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A NEW MONOTONE QUANTITY
ALONG THE INVERSE MEAN CURVATURE FLOW IN Rn

KWOK-KUN KWONG AND PENGZI MIAO

We find a new monotone increasing quantity along smooth solutions to the
inverse mean curvature flow in Rn. As an application, we derive a sharp geo-
metric inequality for mean convex, star-shaped hypersurfaces which relates
the volume enclosed by a hypersurface to a weighted total mean curvature
of the hypersurface.

1. Statement of the result

Monotone quantities along hypersurfaces evolving under the inverse mean flow
have many applications in geometry and relativity. Huisken and Ilmanen [2001]
applied the monotone increasing property of Hawking mass to give a proof of the
Riemannian Penrose inequality. Brendle, Hung and Wang [Brendle et al. 2012]
discovered a monotone decreasing quantity along the inverse mean curvature flow
in anti-de Sitter–Schwarzschild manifolds and used it to establish a Minkowski-type
inequality for star-shaped hypersurfaces.

In this note, we provide a new monotone increasing quantity along smooth
solutions to the inverse mean curvature flow in Rn:

Theorem 1. Let† be a smooth, closed, embedded hypersurface with positive mean
curvature in Rn. Let I be an open interval and X W†� I ! Rn be a smooth map
satisfying

(1-1)
@X

@t
D
1

H
�;

where H is the mean curvature of the surface †t DX.†; t/ and � is the outward
unit normal vector to †t . Let �t be the bounded region enclosed by †t and
r D r.x/ be the distance from x to a fixed point O . Then the function

(1-2) Q.t/D e�
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is monotone increasing and Q.t/ is a constant function if and only if †t is a round
sphere for each t . Here Vol.�/ denotes the volume of a bounded region � and d�
denotes the volume form on a hypersurface.

As an application, we derive a sharp inequality for star-shaped hypersurfaces in
Rn which relates the volume enclosed by a hypersurface to an r2-weighted total
mean curvature of the hypersurface.

Theorem 2. Let † be a smooth, star-shaped hypersurface with positive mean
curvature in Rn. Then

(1-3) nVol.�/�
1

n� 1

Z
†

r2H d�

where Vol.�/ is the volume of the region � enclosed by †, r is the distance to a
fixed point O and H is the mean curvature of †. Furthermore, equality in (1-3)
holds if and only if † is a sphere centered at O .

We give some remarks about Theorem 1 and Theorem 2. The discovery of the
monotonicity of Q.t/ in Theorem 1 is motivated by [Brendle et al. 2012, Section 5].
To prove Theorem 1, we also need a result of Ros, proved using Reilly’s formula.
Once we know that Q.t/ is monotone increasing, to prove Theorem 2, it may be
tempting to ask whether limt!1Q.t/D 0? We do not know if this is true because
both Vol.�t / and

R
†t
r2H d� grow like exp

�
n

n�1
t
�

when f†tg are spheres, while
there is only a factor of exp

�
�

n�2
n�1

t
�

in (1-2). Instead, we take an alternate approach
by first proving Theorem 2 for a convex hypersurface †. The proof in that case
again makes use of Reilly’s formula. When † is merely assumed to be mean
convex and star-shaped, we prove Theorem 2 by reducing it to the convex case
using solutions to the inverse mean curvature flow provided by [Gerhardt 1990]
and [Urbas 1990].

2. Proof of the theorems

Given a compact Riemannian manifold .�; g/ with boundary †, Reilly’s formula
[1977] asserts that

(2-1)
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Here u is a smooth function on �; r2, � and r denote the Hessian, the Laplacian
and the gradient on �; �† and r† denote the Laplacian and the gradient on †;
� is the unit outward normal vector to †; II and H are the second fundamental
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form and the mean curvature of † with respect to �; and Ric is the Ricci curvature
of g.

To prove Theorem 1, we need a result of [Ros 1987], which was proved by
choosing �uD 1 on � and uD 0 at † in the above Reilly’s formula.

Theorem 3 [Ros 1987]. Let .�; g/ be an n-dimensional compact Riemannian
manifold with nonnegative Ricci curvature with boundary †. Suppose † has
positive mean curvature H ; then

(2-2) nVol.�/� .n� 1/
Z

†

1

H
d�

and equality holds if and only if .�; g/ is isometric to a round ball in Rn.

Proof of Theorem 1. We use 0 to denote differentiation with respect to t . Some basic
formulas along the inverse mean curvature flow (1-1) in Rn are

(2-3) H 0 D��†t
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�
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jIIj2
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; d�0 D d�; Vol.�t /

0
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Z
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Let uD r2. Then u satisfies

(2-4) r
2uD 2g and �uD 2n;

where g is the Euclidean metric. Now

(2-5)
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Let h � ; � i be the Euclidean inner product. By (2-3), (2-4) and the divergence
theorem, we have
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By (2-4), we also have
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which together with (2-3) and (2-4) implies
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Substituting (2-6) and (2-7) into (2-5) yields
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where we have used jIIj2 � 1
n�1

H 2 in the second line and Theorem 3 in the fourth.
On the other hand, by Theorem 3 again, we have
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We conclude thatQ.t/ is monotone increasing, moreoverQ.t/ is a constant function
if and only if equalities in (2-8) and (2-9) hold. By Theorem 3, we know these
equalities hold if and only if †t is a round sphere for all t . This completes the
proof of Theorem 1. �

Next, we prove Theorem 2 in the case that † is a convex hypersurface.

Proposition 1. Let † be a smooth, closed, convex hypersurface in Rn. Then

(2-11) nVol.�/�
1

n� 1

Z
†

r2H d�;

where Vol.�/ is the volume of the region � enclosed by †, r is the distance to a
fixed pointO andH is the mean curvature of†. Moreover, equality in (2-11) holds
if and only if † is a sphere centered at O .

Remark. Proposition 1 generalizes the first inequality in Theorem 3.2(1) of [Kwong
2012].
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Proof. Apply Reilly’s formula (2-1) to the Euclidean region � and choose uD r2;
we have

4n.n� 1/Vol.�/D
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Since † is convex, II. � ; � / is positive definite. Hence, (2-12) implies
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When n.n� 1/Vol.�/ D
R

†Hr
2 d�, we must have II

�
r†u;r†u

�
D 0, hence

r†uD 0. This implies that uD r2 is a constant on †, which shows that † is a
sphere centered at O . �

To deform a star-shaped hypersurface to a convex hypersurface through the
inverse mean curvature flow, we make use of a special case of a general result of
Gerhardt and Urbas:

Theorem 4 [Gerhardt 1990; Urbas 1990]. Let † be a smooth, closed hypersurface
in Rn with positive mean curvature, given by a smooth embedding X0 WS

n�1!Rn.
Suppose † is star-shaped with respect to a point P . Then the initial value problem

(2-14)

8̂<̂
:
@X

@t
D
1

H
�;

X. � ; 0/DX0. � /;

has a unique smooth solution X W Sn�1 � Œ0;1/ ! Rn, where � is the unit
outer normal vector to †t D X.Sn�1; t / and H is the mean curvature of †t .
Moreover, †t is star-shaped with respect to P and the rescaled hypersurface z†t ,
parametrized by zX. � ; t /D e�t=.n�1/X. � ; t /, converges to a sphere centered at P
in the C1 topology as t !1.

Proof of Theorem 2. By Theorem 4, there exists a smooth solution f†tg to the
inverse mean curvature flow with initial condition †. Moreover, the rescaled
hypersurface z†t D fe

�t=.n�1/x j x 2†tg converges exponentially fast in the C1

topology to a sphere. In particular, z†t and hence †t , must be convex for large t .
Let T be a time when †T becomes convex. By Proposition 1, we have

nVol.�T /�
1

n� 1

Z
†T

r2H d�I
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thus Q.T /� 0. By Theorem 1, we know that Q.t/ is monotone increasing. Hence
Q.0/�Q.T /� 0, which proves (1-3).

If the equality in (1-3) holds, then Q.0/D 0. It follows from the monotonicity
of Q.t/ and the fact Q.t/ � 0 for large t that Q.t/D 0 for all t . By Theorem 1,
this implies that †t is a sphere for each t . By Theorem 1, †t is a sphere centered
at O for large t . Therefore, we conclude that the initial hypersurface † is a sphere
centered at O . �

Remark. It can be shown that Theorem 2 is still true if the mean curvature is
only assumed to be nonnegative. Please refer to the arXiv version of this paper
(1212.1906) for details.
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