvalues of (−1+ R/2) on manifolds with nonnegative curvature operator”,
Math. Ann. 337:2 (2007), 435–441. MR 2007g:53071 Zbl 1105.53051

[Cao 2008] X. Cao, “First eigenvalues of geometric operators under the Ricci flow”, Proc. Amer.
Math. Soc. 136:11 (2008), 4075–4078. MR 2009f:53098 Zbl 1166.58007

[He et al. 2008] C.-L. He, S. Hu, D.-X. Kong, and K. Liu, “Generalized Ricci flow. I. Local existence
and uniqueness”, pp. 151–171 in Topology and physics, Nankai Tracts Math. 12, World Sci. Publ.,
Hackensack, NJ, 2008. MR 2010k:53098

[Li 2007] J.-F. Li, “Eigenvalues and energy functionals with monotonicity formulae under Ricci
flow”, Math. Ann. 338:4 (2007), 927–946. MR 2008c:53068 Zbl 1127.53059

[Li 2012] Y. Li, “Generatlized Ricci flow I: higher dericative estimates for compact manifolds”,
Analysis & PDE 5:4 (2012), 747–775.

[List 2006] B. List, Evolution of an extended Ricci flow system, Ph.D. thesis, Fachbereich Mathematik
und Informatik der Freie Universität Berlin, 2006, Available at http://www.diss.fu-berlin.de/2006/
180/index.html.

[Müller 2012] R. Müller, “Ricci flow coupled with harmonic map flow”, Ann. Sci. Éc. Norm. Supér.
(4) 45:1 (2012), 101–142. MR 2961788

[Oliynyk et al. 2006] T. Oliynyk, V. Suneeta, and E. Woolgar, “A gradient flow for worldsheet nonlin-
ear sigma models”, Nuclear Phys. B 739:3 (2006), 441–458. MR 2006m:81185 Zbl 1109.81058

[Streets 2007] J. D. Streets, Ricci Yang–Mills flow, Ph.D. thesis, Duke University, 2007, Available at
http://www.math.uci.edu/~jstreets/papers/StreetsThesis.pdf.

[Streets 2008] J. Streets, “Regularity and expanding entropy for connection Ricci flow”, J. Geom.
Phys. 58:7 (2008), 900–912. MR 2009f:53105 Zbl 1144.53326

http://dx.doi.org/10.1007/s00208-006-0043-5
http://msp.org/idx/mr/2007g:53071
http://msp.org/idx/zbl/1105.53051
http://dx.doi.org/10.1090/S0002-9939-08-09533-6
http://msp.org/idx/mr/2009f:53098
http://msp.org/idx/zbl/1166.58007
http://dx.doi.org/10.1142/9789812819116_0006
http://dx.doi.org/10.1142/9789812819116_0006
http://msp.org/idx/mr/2010k:53098
http://dx.doi.org/10.1007/s00208-007-0098-y
http://dx.doi.org/10.1007/s00208-007-0098-y
http://msp.org/idx/mr/2008c:53068
http://msp.org/idx/zbl/1127.53059
http://www.diss.fu-berlin.de/2006/180/index.html
http://msp.org/idx/mr/2961788
http://dx.doi.org/10.1016/j.nuclphysb.2006.01.036
http://dx.doi.org/10.1016/j.nuclphysb.2006.01.036
http://msp.org/idx/mr/2006m:81185
http://msp.org/idx/zbl/1109.81058
http://www.math.uci.edu/~jstreets/papers/StreetsThesis.pdf
http://dx.doi.org/10.1016/j.geomphys.2008.02.010
http://msp.org/idx/mr/2009f:53105
http://msp.org/idx/zbl/1144.53326


184 YI LI

[Streets 2009] J. Streets, “Singularities of renormalization group flows”, J. Geom. Phys. 59:1 (2009),
8–16. MR 2010a:53143 Zbl 1153.53329

[Streets 2010] J. Streets, “Ricci Yang–Mills flow on surfaces”, Adv. Math. 223:2 (2010), 454–475.
MR 2011c:53164 Zbl 1190.53069

[Young 2008] A. N. Young, Modified Ricci flow on a principal bundle, Ph.D. thesis, The University
of Texas at Austin, 2008, Available at http://search.proquest.com/docview/193674070.

Received August 27, 2012. Revised January 6, 2013.

YI LI

DEPARTMENT OF MATHEMATICS

JOHNS HOPKINS UNIVERSITY

3400 N. CHARLES STREET

BALTIMORE, MD 21218
UNITED STATES

yli@math.jhu.edu
Current address:
DEPARTMENT OF MATHEMATICS

SHANGHAI JIAO TONG UNIVERSITY

800 DONG CHUAN ROAD, MIN HANG DISTRICT

SHANGHAI, 200240
CHINA

http://dx.doi.org/10.1016/j.geomphys.2008.08.002
http://msp.org/idx/mr/2010a:53143
http://msp.org/idx/zbl/1153.53329
http://dx.doi.org/10.1016/j.aim.2009.08.014
http://msp.org/idx/mr/2011c:53164
http://msp.org/idx/zbl/1190.53069
http://search.proquest.com/docview/193674070
mailto:yli@math.jhu.edu


PACIFIC JOURNAL OF MATHEMATICS
Vol. 267, No. 1, 2014

dx.doi.org/10.2140/pjm.2014.267.185

QUANTUM EXTREMAL LOOP WEIGHT MODULES
AND MONOMIAL CRYSTALS

MATHIEU MANSUY

In this paper we construct a new family of representations for the quantum
toroidal algebra Uq.sltor

nC1
/, which are `-extremal in the sense of Hernandez.

We construct extremal loop weight modules associated to level 0 fundamen-
tal weights $` when n D 2r C 1 is odd and ` D 1, rC1 or n. To do this,
we relate monomial realizations of level 0 extremal fundamental weight crys-
tals to integrable representations of Uq.sltor

nC1
/, and we introduce promotion

operators for the level 0 extremal fundamental weight crystals. By specializ-
ing the quantum parameter, we get finite-dimensional modules of quantum
toroidal algebras at roots of unity. In general, we give a conjectural process
to construct extremal loop weight modules from monomial realizations of
crystals.
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1. Introduction

Let us consider a finite-dimensional simple Lie algebra g and its associated quantum
affine algebra Uq.Og/. Beck [1994] and Drinfeld [1987] proved that Uq.Og/ has two
realizations: first as the quantized enveloping algebra of the affine Lie algebra Og
and second as the Drinfeld quantum affinization of the quantum group Uq.g/.
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The representation theory of the quantum affine algebras has been intensively
studied (see, among others, [Akasaka and Kashiwara 1997; Beck and Nakajima
2004; Chari and Pressley 1991; 1995; Frenkel and Mukhin 2001; Frenkel and
Reshetikhin 1999; Lusztig 1993; Nakajima 2001]). Kashiwara [1994] has defined a
class of integrable representations V .�/ of these algebras, called extremal weight
modules, parametrized by an integrable weight � and with crystal basis B.�/.
When � is dominant, V .�/ is the simple integrable module of highest weight �. But
in general V .�/ is not simple and it is neither of highest weight nor of lowest weight.
These representations were the subject of numerous papers (see [Beck 2002; Beck
and Nakajima 2004; Hernandez and Nakajima 2006; Kashiwara 1994; 2002b; Naito
and Sagaki 2003; 2006; Nakajima 2004]) and are particularly important because they
have finite-dimensional quotients for some special weight �. Kashiwara has proved
in this way the existence of crystal bases for the finite-dimensional fundamental
representations of Uq.Og/ (for a special choice of the spectral parameter).

The quantum affine algebra Uq.Og/ is also a quantum Kac–Moody algebra and
thus can be affinized again by the Drinfeld quantum affinization process. One gets
a toroidal (or double affine) quantum algebra Uq.g

tor/ which is not a quantum
Kac–Moody algebra anymore and can not be affinized again by this process (it can
be viewed as “the terminal object” in this construction). These algebras were first
introduced by Ginzburg, Kapranov and Vasserot [Ginzburg et al. 1995] in type A
and then in the general context [Jing 1998; Nakajima 2001]. In type A, they are
in Schur–Weyl duality with elliptic Cherednik algebras [Varagnolo and Vasserot
1996].

The representation theory of these algebras has been intensively studied (see for
example [Feigin et al. 2011a; 2011b; 2012; 2013; Hernandez 2005; 2009; 2011;
Miki 2000; Varagnolo and Vasserot 1998] and references therein). In the spirit of
works of Kashiwara, Hernandez [2009] proposed the definition of extremal loop
weight modules for Uq.g

tor/. The main motivation is to construct finite-dimensional
representations of the quantum toroidal algebra at roots of unity. He constructs the
first example of such a module for Uq.sltor

4 / which is neither of `-highest weight
nor of `-lowest weight. This module is generated by an `-weight vector of `-weight
an analogue of the level 0 fundamental weight $1 Dƒ1�ƒ0. By specializing the
quantum parameter q at roots of unity, he obtains finite-dimensional representations
of the quantum toroidal algebra at roots of unity.

In the present paper, we construct a new family of extremal loop weight modules
for the quantum toroidal algebra Uq.sltor

nC1/
1: we define extremal loop weight

1After this paper appeared on the arXiv, the constructions in [Feigin et al. 2013] were brought to
our attention by H. Nakajima. Some of the representations constructed in this paper (the V .Y

1;0
Y �1

0;1
/)

are also defined in [Feigin et al. 2013] from another point of view and are called vector representa-
tions there.
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modules associated to the level 0 fundamental weight $` Dƒ` �ƒ0 when nD

2r C 1 is odd and ` D 1; r C 1 or n (Theorem 4.1). We call them the extremal
fundamental loop weight modules. This construction is based on the monomial
realizations of level 0 extremal fundamental weight crystals B.$`/. We relate
these monomial crystals with integrable representations of Uq.sltor

nC1/ by studying
their combinatorics: we introduce promotion operators for B.$`/ (1� `� n). We
describe them in terms of monomials. These operators play an important role in
our work: on the one hand, at the level of crystals, they are used to check that these
monomial crystals are closed when `D 1; r C 1 or n (see Definition 3.6 for this
notion, related to the theory of q-characters). On the other hand, at the level of
representations, they enable us to define the action of the quantum toroidal algebra.
We show that the representations we constructed are irreducible and, as modules over
the horizontal quantum affine subalgebra, they are isomorphic to the fundamental
extremal weight modules V .$`/. We give explicit formulas for the action from
the associated monomial crystal. By specializing the quantum parameter q at
roots of unity, we get new irreducible finite-dimensional representations of the
quantum toroidal algebra at roots of unity. When ` is not equal to 1; r C 1 or n,
the corresponding monomial crystals are not closed and it is not possible to make
the same construction. We give a conjectural process to define other extremal loop
weight modules in this situation: as an example, we construct an extremal loop
weight module of Uq.sltor

4 / associated to the weight 2$1.
Let us describe the methods used in this paper in more detail. Kashiwara [2003]

and Nakajima [2003] have defined a crystal M, called the monomial crystal, whose
vertices are Laurent monomials. They determined monomial realizations of crystals
of finite type. These results have been extended in [Hernandez and Nakajima 2006]
to the level 0 extremal weight Uq. OslnC1/-crystals B.$`/ (1� `� n): if nD 2rC1

is odd, it is isomorphic to a sub-Uq. OslnC1/-crystal M` of M.
The monomials occurring in these realizations of crystals can be interpreted at

the level of representation theory. In fact Frenkel and Reshetikhin [1999] defined a
correspondence between `-weights (eigenvalues of the Cartan subalgebra for the
Drinfeld realization) and these monomials. Motivated by these facts, Hernandez
[2009] used the monomial Uq. Osl4/-crystal M1 to construct an integrable represen-
tation of Uq.sltor

4 / whose `-weights are the monomials occurring in this crystal. He
defined in this way the first example of extremal loop weight modules for Uq.sltor

4 /.
We use the same technical feature in this paper. We propose to relate the monomial
Uq. OslnC1/-crystals M` (where nD 2r C 1 is supposed to be odd) with integrable
representations of Uq.sltor

nC1/.
Let us outline the main steps of the construction of extremal fundamental loop

weight modules associated to M`. It is based on the combinatorial study of these
crystals. The cyclic symmetry of the Dynkin diagram of type A

.1/
n has a counterpart
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at the level of crystals. Actually, these symmetry properties are already known for
the Uq.slnC1/-crystals of finite type, and translated into the existence of promotion
operators (see [Bandlow et al. 2010; Fourier et al. 2009; Okado and Schilling
2008; Schilling 2008; Shimozono 2002] and references therein). Here we introduce
promotion operators for the level 0 extremal fundamental weight crystals B.$`/

(1 � ` � n). We improve these operators in the monomial realizations M` of
[Hernandez and Nakajima 2006]. In particular, we get a new description of these
monomial crystals.

A monomial set is not in general the set of `-weights of an integrable repre-
sentation. In fact, it must satisfy combinatorial properties related to the theory
of q-characters (see [Frenkel and Mukhin 2001; Frenkel and Reshetikhin 1999]).
This leads us to introduce the notion of closed monomial set (Definition 3.6). It
gives a necessary condition for a set to be the set of `-weights of an integrable
representation. Finally, we determine when the monomial crystal M` is closed, using
promotion operators: this is the case if and only if `D 1; rC1 or n (Theorem 3.22).

When M` is closed, we construct an associated integrable Uq.sltor
nC1/-module

whose set of `-weights consists of monomials occurring in M`. For that, we paste
together some finite-dimensional representations of the various vertical quantum
affine subalgebras of Uq.sltor

nC1/. The existence of promotion operators for M`

involves that it defines a Uq.sltor
nC1/-module structure. Furthermore we check that the

representations obtained in this way do satisfy the definition of extremal loop weight
modules. They are irreducible, isomorphic to the level 0 fundamental extremal
representations V .$`/ as modules over the horizontal quantum affine subalgebra.
Moreover the action of the quantum toroidal algebra on them is explicitly known,
given from the associated crystal. Finally by specializing the quantum parameter q

at roots of unity, we get finite-dimensional representations of the quantum toroidal
algebra at roots of unity.

When the monomial crystal M` is not closed, there is no integrable representation
of Uq.sltor

nC1/ whose set of `-weights consists of monomials occurring in it. The
idea is to consider instead of M` a closed crystal containing it and to apply the
preceding methods to this crystal. We treat an example of such a construction: we
define a representation of Uq.sltor

4 / which satisfies the definition of extremal loop
weight modules.

Let us now describe briefly the organization of this paper.
In Section 2 we recall the definitions of quantum affine algebras Uq. OslnC1/ and

quantum toroidal algebras Uq.sltor
nC1/ and we briefly review their representation

theory. In particular one defines the extremal weight modules and the extremal loop
weight modules. Section 3 is devoted to the study of monomial crystals. We recall
its definition and we introduce the notion of closed monomial set (Definition 3.6).
We introduce promotion operators for the level 0 fundamental extremal weight
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crystals. As a consequence, we determine when M` is closed (Theorem 3.22). In
Section 4 we construct a new family of representations of Uq.sltor

nC1/ (the extremal
fundamental loop weight modules) when n is odd and M` is closed (Theorem 4.1).
We check that these representations satisfy the definition of extremal loop weight
modules (Theorem 4.7) and we give formulas for the action (Theorem 4.12). We
get finite-dimensional representations of the quantum toroidal algebra at roots of
unity by specializing the quantum parameter q at roots of unity (Theorem 4.18). In
Section 5 we treat an example where the considered monomial crystal is not closed.
We construct a representation of Uq.sltor

4 / associated to the level 0 weight 2$1.
In Section 6 other possible developments and applications of these results are
discussed.

2. Background

We recall the main definitions and general properties about the representation theory
of quantum affine algebras and quantum toroidal algebras of type A.

2A. Cartan matrix. Let C D .Ci;j /0�i;j�n be a Cartan matrix of type A
.1/
n (n�2),

C D

0BBBBBBBBBB@

2 �1 0 � � � 0 �1

�1 2
: : :

: : : 0

0
: : :

: : :
: : :

: : :
:::

:::
: : :

: : :
: : :

: : : 0

0
: : :

: : : 2 �1

�1 0 � � � 0 �1 2

1CCCCCCCCCCA
:

Remark 2.1. The case nD 1 is not studied in the article and is particular. In this
case, the Cartan matrix is �

2 �2

�2 2

�
and involves �2. Furthermore, the quantum toroidal algebra Uq.sltor

2 / requires a
special definition with different possible choices of the quantized Cartan matrix
(see [Hernandez 2011, Remark 4.1]).

Set I D f0; : : : ; ng and I0 D f1; : : : ; ng. In particular, .Ci;j /i;j2I0
is the Cartan

matrix of finite type An. In the following, I will be often identified with the set
Z=.nC 1/Z. Consider the .nC2/-dimensional vector space

hDQh0˚Qh1˚ � � �˚Qhn˚Qd

and the linear functions ˛i (the simple roots) and ƒi (the fundamental weights) on
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h given by (i; j 2 I ),

˛i.hj /D Cj ;i ; ˛i.d/D ı0;i ;

ƒi.hj /D ıi;j ; ƒi.d/D 0:

Denote by … D f˛0; : : : ; ˛ng � h� the set of simple roots and by …_ D
fh0; : : : ; hng�h the set of simple coroots. Let PDf�2h� j�.hi/2Z for any i 2Ig

be the weight lattice and PC D f� 2 P j �.hi/� 0 for any i 2 Ig, the semi-
group of dominant weights. Let Q D

L
i2I Z˛i � P (the root lattice) and

QC D
P

i2I N˛i �Q. For �;� 2 h�, write �� � if ��� 2QC.
Set h0 DQh1˚ � � �˚Qhn and …0 D f˛1; : : : ; ˛ng, …_0 D fh1; : : : ; hng. Then

.h0;…0;…
_
0
/ is a realization of .Ci;j /i;j2I0

(see [Kac 1990]). We define as above
the associated weight lattice P0, its subset PC

0
of dominant weights, and the root

lattice Q0.
Denote by W the affine Weyl group: it is the subgroup of GL.h�/ generated by

the simple reflections si 2 GL.h�/ defined by si.�/ D �� �.hi/˛i (i 2 I ). The
Weyl group of finite type W0 is the subgroup of W generated by the si with i 2 I0.

Let c D h0C � � �C hn and ı D ˛0C � � �C˛n. We have

f! 2 P j !.hi/D 0 for all i 2 Ig DQı:

Put Pcl D P=Qı and denote by cl W P ! Pcl the canonical projection. Denote by
P0 D f� 2 P j �.c/D 0g the set of level 0 weights.

2B. Quantum affine algebra Uq. OslnC1/. In this article qD et 2C� (t 2C) is not
a root of unity and is fixed. For l 2 Z; r � 0;m�m0 � 0 we set

Œl �q D
ql � q�l

q� q�1
2 ZŒq˙1�;

Œr �q!D Œr �q Œr � 1�q : : : Œ1�q;�
m

m0

�
q

D
Œm�q!

Œm�m0�q! Œm0�q!
:

Definition 2.2. The quantum affine algebra Uq. OslnC1/ is the C-algebra with gener-
ators kh .h 2 h/, x˙i .i 2 I/ and relations

khkh0 D khCh0 , k0 D 1;

khx˙j k�h D q˙ j̨ .h/x˙j ;

ŒxCi ;x
�
j �D ıi;j

ki � k�1
i

q� q�1
;

.x˙i /
.2/x˙iC1�x˙i x˙iC1x˙i Cx˙iC1.x

˙
i /
.2/
D 0:
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Here we use the notation k˙1
i D k˙hi

and for all r � 0 we set .x˙i /
.r/ D

.x˙i /
r=Œr �q!. One defines a coproduct on Uq. OslnC1/ by setting

�.kh/D kh˝ kh;

�.xCi /D xCi ˝ 1C kCi ˝xCi ; �.x�i /D x�i ˝ k�i C 1˝x�i :

Let Uq. OslnC1/
0 be the subalgebra of Uq. OslnC1/ generated by the x˙i and kh, for

h 2
P

Qhi . This has Pcl as a weight lattice.
For J � I denote by Uq. OslnC1/J the subalgebra of Uq. OslnC1/ generated by the

x˙i ; kphi
for i 2 J;p 2Q. If J D I0, Uq. OslnC1/I0

is the quantum group of finite
type associated to the data .h0;…0;…

_
0
/, also denoted by Uq.slnC1/. In particular,

a Uq. OslnC1/-module has a structure of Uq.slnC1/-module. If J D fig with i 2 I ,
Uq. OslnC1/J is isomorphic to Uq.sl2/ and denoted by Ui . So a Uq. OslnC1/-module
has also a structure of Uq.sl2/-module.

Let Uq. OslnC1/
C (resp. Uq. OslnC1/

�, Uq.h/) be the subalgebra of Uq. OslnC1/

generated by the xCi (resp. the x�i , the kh). We have a triangular decomposition of
Uq. OslnC1/ (see [Lusztig 1993]):

Theorem 2.3. We have an isomorphism of vector spaces

Uq. OslnC1/'Uq. OslnC1/
�
˝Uq.h/˝Uq. OslnC1/

C:

2C. Representations of Uq. OslnC1/. For V a representation of Uq. OslnC1/ and
� 2 P , the weight space V� of V is

V� D fv 2 V j kh � v D q�.h/v;8h 2 hg:

Set wt.V /D f� 2 P j V� ¤ f0gg.
For � 2 P , a representation V is said to be of highest weight � if there is v 2 V�

such that for all i 2 I;xCi � v D 0 and Uq. OslnC1/ � v D V . Furthermore there is a
unique simple highest weight module of highest weight �.

Definition 2.4. A representation V is said to be integrable if

(i) it admits a weight space decomposition V D
L
�2P

V� ,

(ii) all the x˙i (i 2 I ) are locally nilpotent.

Remark 2.5. This definition differs from the one given in [Hernandez 2009]. In
fact we require that the following additional conditions be satisfied:

(iii) V� is finite-dimensional for any � 2 P .

(iv) V�˙N˛i
D f0g for all � 2 P , N � 0, i 2 I .

These conditions are implied by the previous ones for the highest weight modules.

Theorem 2.6 [Lusztig 1993]. The simple highest weight module of highest weight �
is integrable if and only if � is dominant. We denote it V .�/ (� 2 PC).
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For an integrable representation V of Uq. OslnC1/ with finite-dimensional weight
spaces, one defines the usual character

�.V /D
X
�2P

dim.V�/e.�/ 2
Y
�2P

Ze.�/:

Similar definitions hold for the quantum group Uq.slnC1/. In this case, the
integrable simple highest weight modules are parametrized by PC

0
and denoted

by V0.�/ (� 2 PC
0

). Further they are finite-dimensional (see [Lusztig 1993; Rosso
1991]). Let C be the category of integrable finite-dimensional representations of
Uq.slnC1/ and R its Grothendieck ring.

Theorem 2.7 [Lusztig 1993; Rosso 1991]. The category C is a semisimple tensor
category and the simple objects of C are the .V0.�//�2P

C

0

. Furthermore � induces
a ring morphism

� WR!
M
�2P0

Ze.�/;

where the product on the right is defined by e.�/e.�/D e.�C �/.

We do not recall here the theory of crystal bases of quantum groups, we just
refer to [Kashiwara 1994; 2002a; 2002b]. Let us remind only that for � 2 PC,
the Uq. OslnC1/-module V .�/ has a crystal basis B.�/. In the same way we denote
by B0.�/ the crystal basis of the Uq.slnC1/-module V0.�/ (� 2 PC

0
). When we

want to distinguish crystals of Uq. OslnC1/, Uq. OslnC1/J with J � I and Uq. OslnC1/
0,

we call it respectively a P -crystal or an I -crystal, a J -crystal and a Pcl-crystal.

2D. Extremal weight modules. In this section we recall the definition and some
properties of extremal weight modules for the quantum affine algebra Uq. OslnC1/

given by Kashiwara [1994; 2002b]. All of these hold for general quantum Kac–
Moody algebras and in particular for Uq.slnC1/.

Definition 2.8. For an integrable Uq. OslnC1/-module V and � 2P , a vector v 2 V�
is called extremal of weight � if there are vectors fvwgw2W such that vId D v and

x˙i � vw D 0 and .x
�

i /
.˙w.�/.hi // � vw D vsi .w/ if ˙w.�/.hi/� 0:

Note that if the vector v is extremal of weight �, then for w 2W , vw is extremal
of weight w.�/.

Remark 2.9. The definition of extremal vector can be rewritten as follows (see
[Kashiwara 1994]): for an integrable Uq. OslnC1/-module V , a weight vector v of
weight � is called i-extremal if xCi � v D 0 or x�i � v D 0. In this case we set
Si.v/ D .x

�
i /
.�.hi // � v or Si.v/ D .x

C
i /
.��.hi // � v respectively. Then a weight
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vector v is extremal if, for any l � 0, Si1
ı � � � ı Sil

.v/ is i-extremal for any
i; i1; : : : ; il 2 I . We set in that case

W � v D fSi1
ı � � � ıSil

.v/v j l 2 N; i1; : : : ; il 2 Ig:

The notion of extremal elements in a crystal B can be defined in the same way.

Definition 2.10. For �2P , the extremal weight module V .�/ of extremal weight �
is the Uq. OslnC1/-module generated by a vector v� with the defining relations that v�
is extremal of weight �.

Example 2.11. If � is dominant, V .�/ is the simple highest weight module of
highest weight �.

Theorem 2.12 [Kashiwara 1994]. For � 2 P , the module V .�/ is integrable and
has a crystal basis B.�/.

Set � D $`, where 1 � ` � n and $` is the level 0 fundamental weight
$` Dƒ` �ƒ0.

Theorem 2.13 [Kashiwara 2002b]. Let 1� `� n.

(i) V .$`/ is an irreducible Uq. OslnC1/-module.

(ii) Any nonzero integrable Uq. OslnC1/-module generated by an extremal weight
vector of weight $` is isomorphic to V .$`/.

Let w be an element of W such that w.$`/D$`C ı. Such an element exists
and is not unique (see [Kashiwara 2002b]). It defines a Uq. OslnC1/

0-automorphism
(also called Pcl-automorphism in the following) of the restricted Uq. OslnC1/

0-module
V .$`/, which sends v to vw. It is of weight ı, and denoted by z`. Let us define
the Uq. OslnC1/

0-module

W .$`/D V .$`/=.z` � 1/V .$`/:

Theorem 2.14 [Kashiwara 2002b]. Let 1� `� n.

(i) W .$`/ is a finite-dimensional irreducible Uq. OslnC1/
0-module.

(ii) For any � 2 wt.V .$`//,

W .$`/cl.�/ ' V .$`/�:

(iii) V .$`/ is isomorphic to W .$`/aff as a Uq. OslnC1/-module.

Here Maff is the affinization of an integrable Uq. OslnC1/
0-module M : this is

the Uq. OslnC1/-module with a weight space decomposition Maff D
L
�2P

.Maff/�
defined by

.Maff/� DMcl.�/



194 MATHIEU MANSUY

and with the obvious action of x˙i . Note also that we have an isomorphism of
Uq. OslnC1/

0-modules
Maff ' CŒz; z�1�˝M;

where x˙i act on the right side by z˙ıi;0x˙i . In the same way one defines the
affinization Baff of a Pcl-crystal B. For an integrable Uq. OslnC1/

0-module M with
associated Pcl-crystal B, the affinization Maff has a P -crystal Baff.

2E. Quantum toroidal algebra Uq.sltor
nC1

/. In this section, we recall the definition
and the main properties of the quantum toroidal algebra Uq.sltor

nC1/ (without central
charge).

Definition 2.15 [Ginzburg et al. 1995]. The quantum toroidal algebra Uq.sltor
nC1/ is

the C-algebra with generators x˙i;r .i 2I; r 2Z/, kh .h2h/, hi;m .i 2I;m2Z�f0g/

and the following relations .i; j 2 I; r; r 0; r1; r2 2 Z;m 2 Z�f0g/:

khkh0 D khCh0 , k0 D 1, Œkh; hj ;m�D 0, Œhi;m; hj ;m0 �D 0;

khx˙j ;r k�h D q˙ j̨ .h/x˙j ;r ;

Œhi;m;x
˙
j ;r �D˙

1

m
ŒmCi;j �qx˙j ;mCr ;

ŒxCi;r ;x
�
j ;r 0 �D ıij

�Ci;rCr 0 ��
�
i;rCr 0

q� q�1
;(1)

x˙i;rC1x˙j ;r 0 � q˙Cij x˙j ;r 0x
˙
i;rC1 D q˙Cij x˙i;r x˙j ;r 0C1�x˙j ;r 0C1x˙i;r ;

x˙i;r1
x˙i;r2

x˙i˙1;r 0 � .qC q�1/x˙i;r1
x˙i˙1;r 0x

˙
i;r2
Cx˙i˙1;r 0x

˙
i;r1

x˙i;r2

D�x˙i;r2
x˙i;r1

x˙i˙1;r 0 C .qC q�1/x˙i;r2
x˙i˙1;r 0x

˙
i;r1
�x˙i˙1;r 0x

˙
i;r2

x˙i;r1
;

and Œx˙i;r1
;x˙j ;r2

�D 0 if i ¤ j ; j˙1. Here for all i 2 I and m2Z, �˙i;m 2Uq.sltor
nC1/

is determined by the formal power series in Uq.sltor
nC1/ŒŒz

˙1��

�˙i .z/D
X
m�0

�˙i;˙mz˙m
D k˙1

i exp
�
˙.q� q�1/

X
m0�1

hi;˙m0z
˙m0

�
;

and �Ci;m D 0 for m< 0, ��i;m D 0 for m> 0.

There is an algebra morphism Uq. OslnC1/! Uq.sltor
nC1/ defined by kh 7! kh,

x˙i 7!x˙
i;0

(h2h; i 2I ). Its image is called the horizontal quantum affine subalgebra
of Uq.sltor

nC1/ and is denoted by Uh
q.sltor

nC1/. In particular, a Uq.sltor
nC1/-module V

has also a structure of Uq. OslnC1/-module. We denote by Res.V / the restricted
Uq. OslnC1/-module obtained from V .
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As said above, the quantum affine algebra Uq. OslnC1/
0 has another realization

in terms of Drinfeld generators [Beck 1994; Drinfeld 1987]: this is the C-algebra
with generators x˙i;r (i 2 I0, r 2 Z), kh (h 2 h0), hi;m (i 2 I0;m 2 Z�f0g) and the
same relations as in Definition 2.15. It is isomorphic to the subalgebra Uv

q.sltor
nC1/

of Uq.sltor
nC1/ generated by the x˙i;r , kh, hi;m (i 2 I0; r 2 Z; h 2 h0;m 2 Z� f0g).

Uv
q.sltor

nC1/ is called the vertical quantum affine subalgebra of Uq.sltor
nC1/.

For all j 2I , set IjDI�fj g and define the subalgebra U
v;j
q .sltor

nC1/ of Uq.sltor
nC1/

generated by the x˙i;r , kh, hi;m (i 2 Ij ; r 2 Z; h 2
L

i2Ij
Qhi ;m 2 Z� f0g). In

particular Uv;0
q .sltor

nC1/ is the vertical quantum affine subalgebra Uv
q.sltor

nC1/ of
Uq.sltor

nC1/. All the U
v;j
q .sltor

nC1/ for various j 2 I are isomorphic: in fact let � be
the automorphism of the Dynkin diagram of type A

.1/
n corresponding to the rotation

such that �.k/D kC 1, where I is identified to the set Z=.nC 1/Z. It defines an
automorphism �h of h by sending hi ; d to h�.i/; d (i 2 I ). For all j 2 J , let � .j/

be the automorphism of Uq.sltor
nC1/ which sends x˙i;r , kh, hi;m to x˙

�j .i/;r
, k
�
j
h .h/

,
h�j .i/;m respectively (where i 2 I , h2 h, r 2Z, m2Z�f0g). It gives by restriction
an isomorphism of algebras between Uv

q.sltor
nC1/ and U

v;j
q .sltor

nC1/, still denoted by
� .j/ in the following. If V is a Uq. OslnC1/

0-module, we denote by V .j/ the induced
U
v;j
q .sltor

nC1/-module.
For i 2 I , the subalgebra OUi generated by the x˙i;r ; hi;m; kphi

(r 2Z, m2Z�f0g,
p 2Q) is isomorphic to Uq. Osl2/0.

We have a triangular decomposition of Uq.sltor
nC1/.

Theorem 2.16 [Miki 2000; Nakajima 2001]. We have an isomorphism of vec-
tor spaces

Uq.sltor
nC1/'Uq.sltor

nC1/
�
˝Uq.Oh/˝Uq.sltor

nC1/
C;

where Uq.sltor
nC1/

˙ (resp. Uq.Oh/) is generated by the x˙i;r (resp. the kh, the hi;m).

2F. Representations of Uq.sltor
nC1

/.

Definition 2.17. A representation V of Uq.sltor
nC1/ is said to be integrable if Res.V /

is integrable as a Uq. OslnC1/-module.

Definition 2.18. A representation V of Uq.sltor
nC1/ is said to be of `-highest weight

if there is v 2 V such that

(i) V DUq.sltor
nC1/

� � v,

(ii) Uq.Oh/ � v D Cv,

(iii) for any i 2 I; r 2 Z, xCi;r � v D 0.

For 
 2 Hom.Uq.Oh/;C/ an algebra morphism, by Theorem 2.16 we have a
corresponding Verma module M.
 / and a simple representation V .
 / which are
`-highest weight. Then we have:



196 MATHIEU MANSUY

Theorem 2.19 [Miki 2000; Nakajima 2001]. The simple representations V .
 / of
Uq.sltor

nC1/ are integrable if there is .�; .Pi/i2I / 2 PC � .1C uCŒu�/I satisfying

 .kh/D q�.h/ and the following relation in CŒŒz˙1��, for each i 2 I :


 .�˙i .z//D qdeg.Pi /
Pi.zq�1/

Pi.zq/
:

The polynomials Pi are called Drinfeld polynomials and the representation V .
 /

is then denoted by V .�; .Pi/i2I /. Such a representation is also integrable in the
sense of [Hernandez 2009], that is, V .�; .Pi/i2I / satisfies conditions (iii) and (iv)
of Remark 2.5.

The Kirillov–Reshetikhin module associated to k � 0, a 2 C� and 0� `� n is
the simple integrable representation of weight kƒ` with the n-tuple

Pi.u/D

�
.1�ua/.1�uaq2/ : : : .1�uaq2.k�1// for i D `;

1 for i ¤ `:

If k D 1, it is also called the fundamental module.
Consider an integrable representation V of Uq.sltor

nC1/. As the subalgebra Uq.Oh/

is commutative, we have a decomposition of the weight spaces V� in simultaneous
generalized eigenspaces

V� D
M
�2P


2Hom.Uq.Oh/;C/

V.�;
 /;

where V.�;
 / D fx 2 V W 9p 2 N;8i 2 I;8m � 0; .�˙i;˙m � 
 .�
˙
i;˙m//

p � x D 0g.
If V.�;
 / ¤ f0g, then .�; 
 / is called an `-weight of V .

Definition 2.20. A Uq.sltor
nC1/-module V is weighted if the Cartan subalgebra

Uq.Oh/ acts on V by diagonalizable operators. The module V is thin if it is weighted
and the joint spectrum is simple.

The terminology is different in [Feigin et al. 2011a; 2011b; 2012; 2013]: a thin
module is called tame.

Definition 2.21 [Frenkel and Reshetikhin 1999; Hernandez 2005; Nakajima 2001].
The q-character of an integrable representation V of Uq.sltor

nC1/ with finite-dimen-
sional `-weight spaces is defined by the formal sum

�q.V /D
X
�2P


2Hom.Uq.Oh/;C/

dim.V.�;
 //e.�; 
 /:

Furthermore if the weight spaces of V are finite-dimensional we have

�.Res.V //D ˇ.�q.V //;
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where Res.V / still denotes the restricted Uq. OslnC1/-module obtained from V , and

ˇ W
Y
�2P


2Hom.Uq.Oh/;C/

Ze.�; 
 /!
Y
�2P

Ze.�/

is Z-linear such that ˇ.e.�; 
 //D e.�/ for all .�; 
 / 2 P �Hom.Uq.Oh/;C/.

Proposition 2.22 [Frenkel and Reshetikhin 1999; Hernandez 2005; Nakajima 2001].
Let V be an integrable representation of Uq.sltor

nC1/ and consider an `-weight
.�; 
 /2P�Hom.Uq.Oh/;C/ of V . Then there exist polynomials Qi.z/;Ri.z/2CŒz�

(i 2 I ) of constant term 1 such that

(2)
X
m�0


 .�˙i;˙m/z
˙m
D qdeg.Qi /�deg.Ri /

Qi.zq�1/Ri.zq/

Qi.zq/Ri.zq�1/

in CŒŒz˙1��. Furthermore, if V has a finite composition series

L0 D f0g �L1 �L2 � � � � �Lk D V

such that LjC1=Lj 'V .�j ; .P
j
i /i2I /, where the roots of P

j
i are in qZ for all i 2 I ,

0� j � k � 1, then

(ii) there exist ! 2 PC, ˛ 2QC satisfying � D ! �˛,

(iii) the zeros of the polynomials Qi.z/;Ri.z/ are in qZ.

If V is a Kirillov–Reshetikhin module, one reduces to the case where the defining
parameter a is in qZ by twisting the action by the automorphisms tb of Uq.sltor

nC1/

given by (b 2 C�)

tb.x
˙
i;r /D br x˙i;r ; tb.h

˙
i;m/D bmh˙i;m; tb.kh/D kh:

Consider formal variables Y ˙1
i;l

, e� (i 2 I , l 2 Z, � 2 P ) and let A be the
group of monomials of the form mD e!.m/

Q
i2I;l2Z Y

ui;l .m/

i;l
, where ui;l.m/ 2 Z,

!.m/ 2 P are such that X
l2Z

ui;l.m/D !.m/.hi/:

For example, e˙ƒi Y ˙1
i;l
2 A and Ai;l D e˛i Y

i;l�1
Y

i;lC1
Y �1

i�1;l
Y �1

iC1;l
2 A. A

monomial m is said to be J -dominant (J � I ) if for all j 2 J and l 2 Z we have
uj ;l.m/� 0. An I -dominant monomial is said to be dominant.

Remark 2.23. Let us fix a monomial m 2 A and consider monomials m0 which
are products of m with various A˙1

i;l
(i 2 I; l 2 Z). By [Hernandez and Nakajima

2006, Remark 2.1], !.m0/ is uniquely determined by !.m/ and ui;l.m
0/. So in the

following when we are in this situation, the term e!.m
0/ will be safely omitted.
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Let V be an integrable Uq.sltor
nC1/-module such that for all `-weight .�; 
 / of V ,

the roots of the associated polynomials Qi.z/ and Ri.z/ are in qZ for all i 2 I .
For .�; 
 / 2 P � Hom.Uq.Oh/;C/ an `-weight of V , one defines the monomial
m.�;
 / D e�

Q
i2I;l2Z Y

ui;l�vi;l

i;l
, where

Qi.z/D
Y
l2Z

.1� zql/ui;l and Ri.z/D
Y
l2Z

.1� zql/vi;l :

We denote V.�;
 /D Vm.�;
/ . We rewrite the q-character of an integrable representa-
tion V with finite-dimensional `-weight spaces by the formal sum

�q.V /D
X
m

dim.Vm/m 2 ZŒŒe� ;Y ˙1
i;l ���2P; i2I; l2Z:

Let us denote by M.V / the set of monomials occurring in �q.V /.
By this correspondence between `-weights and monomials due to Frenkel and

Reshetikhin [1999], the I -tuple of Drinfeld polynomials with zeros in qZ are
identified with the dominant monomials. In particular for a dominant monomial m,
one denotes by V .m/ the simple module of `-highest weight m. For example
V .ekƒ`Y`;sY`;sC2 : : :Y`;sC2.k�1// is the Kirillov–Reshetikhin module associated
to k � 0, aD qs 2C� (s 2Z) and `2 I , and V .eƒ`Y`;s/ is the fundamental module
associated to aD qs 2 C� (s 2 Z) and ` 2 I .

Similar results hold for the quantum affine algebra Uq. OslnC1/
0 due to Chari

and Pressley [1994]. In this case, the simple integrable representations are finite-
dimensional and denoted V0..Pi/i2I0

/ in the following. Note that the weights
�2P0 can be omitted here because they are completely determined by the Drinfeld
polynomials .Pi/i2I0

,

�D deg.P1/ƒ1C � � �C deg.Pn/ƒn:

In the same way if V is a Kirillov–Reshetikhin module of Uq. OslnC1/
0, its `-weights

can be only considered as elements of Hom.Uq.Oh0/;C/ (where Uq.Oh0/ is the
subalgebra of Uq. OslnC1/

0 generated by kh (h 2 h0) and hi;m (i 2 I0;m 2 Z �

f0g)). They still satisfy the relations in (2). By twisting the action on V by an
automorphism tb of Uq. OslnC1/

0 for some b 2 C�, it can be parametrized as above
by Laurent monomials in ZŒY ˙1

i;l
�i2I0;l2Z. The weight !.m/ 2 P0 of a monomial

m 2 ZŒY ˙1
i;l
�i2I0;l2Z can be omitted here because it is completely determined by

the ui;l.m/ (i 2 I0; l 2 Z).
Recall that the Kirillov–Reshetikhin modules V0.Y`;sY`;sC2 : : :Y`;sC2.k�1//

(k � 0, s 2 Z, ` 2 I0) over Uq. OslnC1/
0 can be obtained from the Uq.slnC1/-

modules V0.kƒ`/ as follows: there exist evaluation morphisms eva WUq. OslnC1/
0!

Uq.slnC1/ (a 2 C�) which send xi;0; kh on xi ; kh respectively (i 2 I0; h 2 h0).
So the Uq. OslnC1/

0-module V0.Y`;sY`;sC2 : : :Y`;sC2.k�1// is obtained by pulling
back the action of Uq.slnC1/ on V0.kƒ`/ by eva for some a 2 C�. In particular,
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V0.Y`;sY`;sC2 : : :Y`;sC2.k�1// is irreducible as a Uq.slnC1/-module, isomorphic
to V0.kƒ`/.

We have defined irreducible finite-dimensional Uq. OslnC1/
0-modules W .$`/

(` 2 I0) in Section 2D. One can determine them in terms of the Drinfeld realization.
For that we need the following additional result.

Lemma 2.24 [Nakajima 2004]. Let v be a vector of an integrable Uq. OslnC1/
0-

module of weight � 2 cl.P0/ such that for all i 2 I0, �.hi/� 0. Then the following
conditions are equivalent:

(i) v is an extremal vector.

(ii) xCi;r � v D 0 for all i 2 I0; r 2 Z.

As a direct consequence of these results, W .$`/ is isomorphic to a fundamental
representation V0..1� ı`;iau/i2I0

/ for a special choice of the spectral parameter
a 2 C� (see [Nakajima 2004, Remark 3.3] for an expression of it). In particular for
this spectral parameter, one deduces that V0..1� ı`;iau/i2I0

/ has a crystal basis.
Let Cl be the category of finite-dimensional Uq. OslnC1/

0-modules (of type 1)
and Rl its Grothendieck ring. Recall that Cl is an abelian monoidal category, not
semisimple, with as simple objects the V0..Pi/i2I0

/ and Rl is the polynomial ring
over Z in the classes ŒV0..1�ı`;iau/i2I0

/� (`2 I0; a2C�) (see [Chari and Pressley
1994; Frenkel and Reshetikhin 1999]). As in [Hernandez and Leclerc 2010], we
consider Cl;Z the full subcategory of Cl whose objects V satisfy:

For every composition factor S of V , the roots of the Drinfeld polynomials
.Pi.u//i2I0

belong to qZ.

This is also an abelian monoidal category, not semisimple and the Grothendieck
ring Rl;Z of Cl;Z is the subring of Rl generated by the classes ŒV0.Y`;s/� with
` 2 I0; s 2 Z (see [Frenkel and Mukhin 2001]).

Theorem 2.25 [Frenkel and Reshetikhin 1999]. �q induces a ring morphism �q W

Rl;Z ! ZŒY ˙1
i;l
�i2I0;l2Z, called the morphism of q-characters. Furthermore we

have the commutative diagram

Rl;Z

�q
//

Res
��

ZŒY ˙1
i;l
�i2I0;l2Z

ˇ

��
R

�
//
L
�2P0

Ze.�/

where the ring morphism Res W Rl;Z ! R is the restriction and ˇ is defined by
ˇ.m/D e.!.m//.
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One does not have an expression of q-character of a representation in general. But
explicit formulas exist for the fundamental modules and the Kirillov–Reshetikhin
modules over Uq. OslnC1/

0 and Uq.sltor
nC1/, given in terms of tableaux [Hernandez

2011; Nakajima 2003].

2G. Extremal loop weight modules. We recall the notion of extremal loop weight
modules for Uq.sltor

nC1/. The main motivation for this is the construction of finite-
dimensional representations of the quantum toroidal algebra as in the theory of
Kashiwara, but at roots of unity in this case.

Definition 2.26 [Hernandez 2009]. An extremal loop weight module of Uq.sltor
nC1/

is an integrable representation V such that there is an `-weight vector v 2 V

satisfying:

(i) Uq.sltor
nC1/ � v D V .

(ii) v is extremal for Uh
q.sltor

nC1/.

(iii) U
v;j
q .sltor

nC1/ �w is finite-dimensional for all w 2 V and j 2 I .

Example 2.27. If m is dominant, the simple `-highest weight module V .m/ of
`-highest weight m is an extremal loop weight module.

An example of such a representation which is neither of `-highest weight nor of
`-lowest weight is given in [Hernandez 2009]. The goal of this article is to construct
a new family of extremal loop weight modules, called extremal fundamental loop
weight modules.

3. Study of the monomial crystals M.e$` Y
`;0

Y �1
0;d`

/

We will relate in our paper the monomial realizations M` of level 0 extremal
fundamental weight crystals B.$`/ (1 � ` � n) of Uq. OslnC1/ with integrable
representations of Uq.sltor

nC1/. In this section, we study the combinatorics of these
monomial realizations, the main point being the use of promotion operators for
level 0 extremal fundamental weight crystals introduced below. This is the first step
of the construction of integrable modules associated to M`.

In Section 3A, one gives the definition of the monomial Uq. OslnC1/-crystal M

[Kashiwara 2003; Nakajima 2003]. This definition holds when the considered
Cartan matrix has no odd cycle. So it does not work for Uq. OslnC1/ when n is even,
and we have to assume that nD 2r C 1 (r � 1) is odd until the end of the article.
Following [Hernandez and Nakajima 2006], we recall the monomial realization of
B.$`/ (1� `� n/: it is isomorphic to the sub-Uq. OslnC1/-crystal

M` DM.e$`Y`;0Y �1
0;d`

/
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of M generated by the monomial e$`Y
`;0

Y �1
0;d`

(with d` equal to min.`; nC1�`/).
Furthermore we define the notions of a q-closed monomial set and of a monomial set
closed by the Kashiwara operators, respectively related to the theory of q-characters
and to the combinatorics of crystals.

The monomial crystals M` have already been studied in [Hernandez and Nakajima
2006]: the monomials occurring in these crystals are explicitly given for 1� `� n

and their automorphisms z` are described in terms of monomials. We recall these
results in Section 3B.

In Section 3C, we introduce promotion operators for level 0 extremal fundamental
weight crystals B.$`/ (1� `� n). The promotion operators were introduced in
[Shimozono 2002] for the Young tableaux realization of the finite Uq.slnC1/-
crystals B0.kƒ`/ (k 2 N�, 1 � ` � n) and studied in numerous papers (see
[Bandlow et al. 2010; Fourier et al. 2009; Okado and Schilling 2008; Schilling 2008;
Shimozono 2002] and references therein). It is the counterpart at the level of crystals
of the cyclic symmetry of the Dynkin diagram of type A

.1/
n . After recalling these

definitions, we extend the promotion operators for the level 0 extremal fundamental
weight crystals B.$`/. Finally we specify the promotion operator of B.$`/ in its
monomial realization M`.

In Section 3D, we use promotion operators to obtain a new description of M`. In
particular, we improve results given in [Hernandez and Nakajima 2006] for these
crystals. Furthermore we determine the ` 2 I0 for which the monomial crystals M`

are closed (Theorem 3.22): this is the case if and only if `D 1; r C 1 or n.

3A. Monomial crystals. In this section we define the monomial crystal M of
Uq. OslnC1/ when nD 2r C 1 is supposed to be odd, following [Kashiwara 2003;
Nakajima 2003]. Monomial realizations of the crystals B.�/ with � 2 P , in
particular of B.$`/ (1 � ` � n), are studied in [Hernandez and Nakajima 2006;
Kashiwara 2003; Nakajima 2003]. They are obtained as subcrystals of M generated
by a monomial. We recall these results here. Finally we introduce new notions of
q-closed monomial set and of monomial set closed by the Kashiwara operators.

As we have said above, the definition of the monomial crystal M requires that the
considered Cartan matrix C is without odd cycle. So we assume that nD 2r C 1

(r � 1) is odd until the end of the article. In particular there is a function s W I !

f0; 1g; i 7! si such that Ci;j D�1 implies si C sj D 1.
Consider the subgroup M�A defined by

MD fm 2A j ui;l.m/D 0 if l � si C 1 mod 2g:

Following [Kashiwara 2003; Nakajima 2003], let us define wt WM! P by

wt.m/D !.m/;
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and "i ; 'i ;pi ; qi WM! Z[f1g[ f�1g for i 2 I by (m 2M)

'i;L.m/D
X
l�L

ui;l.m/; 'i.m/Dmaxf'i;L.m/ jL 2 Zg � 0;

"i;L.m/D�
X
l�L

ui;l.m/; "i.m/Dmaxf"i;L.m/ jL 2 Zg � 0;

pi.m/DmaxfL 2 Z j "i;L.m/D "i.m/g

Dmax
�

L 2 Z

ˇ̌̌̌ X
l<L

ui;l.m/D 'i.m/

�
;

qi.m/DminfL 2 Z j 'i;L.m/D 'i.m/g

Dmin
�

L 2 Z

ˇ̌̌̌
�

X
l>L

ui;l.m/D "i.m/

�
:

Then we define Qei ; Qfi WM!M[f0g for i 2 I by

Qei �mD

�
0 if "i.m/D 0;

mAi;pi .m/�1 if "i.m/ > 0;

Qfi �mD

�
0 if 'i.m/D 0;

mA�1
i;qi .m/C1

if 'i.m/ > 0:

Theorem 3.1 [Kashiwara 2003; Nakajima 2003]. The crystal .M;wt; "i ; 'i ; Qei ; Qfi/

is a Uq. OslnC1/-crystal, called the monomial crystal.

Remark 3.2. When n is even, the Dynkin diagram of type A
.1/
n is not bipartite. In

this case, .M;wt; "i ; 'i ; Qei ; Qfi/ does not satisfy the axioms of crystal (see [Kashiwara
2003]). Other crystal structures are defined on (a subset of) A in [Kashiwara 2003].
But the monomials used are different with those occurring in the theory of q-
characters of Uq.sltor

nC1/-modules and it is not useful for what we will do in the
next sections.

For m 2M denote by M.m/ the connected subcrystal of M generated by m. As
it is explained above, the weight of a monomial m0 2M.m/ is determined by !.m/
and ui;l.m

0/ (Remark 2.23). So we will omit the term e!.m
0/ and we just specify

the weight of the monomial m. For J � I and m 2M, denote by MJ .m/ the set of
monomials obtained from m by applying the Kashiwara operators Qei ; Qfi for i 2 J .
It is a connected sub-J -crystal of M.m/ generated by m.

For p 2 Z and ˛ 2 Zı, let �2p;˛ be the map �2p;˛WM!M defined by

�2p;˛

�
e�
Y

Y
ui;n

i;n

�
D e�C˛

Y
Y

ui;n

i;nC2p
:
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This is a Pcl-crystal automorphism of the crystal M, also called shift automorphism
in the following.

The following result was proved in [Kashiwara 2003; Nakajima 2003] when m

is a dominant monomial and is generalized in [Hernandez and Nakajima 2006] for
all m 2M.

Theorem 3.3. For m 2M, the crystal M.m/ is isomorphic to a connected compo-
nent of the crystal B.�/ of an extremal weight module for some � 2 P .

It was shown in [Kashiwara 2002b] that the fundamental extremal crystals B.$`/

are connected for all ` 2 I0. Let

d` Dmin.`; nC 1� `/

be the distance between the nodes 0 and ` in the Dynkin diagram of type A
.1/
n . We

have the following monomial realization of B.$`/.

Theorem 3.4 [Hernandez and Nakajima 2006]. Set M D e$`Y
`;0

Y �1
0;d`

for ` 2 I0.
Then M is extremal in M and M.M /'B.$`/ as P -crystals.

One can define in the same way the monomial crystal M0 associated to Uq.slnC1/.
It can be done for all n � 2, the Cartan matrix of type An being without cycle.
As it is said above, the weights of monomials are completely determined by the
powers of variables Y ˙1

i;l
in this case. So they can be safely omitted. For m 2M0,

we denote by M0.m/ the subcrystal of M0 generated by m. We have:

Proposition 3.5 [Kashiwara 2003; Nakajima 2003]. The Uq.slnC1/-crystals
M0.Yi;k/ and B0.ƒi/ are isomorphic for all i 2 I0 and k 2 Z.

For i 2 I , set „i W M ! M the map sending the variables Y ˙1
j ;� ; e

� to 1 for
all j ¤ i and � 2 P , and Y ˙1

i;� to themselves. Another map will be used below:
„i WM!M, which sends the variables Y ˙1

j ;� to themselves if j ¤ i and Y ˙1
i;� ; e

�

to 1 for all � 2 P . These two maps are also defined in [Frenkel and Mukhin 2001]
and denoted by ˇfig and ˇIi

respectively.

Definition 3.6. (i) A set of monomials S�M is said to be q-closed in the direction
i .i 2 I/ if for all m 2 S there exists a finite subset

Sm � S\

�
m �

Y
l2Z

AZ
i;l

�
;

which contains m, and a sequence .ns/s2Sm
of positive integers such that

„i

�P
s2Sm

ns � s
�

is the q-character of a representation of OUi .

(ii) A set of monomials S is said to be J -q-closed (J � I ), or simply q-closed if
J D I , if S is q-closed in the direction i for all i 2 J .
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(iii) A set of monomials S�M is said to be J -closed by the Kashiwara operators
(J � I ), or simply closed by the Kashiwara operators if J D I , if the operators
Qei , Qfi preserve S for all i 2 J .

(iv) A set of monomials S�M which is J -q-closed and J -closed by the Kashiwara
operators (J � I ), is called a J -closed set. If J D I , it is simply called a
closed monomial set.

Remark 3.7. (i) The definition of a q-closed set is inspired by the theory of
q-characters and the algorithm of [Frenkel and Mukhin 2001]. In particular,
it involves q-characters of Uq. Osl2/0-modules. Let us recall that in this case,
the image of �q WRl;Z! ZŒY ˙1

1;l
�l2Z is known (see [Frenkel and Reshetikhin

1999]): it is equal to the subring ZŒ.Y
1;l
CY �1

1;lC2
/�l2Z of ZŒY ˙1

1;l
�l2Z generated

by the Y
1;l
CY �1

1;lC2
(l 2 Z).

(ii) The notion of a q-closed set holds also for the monomial Uq.slnC1/-crystal M0.
Further it extends naturally when q is specialized at roots of unity, by using
the theory of q-characters at roots of unity [Frenkel and Mukhin 2002].

Let V be an integrable Uq.sltor
nC1/-module such that for all `-weight .�; 
 /

of V , V.�;
 / is finite-dimensional and the roots of the associated polynomials
Qi.z/ and Ri.z/ are in qZ for all i 2 I . Then the monomial set M.V / is q-
closed. Note that the Frenkel–Mukhin algorithm need not necessarily hold for V :
for example, it does not work for the simple finite-dimensional Uq. Osl3/0-module
V0.Y

2
1;0

Y2;3/ ' V0.Y1;0Y2;3/˝ V0.Y1;0/ considered in [Hernandez and Leclerc
2010], but M.V0.Y

2
1;0

Y
2;3
// is q-closed.

In general, M.V / is not closed by the Kashiwara operators: for example, the q-
character of the Uq. Osl2/0-module V0.Y1;2

Y 2
1;0
/ contains the monomial Y1;0 but does

not contain Y �1
1;2

. However, it holds for the fundamental Uq. OslnC1/
0-modules. In

fact by using the tableaux sum expressions of their q-characters given in [Nakajima
2003], we have:

Proposition 3.8 [Nakajima 2003]. Let V0.Yi;k/ be a fundamental representation
of Uq. OslnC1/

0 (i 2 I0, k 2 Z). Then the monomial sets M0.Yi;k/ and M.V0.Yi;k//

are equal.

In particular by Proposition 3.5, M.V0.Yi;k// has a Uq.slnC1/-crystal structure
isomorphic to B0.ƒi/. As a consequence:

Corollary 3.9. For all 1 � i � n and k 2 Z, the Uq.slnC1/-crystal M0.Yi;k/

is closed.

Finally, let us give an example of a monomial crystal which is not q-closed.
Consider the Uq.sl2/-crystal M0.Y1;4Y1;0/:

Y1;4Y1;0! Y �1
1;6 Y1;0! Y �1

1;6 Y �1
1;2 :
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If M0.Y1;4Y1;0/ is q-closed, it should contain M.V0.Y1;4Y1;0//. This is not the
case, the q-character of V0.Y1;4Y1;0/ being

�q.V0.Y1;4Y1;0//D Y1;4Y1;0CY �1
1;6 Y1;0CY1;4Y �1

1;2 CY �1
1;6 Y �1

1;2 :

3B. Description of the monomial crystal M.e$` Y`;0Y �1
0;d`

/. Assume that n D

2r C 1 is odd with r � 1. The monomial crystals M.e$`Y
`;0

Y �1
0;d`

/ are studied
in [Hernandez and Nakajima 2006, Section 4]: the monomials occurring in these
crystals are explicitly described and the automorphisms z` are given in terms of
monomials. We recall these results here.

To describe the monomial crystals M.e$`Y
`;0

Y �1
0;d`

/, we assume in this section
that `� r C 1 (as in [Hernandez and Nakajima 2006]). Let us begin by explaining
why we can do that. We need the notion of twisted isomorphism of crystals (this
definition appears in [Bandlow et al. 2010]).

Definition 3.10. Let B and B0 be crystals over two isomorphic Dynkin diagrams D

and D0 with vertices respectively indexed by I and I 0 and let � W I ! I 0 be an
isomorphism from D to D0. Then � is a � -twisted isomorphism if � WB!B0 is a
bijection map and for all b 2B and i 2 I ,

Qf�.i/ ��.b/D �. Qfi � b/ and Qe�.i/ ��.b/D �. Qei � b/:

Let � be the automorphism of the Dynkin diagram of type A
.1/
n such that �.k/D

�k (k 2I ), where I is identified to the set Z=.nC1/Z. It defines an automorphism �h
of h by sending hi ; d to h�.i/; d for all i 2 I . Let  WM!M be the map defined
by (r 2Q)

 
�
erı

Y
.eƒi Yi;n/

ui;n

�
D erı

Y
.eƒ�i Y�i;n/

ui;n :

Then we show easily that  is an �-twisted automorphism of the P -crystal M.
Furthermore it induces an �-twisted isomorphism

 WM.e$`Y`;0Y �1
0;` / �!M.e$nC1�`YnC1�`;0Y �1

0;` /

between the monomial crystals M.e$`Y
`;0

Y �1
0;`
/ and M.e$nC1�`Y

nC1�`;0
Y �1

0;`
/

for all 1� `� r C 1.
So one can assume that 1 � ` � r C 1. In this case, d` D ` and we study the

crystal M.e$`Y
`;0

Y �1
0;`
/ (see [Hernandez and Nakajima 2006]). One defines the

monomials

k p D Y �1
k�1;pCkY k;pCk�1 for 1� k � nC 1, p 2 Z;
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with YnC1;pDY0;p by convention. By Remark 2.23, the terms e!.m
0/ can be safely

omitted for all m0 2M.e$`Y
`;0

Y �1
0;`
/. Set M0 D e$`Y

`;0
Y �1

0;`
and

Mj D Y`;2j Y �1
0;n�`C1C2j Y �1

j ;`Cj Yj ;n�`C1Cj

D
�

1 n�`C2j 2 n�`C2j�2 : : : j n�`C2

�
�
�

jC1 `�1 jC2 `�3 : : : ` 1�`C2j

�
D

jY
pD1

p n�`�2pC2jC2 �

Ỳ
pDjC1

p `C1�2pC2j

with 0� j � `. In particular, M` D Y
`;nC1

Y �1
0;nC1C`

D �nC1;�`ı.M0/ and M1 D

�2;�ı.M0/ for `D r C1. One defines other monomials as follows: for j 2 Z and a
Young tableau of shape .`/ T D .1� i1 < i2 < � � �< i` � nC 1/ we set

(3) mT Ij D

jY
pD1

ip n�`�2pC2jC2 �

Ỳ
pDjC1

ip `C1�2pC2j for 0� j � `� 1;

and mT IjC` D �nC1;�`ı.mT Ij /. Note that Mj DmT Ij with T D .1; 2; : : : ; `/.
By Theorem 3.4, M.M0/ and B.$`/ are isomorphic as P -crystals. Furthermore:

Proposition 3.11 [Hernandez and Nakajima 2006]. (i) MI0
.Mj / consists of mT Ij

for various sequences T .

(ii) We have the equality of I0-crystals

(4) M.e$`Y`;0Y �1
0;d`

/D
G
k2Z

.�nC1;�`ı/
k

�`�1G
jD0

MI0
.Mj /

�
:

(iii) The map
� WM.e$`Y`;0Y �1

0;d`
/!M.e$`Y`;0Y �1

0;d`
/

defined by �.mT Ij /DmT IjC1 is a Pcl-crystal automorphism and equals z�1
`

.

(iv) The Kashiwara operators Qei , Qfi are described in terms of tableaux: for i ¤ 0

we have Qei �mT Ij DmT 0Ij or 0. Here T 0 is obtained from T by replacing iC1

by i . If it is not possible (that is, when we have both i C 1 and i in T or when
i C 1 does not occur in T ), then it is zero. Similarly Qfi �mT Ij DmT 00Ij or 0,
where T 00 is given by replacing i by i C 1. For the action of Qe0, Qf0, we have

Qe0 �mT Ij D

�
0 if i1 ¤ 1 or i` D nC 1;

m.i2;:::;i`;nC1/Ij�1 if i1 D 1 and i` ¤ nC 1,

Qf0 �mT Ij D

�
0 if i1 D 1 or i` ¤ nC 1;

m.1;i1;:::;i`�1/IjC1 if i1 ¤ 1 and i` D nC 1.
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Proposition 3.12. There is a bijection given by „0 between MI0
.M0/ and M.V /,

where V D V0.„
0.M0// is the fundamental representation of Uq. OslnC1/

0 associ-
ated to Y`;0. In particular the monomial crystal MI0

.M0/ is I0-closed.

Proof. By the previous description, MI0
.M0/ consists of the monomials mT I0 for

various sequences T . By applying the map „0, they are sent to the monomials

mT D

Ỳ
pD1

ip `C1�2p

with T D .1� i1 < � � �< i` � nC 1/ and where we set

1 p D Y1;p and nC1 p D Y �1
n;pCnC1

for all p 2 Z. They are exactly the monomials occurring in the tableaux sum
expressions of q-characters of fundamental modules of Uq. OslnC1/

0 (see [Nakajima
2003]). So the image of MI0.M0/ by „0 is equal to M.V0.Y`;0//. Further this set
is I0-q-closed by definition, and MI0

.M0/ is also I0-closed �
Now let us consider the monomial crystal M.e$`Y

`;0
Y �1

0;d`
/ with 1� `� n. We

determine in the next proposition when z` has the particular form of a shift.

Proposition 3.13. The automorphism z` of M.e$`Y
`;0

Y �1
0;d`

/ has the special form
of a shift �p;˛ (p 2 Z; ˛ 2 Zı) if and only if `D 1; n or `D r C 1. Moreover, we
have z1 D zn D ��n�1;ı and zrC1 D ��2;ı.

Proof. Assume that `� rC1. We have seen that z`D�
�1. So it suffices to determine

when � is a shift. We have the equality �`D �nC1;�`ı . Hence if `D 1, � D �nC1;�ı

is a shift. Assume that `D r C 1. In this case, M1 D �2;�ı.M0/D �.M0/. As the
crystal M.M0/ is connected and � and �2;�ı are automorphisms of crystals, we
have � D �2;�ı . For the other cases, � is explicitly known and is not a shift. As  
and shift automorphisms commute, the result follows for ` > r C 1. �

3C. Affinized promotion operators and monomial crystals M.e$` Y
`;0

Y �1
0;d`

/.
In this section, we introduce promotion operators for the level 0 extremal fun-
damental weight crystals. We describe them in the monomial realizations of B.$`/

(1� `� n).
Let us begin by some definitions and properties about the promotion operators

(see [Bandlow et al. 2010; Fourier et al. 2009; Schilling 2008; Shimozono 2002] and
references therein for more details). In type An, the highest weight crystal B0.�/

of highest weight � 2 PC
0

can be realized by the semistandard Young tableaux of
shape (�). The weight function wt is defined by the content of tableaux, that is,
wt.T / WD .w1.T /; : : : ; wnC1.T //, wherewi.T / is the number of letters i occurring
in the tableau T . It can be viewed as an element of P0 in the following way: set
�i Dƒi �ƒi�1 for 2 � i � n, �1 Dƒ1 and �nC1 D��1 � � � � � �n. In particular,
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˛i D �i��iC1, ƒi D �1C� � �C�i (1� i � n), and we have P DZ�1C� � �CZ�nC1.
Then wt.T / corresponds to the element

w1.T /�1C � � �CwnC1.T /�nC1 2 P0

for all Young tableau T .

Definition 3.14. Let B0DB0.�/ be a highest weight Uq.slnC1/-crystal of highest
weight � 2 PC

0
. A promotion operator pr on B0 is an operator pr WB0!B0 such

that

(i) pr shifts the content: if wt.T / D .w1; : : : ; wnC1/ is the content of T 2 B0,
then wt.pr.T //D .wnC1; w1; : : : ; wn/;

(ii) the promotion operator has order nC 1 : prnC1 D id;

(iii) pr ı Qei D QeiC1 ı pr and pr ı Qfi D
QfiC1 ı pr for i 2 f1; 2; : : : ; n� 1g.

Given a promotion operator pr on a highest weight Uq.slnC1/-crystal B0.�/

(� 2 PC
0

), one defines an associated affine Pcl-crystal by setting

Qe0 WD pr�1
ı Qe1 ı pr and Qf0 WD pr�1

ı Qf1 ı pr:

We denote the Pcl-crystal hence obtained by B0.�/
0
aff.

It was shown in [Shimozono 2002] that the Uq.slnC1/-crystal B0.�/ (� 2 P0)
has a unique promotion operator pr when � is rectangular (that is, of the form
kƒ` with ` 2 I0 and k 2N�), given by the Schützenberger jeu-de-taquin process.
Furthermore the affine Pcl-crystal B0.kƒ`/

0
aff obtained by using the promotion

operator pr is isomorphic to the crystal basis of a Kirillov–Reshetikhin module
associated to ` 2 I0; k 2 N� (for a special choice of the spectral parameter a 2 C�

see [Kang et al. 1992]).
From the affine Pcl-crystal B0.kƒ`/

0
aff, let us consider its affinization B0.kƒ`/aff

(see also [Kashiwara 2002b]): this is the P -crystal with vertices in fzsT j s 2Z;T 2

B0.kƒ`/
0
affg such that for all s 2 Z and T 2B0.kƒ`/

0
aff,

wt.zsT /D wt.T /C sı; Qei � z
sT D zsCıi;0. Qei �T /; Qfi � z

sT D zs�ıi;0. Qfi �T /:

Assume in the following that `� r C 1 (the case ` > r C 1 is studied at the end
of this section). We introduce the affinized promotion operator on B0.kƒ`/aff.

Definition 3.15. Let us consider the crystal of finite type B0.kƒ`/ (with k 2N and
`� rC1), pr its associated promotion operator and B0.kƒ`/aff its affinization. The
affinized promotion operator on B0.kƒ`/aff is the operator praff W B0.kƒ`/aff!

B0.kƒ`/aff such that for all T 2B0.kƒ`/
0
aff and s 2 Z,

praff.z
sT /D zs�wnC1.T /pr.T /:

One checks easily the following statements.



QUANTUM EXTREMAL LOOP WEIGHT MODULES AND MONOMIAL CRYSTALS 209

Lemma 3.16. The affinized promotion operator praff of B0.kƒ`/aff shifts the con-
tent. It satisfies

praff ı Qei D QeiC1 ı praff and praff ı
Qfi D

QfiC1 ı praff

for i 2 f0; 1; : : : ; ng (where QenC1; QfnC1 are understood to be Qe0; Qf0 respectively).
It has infinite order, the weight of prnC1

aff being �k`ı.

Recall that one has defined an automorphism � of the Dynkin diagram of type
A
.1/
n corresponding to a rotation such that �.i/ D i C 1 (i 2 I ). Then by the

above Lemma, praff is a �-twisted automorphism of B0.kƒ`/aff. Furthermore as
the P -crystals B.$`/ and B0.ƒ`/aff are isomorphic (see [Kashiwara 2002b]), the
affinized promotion operator praff W B0.ƒ`/aff ! B0.ƒ`/aff induces a �-twisted
automorphism of the level 0 fundamental extremal weight crystal B.$`/ (`� rC1).
We call it the promotion operator of B.$`/, also denoted by praff.

We want to describe the promotion operators of the crystals B.$`/ in the
monomial realizations when ` � r C 1. To do that, let � W M.e$`Y

`;0
Y �1

0;`
/!

M.e$`Y
`;0

Y �1
0;`
/ be the map such that

�
�Y

Y
ui;l

i;l

�
D

Y
Y

ui;l

iC1;lC1
;

the terms e� being safely omitted in the definition by Remark 2.23. Denote by

' WB.$`/'B0.ƒ`/aff!M.e$`Y`;0Y �1
0;` /

the isomorphism of P -crystals between B0.ƒ`/aff and M.e$`Y
`;0

Y �1
0;`
/. It is

explicitly given by

' W zsT 2B0.ƒ`/aff 7!mT I�s 2M.e$`Y`;0Y �1
0;` / .s 2 Z;T 2B0.ƒ`//:

The following result relates the map � W M.e$`Y
`;0

Y �1
0;`
/! M.e$`Y

`;0
Y �1

0;`
/ to

the promotion operator praff of B.$`/ introduced above.

Proposition 3.17. Assume that `� r C 1. The following diagram commutes:

B.$`/
' //

praff

��

M.e$`Y
`;0

Y �1
0;`
/

�

��
B.$`/

' // M.e$`Y
`;0

Y �1
0;`
/:

Proof. For 1� k � nC 1 and p 2 Z, we have

�
�

k p

�
D �.Y �1

k�1;pCkYk;pCk�1/D Y �1
k;pCkC1YkC1;pCk

D

�
kC1 p if k � n;

1
pCnC1

if k D nC 1.
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Fix j 2 Z and a Young tableau

T D .1� i1 < i2 < � � �< i` � nC 1/

of shape (ƒ`). If i` ¤ nC 1, we have

�.mT Ij /D �

� jY
pD1

ip n�`�2pC2jC2 �

Ỳ
pDjC1

ip `C1�2pC2j

�

D

jY
pD1

ipC1 n�`�2pC2jC2 �

Ỳ
pDjC1

ipC1 `C1�2pC2j

Dmpr.T /Ij D '.praff.z
�j T //:

Assume that i` D nC 1. Then

�.mT Ij /

D

jY
pD1

ipC1 n�`�2pC2jC2 �

`�1Y
pDjC1

ipC1 `C1�2pC2j � 1 n�`C2jC2

D

jC1Y
pD2

ip�1C1 n�`�2pC2.jC1/C2 �

Ỳ
pDjC2

ip�1C1 `C1�2pC2.jC1/� 1 n�`C2.jC1/

Dmpr.T /IjC1 D �.z
�j�1pr.T //D '.praff.z

�j T //: �

Remark 3.18. It follows in particular that � is a �-twisted automorphism of
M.e$`Y

`;0
Y �1

0;`
/, since B.$`/ and M.e$`Y

`;0
Y �1

0;`
/ are connected and praff is

a � -twisted automorphism.

The case ` � r C 1 is similar to the previous one. The affinized promotion
operator of B0.kƒ`/aff (k 2 N�) is the operator

Qpraff WB0.kƒ`/aff �!B0.kƒ`/aff

such that for all T 2B0.kƒ`/aff and s 2 Z,

Qpraff.z
sT /D zsCk�wnC1.T /pr.T /:

Note that the definition of the affinized promotion operator is different to the one
when `� r C 1. This provides to the automorphism �h of h.

Let us consider the map

 ı� ı �1
WM.e$`Y`;0Y �1

0;nC1�`/!M.e$`Y`;0Y �1
0;nC1�`/:
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It is a ��1-twisted automorphism of M.e$`Y
`;0

Y �1
0;nC1�`

/ such that

 ı� ı �1
�Y

Y
ui;l

i;l

�
D

Y
Y

ui;l

i�1;lC1
:

It can be related to the promotion operator Qpraff of B0.kƒ`/aff: one can check that
 ı� ı �1 D Qpr�1

aff .

3D. Application of promotion operators to the study of M.e$` Y`;0Y �1
0;d`

/. In
this section, we use promotion operators to obtain a new description of the monomial
crystal M.e$`Y

`;0
Y �1

0;d`
/, improving results given in [Hernandez and Nakajima

2006]. Moreover, we determine the ` for which the crystals M.e$`Y
`;0

Y �1
0;d`

/ are
closed.

Assume first that `� rC1 (where nD 2rC1 is still supposed to be odd). Let us
begin with the following remarks. The monomials �j .Y

`;0
Y �1

0;`
/D Y

`Cj ;j
Y �1

j ;`Cj

will have a particular importance in the construction of extremal fundamental loop
weight modules. One can give them in terms of Young tableaux, thanks to the
� -twisted automorphism � of M:

� If j is such that `Cj � nC1, Y
`Cj ;j

Y �1
j ;`Cj

2MI0
.M0/ and is equal to mT I0

with T D .j C 1; j C 2; : : : ; j C `/.

� If 1� j � `� 1, then Y
j ;n�`CjC1

Y �1
n�`CjC1;nCjC1

2MI0
.Mj / and is equal

to mT Ij with T D .1; 2; : : : ; j ; n� `C j C 2; : : : ; nC 1/.

We will have to consider the finite sub-Ij -crystals of M.e$`Y
`;0

Y �1
0;`
/,

MIj .Y`Cj ;jCk.nC1/Y
�1

j ;`CjCk.nC1//

for j 2 I and k 2 Z: this is the sub-Ij -crystal of M.e$`Y
`;0

Y �1
0;`
/ generated by

the monomial Y
`Cj ;jCk.nC1/

Y �1
j ;`CjCk.nC1/

. Note that one of these crystals can
be obtained from another one by application of powers of �.

Proposition 3.19. Let `� r C 1. We have the equality of sets

M.e$`Y`;0Y �1
0;` /D

[
k2Z

.�nC1;�`ı/
k

� n[
jD0

MIj .Y`Cj ;j Y �1
j ;`Cj /

�
:

Proof. As Y
`Cj ;j

Y �1
j ;`Cj

2M.e$`Y
`;0

Y �1
0;`
/ for all 0� j � n and M.e$`Y

`;0
Y �1

0;`
/

is connected,
n[

jD0

MIj .Y`Cj ;j Y �1
j ;`Cj /�M.e$`Y`;0Y �1

0;` /

as sets.
Let us fix m 2 M.e$`Y

`;0
Y �1

0;`
/. The monomial m is of the form mT Ij with

T D .1 � i1 < i2 < � � � < i` � nC 1/ and j 2 Z. By application of the shift
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automorphism, one can assume that 0� j � `�1. So we have to show that mT Ij 2Sn
jD0 MIj .Y`Cj ;j

Y �1
j ;`Cj

/. If j D 0, we have mT I0 2MI0
.Y
`;0

Y �1
0;`
/. Assume that

1� j � `�1 and set sD ijC1�1. Then T D .i1< � � �< ij < sC1< ijC2< � � �< i`/

and by application of the Kashiwara operators Qe1; : : : ; Qes�1; QesC2; : : : ; Qen on mT Ij ,
we show that

mT Ij 2MIs
.mT 0Ij / with T 0 D .1< � � �< j < sC 1< � � �< sC `� j /:

By applying Qe1; : : : ; Qej�1; QesC`�jC1; : : : ; Qen and Qe0 on mT 0Ij , it is sent on

mT 00I0 with T 00 D .sC 1< � � �< sC `/ if sC `� nC 1,

and on

mT 00Iu with uD sC`�n�1;T 00 D .1< � � �< u< sC1< � � �< nC1/ otherwise.

Furthermore mT 00IuD�
s.Y

`;0
Y �1

0;`
/DY

`Cs;s
Y �1

s;`Cs
by the above remark and mT Ij

is also contained in MIs
.Y
`Cs;s

Y �1
s;`Cs

/. �

Remark 3.20. One of the questions treated in [Hernandez and Nakajima 2006, Sec-
tion 4] is to give an explicit description of monomials occurring in M.e$`Y

`;0
Y �1

0;`
/

(` � r C 1). Actually by the shift automorphism and the description given in
that reference, all the monomials in M.e$`Y

`;0
Y �1

0;`
/ can be obtained from the

monomials occurring in
F`�1

jD0MI0
.Mj / (see (4)). So this description requires

knowing h
`
�
nC1
`

�i
monomials to obtain all the other ones. The preceding proposition improves this
result. In fact to determine all the vertices of M.e$`Y

`;0
Y �1

0;`
/, it suffices to know

the monomials occurring in the If0;1g-crystal MIf0;1g.Y`;0Y �1
0;`
/ and to apply �.

Further a monomial mT 0I0 2MIf0;1g.Y`;0Y �1
0;`
/ is such that T 0 has the form T 0 D

.1< i2 < � � �< i`/. So by Proposition 3.19, only
�

n
`�1

�
monomials are sufficient to

determine all the vertices of M.e$`Y
`;0

Y �1
0;`
/.

The following lemma will be useful.

Lemma 3.21. Assume that ` D 1 or ` D r C 1 and set p D n C 1 or p D 2

respectively. We have the equality of Ij -crystals (0� j � n)

(5) M.e$`Y`;0Y �1
0;` /D

G
k2Z

.�p;�ı/
k
�
MIj .Y`Cj ;j Y �1

j ;`Cj /
�
:

Proof. By Proposition 3.13, the automorphism z` has the special form of a shift
in the considered cases. Further we know that .��p;ı/

` D ��n�1;`ı . Using (4), we
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obtain

M.e$`Y`;0Y �1
0;` /D

G
k2Z

.�p;�ı/
k`

�`�1G
jD0

.�p;�ı/
j .MI0

.M0//

�
:

As �p;�ı and � commute, (5) follows. �

Similar equalities of crystals can be given for `� r C 1, by using the automor-
phism  . Now we are able to determine the ` 2 I0 for which the monomial crystal
M.e$`Y

`;0
Y �1

0;d`
/ is closed.

Theorem 3.22. The monomial crystal M.e$`Y
`;0

Y �1
0;d`

/ is closed if and only if
`D 1; r C 1 or n.

Proof. Let us begin by the case `� rC1. Assume that the crystal M.e$`Y
`;0

Y �1
0;`
/

is q-closed for 2� `� r . Consider the monomial

Mj D Y`;2j Y �1
0;n�`C1C2j Y �1

j ;`Cj Yj ;n�`C1Cj 2M.e$`Y`;0Y �1
0;` /

with j ¤ 0. We have„j .Mj /DY �1
j ;`Cj

Y
j ;n�`C1Cj

. By Definition 3.6, there exists
a subset

SMj
�M.e$`Y`;0Y �1

0;` /\

�
Mj �

Y
l2Z

AZ
j ;l

�
containing Mj such that its image „j .SMj

/ by „j is the set of `-weights of a
representation of OUj . By the theory of q-characters of OUj -modules, we should have

Y �1
j ;`Cj Yj ;n�`C1Cj„j .Aj ;`Cj�1/ 2„j .SMj

/:

Furthermore, the map „j is injective when it is restricted on the set of monomials
Mj �

�Q
l2Z AZ

j ;l

�
: indeed, we have for all monomial Mj �

�Q
l2Z A

uj ;l
j ;l

�
,

„j

�
Mj �

Y
l2Z

A
uj ;l
j ;l

�
D„j .Mj / �

Y
l2Z

„j .A
uj ;l
j ;l

/D„j .Mj / �
Y
l2Z

�fjg.A
uj ;l
j ;l

/;

where �fjg is the map defined in Definition 3.2 of [Frenkel and Mukhin 2001]
(the second equality is a consequence of Lemma 3.5 of the same reference). The
injectivity is a consequence of the injectivity of �fjg (see [Frenkel and Mukhin
2001, Lemma 3.3]).

So the monomial

mDMj �Aj ;`Cj�1

D Y`;2j Y �1
0;n�`C1C2j Yj ;`Cj�2Y �1

j�1;`Cj�1Y �1
jC1;`Cj�1Yj ;n�`C1Cj

should occur in M.e$`Y
`;0

Y �1
0;`
/. But this is not the case, m being not of the

form (3). Hence M.e$`Y
`;0

Y �1
0;`
/ is not q-closed when 2� `� r .
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Now assume that `D 1 or `D r C 1. In this case, z` D ��p;ı with p D nC1 or
p D 2 respectively and by the above lemma

M.e$`Y`;0Y �1
0;` /D

G
k2Z

.�p;�ı/
k
�
MIj .Y`Cj ;j Y �1

j ;`Cj /
�

as Ij -crystals (0 � j � n). By Proposition 3.12, the finite crystal MI0
.M0/ is

I0-closed. As the Ij -crystals MIj .Y`Cj ;j
Y �1

j ;`Cj
/ can be obtained from MI0

.M0/

by application of powers of �, they are also Ij -closed for all 0� j � n. Then by
the above equalities M.e$`Y

`;0
Y �1

0;`
/ is closed.

Finally, the result follows for all the `2I0 by using the �-twisted automorphism 

(which preserves the notion of q-closed monomial set). �

4. Extremal fundamental loop weight modules for Uq.sltor
nC1

/

when M.e$` Y
`;0

Y �1
0;d`

/ is closed

Assume that nD 2r C 1 (r � 1) is odd and M` DM.e$`Y
`;0

Y �1
0;d`

/ is closed (it
holds if and only if ` D 1; r C 1 or n). In this section, we relate the monomial
Uq. OslnC1/-crystals M` with integrable representations of Uq.sltor

nC1/.
In Section 4A, we construct a new infinite family of representations V` of

Uq.sltor
nC1/ (Theorem 4.1). We call these representations the extremal fundamental

loop weight modules. Let us give the outline of this construction: consider the vector
space V` freely generated by the monomials occurring in M`. For all 0 � j � n,
we define an action of U

v;j
q .sltor

nC1/ on it, denoted by V
.j/

`
, such that

V
.j/

`
D

M
k2Z

V
.j/

k
;

where V
.j/

k
is a subvector space endowed with a structure of a simple `-highest

weight U
v;j
q .sltor

nC1/-module. We show that it defines a Uq.sltor
nC1/-module struc-

ture in this way on V`, the compatibility between the action of various vertical
subalgebras being a consequence of the existence of promotion operators on M`.
Furthermore the q-character of V` is the sum of monomials occurring in M` with
multiplicity one.

In Section 4B, we study these representations: we show that V` is irreducible and
it is an extremal loop weight module, generated by an extremal vector of `-weight
e$`Y

`;0
Y �1

0;d`
. Furthermore explicit formulas are given for the action of Uq.sltor

nC1/

on V`. It is remarkable that these formulas are expressed only from the associated
monomial crystal and are “universal” in the following sense: the action on all the
extremal fundamental loop weight modules V` is completely determined by these
formulas and by the data of the corresponding monomial crystals M`. This sheds
new light on the link between monomial crystals and the theory of q-characters
already expected in [Hernandez and Nakajima 2006]. All these sentences hold
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for the fundamental `-highest weight modules V0.Y`;0/ of Uq. OslnC1/
0 with the

corresponding monomial crystals M0.Y`;0/.
In Section 4C, we specialize q at a root of unity �. We obtain new irreducible

finite-dimensional representations of the quantum toroidal algebra U�.sltor
nC1/

0.

4A. Construction of the extremal fundamental loop weight modules. Let us be-
gin with the main result of this section.

Theorem 4.1. Assume that n D 2r C 1 is odd and ` D 1; r C 1 or n. There
exists a thin representation of Uq.sltor

nC1/ whose q-character is the sum of all
monomials occurring in M.e$`Y

`;0
Y �1

0;d`
/ with multiplicity one. It is denoted by

V` D V .e$`Y
`;0

Y �1
0;d`

/ and called the extremal fundamental loop weight module
of `-weight e$`Y

`;0
Y �1

0;d`
.

To construct these representations, let us start with results about the fundamental
modules V0.Y`;k/ of Uq. OslnC1/

0 (n 2N�, 1� `� n, k 2 Z). As it is said above, it
is isomorphic to the fundamental highest weight Uq.slnC1/-module V0.ƒ`/. So
we begin by recalling some well-known facts about V0.ƒ`/, which will be useful.

Lemma 4.2. All the weight spaces of the fundamental highest weight Uq.slnC1/-
module V0.ƒ`/ (1� `� n) are of dimension one. Furthermore the Weyl group of
finite type W0 acts transitively on wt.V0.ƒ`//.

Proposition 4.3. Let V0.Y`;k/ be a fundamental module of Uq. OslnC1/
0 (`2 I0; k 2

Z). Then V0.Y`;k/ is a thin Uq. OslnC1/
0-module which admits a basis .vm/ indexed

by the vertices of the monomial crystal M0.Y`;k/, such that for all m 2M0.Y`;k/

and i 2 I0, vm is of `-weight m and

xC
i;0
� vm D vQei �m; x�i;0 � vm D v Qfi �m

;

where v0 D 0 by convention.

Proof. It is known that Res.V0.Y`;k// is the fundamental highest weight Uq.slnC1/-
module V0.ƒ`/. By the preceding Lemma, its weight spaces are all of dimension
one. In particular its `-weight spaces are also of dimension one and V0.Y`;k/ is a
thin Uq. OslnC1/

0-module.
Furthermore Res.V0.Y`;k// is the extremal weight module of extremal weightƒ`,

generated by an extremal vector v of weight ƒ`. Hence, there exists fvwgw2W0

such that vId D v and

x˙i;0 � vw D 0 and .x
�

i;0
/.˙w.ƒ`/.hi // � vw D vsi .w/ if ˙w.ƒ`/.hi/� 0:

By the above lemma for all � 2 wt.Res.V0.Y`;k///, there exists w such that � D
w.ƒ`/. Then the corresponding vector vw is nonzero of weight �. As all the weight
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spaces of V0.Y`;k/ are of dimension one, fvwgw2W0
generates V0.Y`;k/ as a vector

space. Furthermore for all w;w0 2W0,

w.ƒ`/D w
0.ƒ`/ () vw D vw0 :

In fact, we have (see [Bourbaki 1968, Chapter V.3.3, Proposition 2])

w.ƒ`/D w
0.ƒ`/ () w�1w0.ƒ`/Dƒ` () w�1w0 2 hsi ; i 2 I0�f`gi

() w0 2 w � hsi ; i 2 I0�f`gi:

Fix an `-weight m 2M.V0.Y`;k//DM0.Y`;k/. By what we have said above, one
can define vm as the unique vector vw (w 2W0) such that w.ƒ`/D wt.m/. Then
fvm jm 2M0.Y`;k/g is a basis of V0.Y`;k/. Furthermore as the weight subspaces
and the `-weight subspaces of V0.Y`;k/ coincide and are of dimension one, vm is
also an `-weight vector of `-weight m for all m 2M0.Y`;k/.

We determine the action of Uh
q.
OslnC1/ on this basis. Fix m 2MI0

.Y`;k/. For all
i 2 I0, we have wt.m/.hi/D 0;˙1. Assume that wt.m/.hi/D 0. Then on the one
hand x˙

i;0
� vm D 0 by definition of the family fvwgw2W0

. And on the other hand
Qei �mD 0 and Qfi �mD 0 by the description of the crystal M0.Y`;k/ recalled above.
Now assume that wt.m/.hi/D˙1. The vector Si.vm/D x

�

i;0
� vm is of the form

vm0 with m0 2M0.Y`;k/ such that

wt.m0/D si.wt.m//D wt.m/�˛i :

But the description of M0.Y`;k/ shows that the unique monomial of weight wt.m/�
˛i is Qfi �m (resp. Qei �m). Hence m0 is equal to Qfi �m (resp. Qei �m). Finally we have
shown that for all i 2 I0 and m 2M0.Y`;k/,

xC
i;0
� vm D vQei �m and x�i;0 � vm D v Qfi �m

: �

In particular, the action of Uq. OslnC1/
0 on the fundamental modules V0.Y`;k/ is

determined by the combinatorics of monomial crystals M0.Y`;k/; in fact, the action
of operators x˙i;r (1� i � n, r 2 Z) deduces from the action of the x˙

i;0
(given by

M0.Y`;k/) and the action of hi;r (given by the `-weights m 2M0.Y`;k/) from (1).
Let us begin the construction of extremal fundamental loop weight modules.

Assume that nD 2rC1 is odd and `� rC1 (the case ` > rC1 is discussed below
at Remark 4.5). Consider the monomial Uq. OslnC1/-crystal M.e$`Y

`;0
Y �1

0;`
/, sup-

posed to be closed. This is the case if and only if `D 1 or `D rC1 (Theorem 3.22).
Set p D nC 1 or p D 2 respectively.

Denote by E (resp. Ej ;k for 0 � j � n and k 2 Z) the set of monomials oc-
curring in the crystal M.e$`Y

`;0
Y �1

0;`
/ (resp. in .�p;�ı/k

�
MIj .Y`Cj ;j

Y �1
j ;`Cj

/
�
D

MIj .Y`Cj ;jCkp
Y �1

j ;`CjCkp
/). By (5), one has ED

F
k2Z Ej ;k for all 0� j � n.
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Let

(6) V .e$`Y`;0Y �1
0;` /D

M
m2E

Cvm

be the vector space freely generated by elements of E. For all 0 � j � n and
k 2 Z set V

.j/

k
D
L

m2Ej ;k
Cvm the subspace of V .e$`Y

`;0
Y �1

0;`
/ of dimension

dim.V0.ƒ`//. In particular, we have

V .e$`Y`;0Y �1
0;` /D

M
k2Z

V
.j/

k
:

This decomposition can be compared to the equalities of crystals (5).
We endow the vector space V .e$`Y

`;0
Y �1

0;`
/ with a structure of U

v;j
q .sltor

nC1/-
module as follows (0�j �n): for all k 2Z, let .vm/ be the basis of the U

v;j
q .sltor

nC1/-
module V0.Y`;jCkp/

.j/ defined in Proposition 4.3, indexed by the set of monomials

„j
�
MIj .Y`Cj ;jCkpY �1

j ;`CjCkp/
�
D f„j .m/ jm 2MIj .Y`Cj ;jCkpY �1

j ;`CjCkp/g:

Let us define an isomorphism of vector spaces between V
.j/

k
and V0.Y`;jCkp/

.j/ by

V
.j/

k
�! V0.Y`;jCkp/

.j/

vm 7! v„j .m/:

We endow the vector space V
.j/

k
with a structure of U

v;j
q .sltor

nC1/-module by pulling
back the action of U

v;j
q .sltor

nC1/ on V0.Y`;jCkp/
.j/. By direct sum, V .e$`Y

`;0
Y �1

0;`
/

is a U
v;j
q .sltor

nC1/-module, denoted by V .e$`Y
`;0

Y �1
0;`
/.j/.

Proposition 4.4. There exists a structure of Uq.sltor
nC1/-module on V .e$`Y

`;0
Y �1

0;`
/

such that the induced U
v;j
q .sltor

nC1/-module is isomorphic to V .e$`Y
`;0

Y �1
0;`
/.j/ for

all j 2 I . Furthermore the q-character of V .e$`Y
`;0

Y �1
0;`
/ is

�q

�
V .e$`Y`;0Y �1

0;` /
�
D

X
m2E

m;

where E is the set of the monomials occurring in M.e$`Y
`;0

Y �1
0;`
/.

Proof. To define an action of Uq.sltor
nC1/ on V .e$`Y

`;0
Y �1

0;`
/, we determine the

action of the subalgebras OUi for all i 2 I . For that, let j 2 I be such that j ¤ i .
The action of OUi on V .e$`Y

`;0
Y �1

0;`
/ is the restriction of the action of U

v;j
q .sltor

nC1/

on V .e$`Y
`;0

Y �1
0;`
/.j/. Furthermore we set for all h 2 h and m 2M.e$`Y

`;0
Y �1

0;`
/,

kh � vm D qwt.m/.h/vm:

The definition of the action of OUi (i 2 I ) is independent of the choice of j 2 I ,
j ¤ i : for m 2 E, the action of U

v;j
q .sltor

nC1/ on the vector vm is determined by
the sub-Ij -crystal MIj .m/ of M.e$`Y

`;0
Y �1

0;`
/ and by the `-weight „j .m/. So
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the action of OUi on vm is determined by the action of Qei and Qfi on m and by the
`-weight „i.m/, which are independent of the choice of j .

We show that this action endows V .e$`Y
`;0

Y �1
0;`
/ with a structure of Uq.sltor

nC1/-
module. We fix two indices i1; i2 2 I and we check the relations satisfied by OUi1

and OUi2
. The indices i1 and i2 are in the same connected subset Ij of the set

of vertices of the Dynkin diagram (j 2 I ). By construction, the action of OUi1

and OUi2
are restrictions of the action of U

v;j
q .sltor

nC1/ on V .e$`Y
`;0

Y �1
0;`
/. As

V .e$`Y
`;0

Y �1
0;`
/.j/ is a U

v;j
q .sltor

nC1/-module, the relations between OUi1
and OUi2

are satisfied and V .e$`Y
`;0

Y �1
0;`
/ is a Uq.sltor

nC1/-module.
By construction the induced U

v;j
q .sltor

nC1/-module obtained from V .e$`Y
`;0

Y �1
0;`
/

by restriction is isomorphic to V .e$`Y
`;0

Y �1
0;`
/.j/ for all j 2 I . Furthermore the

`-weight of vm is „i.m/ for the action of OUi (i 2 I ). So m is the `-weight of vm

and the q-character of V .e$`Y
`;0

Y �1
0;`
/ is the sum of monomials occurring in

M.e$`Y
`;0

Y �1
0;`
/ with multiplicity one. �

Remark 4.5. Let us consider the case ` > r C 1. M.e$`Y
`;0

Y �1
0;nC1�`

/ is a mono-
mial crystal closed for ` D n. We show in the same way as above that there
exists also a Uq.sltor

nC1/-module V .e$nY
n;0

Y �1
0;1
/ whose q-character is the sum of

monomials occurring in M.e$nY
n;0

Y �1
0;1
/ with multiplicity one.

Actually this Uq.sltor
nC1/-module is related to the previous one for `D1 as follows.

We have defined an automorphism � of the Dynkin diagram of type A
.1/
n . It induces

an algebra automorphism of Uq.sltor
nC1/ we still denote �, which sends x˙i;r ; hi;m; kh

to x˙
�.i/;r

; h�.i/;m; k�h.h/ (i 2 I; r 2 Z;m 2 Z � f0g; h 2 h). Let us denote by
V .e$nY

n;0
Y �1

0;1
/� the Uq.sltor

nC1/-module obtained from V .e$nY
n;0

Y �1
0;1
/ by twist-

ing the action by �. Then we show easily that V .e$nY
n;0

Y �1
0;1
/� and V .e$1Y

1;0
Y �1

0;1
/

are isomorphic.

4B. Study of the extremal fundamental loop weight modules. In this section, we
study the Uq.sltor

nC1/-modules V .e$`Y
`;0

Y �1
0;d`

/, where nD 2r C 1 is supposed to
be odd and `D 1; n or `D r C 1. We set p D nC 1 or p D 2 respectively.

Proposition 4.6. The Uq.sltor
nC1/-module V .e$`Y

`;0
Y �1

0;d`
/ is integrable. More-

over, it satisfies properties (iii) and (iv) of Remark 2.5 with weight subspaces of
dimension one.

Proof. Assume first that `D 1; rC1. The q-character of V .e$`Y
`;0

Y �1
0;`
/ is known:

this is the sum of monomials occurring in M.e$`Y
`;0

Y �1
0;`
/ with multiplicity one.

Furthermore one has the equality of I0-crystals

M.e$`Y`;0Y �1
0;` /D

G
k2Z

.�p;�ı/
k
�
MI0

.e$`Y`;0Y �1
0;` /

�
:
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For all m 2MI0
.e$`Y

`;0
Y �1

0;`
/ and k 2 Z, wt..�p;�ı/k.m//D wt.m/� kı. So to

prove that the weight spaces of V .e$`Y
`;0

Y �1
0;`
/ are of dimension one, we have to

show that the weights of monomials occurring in MI0
.e$`Y

`;0
Y �1

0;`
/ are different

to each other. More precisely, it is sufficient to show that the sumX
m2MI0

.e$`Y
`;0

Y �1
0;`
/

e
�
wt.„0.m//

�
2

M
�2P0

Ze.�/

is without multiplicity. This follows from the above results: it is the character of
the Uq.slnC1/-module V0.ƒ`/.

For all j 2 I , the representation V .e$`Y
`;0

Y �1
0;`
/ is completely reducible as a

U
v;j
q .sltor

nC1/-module and we have

(7) V .e$`Y`;0Y �1
0;` /

.j/
D

M
p2Z

V0.Y`;jCkp/
.j/:

As the representations V0.Y`;jCkp/ are all integrable, it holds for V .e$`Y
`;0

Y �1
0;`
/.

Furthermore V .e$`Y
`;0

Y �1
0;`
/ satisfies the stronger property (iv) of Remark 2.5: in

fact the representations V0.Y`;jCkp/ are all isomorphic as Uq.slnC1/-modules and
satisfy property (iv). Hence we have V .e$`Y

`;0
Y �1

0;`
/�CN˛i

D f0g for all � 2 P ,
i 2 I , N � 0.

Finally, the case `D n is deduced from the case `D 1 by the �-twisted automor-
phism  . �
Theorem 4.7. The Uq.sltor

nC1/-module V .e$`Y
`;0

Y �1
0;d`

/ is an extremal loop weight
module generated by the vector ve$`Y

`;0
Y �1

0;d`

of `-weight e$`Y
`;0

Y �1
0;d`

.

Proof. We treat the case `D 1; r C1 (the case `D n can be deduced from `D 1 by
using  ). The formulas in (7) imply immediately the third point of Definition 2.26.
The first two points are consequences of the following lemmas. �
Lemma 4.8. Let M0 be a sub-Uq. OslnC1/-crystal of M. Assume V is a Uq. OslnC1/-
module with basis .vm/m2M0 satisfying

(8) wt.vm/D wt.m/; .xCi /
.k/
� vm D vQek

i
�m and .x�i /

.k/
� vm D v Qf k

i
�m

for all m 2M0; i 2 I and k 2 N, where v0 D 0 by convention. If the monomial m

is extremal of weight �, then the vector vm is an extremal vector of weight �.
Furthermore if the crystal M0 is connected, then the Uq. OslnC1/-module V is cyclic
generated by any vm with m 2M0.

Proof. Assume that m is extremal of weight �: there exists fmwgw2W such that
mId Dm and

(9)
Qei �mw D 0 and . Qfi/

w.�/.hi / �mw Dmsi .w/ if w.�/.hi/� 0;

Qfi �mw D 0 and . Qei/
�w.�/.hi / �mw Dmsi .w/ if w.�/.hi/� 0:
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For all w 2W , set vw D vmw . By (8) and (9), fvwgw2W satisfies vId D vm and

x˙i � vw D 0 if ˙w.�/.hi/� 0 and .x
�

i /
.˙w.�/.hi // � vw D vsi .w/:

Hence the vector vm is extremal of weight �.
Assume that the crystal M0 is connected and fix m 2 M0. For m0 2 M0, there

exists a product s of Kashiwara operators such that s.m/ D m0. Consider the
corresponding operator S 2 Uq. OslnC1/ at the level of V , that is, S has the same
expression as s, where the operators Qek

i (resp. Qf k
i ) are replaced by .xCi /

.k/ (resp.
.x�i /

.k/) in the product (k 2 N; i 2 I ). By (8), S.vm/ D vs.m/ D vm0 and the
Uq. OslnC1/-module V is cyclic generated by vm. �

Lemma 4.9. Assume that `D 1; r C 1. For the action of Uh
q.sltor

nC1/, the `-weight
vector ve$`Y

`;0
Y �1

0;`
2 V .e$`Y

`;0
Y �1

0;`
/ is an extremal vector of weight $`. Fur-

thermore
V .e$`Y`;0Y �1

0;` /DUh
q.sltor

nC1/ � ve$`Y
`;0

Y �1
0;`
:

Proof. Let us begin to show that the basis .vm/ of V .e$`Y
`;0

Y �1
0;`
/ introduced

in (6) satisfies the properties in (8). For all m2M.e$`Y
`;0

Y �1
0;`
/, vm is an `-weight

vector of `-weight m and wt.vm/D wt.m/. Fix i 2 I and let j 2 I be such that
j ¤ i . As a U

v;j
q .sltor

nC1/-module, V .e$`Y
`;0

Y �1
0;`
/ is completely reducible (see (7))

and there exists k 2 Z such that vm 2 V0.Y`;jCkp/
.j/. As the properties in (8) are

satisfied in V0.Y`;jCkp/
.j/ (Proposition 4.3), it holds on vm for i 2 I .

From there the result is a direct consequence of the above lemma and the fact that
e$`Y

`;0
Y �1

0;`
is extremal in the connected crystal M.e$`Y

`;0
Y �1

0;`
/ (Theorem 3.4).

�

Proposition 4.10. The Uq.sltor
nC1/-module V .e$`Y

`;0
Y �1

0;d`
/ is irreducible and is a

simple Uh
q.sltor

nC1/-module. Also, Res.V .e$`Y
`;0

Y �1
0;d`

// is isomorphic to V .$`/.

Proof. Let V be a nontrivial sub-Uh
q.sltor

nC1/-module of V .e$`Y
`;0

Y �1
0;d`

/. As
the weight spaces of V .e$`Y

`;0
Y �1

0;d`
/ are all of dimension one, there exists m 2

M.e$`Y
`;0

Y �1
0;d`

/ such that vm2V . By Lemma 4.8, vm generates V .e$`Y
`;0

Y �1
0;d`

/

and V D V .e$`Y
`;0

Y �1
0;d`

/. Hence V .e$`Y
`;0

Y �1
0;d`

/ is simple as a Uh
q.sltor

nC1/-
module and as a Uq.sltor

nC1/-module. Furthermore, Res.V .e$`Y
`;0

Y �1
0;d`

// is an
integrable Uq. OslnC1/-module generated by the extremal vector

v
e$`Y

`;0
Y �1

0;d`

of weight $`. Then by Theorem 2.13, Res.V .e$`Y
`;0

Y �1
0;d`

// is isomorphic
to V .$`/. �

Some readers may expect that the Uq.sltor
nC1/-module V .e$`Y

`;0
Y �1

0;d`
/ can be

obtained from the extremal weight module V .$`/ by an evaluation morphism, but
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this is not the case for the following reasons (which generalize arguments given
in [Hernandez 2009]): Res.V .e$`Y

`;0
Y �1

0;d`
// is isomorphic to the Uq. OslnC1/-

module V .$`/. In particular,

�p;�ı W V .$`/! V .$`/; vm 7! v�p;�ı.m/ for all m 2M.e$`Y`;0Y �1
0;d`

/

is a Uq. OslnC1/
0-automorphism of V .$`/ (with p D nC 1 or p D 2 if ` D 1; n

or ` D r C 1 respectively). If V .e$`Y
`;0

Y �1
0;d`

/ is obtained from an evaluation
morphism Uq.sltor

nC1/ ! Uh
q.sltor

nC1/, �p;�ı should induce an automorphism of
V .e$`Y

`;0
Y �1

0;d`
/. But it does not commute with the action of the x˙i;r ; hi;r for

i 2I and r 2Z�f0g. In the same way, V .e$`Y
`;0

Y �1
0;d`

/ can not be obtained from an
evaluation morphism Uq.sltor

nC1/!U
v;j
q .sltor

nC1/ (j 2 I ). In fact, V .e$`Y
`;0

Y �1
0;d`

/

is completely reducible as a U
v;j
q .sltor

nC1/-module and is a direct sum of fundamental
modules (see (7)). But it is a simple Uq.sltor

nC1/-module.

Remark 4.11. Let us denote Uq.sltor
nC1/

0 the quantum toroidal algebra without
derivation element, that is, this is the subalgebra of Uq.sltor

nC1/ generated by x˙i;r
(i 2 I; r 2 Z), hi;m (i 2 I;m 2 Z�f0g) and kh (h 2

P
Qhi). An automorphism ‰

of Uq.sltor
nC1/

0 which exchanges vertical and horizontal quantum affine subalgebras
is defined in [Miki 1999]. Denote by V .e$`Y

`;0
Y �1

0;d`
/‰ the Uq.sltor

nC1/
0-module

obtained from V .e$`Y
`;0

Y �1
0;d`

/ by twisting the action by‰. It would be interesting
to determine if V .e$`Y

`;0
Y �1

0;d`
/‰ is already known, for example if it is of `-highest

weight. Actually this is not the case: for the vertical quantum affine subalge-
bra Uv

q.sltor
nC1/

0, it is an integrable and cyclic module which is reducible. Further
as a Uh

q.sltor
nC1/

0-module, it is a completely reducible, direct sum of irreducible
finite-dimensional representations. So V .e$`Y

`;0
Y �1

0;d`
/‰ cannot be an `-highest

weight module or an `-lowest weight module.

From now on, let M0
0

be a subcrystal of M0 over Uq.slnC1/ (resp. M0 subcrystal
of M over Uq. OslnC1/). Let us consider the vector space V with basis .vm/ indexed by
the vertices of M0

0
(resp. M0). We define an action of Uq. OslnC1/

0 (resp. Uq.sltor
nC1/)

on V by the formulas

(10)

xCi;r �vm D qr.pi .m/�1/v Qei �m;

x�i;r �vm D qr.qi .m/C1/v Qfi �m;

�˙i;˙s �vm D˙.q�q�1/
�
'i.m/q

˙s.qi .m/C1/
�"i.m/q

˙s.pi .m/�1/
�
vm;

kh �vm D qwt.m/.h/vm;

with r 2 Z, s > 0, i 2 I0 (resp. i 2 I ) and h 2 h0 (resp. h 2 h), and where v0 D 0

by convention. Note that pi.m/ is well defined only if "i.m/ > 0 or equivalently if
Qei �m¤ 0 and qi.m/ is well defined only if 'i.m/ > 0 or equivalently if Qfi �m¤ 0.

Then, these expressions make sense.
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Theorem 4.12. (i) Set n 2N�, 1� `� n. Assume that M0
0
DM0.Y`;k/. Then the

formulas in (10) endow V with a structure of Uq. OslnC1/
0-module isomorphic

to the fundamental module V0.Y`;k/.

(ii) Assume that nD 2rC1 is odd and `D 1; rC1; n. Set M0DM.e$`Y
`;0

Y �1
0;d`

/.
Then the formulas in (10) endow V with a structure of Uq.sltor

nC1/-module
isomorphic to the extremal fundamental loop weight module V .e$`Y

`;0
Y �1

0;d`
/.

Proof. The action of the horizontal quantum affine subalgebra and the action
of the Cartan subalgebra are known on the basis .vm/m2M0 for the Uq. OslnC1/

0-
module V0.Y`;k/ and for the Uq.sltor

nC1/-module V .e$`Y
`;0

Y �1
0;d`

/. From (1) it is
straightforward to deduce the action of the x˙i;r on these modules (r 2Z). We obtain
the formulas in (10) given only from the corresponding monomial crystal. �
Remark 4.13. In [Hernandez 2011], the algebra Uq. Osl1/ is introduced as the
quantum affinization of Uq.sl1/. It is defined by the same generators and relations
as in Definition 2.15 with the infinite Cartan matrix C D .Ci;j /i;j2Z such that

Ci;i D 2; Ci;iC1 D�1; CiC1;i D�1; Ci;j D 0

if i � j 62 f�1; 0; 1g. The representation theory of Uq. Osl1/ is similar to the one
of Uq.sltor

nC1/: the simple `-highest weight modules are parametrized by Drinfeld
polynomials. In particular, the fundamental modules can be defined and they are
the inductive limit of the fundamental modules for the quantum affine algebra
Uq. OslnC1/

0 when n!1 (see Theorem 3.8 and Proposition 3.11 in [Hernandez
2011]). So, the previous results about the fundamental modules of Uq. OslnC1/

0

extend directly to the case of the fundamental modules of Uq. Osl1/.

Remark 4.14. As we have said, relations between monomial crystals and the
set of monomials occurring in the q-character of representations are known and
have combinatorial origin (see [Hernandez 2011; Hernandez and Nakajima 2006;
Nakajima 2003]). The above results, in particular Theorem 4.12, give one way to
better understand the representation theoretical meaning of this narrow link expected
in [Hernandez and Nakajima 2006]. In fact, the formulas in (10) hold for all the
fundamental Uq. OslnC1/

0-modules V0.Y`;k/ and for all the extremal fundamental
loop weight Uq.sltor

nC1/-modules V .e$`Y
`;0

Y �1
0;d`

/. Hence the knowledge of these
representations is reduced to the one of the corresponding crystals M0.Y`;k/ and
M.e$`Y

`;0
Y �1

0;d`
/ respectively, which is totally combinatorial.

Example 4.15. Assume that nD 3 and `D 1. We study the extremal fundamental
loop weight module V .e$1Y

1;0
Y �1

0;1
/ for Uq.sltor

4 /. Let us consider the monomial
crystal M.e$1Y

1;0
Y �1

0;1
/. It is closed and p D 4 in this case. Using the notation

introduced above, ED
F

k2Z

E0;k and we have

E0;0 D
˚
e$1Y1;0Y �1

0;1 ;Y2;1Y �1
1;2 ;Y3;2Y �1

2;3 ;Y0;3Y �1
3;4

	
:
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E0;k can be obtained from E0;0 by applying �4k;�ı. In the same way, we obtain
Ej ;k by applying �jC4k to E0;0. Then the q-character of the extremal fundamental
loop weight module V .e$1Y

1;0
Y �1

0;1
/ is

�q.V .e
$1Y1;0Y �1

0;1 //D
X
k2Z

�
e$1�kıY1;4kY �1

0;1C4k CY2;1C4kY �1
1;2C4k

CY3;2C4kY �1
2;3C4k CY0;3C4kY �1

3;4C4k

�
:

Furthermore the action is explicitly given by the crystal M.e$1Y
1;0

Y �1
0;1
/ and by

the formulas in (10). This module was already constructed in [Hernandez 2009].

Remark 4.16. After this paper appeared on the arXiv, the constructions in [Feigin
et al. 2013] were brought to our attention by H. Nakajima: some representations
over the d -deformation Uq;d .sltor

nC1/ of the quantum toroidal algebra are obtained
as the quantum version of a module over a Lie algebra of difference operators. They
are called vector representations in [Feigin et al. 2013]. Our works give another
way to define these representations. Actually, let

! WUq.sltor
nC1/!Uq�1.sltor

nC1/

be the map sending x˙i;r ; hi;m; kh to x
�

i;r ; hi;m; kh .i 2 I; r 2 Z;m 2 Z�f0g; h 2 h/.
This ! extends to an isomorphism of algebras. For u 2 C�, let

ŒV .e$1Y1;0Y �1
0;1 /�u

be the Uq.sltor
nC1/-module obtained from V .e$1Y

1;0
Y �1

0;1
/ by twisting the action by

tuq�1 ı!. Then ŒV .e$1Y
1;0

Y �1
0;1
/�u is isomorphic to a vector representation where

we specialized the parameter d at 1 (this representation is denoted by V .2/.u/ in
[Feigin et al. 2013]).

Example 4.17. Assume that nD3 and `D2. Let us study the extremal fundamental
loop weight module V .e$2Y

2;0
Y �1

0;2
/ of Uq.sltor

4 /. Consider the closed monomial
crystal M.e$2Y

2;0
Y �1

0;2
/. In this case, p D 2 and we have

E0;0 D

(
e$2Y2;0Y �1

0;2 ;Y1;1Y �1
2;2 Y3;1Y �1

0;2 ;Y1;1Y �1
3;3 ;

Y3;1Y �1
1;3 ;Y

�1
1;3 Y2;2Y �1

3;3 Y0;2;Y
�1
2;4 Y0;2

)
:

To describe all the monomials occurring in M.e$2Y
2;0

Y �1
0;2
/, it is sufficient to

consider only the sub-If0;1g-crystal

Y2;0Y �1
0;2

2
�! Y1;1Y �1

2;2 Y3;1Y �1
0;2

3
�! Y1;1Y �1

3;3
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and to apply the �-twisted automorphism � (Remark 3.20). The q-character of
V .e$2Y

2;0
Y �1

0;2
/ is

�q.V .e
$2Y2;0Y �1

0;2 //

D

X
k2Z

e$2�kı
�
Y2;2kY �1

0;2C2k CY1;1C2kY �1
2;2C2k

CY3;1C2kY �1
0;2C2k CY �1

1;3C2kY3;1C2k CY3;1C2kY �1
1;3C2k

CY �1
1;3C2kY2;2C2k CY �1

3;3C2kY0;2C2k CY �1
2;4C2kY0;2C2k

�
;

and the action of Uq.sltor
4 / on V .e$2Y

2;0
Y �1

0;2
/ is explicitly given by the crystal

M.e$2Y
2;0

Y �1
0;2
/ and the formulas in (10).

4C. Finite-dimensional representations at roots of unity. The existence of shift
automorphisms for M.e$`Y

`;0
Y �1

0;d`
/ is related to finite-dimensional representations

of quantum toroidal algebras at roots of unity. We explain that in this section.
So assume that n D 2r C 1 is odd (r � 1) and ` D 1; n or ` D r C 1. In this

case M.e$`Y
`;0

Y �1
0;d`

/ is closed and its automorphism z` has the special form of a
shift ��p;ı with p D nC 1 or p D 2 respectively.

Set L� 1 and � a primitive .pL/-root of unity (we assume also that p ¤ 2 or
L> 1 in the following). Let U�.sltor

nC1/
0 be the algebra defined as Uq.sltor

nC1/ with
� instead of q (without divided powers and derivation element).

For N 2 N�, let

�N W ZŒY
˙1
i;l �i2I;l2Z! ZŒY ˙1

i;l
�
i2I;l2Z=N Z

be the map defined by sending the variables Y ˙1
i;l

to Y ˙1

i;l
(i 2 I; l 2 Z). Set S� the

image of a monomial set S by �.pL/.
Consider the monomial set E� . By the existence of the shift automorphism ��p;ı ,

we have

E� D
G

0�k�L�1

.�p;�ı/
k..Ej ;k/�/

with j 2 I . One checks easily that E� is closed.
Specializing the representations V .e$`Y

`;0
Y �1

0;d`
/ at a root of unity �, we obtain:

Theorem 4.18. Assume that � is a primitive .pL/-root of unity. There is an irre-
ducible U�.sltor

nC1/
0-module V .e$`Y

`;0
Y �1

0;d`
/� of dimension L

�
nC1
`

�
such that

��.V .e
$`Y`;0Y �1

0;d`
/�/D

X
m2E�

m:

Furthermore there exists a basis .vm/ of V .e$`Y
`;0

Y �1
0;d`

/� indexed by E� such that
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the action on it is given by

xCi;r � vm D �
r.pi .m/�1/v

Qei �m
;

x�i;r � vm D �
r.qi .m/C1/v Qfi �m

;

�˙i;˙s � vm D˙.�� �
�1/

�
'i.m/�

˙s.qi .m/C1/
� "i.m/�

˙s.pi .m/�1/
�
v

m
;

k˙i � vm D �
˙.'i .m/�"i .m//vm:

5. Extremal loop weight modules for Uq.sltor
nC1

/

when the considered monomial crystal is not closed

In this section, we still assume that nD 2rC1 is odd and we discuss the case where
the considered monomial crystal M0 is not closed. It is not possible here to construct
an integrable module whose q-character is a sum of monomials occurring in M0.
In fact some monomials miss and we have to consider a larger closed monomial
crystal M0 containing it. It is obtained from M0 by adding other monomial crystals.
But its structure is more complicated than M0 and it is difficult for us to construct
systematically a possible representation of Uq.sltor

nC1/ associated to M0.
So we propose to treat an example of such a construction. Assume n D 3

and consider the crystal M.e2$1Y
1;1

Y1;�1Y �1
0;2

Y �1
0;0
/, which is not closed. We

determine a closed monomial crystal M.e2$1Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0
/ containing it

and we construct a representation V .e2$1Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0
/ of Uq.sltor

4 / such
that its q-character is the sum of monomials occurring with multiplicity one in
M.e2$1Y

1;1
Y

1;�1
Y �1

0;2
Y �1

0;0
/ (Theorem 5.6). We will see that the definition of

extremal loop weight module is satisfied by V .e2$1Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0
/.

Section 5A, we study the crystal M.e2$1Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0
/ and determine a

closed monomial crystal M.e2$1Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0
/, containing it.

The construction of the Uq.sltor
4 /-module V .e2$1Y

1;1
Y

1;�1
Y �1

0;2
Y �1

0;0
/ is done

in Section 5B. The process is the same as in the preceding section: we consider
the vector space freely generated by the vertices m of M.e2$1Y

1;1
Y

1;�1
Y �1

0;2
Y �1

0;0
/

and we define an action of Uq.sltor
4 / by pasting together some finite-dimensional

representations of the vertical quantum affine subalgebras U
v;j
q .sltor

4 / (j 2 I ).
In Section 5C, we study the representation V .e2$1Y

1;1
Y

1;�1
Y �1

0;2
Y �1

0;0
/: it is

an integrable representation of Uq.sltor
4 / which is thin and irreducible. Further-

more V .e2$1Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0
/ is an extremal loop weight module of `-weight

e2$1Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0

.
In Section 5D, we specialize q at roots of unity �. We get finite-dimensional

representations of the quantum toroidal algebra U�.sltor
4 /
0.

Remark 5.1. It could be interesting to construct other extremal fundamental loop
weight modules of `-weight e$`Y

`;0
Y �1

0;`
with 2� `� r in the same way. The first
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crystal M.e$`Y
`;0

Y �1
0;`
/ which is not closed is obtained for nD 5 and `D 2. We

are led to consider the closed crystal

M.e$2Y2;0Y �1
0;2 /DM.e$2Y2;0Y �1

0;2 /˚
M
s2N�

M.e2ƒ1�sıY1;1Y1;�1C6sY �1
0;2 Y �1

0;6s/;

which contains M.e$2Y
2;0

Y �1
0;2
/. The maps � and �6;�2ı are automorphisms of it

and the Pcl-crystals

M.e$2Y2;0Y �1
0;2 /=.�6;�2ı/ and M.e2ƒ1�sıY1;1Y1;�1C6sY �1

0;2 Y �1
0;6s/=.�6;�2ı/

have 30 vertices and 36 vertices respectively.
The example we propose to treat in this section is simpler than the case of the

extremal fundamental loop weight modules and we focus only on this situation for
the sake of clarity and simplicity.

5A. Study of the monomial Uq. Osl4/-crystal M.e2$1Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0

/. We
refer to the Appendix for explicit descriptions of all the crystals considered in
this section. Let us study the monomial crystal M.e2$1Y

1;1
Y

1;�1
Y �1

0;2
Y �1

0;0
/: the

maps � and �4;�2ı are automorphisms of M.e2$1Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0
/. Further

straightforward computations lead to the following result.

Proposition 5.2. (i) We have the equality of sets

M.e2$1Y1;1Y1;�1Y �1
0;2 Y �1

0;0 /

D

[
k2Z

.�4;�2ı/
k

� 3[
jD0

MIj .Y1Cj ;1Cj Y1Cj ;�1Cj Y �1
j ;2Cj Y �1

j ;j /

�
:

(ii) For all j 2 I , the monomial crystal MIj .Y1Cj ;1Cj
Y

1Cj ;�1Cj
Y �1

j ;2Cj
Y �1

j ;j / is
Ij -q-closed. More precisely, we have the bijection of monomial sets

„j
WMIj .Y1Cj ;1Cj Y1Cj ;�1Cj Y �1

j ;2Cj Y �1
j ;j / �!M.V0.Y1;1Cj Y1;�1Cj /

.j//;

where V0.Y1;1Cj Y1;�1Cj / is the simple `-highest weight representation of
Uq. Osl4/0 of `-highest weight Y1;1Cj Y1;�1Cj .

(iii) For all j 2 I , the Ij -crystal MIj .Y1Cj ;1Cj
Y

1Cj ;�1Cj
Y �1

j ;2Cj
Y �1

j ;j / is not q-
closed: the monomial �j .Y

1;�1
Y �1

3;5
Y �1

0;0
Y

0;4
/ occurs in this crystal, but it is

not the case of �j .Y
1;�1

Y �1
3;5

Y �1
0;0

Y
0;4
�A0;�1/D �

j .Y
1;5

Y
1;�1

Y �1
0;6

Y �1
0;0
/.

Hence, we are led to consider the crystal M.e2$1CıY
1;1

Y
1;�5

Y �1
0;2

Y �1
0;�4

/, which
is also not closed. More generally we have to deal with all the monomial crystals
M.e2$1CsıY

1;1
Y

1;�1�4s
Y �1

0;2
Y �1

0;�4s
/ with s 2 N. We set

M.e2$1Y1;1Y1;�1Y �1
0;2 Y �1

0;0 /D
M
s2N

M.e2$1CsıY1;1Y1;�1�4sY �1
0;2 Y �1

0;�4s/:
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For all .k; s/ 2 Z�N and j 2 I , denote by

� M1
j ;k;s

the sub-Ij -crystal of M.e2$1CsıY
1;1

Y
1;�1�4s

Y �1
0;2

Y �1
0;�4s

/ generated

by the monomial �jC4k.e2$1CsıY
1;1

Y
1;�1�4s

Y �1
0;2

Y �1
0;�4s

/,

� M2
j ;k;s

the sub-Ij -crystal of M.e2$1CsıY
1;1

Y
1;�1�4s

Y �1
0;2

Y �1
0;�4s

/ generated

by the monomial �jC4k.Y
1;1

Y �1
1;�3�4s

Y
2;�4�4s

Y �1
0;2
/.

Proposition 5.3. (i) For all s 2 N and j 2 I , one has the equality of Ij -crystals

M.e2$1CsıY1;1Y1;�1�4sY �1
0;2 Y �1

0;�4s/D
M
k2Z

.M1
j ;k;s˚M2

j ;k;s/:

(ii) For all j 2I , k 2Z and s�1, the monomial crystal Mj ;k;sDM1
j ;k;s
˚M2

j ;k;s�1

is Ij -q-closed. More precisely, we have the bijection of monomial sets

„j
WMj ;k;s �!M

�
V0.Y1;1CjC4kY1;�1CjC4k�4s/

.j/
�
;

where V0.Y1;1CjC4kY1;�1CjC4k�4s/ is the `-highest weight representation
of Uq. Osl4/0 of `-highest weight Y1;1CjC4kY1;�1CjC4k�4s .

The proof of these statements is straightforward. As a consequence of these
results, we have:

Corollary 5.4. The monomial crystal M.e2$1Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0
/ is closed.

Proposition 5.5. M.e2$1Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0
/ is a monomial realization of the P -

crystal B.2$1/. Further, the monomials Ms D e2$1CsıY
1;1

Y
1;�1�4s

Y �1
0;2

Y �1
0;�4s

are extremal of weight 2$1C sı .s 2 N/.

Proof. The monomial crystal M.e2$1Y 2
1;1

Y �2
0;2
/ is isomorphic to the connected com-

ponent of B.2$1/ generated by v2$1
[Hernandez and Nakajima 2006, Proposition

3.1]. One checks that the map

M.e2$1CsıY1;1Y1;�1�4sY �1
0;2 Y �1

0;�4s/ �!M.e2$1Y 2
1;1Y �2

0;2 /

which sends the monomial Ms to the extremal element e2$1Y 2
1;1

Y �2
0;2

is an iso-
morphism of Pcl-crystals for all s 2 N. Then the result is a direct consequence of
the description of the crystal B.2$1/ given in [Beck and Nakajima 2004]: all the
connected components of B.2$1/ are isomorphic to each other modulo shift of
weight by ı. �

5B. Construction of the Uq.sltor
4

/-module V.e2$1Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0

/. Let us
give the main result of this section.

Theorem 5.6. There exists a thin representation of Uq.sltor
4 / whose q-character is

the sum of monomials occurring in M.e2$1Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0
/ with multiplicity

one. It is denoted by V .e2$1Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0
/.
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The construction of V .e2$1Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0
/ is analogous to the one of

V .e$`Y
`;0

Y �1
0;`
/ in Theorem 4.1: we paste together the finite-dimensional repre-

sentations V0.Y1;1CjC4kY1;�1CjC4k/
.j/ and V0.Y1;1CjC4kY1;�1CjC4k�4s/

.j/

of U
v;j
q .sltor

4 / with j 2 I , k 2 Z and s 2 N�.
Let us begin by recalling some well-known facts about the Kirillov–Reshetikhin

module V0.„
0.M // over Uq. Osl4/0 with M D e2$1Y

1;1
Y

1;�1
Y �1

0;2
Y �1

0;0
. It is irre-

ducible as a Uq.sl4/-module, isomorphic to V0.2ƒ1/. In particular, V0.„
0.M // is

an extremal weight module of extremal weight 2ƒ1 and there exist vectors v�j .M /

(j D 0; : : : ; 3) such that vM is an `-highest weight vector of V0.„
0.M // and

.x�i;0/
.2/
� v�i�1.M / D v�i .M / for i D 1; : : : ; 3;

.xC
i;0
/.2/ � v�i .M / D v�i�1.M / for i D 1; : : : ; 3;

x˙i;0 � v�j .M / D 0 in the other cases.
Set

v Qf1�M
WDx�1;0 �vM ; v Qf2

Qf1�M
WDx�2;0x�1;0 �vM ; v Qf3

Qf2
Qf1�M
WDx�3;0x�2;0x�1;0 �vM ;

v Qf2��.M /
WD x�2;0 � v�.M /; v Qf3

Qf2��.M /
WD x�3;0x�2;0 � v�.M /;

v Qf3��2.M /
WD x�3;0 � v�2.M /:

These vectors form a basis .vm/ of V0.„
0.M //, indexed by the monomials occur-

ring in MI0
.M /. Furthermore for all m 2 MI0

.M /, vm is an `-weight vector of
`-weight „0.m/.

The other finite-dimensional representations of Uq. Osl4/0 we have to consider
are V0.„

0.Ms// with Ms D e2$1CsıY
1;1

Y
1;�1�4s

Y �1
0;2

Y �1
0;�4s

and s 2 N�. The
following two points are well known:

(i) V0.„
0.Ms// is an irreducible Uq. Osl4/0-module isomorphic to

V0.Y1;1/˝V0.Y1;�1�4s/:

(ii) Res.V0.„
0.Ms/// is a completely reducible Uq.sl4/-module isomorphic to

V0.2ƒ1/˚V0.ƒ2/.

Furthermore there exist vectors v�j .Ms/
(j D0; : : : ; 3) such that vMs

is an `-highest
weight vector of V0.„

0.Ms// and

.x�i;0/
.2/
� v�i�1.Ms/

D v�i .Ms/
for i D 1; : : : ; 3;

.xC
i;0
/.2/ � v�i .Ms/

D v�i�1.Ms/
for i D 1; : : : ; 3;

x˙i;0 � v�j .Ms/
D 0 in the other cases.

To complete this family of vectors to a basis of V0.„
0.Ms//, the following example

is used.
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Example 5.7. Let a; b 2 Z be such that a ¤ b and a ¤ b ˙ 2. Consider the
Uq. Osl2/0-module V0.Y1;aY1;b/. This module was already studied in [Hernandez
2010]. We have

�q.V0.Y1;aY1;b//D Y1;aY1;bCY1;aY �1
1;bC2CY �1

1;aC2Y1;bCY �1
1;aC2Y �1

1;bC2:

In particular, it was shown that there exists a basis

fvY
1;a

Y
1;b
; vY �1

1;aC2
Y

1;b
; vY

1;a
Y �1

1;bC2
; vY �1

1;aC2
Y �1

1;bC2
g;

where the action of the Drinfeld generators on it is given by

xCr � vY
1;a

Y
1;b
D 0;

x�r � vY
1;a

Y
1;b
D

qb�1� qaC1

qb � qa
qr.aC1/vY �1

1;aC2
Y

1;b
C

qbC1� qa�1

qb � qa
qr.bC1/vY

1;a
Y �1

1;bC2
;

xCr � vY �1
1;aC2

Y
1;b
D qr.aC1/vY

1;a
Y

1;b
;

x�r � vY �1
1;aC2

Y
1;b
D qr.bC1/vY �1

1;aC2
Y �1

1;bC2
;

xCr � vY
1;a

Y �1
1;bC2

D qr.bC1/vY
1;a

Y
1;b
;

x�r � vY
1;a

Y �1
1;bC2

D qr.aC1/vY �1
1;aC2

Y �1
1;bC2

;

xCr � vY �1
1;aC2

Y �1
1;bC2

D

qb�1� qaC1

qb � qa
qr.bC1/vY �1

1;aC2
Y

1;b
C

qbC1� qa�1

qb � qa
qr.aC1/vY

1;a
Y �1

1;bC2
;

x�r � vY �1
1;aC2

Y �1
1;bC2

D 0;

and with vm of `-weight m for m D Y
1;a

Y
1;b
; : : : ;Y �1

1;aC2
Y �1

1;bC2
. Note that the

basis used in [Hernandez 2010] is renormalized here and we have

.x�0 /
.2/
� vY

1;a
Y

1;b
D vY �1

1;aC2
Y �1

1;bC2
; .xC

0
/.2/ � vY �1

1;aC2
Y �1

1;bC2
D vY

1;a
Y

1;b
:

As a¤ b˙2, it is well known that the Uq. Osl2/0-module V0.Y1;aY1;b/ is isomorphic
to V0.Y1;a/˝V0.Y1;b/. Furthermore the Uq.sl2/-module Res.V0.Y1;aY1;b// is not
irreducible, but it is cyclic generated by one of the vectors vY

1;a
Y �1

1;bC2
or vY �1

1;aC2
Y

1;b
.

Set M 1
s D Y �1

1;3
Y

1;�1�4s
Y

2;2
Y �1

0;�4s
and M 2

s D Y
1;1

Y �1
1;1�4s

Y
2;�4s

Y �1
0;2

. Let
vM 1

s
and vM 2

s
2 V0.„

0.M // of `-weight M 1
s and M 2

s , respectively, be such that

x�1;0 � vMs
D

q�2�4s � q4

q�1�4s � q3
vM 1

s
C

q�4s � q2

q�1�4s � q3
vM 2

s
:



230 MATHIEU MANSUY

Set
v Qf2�M

u
s
WD x�2;0 � vM u

s
; v Qf3

Qf2�M
u
s
WD x�3;0x�2;0 � vM u

s

with uD 1; 2. In the same way, one can define

v�.M u
s /; v Qf3��.M

u
s /

and v�2.M u
s /

for u D 1; 2. We check that these vectors form a basis .vm/ of V0.„
0.Ms//,

indexed by the monomials occurring in M0;0;s . Moreover vm is an `-weight vector
of `-weight „0.m/ for all m.

By twisting the action of Uq. Osl4/0 on V0.Y1;1Y1;�1/ and V0.Y1;1Y1;�1�4s/ by
� .j/ and tb for some b 2 C�, we obtain for all j 2 I; k 2 Z and s 2 N�

� the U
v;j
q .sltor

4 /-modules V0.Y1;1CjC4kY1;�1CjC4k/
.j/, called modules of

type KR below;

� the U
v;j
q .sltor

4 /-modules V0.Y1;1CjC4kY1;�1CjC4k�4s/
.j/, called modules of

type s-TP below. The modules of type s-TP for various s 2 N� are called
modules of type TP.

From the construction done above, we get bases .vm/ of these modules indexed
by the monomial crystals MIj .�

jC4k.Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0
// (resp. Mj ;k;s) with

analogous properties as the previous ones. In particular, the action on a vector vm

is completely determined by the action of the horizontal quantum affine subalgebra
on it and by its `-weight m.

We begin the construction of the Uq.sltor
4 /-module V .e2$1Y

1;1
Y

1;�1
Y �1

0;2
Y �1

0;0
/.

Denote by E the set of monomials occurring in M.e2$1Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0
/ and for

all j 2 I , k 2Z and s 2N�, Ej ;k;0 (resp. Ej ;k;s) the set of monomials corresponding
to M1

j ;k;0
(resp. Mj ;k;s). We have for all 0� j � 3,

ED
G
k2Z

Ej ;k;0 t

G
k2Z;s2N�

Ej ;k;s:

Let
V .e2$1Y1;1Y1;�1Y �1

0;2 Y �1
0;0 /D

M
m2E

Cvm

be the vector space freely generated by E. For 0 � j � 3, k 2 Z and s 2 N�, set
V
.j/

k
D
L

m2Ej ;k;0
Cvm (resp. V

.j/

k;s
D
L

m2Ej ;k;s
Cvm). Then for all 0� j � 3,

V .e2$1Y1;1Y1;�1Y �1
0;2 Y �1

0;0 /D
M
k2Z

V
.j/

k
˚

M
k2Z;s2N�

V
.j/

k;s
:

We endow V .e2$1Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0
/ with a structure of U

v;j
q .sltor

4 /-module
for all j 2 I as follows: for k 2 Z and s 2 N�, V

.j/

k
(resp. V

.j/

k;s
) is isomorphic to

V0.Y1;1CjC4kY1;�1CjC4k/
.j/ (resp. V0.Y1;1CjC4kY1;�1CjC4k�4s/

.j/) by iden-
tifying the corresponding bases. So V

.j/

k
(resp. V

.j/

k;s
) is endowed with a structure
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of U
v;j
q .sltor

4 /-module, and V .e2$1Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0
/ also by direct sum. We

denote it by V .e2$1Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0
/.j/.

Proposition 5.8. There exists a Uq.sltor
4 /-module structure on the vector space

V .e2$1Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0
/ such that for all j 2I the induced U

v;j
q .sltor

nC1/-module
is isomorphic to V .e2$1Y

1;1
Y

1;�1
Y �1

0;2
Y �1

0;0
/.j/. Furthermore the q-character of

V .e2$1Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0
/ is

�q

�
V .e2$1Y1;1Y1;�1Y �1

0;2 Y �1
0;0 /

�
D

X
m2E

m;

where E is the set of monomials occurring in M.e2$1Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0
/.

Proof. The process is the same as in Theorem 4.1: to define an action of Uq.sltor
4 /,

we determine the action of the subalgebras OUi for all i 2 I . For that, let j 2 I

be such that j ¤ i . Then the action of OUi on V .e2$1Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0
/ is the

restriction of the action of U
v;j
q .sltor

4 / on V .e2$1Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0
/.j/. We check

that this is independent of the choice of j ¤ i .
Let us show that this action endows V .e2$1Y

1;1
Y

1;�1
Y �1

0;2
Y �1

0;0
/ with a structure

of Uq.sltor
4 /-module. For that, we have to distinguish two types of monomials:

� the m such that there is no s; s0 2 N with s ¤ s0 and m 2 Ej ;k;s \Ej 0;k0;s0 for
some 0 � j ; j 0 � 3 and k; k 0 2 Z. For such a monomial, the defined action
on vm comes from the same type of modules, that is, only of modules of type
KR or only on modules of type s-TP for one s 2 N�;

� the m such that there is s; s0 2 N with s ¤ s0 and m 2 Ej ;k;s \ Ej 0;k0;s0 for
some 0� j ; j 0 � 3 and k; k 0 2 Z. For such a monomial, the defined action on
vm comes from two different types of modules, that is, of modules of type KR
and of type TP or of modules of type s-TP and of type s0-TP with s ¤ s0.

For the first ones, the same process as in Theorem 4.1 (using promotion operator) im-
plies that the defining relations of Uq.sltor

4 / hold on it. For the other ones, this is more
complicated. Such a monomial is of the form mD�jC4k.Y

1;�1�4s
Y �1

3;5
Y

0;4
Y �1

0;�4s
/

with 0 � j � 3, k 2 Z, s 2 N�. The promotion operator implies some relations
on vm but not all and we check directly that they are satisfied. We do not detail the
calculations here. �

5C. Study of the Uq.sltor
4

/-module V.e2$1Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0

/.

Proposition 5.9. The Uq.sltor
4 /-module V .e2$1Y

1;1
Y

1;�1
Y �1

0;2
Y �1

0;0
/ is integrable.

Moreover, it satisfies property (iv) of Remark 2.5.
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Proof. For all j 2 I , V .e2$1Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0
/ is completely reducible as a

U
v;j
q .sltor

nC1/-module and we have

(11) V .e2$1Y1;1Y1;�1Y �1
0;2 Y �1

0;0 /
.j/
D

M
s2N
k2Z

V0.Y1;1CjC4kY1;�1CjC4k�4s/
.j/:

The representations occurring in the direct sum on the right-hand side are integrable.
Hence V .e2$1Y

1;1
Y

1;�1
Y �1

0;2
Y �1

0;0
/ is an integrable Uq.sltor

nC1/-module. Further-
more the modules of type KR are all isomorphic as Uq.sl4/-modules and satisfy
property (iv) of Remark 2.5; the same is true of the modlules of type TP. Therefore,
we have

V .e2$1Y1;1Y1;�1Y �1
0;2 Y �1

0;0 /�CN˛i
D f0g for all � 2 P; i 2 I;N � 0: �

Remark 5.10. The weight spaces of V .e2$1Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0
/ have infinite di-

mension and property (iii) of Remark 2.5 does not hold. However its `-weight
spaces are all of dimension one.

The main result of this section is the following:

Theorem 5.11. Set M D e2$1Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0

. The representation V .M / is
an extremal loop weight module generated by the vector vM of `-weight M .

Proof. The third point of Definition 2.26 is a consequence of (11). For the first two
points, we use the following results. �

Lemma 5.12. Let V be a Uq. OslnC1/-module with basis .vm/m2M0 indexed by a
subcrystal M0 of M. Assume that M 2M0 is extremal of weight wt.M / and for all
i 2 I and m 2W �M ,

wt.vm/D wt.m/; x˙i � vm D 0

and

.x
�

i /
.˙wt.m/.hi // � vm D vSi .m/ if ˙wt.m/.hi/� 0:

Then vM is an extremal vector of weight wt.M /.

Proof. The proof is analogous to the one of Lemma 4.8. �

Corollary 5.13. Set

Ms D e2$1CsıY1;1Y1;�1�4sY �1
0;2 Y �1

0;�4s .s 2 N/:

Then vMs
is an extremal vector of V .e2$1Y

1;1
Y

1;�1
Y �1

0;2
Y �1

0;0
/ of weight 2$1C sı

for the horizontal quantum affine subalgebra Uh
q.sltor

4 /.
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Proof. By construction of the basis .vm/ of V .e2$1Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0
/, we

have wt.vm/ D wt.m/ for all m. Furthermore a monomial in W � Ms is of
the form �jC4k.Ms/ with j 2 I0 and k 2 Z and we have wt.�jC4k.Ms// D

2ƒjC1� 2ƒj � 2kı,

.xC
j ;0
/.2/ � v�jC4k.Ms/

D v�j�1C4k.Ms/
D vSj .�jC4k.Ms//

;

.x�jC1;0/
.2/
� v�jC4k.Ms/

D v�jC1C4k.Ms/
D vSjC1.�jC4k.Ms//

;

x˙i � v�jC4k.Ms/
D 0 in the other cases.

Hence the hypotheses of the above lemma are satisfied and vMs
is extremal of

weight 2$1C sı for the horizontal quantum affine subalgebra Uh
q.sltor

4 /. �

Proposition 5.14. The representation V .e2$1Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0
/ is cyclic as a

Uh
q.sltor

4 /-module generated by the vector v D ve2$1 Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0

.

Proof. Consider the sub-Uh
q.sltor

4 /-module V generated by v. By construction of
the basis .vm/ of

V .e2$1Y1;1Y1;�1Y �1
0;2 Y �1

0;0 /;

vm 2 V for all m 2M.e2$1Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0
/. By a recursive argument, assume

for one s 2 N we have vm 2 V for all m 2 M.e2$1�tıY
1;1

Y
1;�1�4t

Y �1
0;2

Y �1
0;�4t

/

with 0� t � s. In particular vY
1;�1�4s

Y �1
3;5

Y
0;4

Y �1
0;�4s

is in V and by Example 5.7,

x�0;0 � vY
1;�1�4s

Y �1
3;5

Y
0;4

Y �1
0;�4s

D ve2$1�.sC1/ıY
1;5

Y
1;�1�4s

Y �1
0;6

Y �1
0;�4s

2 V:

In the same way

v�k.Y
1;�1�4s

Y �1
3;5

Y
0;4

Y �1
0;�4s

/ and v�k.e2$1�.sC1/ıY
1;5

Y
1;�1�4s

Y �1
0;6

Y �1
0;�4s

/

are in V for any k 2 Z. All vm with m 2M.e2$1�.sC1/ıY
1;5

Y
1;�1�4s

Y �1
0;6

Y �1
0;�4s

/

can be obtained from these vectors by action of Uh
q.sltor

4 /: this is straightforward
from Example 5.7 and the construction of the basis .vm/. �
Proposition 5.15. The Uq.sltor

4 /-module V .e2$1Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0
/ is irreducible.

Proof. Let V be a nontrivial sub-Uq.sltor
4 /-module of V .e2$1Y

1;1
Y

1;�1
Y �1

0;2
Y �1

0;0
/.

As the `-weight spaces are of dimension one, there exists s 2 N and a monomial
m 2M.e2$1CsıY

1;1
Y

1;�1�4s
Y �1

0;2
Y �1

0;�4s
/ such that vm 2 V .

If s D 0, we have already shown that V .e2$1Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0
/ is cyclic

generated by vm and V D V .e2$1Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0
/. Assume that s 2 N�. By

Example 5.7 and the construction of .vm/, there exists x 2Uh
q.sltor

4 / such that

x � vm D ve2$1CsıY
1;1

Y
1;�1�4s

Y �1
0;2

Y �1
0;�4s

:

Furthermore
OU1 � ve2$1CsıY

1;1
Y

1;�1�4s
Y �1

0;2
Y �1

0;�4s
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is the simple `-highest weight OU1-module of `-highest weight Y1;1Y1;�1�4s and
there exists y 2Uq.sltor

4 / such that

y � vm D vY
1;1

Y �1
1;1�4s

Y
2;�4s

Y �1
0;2

with Y
1;1

Y �1
1;1�4s

Y
2;�4s

Y �1
0;2
2 M.e2$1C.s�1/ıY

1;1
Y

1;�1�4.s�1/
Y �1

0;2
Y �1

0;�4.s�1/
/.

Repeating this argument, one shows that the vector ve2$1 Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0

is in V .
By the above proposition we get

V D V .e2$1Y1;1Y1;�1Y �1
0;2 Y �1

0;0 /: �

Proposition 5.16. The Uq. Osl4/-module Res.V .e2$1Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0
// has a

crystal basis isomorphic to B.2$1/.

Proof. Set K D C.q/ with q an indeterminate and let A be the subring of K

consisting of rational functions in K without pole at q D 0. We normalize the
basis .vm/ of the C.q/-vector space V .e2$1Y

1;1
Y

1;�1
Y �1

0;2
Y �1

0;0
/ as follows. For all

m2M.e2$1Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0
/, letwm be the vector defined bywmD .1=q/vm if

there exists k 2Z; s 2N� such that mD�k.e2$1CsıY
1;1

Y
1;�1�4s

Y �1
0;2

Y �1
0;�4s

/ and
wm D vm otherwise. Set BD .wm/m and LD

L
m Awm. We check directly that

.L;B/ is a crystal basis of the Uq. Osl4/-module Res.V .e2$1Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0
//

isomorphic to B.2$1/. We do not detail the calculations. �
Remark 5.17. All these results suggest that Res.V .e2$1Y

1;1
Y

1;�1
Y �1

0;2
Y �1

0;0
// is

isomorphic to the extremal weight Uq. Osl4/-module V .2$1/. One expects to prove
such a result for all the extremal loop weight modules constructed by the conjectural
process given above.

5D. Finite-dimensional representations at roots of unity. Set L� 1 and let � be
a primitive .4L/-root of unity.

Denote by Es the set of monomials occurring in

M.e2$1CsıY1;1Y1;�1�4sY �1
0;2 Y �1

0;�4s/

for all s 2 N. Consider E0 the subset of E defined by

E0 D
G

0�s�L�1

Es:

Let E� and E0� be the images of the sets E and E0 respectively by the map �.4L/:
E0� is a finite monomial set of cardinality 16L2.

Theorem 5.18. Assume that � is a primitive 4L-root of unity. There exists an
irreducible U�.sltor

4 /
0-module V� of dimension 16L2 such that

��.V�/D
X

m2E0�

m:
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Proof. The main difficulty is to specialize q at � in the U
v;j
q .sltor

4 /-modules of
type TP. In fact, these modules can be undefined or reducible after specialization.
To better understand these phenomena, let us study the specialized U�. Osl2/0-module
V0.Y1;aY1;b/� with a; b 2 Z. This representation is well defined if a 62 bC 4LZ.
Assume that in the following and study V0.Y1;aY1;b/�. If a 62 b˙ 2C 4LZ, this
representation is irreducible. If a 2 bC 2C 4LZ, it is not irreducible: in fact

U�. Osl2/0 � vY
1;a

Y
1;b
D CvY

1;a
Y

1;b
˚CvY �1

1;aC2
Y

1;b
˚CvY �1

1;aC2
Y �1

1;bC2

is an irreducible submodule of V0.Y1;aY1;b/�.
By our study of the U�. Osl2/0-module V0.Y1;aY1;b/� , one can specialize q at � in

the defining relations of the action on the basis .vm/ of V .e2$1Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0
/.

Moreover one checks that

U�.sltor
4 /
0
� vY

1;1
Y

1;�1�4L
Y �1

0;2
Y �1

0;�4L
D

M
m2E�E0

Cvm

is a sub-U�.sltor
4 /
0-module of V .e2$1Y

1;1
Y

1;�1
Y �1

0;2
Y �1

0;0
/� . By taking the quotient,

we obtain a U�.sltor
4 /
0-module

V� D
M
m2E0

Cvm

which is irreducible: this is straightforward with the formulas of the action. �

6. Further possible developments and applications

In this last section, we give other promising directions to study the extremal loop
weight modules for quantum toroidal algebras of general types. Moreover we give
some possible applications of the results obtained in this article. This will be done
in further papers.

In our construction of level 0 extremal loop weight modules in type A, monomial
realizations of crystals and promotion operators on the finite crystals have a crucial
role. Let us give some results which suggest that a similar construction is possible
in other types. In [Hernandez and Nakajima 2006], an explicit description of
monomial realizations of level 0 extremal fundamental weight crystals of quantum
affine algebras is given for all the nonexceptional types. The automorphisms z` are
determined in these cases. Furthermore in other types, there exists also symmetry
properties for crystals arising from automorphisms of the associated Dynkin diagram
(analogue of promotion operators in type A). Using that, a combinatorial process
allows to obtain Kirillov–Reshetikhin crystals from crystals of finite type (see
[Fourier et al. 2009; Kang et al. 1992; Okado and Schilling 2008]). These symmetry
properties will be useful for a similar construction of extremal loop weight modules
in other types.
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As we have seen, the extremal fundamental loop weight modules

V .e$`Y`;0Y �1
0;d`

/

(n D 2r C 1 and ` D 1; r C 1 or n) are completely reducible as Uv;0
q .sltor

nC1/-
modules: they are direct sums of fundamental modules of Uq. OslnC1/. Similar
vector spaces are considered in [Chari and Greenstein 2003] for the quantum affine
algebra Uq.Og/ associated to a simple Lie algebra g over C. In fact for a finite-
dimensional representation V of Uq.Og/

0, the vector space V˝CCŒz; z�1� is endowed
with a structure of Uq.Og/-module by using the grading of this algebra. So the action
is very different to the one defined in this article and we do not have a way to extend
this action for the quantum toroidal algebra Uq.g

tor/. But it would be interesting
to study an analogous construction for the quantum toroidal algebra Uq.g

tor/. We
can expect to construct other examples of extremal loop weight modules by this
process.

Let us explain another approach to construct extremal loop weight modules
which could be fruitful. Let g be a Kac–Moody algebra. For an integral weight �,
one defines

�C D
X

�.hi /�0

�.hi/ƒi

and �� D �C��. To study the extremal weight module V .�/, Kashiwara [1994]
considers the tensor product V 0.�/D V .�C/˝V .��/ of the simple highest weight
module V .�C/ and the simple lowest weight module V .��/. By analogy, it would
be interesting to define an action of the quantum affinization Uq.Og/ on the tensor
product of simple `-highest weight modules and simple `-lowest weight modules,
in the spirit of [Hernandez 2005; 2007; Feigin et al. 2011a; 2011b; 2012; 2013].
This will be studied in a further paper.

Another possible direction is to study the finite-dimensional representations of
double affine Hecke algebras (or Cherednik algebras) at roots of unity obtained
from the new finite-dimensional representations of U�.sltor

nC1/ defined above, via
Schur–Weyl duality [Varagnolo and Vasserot 1996].

In this article, we have defined promotion operators for the level 0 extremal
fundamental weight crystals B.$`/ in type An (n� 2 odd, 1� `� n). It will be
interesting to discuss the existence of promotion operators for other level 0 extremal
weight crystals and the uniqueness of them in the spirit of [Shimozono 2002].

Appendix

We describe here the monomial crystal

M.e2$1Y1;1Y1;�1Y �1
0;2 Y �1

0;0 /D
M
s2N

M.e2$1CsıY1;1Y1;�1�4sY �1
0;2 Y �1

0;�4s/:
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Figure 1. The Uq. Osl4/-crystal M.e2$1Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0
/.

More precisely, we show in Figures 1 and 2 the two connected components

M.e2$1Y1;1Y1;�1Y �1
0;2 Y �1

0;0 / and M.e2$1CıY1;1Y1;�5Y �1
0;2 Y �1

0;�4/

of M.e2$1Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0
/. Recall that all the connected components of the

latter are isomorphic modulo shift of weight by ı. Furthermore the map �4;�2ı is an
automorphism of these crystals and we only give a part of them. The full crystals
are obtained by applying the automorphism �4;�2ı. The sub-I0-crystals

M1
0;0;0 DMI0

.Y1;1Y1;�1Y �1
0;2 Y �1

0;0 /

and
M0;0;1 DMI0

.Y1;1Y1;�5Y �1
0;2 Y �1

0;�4/˚MI0
.Y �1

1;1 Y1;5Y2;0Y �1
0;6 /

are explicitly given.



238 MATHIEU MANSUY

0

uu
e2$1CıY

1;1
Y

1;�5
Y �1

0;2
Y �1

0;�4
1

((
0

ww
Y �1

1;3
Y

1;�5
Y

2;2
Y �1

0;�4
1

vv
2

''
0

ww
Y �1

1;3
Y �1

1;�3
Y

2;2
Y

2;�4
2

((

Y
1;�5

Y �1
2;4

Y
3;3

Y �1
0;�4

1

ww
3

''
Y �1

1;�3
Y �1

2;4
Y

2;�4
Y

3;3
2

vv
3

''

Y
1;�5

Y �1
3;5

Y
0;4

Y �1
0;�4

1

ww
Y �1

2;4 Y �1
2;�2Y3;3Y3;�3

3

((

Y �1
1;�3Y2;�4Y �1

3;5 Y0;4
2

ww
0

''
Y �1

2;�2Y �1
3;5 Y3;�3Y0;4

3

vv
0

''

Y1;5Y �1
1;�3Y2;�4Y �1

0;6
2

ww
Y �1

3;5 Y �1
3;�1Y0;4Y0;�2

0

((

Y1;5Y �1
2;�2Y3;�3Y �1

0;6
3

ww
1

''
Y1;5Y �1

3;�1Y �1
0;6 Y0;�2

0

vv
1

''

Y �1
1;7 Y2;6Y �1

2;�2Y3;�3
3

ww
Y

1;5
Y

1;�1
Y �1

0;6
Y �1

0;0
Y �1

1;7
Y

2;6
Y �1

3;�1
Y

0;�2
2

''
0

ww
Y �1

2;8
Y

3;7
Y �1

3;�1
Y

0;�2

0

ww

Figure 2. The Uq. Osl4/-crystal M.e2$1CıY
1;1

Y
1;�5

Y �1
0;2

Y �1
0;�4

/.

Note that the � -twisted automorphism � of M.e2$1Y
1;1

Y
1;�1

Y �1
0;2

Y �1
0;0
/ can be

viewed as a descent of one diagonal in these crystals.
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LEFSCHETZ FIBRATIONS WITH SMALL SLOPE

NAOYUKI MONDEN

We construct Lefschetz fibrations over S2 which do not satisfy the slope
inequality. This disproves a conjecture of Hain.

1. Introduction

Lefschetz fibrations have been an active area of research ever since the remark-
able work in [Donaldson 1999] and [Gompf and Stipsicz 1999] revealed a close
connection between them and symplectic 4-manifolds. In this paper, we consider
the geography problem of Lefschetz fibrations over S2, which derives from that of
complex surfaces fibred over curves.

We are interested in two kinds of geography problems. Let σ and e be the
signature and the Euler characteristic of a closed oriented smooth 4-manifold X ,
respectively. For an almost complex closed 4-manifold X , we set K 2

:= 3σ + 2e
and χh := (σ + e)/4 (the holomorphic Euler characteristic).

One is the geography problem for complex surfaces: the characterization of pairs
(K 2, χh) corresponding to minimal complex surfaces. It is well known that any
minimal complex surface of general type satisfies K 2 > 0, χh > 0, the Noether
inequality 2χh−6≤ K 2 and the Bogomolov–Miyaoka–Yau inequality K 2

≤9χh (see
[Barth et al. 1984], for example). The above geography problem can be extended
to the symplectic 4-manifolds. However, Fintushel and Stern [1998] constructed
Lefschetz fibration which does not satisfy the Noether inequality. In particular,
for most pairs (p, q) satisfying p < 2q − 6, there exists a minimal symplectic
4-manifold with p= K 2 and q = χh (see [Gompf and Stipsicz 1999]). On the other
hand, no examples of a minimal symplectic 4-manifold with K 2 > 9χh have been
found yet.

The other is the geography problem for complex surfaces fibred over curves.
Hereafter, we assume g ≥ 2. Let f : S→ C be a relatively minimal holomorphic
genus-g fibration, where S is a complex surface and C is a complex curve of
genus k. We define relative numerical invariants χ f := χh − (g− 1)(k − 1) and
K 2

f := K 2
−8(g−1)(k−1) for f : S→C . Then, we have two inequalities χ f ≥ 0

MSC2010: primary 57R20; secondary 57N13, 14D06, 20F38.
Keywords: Lefschetz fibration, mapping class group, slope.
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and K 2
f ≥ 0, known as Beauville’s inequality (see [Beauville 1979]) and Arakelov’s

inequality (see [Arakelov 1971]), respectively. For χ f 6= 0, which is equivalent
to the fact that f is not a holomorphic bundle, we define λ f to be the quotient
K 2

f /χ f , called the slope of f . Xiao [1987] proved that 4− 4/g ≤ λ f ≤ 12 (that is,
(4− 4/g)χ f ≤ K 2

f ≤ 12χ f ). The former inequality is called the slope inequality.
For a relatively minimal genus-g Lefschetz fibration, χ f , K 2

f and the slope λ f are
defined in the same way as for complex surfaces fibred over curves. To the author’s
knowledge, the slope of all known Lefschetz fibrations over S2 is greater than or
equal to 4− 4/g.

Conjecture 1.1 (Hain; see [Amorós et al. 2000, Question 5.10; Endo and Nagami
2005, Conjecture 4.12]). For every relatively minimal genus-g Lefschetz fibration
f : X→ S2, the slope inequality λ f ≥ 4− 4/g holds.

In this paper, we give a negative answer to Conjecture 1.1.

Theorem 3.1. For each g ≥ 3, there exists a genus-g Lefschetz fibration over S2

with slope λ f = 4− 4/g− 1/3g whose total space is simply connected.

Moreover, by fiber sum operations, we have the following results:

Corollary 3.6. For each g ≥ 3, m ≥ 0 and l ≥ 0, there exists a genus-g Lefschetz
fibration fm,l : Xm,l → S2 with slope λ fm,l = 4 − 4/g − 1/(m + 3)g such that
π1(Xm,l) = 1. Moreover, if (m, l) 6= (0, 0), then Xm,l is a minimal symplectic
4-manifold.

Corollary 3.7. For each g ≥ 3, m ≥ 1 and l ≥ 0, there exists a genus-g Lefschetz
fibration f ′m,l : Ym,l→ S2 with slope λ f ′m,l = 4− 4/g− 1/2g+ 1/(2 · 3m−1g) such
that π1(Ym,l)= 1. Moreover, if l ≥ 1, then Ym,l is a minimal symplectic 4-manifold.

As a consequence, we have the following results.

Corollary 4.2. The Lefschetz fibrations fm,l (m ≥ 0) and f ′m,l (m ≥ 2) are non-
holomorphic.

Let f : X→ S2 be a relatively minimal genus-g Lefschetz fibration with n > 0
singular fibers. From e(X)=−4(g−1)+n and results from [Smith 1999; Stipsicz
1999; Ozbagci 2002], we have χ f > 0, K 2

f ≥ 4g− 4 and λ f ≤ 10. Moreover, it is
well known that any hyperelliptic Lefschetz fibration satisfies the slope inequality.
This fact follows from the signature formula for genus-g hyperelliptic Lefschetz
fibrations obtained by Matsumoto [1983; 1996] for g = 1, 2 and Endo [2000]
for g ≥ 3. Therefore, genus-2 Lefschetz fibrations satisfy the slope inequality.
In particular, if f is a hyperelliptic Lefschetz fibration with only nonseparating
vanishing cycles, then λ f is equal to 4− 4/g. For Lefschetz fibrations with b+2 = 1,
we prove the following result.
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Theorem 5.1. Let g ≥ 2 and let f : X→ S2 be a genus-g Lefschetz fibration with
b+2 (X)= 1.

(1) If X is not diffeomorphic to the blow-up of a ruled surface, then

(i) 4− 4/g ≤ λ f ≤ 8 for b1(X)= 0,

(ii) 4≤ λ f ≤ 8 for b1(X)= 2.

(2) If X is diffeomorphic to the blow-up of an S2-bundle over 6k , then

4+ 4(k− 1)/(g− k)≤ λ f ≤ 8,

and the lower bound is sharp.

The study of the slope of holomorphic fibrations was mainly motivated by
Severi’s inequality, which states that if S is a minimal surface of general type of
maximal Albanese dimension, then K 2

≥ 4χh . Equivalently, if K 2 < 4χh , then S
is a surface fibred over C of genus b1(S)/2. Severi [1932] claimed it, but his proof
was not correct (see [Catanese 1983]). The inequality was independently posed
as a conjecture by Reid [1979] and by Catanese [1983]. Xiao [1987] proved the
conjecture when S is a surface fibred over a curve of positive genus. He showed
that if S admits a holomorphic genus-g fibration f over C of positive genus k with
K 2<4χh+4(g−1)(k−1) (that is, λ f <4), then k=b1(S)/2. Konno [1996] proved
it in the case of even surfaces. The conjecture was solved by Manetti [2003] when
S has ample canonical bundle. Pardini [2005] proved the conjecture completely by
using the slope inequality for holomorphic fibrations over CP1.

In Section 2, we review some standard facts on Lefschetz fibrations. Our main
results are proved in Section 3. We give Lefschetz fibrations which violate the
slope inequality. Consequently, we obtain examples of nonholomorphic Lefschetz
fibrations in Section 4. In the last section, we investigate the slopes of Lefschetz
fibrations with b+2 = 1.

Remark 1.2. The slope inequality of Conjecture 1.1 can be reformulated in terms
of the Deligne–Mumford compactified moduli space of stable curves of genus g,
denoted by Mg, as follows. For a relatively minimal genus-g Lefschetz fibration
f : X → S2 with n singular fibers, we obtain a symplectic structure on X such
that for all x ∈ S2, f −1(x) is a pseudoholomorphic curve. Since a 2-dimensional
almost-complex structure is integrable, f −1(x) determines a point in Mg. Thus, we
obtain the moduli map φ f : S2

→Mg which is defined by φf (x)= [ f −1(x)] ∈Mg

for x ∈ S2. We denote by Hg the Hodge bundle on Mg with fiber the determinant
line

∧g H 0(C; KC), where C is the set of critical points of f . By Smith’s signature
formula [1999] and the slope inequality, we have the following inequality:

(8g+ 4)〈c1(Hg), [φ f (S2)]〉− g · n ≥ 0.
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2. Preliminaries

In this section, we first recall the definition and basic properties of Lefschetz
fibrations. More details can be found in [Gompf and Stipsicz 1999].

Let 6g be a closed oriented surface of genus g ≥ 2 and let 0g be the mapping
class group of 6g, which is the group of isotopy classes of orientation-preserving
diffeomorphisms of6g. We denote by tc the right-handed Dehn twist about a simple
closed curve c on an oriented surface. The notation tctd means that we first apply
td then tc.

Definition 2.1. Let X be a closed, oriented smooth 4-manifold. A smooth map
f : X→ S2 is a genus-g Lefschetz fibration if it satisfies the following conditions:

(i) f has finitely many critical values b1, . . . , bn ∈ S2, and f is a smooth 6g-
bundle over S2

−{b1, . . . , bn}.

(ii) For each i (i = 1, . . . , n), there exists a unique critical point pi in the singular
fiber f −1(bi ) such that about each pi and bi there are local complex coordinate
charts agreeing with the orientations of X and S2 on which f is of the form
f (z1, z2)= z2

1+ z2
2.

(iii) f is relatively minimal (no fiber contains a (−1)-sphere).

Each singular fiber is obtained by collapsing a simple closed curve (the vanishing
cycle) in the regular fiber. The monodromy of the fibration around a singular fiber
is given by a right-handed Dehn twist along the corresponding vanishing cycle. A
Lefschetz fibration f : X→ S2 is holomorphic if there are complex structures on
both X and S2 with holomorphic projection f .

Once we fix an identification of 6g with the fiber over a base point of S2, we can
characterize the Lefschetz fibration f : X→ S2 by its monodromy representation
π1(S2

− {b1, . . . , bn}) → 0g. This map is really an antihomomorphism, since
elements of π1(S2

−{b1, . . . , bn}) are written left-to-right and elements of 0g are
written right-to-left. Let γ1, . . . , γn be an ordered system of generating loops for
π1(S2

−{b1, . . . , bn}), such that each γi encircles only bi and
∏
γi is homotopically

trivial. Thus, the monodromy of f comprises a factorization

tvn . . . tv2 tv1 = 1 ∈ 0g,

where vi are vanishing cycles of the singular fibers. This factorization is called the
positive relator.

According to theorems of Kas [1980] and Matsumoto [1996], if g ≥ 2, then
the isomorphism class of a Lefschetz fibration is determined by a positive relator
modulo simultaneous conjugations

tvn . . . tv2 tv1 ∼ tφ(vn) . . . tφ(v2)tφ(v1) for all φ ∈ 0g
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Figure 1. The curves d1, d2, d3, d4, x1, x2, x3.

and elementary transformations

tvn . . . tvi+2 tvi+1 tvi tvi−1 tvi−2 . . . tv1 ∼ tvn . . . tvi+2 tvi tt−1
vi (vi+1)

tvi−1 tvi−2 . . . tv1,

tvn . . . tvi+2 tvi+1 tvi tvi−1 tvi−2 . . . tv1 ∼ tvn . . . tvi+2 tvi+1 ttvi (vi−1)tvi tvi−2 . . . tv1 .

Note that φtviφ
−1
= tφ(vi ). For all φ ∈ 0g, let φ(%) be the positive relator which

is obtained by applying simultaneous conjugations by φ to a positive relator %.
We denote a Lefschetz fibration associated to a positive relator % ∈ 0g by f% :
X%→ S2. Clearly, if %1 ∼ %2 in 0g (that is, %2 is obtained by applying elementary
transformations or simultaneous conjugations to %1), then

χf%1
= χf%2

and K 2
f%1
= K 2

f%2
.

For positive relators %1 and %2 in 0g, the genus-g Lefschetz fibration

f%1%2 : X%1%2 → S2

is the (trivial) fiber sum of f%1 and f%2 . Since σ(X%1%2) = σ(X%1) + σ(X%2)

and e(X%1%2) = e(X%1)+ e(X%2)+ 4(g− 1), we see that χf%1%2
= χf%1

+ χf%2
and

K 2
f%1%2
= K 2

f%1
+ K 2

f%2
. In particular, if %1 ∼ %2, then

χf%1%2
= 2χf%1

= 2χf%2
and K 2

f%1%2
= 2K 2

f%1
= 2K 2

f%2
.

We next begin with a definition of the lantern relation (see [Dehn 1938; Johnson
1979]).

Definition 2.2. Let 64
0 denote a sphere with 4 boundary components. Let d1, d2,

d3, d4 be the 4 boundary curves of 64
0 and let x1, x2, x3 be the interior curves as

shown in Figure 1. Then, we have the lantern relation

td1 td2 td3 td4 = tx1 tx2 tx3 .

Let % be a positive relator of 0g. Let d1, d2, d3, d4, x1, x2, x3 be curves as in
Definition 2.2. Suppose that % includes td1 td2 td3 td4 as a subword:

% =U · td1 td2 td3 td4 · V,
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where U and V are products of right-handed Dehn twists. Then, by the lantern
relation, the product of right-handed Dehn twists

%′ =U · tx1 tx2 tx3 · V

is also a positive relator of 0g.
This operation is one of substitution techniques introduced by Fuller.

Definition 2.3. We say that %′ is obtained by applying an L-substitution to %.
Conversely, % is said to be obtained by applying an L−1-substitution to %′. We also
call these two kinds of operations lantern substitutions.

Proposition 2.4 [Endo and Nagami 2005, Theorem 4.3 and Proposition 3.12]. Let
%, %′ be positive relators of 0g and let X%, X%′ be the corresponding Lefschetz
fibrations over S2, respectively. Suppose that % is obtained by applying an L−1-
substitution to %′. Then, σ(X%)= σ(X%′)− 1 and e(X%)= e(X%′)+ 1. Therefore,

χf% = χf%′
and K 2

f% = K 2
f%′
− 1.

Remark 2.5. Endo and Gurtas [2010] showed that X%′ is a rational blowdown of X%
introduced by Fintushel and Stern [1997]. Such relations were also generalized by
Endo, Mark, and Van Horn-Morris [Endo et al. 2011].

3. Main results

In this section, we give a negative answer to Conjecture 1.1.

Theorem 3.1. For each g ≥ 3, there exists a genus-g Lefschetz fibration over S2

with slope λ f = 4− 4/g− 1/3g whose total space is simply connected.

In order to prove Theorem 3.1, we recall some standard facts on hyperelliptic
Lefschetz fibrations. Let 1g be the hyperelliptic mapping class group of genus g,
that is, the subgroup of 0g which consists of all isotopy classes of orientation-
preserving diffeomorphisms of 6g commuting with the isotopy class of ι, called
the hyperelliptic involution. Note that 1g = 0g for g = 1, 2.

Definition 3.2. Let % = ta1 . . . tan be a positive relator in 0g. A genus-g Lefschetz
fibration f% : X%→ S2 is called hyperelliptic if for each k ∈ {1, . . . , n}, tak is in 1g.
Equivalently, ι(ak)= ak for each k.

The following theorem was established in [Matsumoto 1983; 1996] for g = 1, 2
and in [Endo 2000] for g ≥ 3.
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Figure 2. The curves c1, . . . , c2g+1, x1, x2, x3, y.

Theorem 3.3 (Matsumoto, Endo). Let f% : X% → S2 be a genus-g hyperelliptic
Lefschetz fibration with m nonseparating and

s =
[g/2]∑
h=1

sh

separating vanishing cycles, where sh denotes the number of separating vanishing
cycles that separate 6g into two surfaces, one of which has genus h. Then, we have

σ(X%)=−
g+1

2g+1
m+

[g/2]∑
h=1

(
4h(g−h)

2g+1
− 1

)
sh .

We need the following positive relator to prove Theorem 3.1. As shown in
Figure 2, let c1, c2, . . . , c2g+1 be the curves in 6g. We denote by hg (∈ 0g) the
product of 8g+ 4 right-handed Dehn twists

hg := (tc1 tc2 . . . t
2
c2g+1

. . . tc2 tc1)
2.

It is well known that hg is a positive relator in 1g and that σ(Xhg )=−4(g+ 1),
by Theorem 3.3 and e(Xhg ) = 4(g+ 2). This gives χfhg

= g, K 2
fhg
= 4g− 4 and

λ fhg
= 4− 4/g (that is, fhg is lying on the slope line).

Proof of Theorem 3.1. Suppose g ≥ 3. Let x1, x2, x3, y be the curves as shown in
Figure 2. Since c1, xi are nonseparating curves, there exists a diffeomorphism φi

such that φi (c1)= xi . Hence, we have the following positive relator ri (i = 1, 2, 3):

ri = φi hgφ
−1
i = φi (tc1 tc2 . . . t

2
c2g+1

. . . tc2 tc1)
2φ−1

i

= (tφi (c1)tφi (c2) . . . t
2
φi (c2g+1)

. . . tφi (c2)tφi (c1))
2

= (txi tφi (c2) . . . t
2
φi (c2g+1)

. . . tφi (c2)tφi (c1))
2

= 1 ∈ 0g.

Let r ′g = r1r2r3 = (tx1 . . . tφ1(c1))
2(tx2 . . . )

2(tx3 . . . )
2. Since fr ′g is the fiber sum of

fr1 , fr2 and fr3 which are obtained by applying simultaneous conjugations to hg,
we have

χfr ′g
= 3χfhg

= 3g and K 2
fr ′g
= 3K 2

fhg
= 3(4g− 4).
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We apply elementary transformations to r ′g as follows:

r ′g = r1r2r3

= tx1 tφ1(c2) . . . tφ1(c2)tφ1(c1) · tx2 tφ2(c2) . . . tφ2(c1) · tx3 tφ3(c2) . . . tφ3(c1)

∼ tx1 tφ1(c2) . . . tφ1(c2)tx2 tt−1
x2 (φ1(c1))

tφ2(c2) . . . tφ2(c1) · tx3 tφ3(c2) . . . tφ3(c1)

..
.

..
.

∼ tx1 tx2 tt−1
x2 (φ1(c2))

. . . tt−1
x2 (φ1(c2))

tt−1
x2 (φ1(c1))

tφ2(c2) . . . tφ2(c1) · tx3 tφ3(c2) . . . tφ3(c1)

∼ tx1 tx2 tt−1
x2 (φ1(c2))

. . . tt−1
x2 (φ1(c2))

tt−1
x2 (φ1(c1))

tφ2(c2) . . . tx3 tt−1
x3 (φ2(c1))

tφ3(c2) . . . tφ3(c1)

..
.

..
.

∼ (tx1 tx2 tx3)W,

where W is a product of 24g+ 9 right-handed Dehn twists. By the lantern relation,
we get the following positive relator rg:

rg := (tc1 tc3 tc5 ty)W.

Since rg is obtained by applying an L−1-substitution to r ′g, by Proposition 2.4

χfrg
= 3g and K 2

frg
= 3(4g− 4)− 1.

Then, the slope of frg is equal to 4− 4/g− 1/3g.
Since it is easy to check that rg includes the Dehn twist about a curve φ3(ci ) for

1≤ i ≤ 2g+1, π1(Xrg )= 1. This follows from [Gompf and Stipsicz 1999] and the
fact that frg has a section. This completes the proof of Theorem 3.1. �

Remark 3.4. Since rg is obtained by applying an L−1-substitution to r ′g, Xrg is
a rational blow-up of Xr ′g . By applying elementary transformations to a relator
corresponding to a Lefschetz fibration which is obtained by taking a twisted fiber
sum with sufficiently many Lefschetz fibrations, we obtain a positive relator such
that we can apply a monodromy substitution, which corresponds to the operation
of rational blowdown (resp. rational blow-up) in [Endo et al. 2011], to it.

Remark 3.5. Miyachi and Shiga [2011] produced genus-g Lefschetz fibrations
over 62m which do not satisfy the slope inequality.

Moreover, by fiber sum operations, we have the following results:

Corollary 3.6. For each g ≥ 3, m ≥ 0 and l ≥ 0, there exists a genus-g Lefschetz
fibration fm,l : Xm,l → S2 with slope λ fm,l = 4 − 4/g − 1/(m + 3)g such that
π1(Xm,l) = 1. Moreover, if (m, l) 6= (0, 0), then Xm,l is a minimal symplectic
4-manifold.
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Proof of Corollary 3.6. For any m ≥ 0, we consider the Lefschetz fibration frghm
g
:

Xrghm
g
→ S2 which is the fiber sum of frg and m copies of fhg . Then,

χfrg hm
g
= χfrg

+mχfhg
= (3+m)g,

K 2
frg hm

g
= K 2

frg
+mK 2

fhg
= (3+m)(4g− 4)− 1.

Therefore, we obtain

(1) λ frg hm
g
= 4− 4/g− 1/(m+ 3)g.

Let fm,l : Xm,l→ S2 be the fiber sum of l copies of frghm
g

(that is, fm,l = f(rghm
g )

l ).
By Using (1) and an argument similar to the proof of Theorem 3.1, we have
λ fm,l = 4− 4/g − 1/(m + 3)g and π1(Xm,l) = 1. By the result of Usher [2006],
Xm,l is minimal for (m, l) 6= (0, 0). This completes the proof. �

Corollary 3.7. For each g ≥ 3, m ≥ 1 and l ≥ 0, there exists a genus-g Lefschetz
fibration f ′m,l : Ym,l→ S2 with slope λ f ′m,l = 4− 4/g− 1/2g+ 1/(2 · 3m−1g) such
that π1(Ym,l)= 1. Moreover, if l ≥ 1, then Ym,l is a minimal symplectic 4-manifold.

Proof of Corollary 3.7. When we apply the argument of Theorem 3.1 again, with
%1=hg replaced by %2=rg, we obtain a genus-g Lefschetz fibration f%3 : X%3 → S2

with
χf%3
= 3χf%2

= 3 · 3χf%1

K 2
f%3
= 3K 2

f%2
− 1= 3(3K 2

f%1
− 1)− 1.

By repeating this argument, we get a genus-g Lefschetz fibration f%m (m ≥ 1) with

χf%m
= 3m−1χf%1

= 3m−1g,

K 2
f%m
= 3

(
. . . (3(3K 2

f%1
− 1)− 1) . . .

)
− 1= 3m−1K 2

f%1
− 3m−2

− · · ·− 3− 1

= 3m−1(4g− 4)− (3m−1
− 1)/2.

Therefore, λ f%m
= 4− 4/g− 1/2g+ 1/(2 · 3m−1g).

Let f ′m,l : Ym,l→ S2 be the fiber sum of l copies of f%m , and so λ f ′m,l = 4−4/g−
1/2g+1/(2 ·3m−1g). Similar to the proof of Corollary 3.6, we see that π1(Ym,l)= 1
and that Ym,l is minimal for l ≥ 1. �

4. Nonholomorphic Lefschetz fibrations

There are various kinds of nonholomorphic Lefschetz fibrations. By fiber summing
two copies of genus-2 Lefschetz fibration due to Matsumoto [1996], Ozbagci and
Stipsicz [2000] constructed nonholomorphic genus-2 Lefschetz fibrations whose
total space does not admit a complex structure. Korkmaz [2001] generalized their
examples to g ≥ 3. The above mentioned examples of Fintushel and Stern are
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also nonholomorphic Lefschetz fibrations. From the study of divisors in moduli
space, Smith [2001] showed that a genus-3 Lefschetz fibration over S2 which was
produced by Fuller is nonholomorphic. Endo and Nagami [2005] constructed some
examples of nonholomorphic Lefschetz fibrations which violate lower bounds of
the slope for nonhyperelliptic fibrations of genus 3, 4 and 5 from the results of
Konno [1991; 1993] and Chen [1993]. Hirose [2010] also gave some examples
of g = 3, 4. In this section, we give new examples of nonholomorphic Lefschetz
fibrations.

From the slope inequality for holomorphic fibrations, we have the following
necessary condition for a Lefschetz fibration to be holomorphic:

Proposition 4.1 [Xiao 1987]. If a Lefschetz fibration f is holomorphic, then the
slope inequality λ f ≥ 4− 4/g holds.

As a consequence, we have the following results.

Corollary 4.2. The Lefschetz fibrations fm,l (m ≥ 0) and f ′m,l (m ≥ 2) are non-
holomorphic.

Remark 4.3. The above mentioned examples of Fintushel and Stern satisfy the
slope inequality but violate the Noether inequality. On the other hand, fm,l and f ′m,l
satisfy the Noether inequality but violate the slope inequality. Therefore, these two
necessary conditions for a Lefschetz fibration to be holomorphic are independent
in the sense that neither one implies the other.

5. The slopes of Lefschetz fibrations with b+

2 = 1

We have the following natural question: Which Lefschetz fibrations satisfy the
slope inequality? By Proposition 4.1, holomorphic Lefschetz fibrations satisfy the
slope inequality. If a Lefschetz fibration is hyperelliptic, then λ f ≥ 4− 4/g. This
fact can proved as follows. In the notation of Theorem 3.3, we have e(X%) =
−4(g− 1)+ (m+ s). Then, since h ∈ {1, . . . , [g/2]} and g ≥ 2, we have

K 2
f% − (4− 4/g)χf% =

[g/2]∑
h=1

4h(g−h)−g
g

sh ≥ 0.

In particular, this means that for any hyperelliptic Lefschetz fibrations with only
nonseparating vanishing cycles, λ f = 4− 4/g.

In this section, we investigate the slopes of Lefschetz fibrations with b+2 = 1.
By combining the results of [Stipsicz 1999; 2002] and [Li 2000], we can show
that Lefschetz fibrations with b+2 = 1 satisfy the slope inequality. Stipsicz showed
that if X→ S2 is a genus-g Lefschetz fibration over S2 with b+2 (X)= 1 and X is
not diffeomorphic to the blow-up of a ruled surface (that is, diffeomorphic to an
S2-bundle over6k), then b1(X)∈ {0, 2} and e≥ 0 (see [Stipsicz 1999, Corollary 3.3
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and 3.5]). In particular, if X is the blow-up of an S2-bundle over 6k , then k ≤ g/2
(see [Li 2000, Proposition 4.4]). Then, we obtain the following result.

Theorem 5.1. Let g ≥ 2 and let f : X→ S2 be a genus-g Lefschetz fibration with
b+2 (X)= 1.

(1) If X is not diffeomorphic to the blow-up of a ruled surface, then

(i) 4− 4/g ≤ λ f ≤ 8 for b1(X)= 0,

(ii) 4≤ λ f ≤ 8 for b1(X)= 2.

(2) If X is diffeomorphic to the blow-up of an S2-bundle over 6k , then

4+ 4(k− 1)/(g− k)≤ λ f ≤ 8,

and the lower bound is sharp.

An improvement of the previous result was suggested by the referee.

Proof of Theorem 5.1. For a genus-g Lefschetz fibration, a regular fiber has zero
self-intersection. Since the intersection form is nondegenerate, it follows that b±2 ≥1.
Let f : X→ S2 be a nontrivial genus-g Lefschetz fibration with b+2 (X)= 1. Note
that −4(g − 1) ≤ K 2, and so 4(g − 1) ≤ K 2

f (see [Stipsicz 1999, Lemma 3.2]).
Suppose that X is not diffeomorphic to the blow-up of a ruled surface.

First, suppose that b1 = 0. Since b+2 = 1 and χ f = (σ + e)/4 + (g − 1) =
(b+2 − b1+ 1)/2+ (g− 1)= g, we have 4(g− 1)/g ≤ K 2

f /χ f = λ f . On the other
hand, since K 2

= 3σ + 2e = 5b+2 − b−2 + 4− 4b1 = 9− b−2 , by b−2 ≥ 1, we have
λ f = K 2

f /χ f = {9− b−2 + 8(g− 1)}/g ≤ 8.
Next, suppose b1 = 2. Then, χ f = g−1. Therefore, by 4(g−1)≤ K 2

f , we have
4≤ λ f . Since 0≤ e = 2− 2b1+ b+2 + b−2 = 2− 4+ 1+ b−2 =−1+ b−2 , we obtain
λ f = {1− b−2 + 8(g− 1)}/(g− 1)≤ 8.

Finally, suppose that X is the m-fold blow-up of an S2-bundle over 6k . Let Y be
the S2-bundle over 6k . Then, since b1(Y )= 2k, b±2 (Y )= 1 and X = Y # mCP2, we
have b1(X)= 2k, b+2 (X)= 1, b−2 (X)=m+1, e(X)= 4−4k+m and σ(X)=−m.
Hence, we have λ f = 8−m/(g− k). From m ≥ 0, λ f ≤ 8. We will give lower
bounds for λ f . By Lemma 3.2 in [Stipsicz 2002], 4(2k − g)+m ≤ 4. We have
λ f ≥ 4+ 4(k − 1)/(g − k) from λ f = 8− m/(g − k), 4(2k − g)+ m ≤ 4 and
0 ≤ k ≤ g/2 [Li 2000, Proposition 4.4]. Fintushel and Stern [2004] showed that
(6k × S2) # 4mCP2 admits a genus-(2k+m− 1) Lefschetz fibration fF S over S2.
When m = g− 2k+ 1, we find b+2 = 1 and that λ fF S = 4+ 4(k− 1)/(g− k). �

Remark 5.2. If two Lefschetz fibrations f1 and f2 satisfy λ f1, λ f2 ≥ 4− 4/g, then
the (twisted) fiber sum f3 of f1 and f2 satisfies λ f3 ≥ 4− 4/g.
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