AN INDISPENSABLE CLASSIFICATION OF MONOMIAL CURVES IN $\mathbb{A}^4(\kappa)$

Anargyros Katsabekis and Ignacio Ojeda
AN INDISPENSABLE CLASSIFICATION OF MONOMIAL CURVES IN $\mathbb{A}^4(\mathbb{k})$

ANARGYROS KATSABEKIS AND IGNACIO OJEDA

We give a new classification of monomial curves in $\mathbb{A}^4(\mathbb{k})$. It relies on the detection of those binomials and monomials that have to appear in every system of binomial generators of the defining ideal of the monomial curve; these special binomials and monomials are called indispensable in the literature. This way to proceed has the advantage of producing a natural necessary and sufficient condition for the defining ideal of a monomial curve in $\mathbb{A}^4(\mathbb{k})$ to have a unique minimal system of binomial generators. Furthermore, some other interesting results on more general classes of binomial ideals with unique minimal system of binomial generators are obtained.

Introduction

Let $\mathbb{k}[x] := \mathbb{k}[x_1, \ldots, x_n]$ be the polynomial ring in n variables over a field \mathbb{k}. As usual, we will denote by x^u the monomial $x_1^{u_1} \cdots x_n^{u_n}$ of $\mathbb{k}[x]$, with $u = (u_1, \ldots, u_n) \in \mathbb{N}^n$, where \mathbb{N} stands for the set of non-negative integers. Recall that a pure difference binomial ideal is an ideal of $\mathbb{k}[x]$ generated by differences of monic monomials. Examples of pure difference binomial ideals are the toric ideals. Indeed, let $\mathcal{A} = \{a_1, \ldots, a_n\} \subset \mathbb{Z}^d$ and consider the semigroup homomorphism $\pi : \mathbb{k}[x] \to \mathbb{k}[\mathcal{A}] := \bigoplus_{a \in \mathcal{A}} \mathbb{k}t^a; \ x_i \mapsto t^{a_i}$. The kernel of π is denoted by $I_{\mathcal{A}}$ and called the toric ideal of \mathcal{A}. Notice that the toric ideal $I_{\mathcal{A}}$ is generated by all the binomials $x^u - x^v$ such that $\pi(x^u) = \pi(x^v)$, see, for example, [Sturmfels 1996, Lemma 4.1].

Defining ideals of monomial curves in the affine n-dimensional space $\mathbb{A}^n(\mathbb{k})$ serve as interesting examples of toric ideals. Of particular interest is to compute and describe a minimal generating set for such an ideal. Herzog [1970] provides a minimal system of generators for the defining ideal of a monomial space curve.

Ojeda is partially supported by the project MTM2012-36917-C03-01, National Plan I+D+i and by Junta de Extremadura (FEDER funds).

MSC2010: primary 13F20; secondary 16W50, 13F55.

Keywords: binomial ideal, toric ideal, monomial curve, minimal systems of generators, indispensable monomials, indispensable binomials.
The case \(n = 4 \) was treated in [Bresinsky 1988], where Gröbner bases techniques were used to obtain a minimal generating set of the ideal.

A recent topic arising in algebraic statistics is to study the problem when a toric ideal has a unique minimal system of binomial generators, see [Charalambous et al. 2007; Ojeda and Vigneron-Tenorio 2010a]. To deal with this problem, Ohsugi and Hibi [2005] introduced the notion of indispensable binomials, while Aoki, Takemura and Yoshida [Aoki et al. 2008] introduced the notion of indispensable monomials. The problem was considered for the case of defining ideals of monomial curves in [García and Ojeda 2010]. Although this work offers useful information, the classification of the ideals having a unique minimal system of binomial generators remains an unsolved problem for \(n \geq 4 \). For monomial space curves Herzog’s result provides an explicit classification of those defining ideals satisfying the above property. The aim of this work is to classify all defining ideals of monomial curves in \(\mathbb{A}^4(\mathbb{k}) \) having a unique minimal system of generators. Our approach is inspired by the classification made by Pilar Pisón in her unpublished thesis.

The paper is organized as follows. In Section 1 we study indispensable monomials and binomials of a pure difference binomial ideal. We provide a criterion for checking whether a monomial is indispensable (Theorem 1.9) and a sufficient condition for a binomial to be indispensable (Theorem 1.10). As an application we prove that the binomial edge ideal of an undirected simple graph has a unique minimal system of binomial generators. Section 2 is devoted to special classes of binomial ideals contained in the defining ideal of a monomial curve. Corollary 2.5 underlines the significance of the critical ideal in the investigation of our problem. Theorem 2.12 and Proposition 2.13 provide necessary and sufficient conditions for a circuit to be indispensable in the toric ideal, while Corollary 2.16 will be particularly useful in the next section. In Section 3 we study defining ideals of monomial curves in \(\mathbb{A}^4(\mathbb{k}) \). Theorem 3.6 carries out a thorough analysis of a minimal generating set of the critical ideal. This analysis is used to derive a minimal generating set for the defining ideal of the monomial curve (Theorem 3.10). As a consequence we obtain the desired classification (Theorem 3.11). Finally we prove that the defining ideal of a Gorenstein monomial curve in \(\mathbb{A}^4(\mathbb{k}) \) has a unique minimal system of binomial generators, under the hypothesis that the ideal is not a complete intersection.

1. Generalities on indispensable monomials and binomials

Let \(\mathbb{k}[x] \) be the polynomial ring over a field \(\mathbb{k} \). The following result is folklore, but for a lack of reference we sketch a proof.

Theorem 1.1. Let \(J \subset \mathbb{k}[x] \) be a pure difference binomial ideal. There exist a positive integer \(d \) and a vector configuration \(\mathcal{A} = \{a_1, \ldots, a_n\} \subset \mathbb{Z}^d \) such that the toric ideal \(I_{\mathcal{A}} \) is a minimal prime of \(J \).
Proof. By [Eisenbud and Sturmfels 1996, Corollary 2.5], \((J : (x_1 \cdots x_n)^\infty)\) is a lattice ideal. More precisely, if \(I = \text{span}_\mathbb{Z} \{u - v \mid x^u - x^v \in J\}\), then \(I = \left((x_1 \cdots x_n)^\infty \right) = \langle x^u - x^v \mid u - v \in I \rangle =: I_{\mathcal{L}}.\) Now, by [Eisenbud and Sturmfels 1996, Corollary 2.2], the only minimal prime of \(I_{\mathcal{L}}\) that is a pure difference binomial ideal is \(I_{\text{Sat}(\mathcal{L})} := \langle x^u - x^v \mid u - v \in \text{Sat}(\mathcal{L}) \rangle\), where \(\text{Sat}(\mathcal{L}) := \{u \in \mathbb{Z}^n \mid z u \in \mathcal{L} \text{ for some } z \in \mathbb{Z}\}.\) Since \(\mathbb{Z}^n / \text{Sat}(\mathcal{L}) \cong \mathbb{Z}^d\), for \(d = n - \text{rank}(\mathcal{L}),\) then \(e_i + \text{Sat}(\mathcal{L}) = a_i \in \mathbb{Z}^d,\) for every \(i = 1, \ldots, n,\) and hence the toric ideal of \(\mathcal{A} = \{a_1, \ldots, a_n\}\) is equal to \(I_{\text{Sat}(\mathcal{L})};\) see [Sturmfels 1996, Lemma 12.2].

Finally, in order to see that \(I_{\mathcal{A}}\) is a minimal prime of \(J,\) it suffices to note that \(J \subseteq P\) implies \((J : (x_1 \cdots x_n)^\infty) \subseteq P,\) for every prime ideal \(P\) of \(\mathbb{k}[x].\)

\[\square\]

Remark 1.2. If \(J = \langle x^{u_j} - x^{v_j} \mid j = 1, \ldots, s\rangle,\) then \(I_{\mathcal{L}} = \text{span}_\mathbb{Z} \{u_j - v_j \mid j = 1, \ldots, s\}.\) So, it is easy to see that, in general, \(J \neq I_{\mathcal{L}}.\) For example, if \(J = \langle x - y, z - t, y^2 - yt \rangle,\) then \(I_{\mathcal{L}} = \langle x - t, y - t, z - t \rangle.\)

Given a vector configuration \(\mathcal{A} = \{a_1, \ldots, a_n\} \subset \mathbb{Z}^d,\) we grade \(\mathbb{k}[x]\) by setting \(\deg_{\mathcal{A}} (x_i) = a_i, \; i = 1, \ldots, n.\) We define the \(\mathcal{A}\)-degree of a monomial \(x^u\) to be

\[\deg_{\mathcal{A}} (x^u) = u_1 a_1 + \cdots + u_n a_n.\]

A polynomial \(f \in \mathbb{k}[x]\) is \(\mathcal{A}\)-homogeneous if the \(\mathcal{A}\)-degrees of all the monomials that occur in \(f\) are the same. An ideal \(J \subset \mathbb{k}[x]\) is \(\mathcal{A}\)-homogeneous if it is generated by \(\mathcal{A}\)-homogeneous polynomials. The toric ideal \(I_{\mathcal{A}}\) is \(\mathcal{A}\)-homogeneous; indeed, by [Sturmfels 1996, Lemma 4.1], a binomial \(x^u - x^v \in I_{\mathcal{A}}\) if and only if it is \(\mathcal{A}\)-homogeneous.

The proof of the following result is straightforward.

Corollary 1.3. Let \(J \subset \mathbb{k}[x]\) be a pure difference binomial ideal and let \(\mathcal{A} = \{a_1, \ldots, a_n\} \subset \mathbb{Z}^d.\) Then \(J\) is \(\mathcal{A}\)-homogeneous if and only if \(J \subseteq I_{\mathcal{A}}.\)

Notice that the finest \(\mathcal{A}\)-grading on \(\mathbb{k}[x]\) such that a pure difference binomial ideal \(J \subset \mathbb{k}[x]\) is \(\mathcal{A}\)-homogeneous occurs when \(I_{\mathcal{A}}\) is a minimal prime of \(J.\) Such an \(\mathcal{A}\)-grading does always exist by Theorem 1.1. Ideals with finest \(\mathcal{A}\)-grading are studied in much greater generality in [Katsabekis and Thoma 2010]. An \(\mathcal{A}\)-grading on \(\mathbb{k}[x]\) such that a pure difference binomial ideal \(J \subset \mathbb{k}[x]\) is \(\mathcal{A}\)-homogeneous is said to be positive if the quotient ring \(\mathbb{k}[x]/I_{\mathcal{A}}\) does not contain invertible elements or, equivalently, if the monoid \(\mathbb{N}_{\mathcal{A}}\) is free of units.

Recall (from [Sturmfels 1996, Chapter 12], for instance) that the number of polynomials of \(\mathcal{A}\)-degree \(b \in \mathbb{N}_{\mathcal{A}}\) in any minimal system of \(\mathcal{A}\)-homogeneous generators is \(\dim_{\mathbb{k}} \text{Tor}^1_{\mathcal{A}}(\mathbb{k}, \mathbb{k}[\mathcal{A}])_b\). Thus, we say that \(I_{\mathcal{A}}\) has minimal generators in degree \(b\) when \(\dim_{\mathbb{k}} \text{Tor}^1_{\mathcal{A}}(\mathbb{k}, \mathbb{k}[\mathcal{A}])_b \neq 0.\) In this case, if \(f \in I_{\mathcal{A}}\) has degree \(b\) we say that \(f\) is a minimal generator of \(I_{\mathcal{A}}.\)
From now on, let \(\mathcal{A} = \{a_1, \ldots, a_n\} \subset \mathbb{Z}^d \) be such that the quotient ring \(\mathbb{k}[x]/I_\mathcal{A} \) does not contain invertible elements and let \(J \subset \mathbb{k}[x] \) be an \(\mathcal{A} \)-homogeneous pure difference binomial ideal.

Definition 1.4. A binomial \(f = x^u - x^v \in J \) is called **indispensable** in \(J \) (or an indispensable binomial of \(J \)) if every system of binomial generators of \(J \) contains \(f \) or \(-f\). A monomial \(x^u \) is called indispensable in \(J \) if every system of binomial generators of \(J \) contains a binomial \(f \) such that \(x^u \) is a monomial of \(f \).

We will write \(M_J \) for the monomial ideal generated by all \(x^u \) for which there exists a nonzero \(x^u - x^v \in J \).

The next proposition is the natural generalization of [Charalambous et al. 2007, Proposition 3.1], but for completeness, we give a proof.

Proposition 1.5. The indispensable monomials of \(J \) are precisely the minimal generators of \(M_J \).

Proof. Let \(\{f_1, \ldots, f_s\} \) be a system of binomial generators of \(J \). Clearly, the monomials of the \(f_i \), \(i = 1, \ldots, s \), generate \(M_J \). Let \(x^u \) be a minimal generator of \(M_J \). Then \(x^u - x^v \in J \), for some nonzero \(v \in \mathbb{N}^n \). Now, the minimality of \(x^u \) assures that \(x^u \) is a monomial of \(f_j \) for some \(j \). Therefore every minimal generator of \(M_J \) is an indispensable monomial of \(J \). Conversely, let \(x^w \) be an indispensable monomial of \(J \). If \(x^u \) is not a minimal generator of \(M_J \), then there is a minimal generator \(x^w \) of \(M_J \) such that \(x^u = x^w x^u' \) with \(u' \neq 0 \). By the previous argument \(x^w \) is an indispensable monomial of \(J \), hence without loss of generality we may suppose that \(f_k = x^w - x^z \) for some \(k \) and \(z \in \mathbb{N}^n \). Thus, if \(f_j = x^u - x^v \), then
\[
f'_j = x^u x^z - x^v = f_j - x^u f_k \in J
\]
and therefore we can replace \(f_j \) by \(f'_j \) in \(\{f_1, \ldots, f_s\} \). Repeating this argument as many times as necessary, we will find a system of binomial generators of \(J \) such that no element has \(x^u \) as monomial, a contradiction to the fact that \(x^u \) is indispensable. \(\square \)

Corollary 1.6. If \(x^u \in M_J \) is an indispensable monomial of \(I_\mathcal{A} \), then it is also an indispensable monomial of \(J \).

Proof. It suffices to note that \(M_J \subseteq M_{I_\mathcal{A}} \) by Corollary 1.3. \(\square \)

Now, we will give a combinatorial necessary and sufficient condition for a monomial \(x^u \in \mathbb{k}[x] \) to be indispensable in \(J \).

Definition 1.7. Let \(b \in \mathbb{N}_\mathcal{A} \). The graph \(G_b(J) \) has as its vertices the monomials of \(M_J \) of \(\mathcal{A} \)-degree \(b \); two vertices \(x^u \) and \(x^v \) are joined by an edge if \(\gcd(x^u, x^v) \neq 1 \) and there exists a monomial \(1 \neq x^w \) dividing \(\gcd(x^u, x^v) \) such that the binomial \(x^{u-w} - x^{v-w} \) belongs to \(J \).
Notice that $G_b(J) = \emptyset$ exactly when M_f has no element of \mathcal{A}-degree b; in particular, $G_b(J) = \emptyset$ if $b = 0$, because $1 \notin M_f$ (otherwise, $\mathbb{K}[x]/I_\mathcal{A}$ would contain invertible elements). Moreover, since $J \subseteq I_\mathcal{A}$, we have that $G_b(J)$ is a subgraph of $G_b(I_\mathcal{A})$, for all b. Finally, we observe that the existence of x^w as stated is trivially fulfilled for $J = I_\mathcal{A}$ because $(I_\mathcal{A} : (x_1 \cdots x_n)^\infty) = I_\mathcal{A}$, in this case, if $G_b(J) \neq \emptyset$, the graph $G_b(J)$ is nothing but the 1-skeleton of the simplicial complex \mathcal{V}_b appearing in [Ojeda and Vigneron-Tenorio 2010a]. Thus, we have the following result.

Theorem 1.10. Given $x^u - x^v \in J$, $u, v \in \mathcal{A}$, then $x^u - x^v$ is a binomial of \mathcal{A}-degree b if and only if x^u lies in a connected component of $J \setminus \{ x^v \}$.

Proof. Suppose that x^u lies in a connected component of $J \setminus \{ x^v \}$. Then, there exists $x^w \in M_f$ with \mathcal{A}-degree equal to b such that $\gcd(x^u, x^w) \neq 1$ and $x^u - x^w \in J$, where $1 \neq x^w$ divides $\gcd(x^u, x^w)$. So $x^u - x^w \in M_f$ and properly divides x^u, a contradiction to the fact that x^u is a minimal generator of M_f (see Proposition 1.5). Conversely, we assume that $\{ x^u \}$ is connected component of $G_b(J)$ with $b = \deg_{\mathcal{A}}(x^u)$ and that x^u is not an indispensable monomial of J. Then, by Proposition 1.5, there exists a binomial $f = x^w - x^w \in J$ such that x^w properly divides x^u. Let $x^u = x^w x^v$, then $1 \neq x^u$ divides $\gcd(x^u, x^w x^z)$ and hence $(x^u - x^u x^z)/(x^u) = f \in J$. Thus, $\{ x^u, x^u x^z \}$ is an edge of $G_b(J)$, a contradiction to the fact that $\{ x^u \}$ is a connected component of $G_b(J)$.

Now, we are able to give a sufficient condition for a binomial to be indispensable in J by using our graphs $G_b(J)$ (compare with [García and Ojeda 2010, Corollary 5]).

Theorem 1.11. A monomial x^u is indispensable in J if and only if $\{ x^u \}$ is connected component of $G_b(J)$, where $b = \deg_{\mathcal{A}}(x^u)$.

Proof. Suppose that x^u is an indispensable monomial of J and $\{ x^u \}$ is not a connected component of $G_b(J)$. Then, there exists $x^w \in M_f$ with \mathcal{A}-degree equal to b such that $\gcd(x^u, x^w) \neq 1$ and $x^u - x^w \in J$, where $1 \neq x^w$ divides $\gcd(x^u, x^w)$. So $x^u - x^w \in M_f$ and properly divides x^u, a contradiction to the fact that x^u is a minimal generator of M_f (see Proposition 1.5). Conversely, we assume that $\{ x^u \}$ is connected component of $G_b(J)$ with $b = \deg_{\mathcal{A}}(x^u)$ and that x^u is not an indispensable monomial of J. Then, by Proposition 1.5, there exists a binomial $f = x^w - x^w \in J$ such that x^w properly divides x^u. Let $x^u = x^w x^v$, then $1 \neq x^u$ divides $\gcd(x^u, x^w x^z)$ and hence $(x^u - x^u x^z)/(x^u) = f \in J$. Thus, $\{ x^u, x^u x^z \}$ is an edge of $G_b(J)$, a contradiction to the fact that $\{ x^u \}$ is a connected component of $G_b(J)$.

Theorem 1.12. Given $x^u - x^v \in J$ and let $b = \deg_{\mathcal{A}}(x^u) = \deg_{\mathcal{A}}(x^v)$. If $G_b(J) = \{ \{ x^u \}, \{ x^v \} \}$, then $x^u - x^v$ is an indispensable binomial of J.

Proof. Assume that $G_b(J) = \{ \{ x^u \}, \{ x^v \} \}$. Then, by Theorem 1.9, both x^u and x^v are indispensable monomials of J. Let $\{ f_1, \ldots, f_s \}$ be a system of binomial generators of J. Since x^u is an indispensable monomial, $f_i = x^u - x^u \neq 0$, for some i. Thus $\deg_{\mathcal{A}}(x^u) = \deg_{\mathcal{A}}(x^w)$ and therefore x^w is a vertex of $G_b(J)$. Consequently, $w = v$ and we conclude that $x^u - x^v$ is an indispensable binomial of J.

□
The converse of this theorem is not true in general: consider for instance the ideal \(J = \langle x - y, y^2 - yt, z - t \rangle = \langle x - t, y - t, z - t \rangle \cap \langle x, y, z - t \rangle \), then \(J \) is \(\mathcal{A} \)-homogeneous for \(\mathcal{A} = \{ 1, 1, 1, 1 \} \). Both \(x - y \) and \(z - t \) are indispensable binomials of \(J \), while \(G_1(J) = \{ \{ x \}, \{ y \}, \{ z \}, \{ t \} \} \).

Corollary 1.11. If \(f = x^u - x^v \in J \) is an indispensable binomial of \(I_{\mathcal{A}} \), then \(f \) is an indispensable binomial of \(J \).

Proof. Let \(b = \deg_{\mathcal{A}}(x^u) \) (\(= \deg_{\mathcal{A}}(x^v) \)). By [Ojeda and Vigneron-Tenorio 2010a, Corollary 7], if \(x^u - x^v \) is an indispensable binomial of \(I_{\mathcal{A}} \), then \(G_b(I_{\mathcal{A}}) = \{ \{ x^u \}, \{ x^v \} \} \). Since \(x^u \) and \(x^v \) are vertices of \(G_b(J) \) and \(G_b(J) \) is a subgraph of \(G_b(I_{\mathcal{A}}) \), then \(G_b(J) = G_b(I_{\mathcal{A}}) \) and therefore, by Theorem 1.10, we conclude that \(x^u - x^v \) is an indispensable binomial of \(J \). \(\Box \)

Again we have that the converse is not true: for instance, \(x - y \) and \(z - t \) are indispensable binomials of \(J = \langle x - y, y^2 - yt, z - t \rangle \) and none of them is indispensable in the toric ideal \(I_{\mathcal{A}} \).

We close this section by applying our results to show that the binomial edge ideals introduced in [Herzog et al. 2010] have unique minimal system of binomial generators.

Let \(G \) be an undirected connected simple graph on the vertex set \(\{ 1, \ldots, n \} \) and let \(\mathbb{k}[x, y] \) be the polynomial ring in \(2n \) variables, \(x_1, \ldots, x_n, y_1, \ldots, y_n \), over \(\mathbb{k} \).

Definition 1.12. The binomial edge ideal \(J_G \subset \mathbb{k}[x, y] \) associated to \(G \) is the ideal generated by the binomials \(f_{ij} = x_i y_j - x_j y_i \), with \(i < j \), such that \(\{ i, j \} \) is an edge of \(G \).

Let \(J_G \subset \mathbb{k}[x, y] \) be the binomial edge ideal associated to \(G \). By definition, \(J_G \) is contained in the determinantal ideal generated by the \(2 \times 2 \)-minors of

\[
\begin{pmatrix}
x_1 & \ldots & x_n \\
y_1 & \ldots & y_n
\end{pmatrix}.
\]

This ideal is nothing but the toric ideal associated to the Lawrence lifting, \(\Lambda(\mathcal{A}) \), of \(\mathcal{A} = \{ 1, \ldots, 1 \} \) (see [Sturmfels 1996, Chapter 7], for instance). Thus, \(J_G \subseteq I_{\Lambda(\mathcal{A})} \) and the equality holds if and only if \(G \) is the complete graph on \(n \) vertices. By the way, since \(G \) is connected, the smallest toric ideal containing \(J_G \) has codimension \(n - 1 \). So, the smallest toric ideal containing \(J_G \) is \(I_{\Lambda(\mathcal{A})} \), that is to say, \(\Lambda(\mathcal{A}) \) is the finest grading on \(\mathbb{k}[x, y] \) such that \(J_G \) is \(\Lambda(\mathcal{A}) \)-homogeneous.

Corollary 1.13. The binomial edge ideal \(J_G \) has unique minimal system of binomial generators.

Proof. By [Ojeda and Vigneron-Tenorio 2010a, Corollary 16], the toric ideal \(I_{\Lambda(\mathcal{A})} \) is generated by its indispensable binomials, thus every \(f_{ij} \in J_G \), is an indispensable
AN INDISPENSABLE CLASSIFICATION OF MONOMIAL CURVES IN $\mathbb{A}^4(\mathbb{k})$

binomial of $I_{\Lambda(\mathfrak{A})}$. Now, by Corollary 1.11, we conclude that J_G is generated by its indispensable binomials.

The above result can be viewed as a particular case of the following general result whose proof is also straightforward consequence of [Ojeda and Vigneron-Tenorio 2010a, Corollary 16] and Corollary 1.11.

Corollary 1.14. Let $\mathfrak{A} = \{a_1, \ldots, a_n\} \subseteq \mathbb{Z}^d$ be such that the monoid $\mathbb{N}\mathfrak{A}$ is free of units. If $J \subseteq \mathbb{k}[x, y]$ is a binomial ideal generated by a subset of the minimal system of binomial generators of $I_{\Lambda(\mathfrak{A})}$, then J has unique minimal system of binomial generators.

2. Critical binomials, circuits and primitive binomials

This section deals with binomial ideals contained in the defining ideal of a monomial curve. Special attention should be paid to the critical ideal; this is due to the fact that the ideal of a monomial space curve is equal to the critical ideal, see [Herzog 1970] (see also the definition of neat numerical semigroup in [Komeda 1982]). Throughout this section $\mathfrak{A} = \{a_1, \ldots, a_n\}$ is a set of relatively prime positive integers and $I_{\mathfrak{A}} \subset \mathbb{k}[x] = \mathbb{k}[x_1, \ldots, x_n]$ is the defining ideal of the monomial curve $x_1 = t^{a_1}, \ldots, x_n = t^{a_n}$ in the n-dimensional affine space over \mathbb{k}.

Critical binomials.

Definition 2.1. A binomial $x_i^{c_i} - \prod_{j \neq i} x_j^{u_{ij}} \in I_{\mathfrak{A}}$ is called critical with respect to x_i if c_i is the least positive integer such that $c_i a_i \in \sum_{j \neq i} \mathbb{N} a_j$. The critical ideal of \mathfrak{A}, denoted by $C_{\mathfrak{A}}$, is the ideal of $\mathbb{k}[x]$ generated by all the critical binomials of $I_{\mathfrak{A}}$.

Observe that the critical ideal of \mathfrak{A} is \mathfrak{A}-homogeneous.

Notation 2.2. From now on and for the rest of the paper, we will write c_i for the least positive integer such that $c_i a_i \in \sum_{j \neq i} \mathbb{N} a_j$, for each $i = 1, \ldots, n$.

Proposition 2.3. The monomials $x_i^{c_i}$ are indispensable in $I_{\mathfrak{A}}$, for every i. Equivalently, $\{x_i^{c_i}\}$ is a connected component of $G_b(I_{\mathfrak{A}})$, where $b = c_i a_i$, for every i.

Proof. The proof follows immediately from the minimality of c_i, Theorem 1.8 and Theorem 1.9. □

We now characterize the indispensable critical binomials of the toric ideal $I_{\mathfrak{A}}$.

Theorem 2.4. Let $f = x_i^{c_i} - \prod_{j \neq i} x_j^{u_{ij}}$ be a critical binomial of $I_{\mathfrak{A}}$, then f is indispensable in $I_{\mathfrak{A}}$ if, and only if, f is indispensable in $C_{\mathfrak{A}}$.

Proof. By Corollary 1.11, we have that if f is indispensable in $I_{\mathfrak{A}}$, then it is indispensable in $C_{\mathfrak{A}}$. Conversely, assume that f is indispensable in $C_{\mathfrak{A}}$. Let $\{f_1, \ldots, f_s\}$ be a system of binomial generators of $I_{\mathfrak{A}}$ not containing f. Then, by Proposition 2.3, $f_l = x_i^{c_i} - \prod_{j \neq i} x_j^{u_{ij}}$ for some l. So, f_l is a critical binomial, that
is to say, \(f_i \in C_{\mathcal{A}} \). Therefore, we may replace \(f \) by \(f_i \) and \(f - f_i \in C_{\mathcal{A}} \) in a system of binomial generators of \(C_{\mathcal{A}} \), a contradiction to the fact that \(f \) is indispensable in \(C_{\mathcal{A}} \).

Corollary 2.5. If \(I_{\mathcal{A}} \) has a unique minimal system of binomial generators, then \(C_{\mathcal{A}} \) also does.

Proof. The monomials \(x_i^{c_i} \) are indispensable in \(I_{\mathcal{A}} \), for each \(i \) (see Proposition 2.3). Thus, for every \(i \), there exists a unique binomial in \(I_{\mathcal{A}} \) of the form \(x_i^{c_i} - \prod_{j \neq i} x_j^{u_{ij}} \) and we conclude that \(C_{\mathcal{A}} \) has unique minimal system of binomial generators.

Example 2.6. Let \(\mathcal{A} = \{ 4, 6, 2a + 1, 2a + 3 \} \) where \(a \) is a natural number. For \(a = 0 \), it is easy to see that \(I_{\mathcal{A}} \) does not have a unique minimal system of binomial generators. If \(a \geq 1 \), then \(x_2^2 - x_1^a x_2 \) and \(x_4^2 - x_1 x_3^2 \in C_{\mathcal{A}} \). Thus \(C_{\mathcal{A}} \) is not generated by its indispensable binomials and therefore \(I_{\mathcal{A}} \) does not have a unique minimal system of binomial generators.

Circuits.

Recall that the support of a monomial \(x^u \) is the set \(\text{supp}(x^u) = \{ i \in \{ 1, \ldots, n \} | u_i \neq 0 \} \). The support of a binomial \(f = x^u - x^v \in I_{\mathcal{A}} \), denoted by \(\text{supp}(f) \), is defined as the union \(\text{supp}(x^u) \cup \text{supp}(x^v) \). We say that \(f \) has full support when \(\text{supp}(f) = \{ 1, \ldots, n \} \).

Definition 2.7. An irreducible binomial \(x^u - x^v \in I_{\mathcal{A}} \) is called a *circuit* if its support is minimal with respect the inclusion.

Recall that a polynomial in \(\mathbb{k}[x] \) is said to be *irreducible* if it cannot be factored into the product of two (or more) non-trivial polynomials in \(\mathbb{k}[x] \).

Lemma 2.8. Let \(u_j(i) = \frac{a_i}{\gcd(a_i, a_j)} \), for \(i \neq j \). The set of circuits in \(I_{\mathcal{A}} \) is equal to

\[
\{ x_i^{u_i(j)} - x_j^{u_j(i)} | i \neq j \}.
\]

Proof. See [Sturmfels 1996, Chapter 4] \(\square \)

The next theorem provides a class of toric ideals generated by critical binomials that, moreover, are circuits.

Theorem 2.9. If \(C_{\mathcal{A}} = \langle x_1^{c_1} - x_2^{c_2}, \ldots, x_{n-1}^{c_{n-1}} - x_n^{c_n} \rangle \), then \(C_{\mathcal{A}} = I_{\mathcal{A}} \).

Proof. From the hypothesis the binomial \(x_i^{c_i} - x_{i+1}^{c_{i+1}} \) belongs to \(I_{\mathcal{A}} \), for each \(i \in \{ 1, \ldots, n - 1 \} \). So, every circuit of \(I_{\mathcal{A}} \) is of the form \(x_k^{c_k} - x_l^{c_l} \), since \(\gcd(c_k, c_l) = 1 \). Now, from Proposition 2.2 in [Alcántar and Villarreal 1994], the lattice \(L = \ker_\mathbb{Z}(\mathcal{A}) = \{ a \in \mathbb{Z}^n | u_1 a_1 + \ldots + u_n a_n = 0 \} \) is generated by \(\{ c_i e_i - c_j e_j | 1 \leq i \leq j \leq n \} \), where \(e_i \) is the vector with 1 in the \(i \)-th position and zeros elsewhere. The rank of \(L \) equals \(n - 1 \) and a lattice basis is \(\{ v_i = c_i e_i - c_{i+1} e_{i+1} | 1 \leq i \leq n - 1 \} \). Thus \(C_{\mathcal{A}} \) is
a lattice basis ideal. Let M be the matrix with rows v_1, \ldots, v_{n-1}, then M is a mixed dominating matrix and therefore, from [Fischer and Shapiro 1996, Theorem 2.9], the equality $C_{\mathbb{A}} = I_{\mathbb{A}}$ holds.

Remarks 2.10.

1. For $n = 4$, a different proof of the above result can be found in [Bresinsky 1975].

2. The converse of Theorem 2.9 is not true in general (see [Alcántar and Villarreal 1994], for instance).

3. If every critical binomial of $I_{\mathbb{A}}$ is a circuit and the critical ideal has codimension $n - 1$, then $c_i a_i = c_j a_j$, for every $i \neq j$. In particular, all minimal generators of $I_{\mathbb{A}}$ have the same \mathbb{A}-degree. This situation is explored in some detail in [García Sánchez et al. 2013] from a semigroup viewpoint.

The rest of this subsection is devoted to the investigation of necessary and sufficient conditions for a circuit to be indispensable in $I_{\mathbb{A}}$.

Lemma 2.11. Let $f = x_i^{u_i(j)} - x_j^{u_j(i)} \in I_{\mathbb{A}}$ be a circuit and let $b = u_i(j) a_i$. Then there is no monomial x^v in the fiber $\deg_{\mathbb{A}}^{-1}(b)$ such that $\text{supp}(x^v) = \{i, j\}$.

Proof. Suppose to the contrary that there exists such a v. Observe that $x_i^{u_i(j)} - x_j^{u_j(i)}$ is also a circuit of $I_{\{a_i/d, a_j/d\}}$, and $v \in \deg_{\{a_i/d, a_j/d\}}^{-1}(b/d)$, with $d = \gcd(a_i, a_j)$. But $\deg_{\{a_i/d, a_j/d\}}^{-1}(b/d) = \{x_i^{u_i(j)} - x_j^{u_j(i)}\}$; see, for instance, [Rosales and García 2009, Example 8.22].

Theorem 2.12. Let $f = x_i^{u_i(j)} - x_j^{u_j(i)} \in I_{\mathbb{A}}$ be a circuit and let $b = u_i(j) a_i$. Then, f is indispensable in $I_{\mathbb{A}}$ if, and only if, $b - a_k \not\in \mathbb{A}$, for every $k \neq i, j$. In particular, $u_i(j) = c_i$ and $u_j(i) = c_j$.

Proof. First of all, we observe that $\deg_{\mathbb{A}}^{-1}(b) \supseteq \{x_i^{u_i(j)} - x_j^{u_j(i)}\}$ and equality holds if and only if f is indispensable. So, the sufficiency condition follows. Conversely, since $b \not\in \sum_{k \neq i, j} \mathbb{A} a_k$, the supports of the monomials in $\deg_{\mathbb{A}}^{-1}(b)$ are included in $\{i, j\}$ and then, by Lemma 2.11, we are done.

From this result it follows that if a circuit is indispensable, then it is a critical binomial. Let \prec_{ij} be an \mathbb{A}-graded reverse lexicographical monomial order on $\mathbb{k}[x]$ such that $x_k \prec_{ij} x_i$ and $x_k \prec_{ij} x_j$ for every $k \neq i, j$.

Proposition 2.13. A circuit $f = x_i^{u_i(j)} - x_j^{u_j(i)} \in I_{\mathbb{A}}$ is indispensable in $I_{\mathbb{A}}$ if and only if it belongs to the reduced Gröbner basis of $I_{\mathbb{A}}$ with respect to \prec_{ij}.

Proof. If f is indispensable, then, by Theorem 13 of [Ojeda and Vigneron-Tenorio 2010a], it belongs to every Gröbner basis of $I_{\mathbb{A}}$. Now, suppose that f belongs to the reduced Gröbner basis of $I_{\mathbb{A}}$ with respect to \prec_{ij} and it is not indispensable. Since
\(f\) is not indispensible, there exists a monomial \(x^u\) in the fiber of \(u_i(j) a_i\) different from \(x_i^{u_i(j)}\) and \(x_j^{u_j(i)}\). By Lemma 2.11, we have that \(\text{supp}(x^u) \not\subseteq \{i, j\}\), so there is \(k \in \text{supp}(x^u)\) and \(k \not\in \{i, j\}\). Hence, both \(f_i = x_i^{u_i(j)} - x^u\) and \(f_j = x_j^{u_j(i)} - x^u\) belong to \(I_{\bar{d}}\). Since the leading terms of \(f_i\) and \(f_j\) with respect to \(\prec_{ij}\) equal to \(x_i^{u_i(j)}\) and \(x_j^{u_j(i)}\), respectively, we conclude that \(f = x_i^{u_i(j)} - x_j^{u_j(i)} \in I_{\bar{d}}\) is not in the reduced Gröbner basis of \(I_{\bar{d}}\) with respect to \(\prec_{ij}\), a contradiction. \(\square\)

Primitive binomials.

Definition 2.14. A binomial \(x^u - x^v \in I_{\bar{d}}\) is called *primitive* if there exists no other binomial \(x^{u'} - x^{v'}\) such that \(x^{u'}\) divides \(x^u\) and \(x^{v'}\) divides \(x^v\). The set of all primitive binomials is called the Graver basis of \(\bar{d}\) and it is denoted by Gr(\(d\)).

Theorem 2.15. Let \(f = x_i^{u_i} x_j^{u_j} - x_k^{u_k} x_l^{u_l} \in \text{Gr}(\bar{d})\) be such that \(u_i < c_i, u_j < c_j, u_k < c_k\) and \(u_l < c_l\) with \(i, j, k\) and \(l\) pairwise different. Then \(f\) is indispensible in \(J = I_{\bar{d}} \cap k[x_i, x_j, x_k, x_l]\).

Proof. By [Sturmfels 1996, Proposition 4.13(a)], \(J = I_{\bar{d}} \cap k[x_i, x_j, x_k, x_l]\) is the toric ideal associated to \(\bar{d}' = \{a_i, a_j, a_k, a_l\}\). Thus, without loss of generality we may assume \(n = 4\), then \(J = I_{\bar{d}}\). We prove that \(G_b(I_{\bar{d}}) = \{x_i^{u_i} x_j^{u_j}, x_k^{u_k} x_l^{u_l}\}\), where \(b = u_i a_i + u_j a_j\). Let \(x^v \in \text{deg}_{\bar{d}}^{-1}(b)\) be different from \(x_i^{u_i} x_j^{u_j}\) and \(x_k^{u_k} x_l^{u_l}\). If \(u_i < v_i\), then \(x_i^{u_i}(x_i^{u_i} - x_i^{v_i} x_i^{v_i}) x_k^{u_k} x_l^{u_l} \in I_{\bar{d}}\), thus \(x_i^{u_i} - x_i^{v_i} x_i^{v_i} x_i^{v_i} x_k^{u_k} x_l^{u_l} \in I_{\bar{d}}\) which is impossible by the minimality of \(c_j\) (see Proposition 2.3). Analogously, we can prove that \(u_j \geq v_j, u_k \geq v_k\) and \(u_l \geq v_l\). Therefore \(x_i^{v_i} x_i^{v_i} (x_i^{u_i} - x_i^{v_i} x_i^{v_i} x_i^{v_i} x_k^{u_k} x_l^{u_l}) \in I_{\bar{d}}\) and so \(x_i^{u_i} - x_i^{v_i} x_i^{v_i} x_i^{v_i} x_k^{u_k} x_l^{u_l} \in I_{\bar{d}}\), a contradiction with the fact that \(f\) is primitive. This shows that \(G_b(J) = \{\{x_i^{u_i} x_j^{u_j}\}, \{x_k^{u_k} x_l^{u_l}\}\}\) and, by Theorem 1.10, we are done. \(\square\)

Corollary 2.16. Let \(f = x_i^{u_i} x_j^{u_j} - x_k^{u_k} x_l^{u_l} \in I_{\bar{d}}\) be such that \(u_i < c_i, u_j < c_j, u_k > 0\) and \(u_l > 0\) with \(i, j, k\) and \(l\) pairwise different. If \(x_k^{u_k} x_l^{u_l}\) is indispensible in \(J = I_{\bar{d}} \cap k[x_i, x_j, x_k, x_l]\), then \(f\) is indispensible in \(J\).

Proof. Since, by Theorem 1.9, \(\{x_k^{u_k} x_l^{u_l}\}\) is a connected component of \(G_b(I_{\bar{d}})\), where \(b = u_k a_k + u_l a_l\), the monomial \(x^v \in \text{deg}_{\bar{d}}^{-1}(b)\) in the above proof has its support in \(\{i, j\}\). Thus, repeating the arguments of the proof of Theorem 2.15, we deduce that \(u_i \geq v_i\) and \(u_j \geq v_j\). But \(x_i^{v_i} x_i^{v_i} x_i^{v_i} x_k^{u_k} x_l^{u_l} \in I_{\bar{d}}\), so \(u_i a_i + u_j a_j = v_i a_i + v_j a_j\) which implies that \(u_i = v_i\) and \(u_j = v_j\). By Theorem 1.10 we have that \(f\) is indispensible in \(J\). \(\square\)

Combining Theorem 2.15 with Corollary 1.11 we get:

Corollary 2.17. Given \(i, j, k\) and \(l \in \{1, \ldots, n\}\) pairwise different, let \(J\) be the ideal of \(k[x_i, x_j, x_k, x_l]\) generated by all Graver binomials of \(I_{\bar{d}}\) of the form \(x_i^{u_i} x_j^{u_j} - x_k^{u_k} x_l^{u_l}\) with \(u_i < c_i, u_j < c_j, u_k < c_k\) and \(u_l < c_l\). Then \(J\) has unique minimal system of binomial generators.
Finally we provide another class of primitive binomials that are indispensable in a toric ideal.

Corollary 2.18. Let \(f = x_i^{u_i} x_j^{u_j} - x_k^{u_k} x_l^{u_l} \in \text{Gr}(\mathcal{A}) \) such that \(0 < u_i < c_i \) and \(0 < u_k < c_k \), for \(i, j, k \) and \(l \) pairwise different. If \(u_i a_i + u_j a_j \) is minimal among all Graver \(\mathcal{A} \)-degrees, then \(f \) is indispensable in \(I_\mathcal{A} \cap \mathbb{k}[x_i, x_j, x_k, x_l] \).

Proof. Since \(c_i a_i \) is a Graver \(\mathcal{A} \)-degree, we have \(u_i a_i + u_j a_j \leq c_i a_i \), so it follows \(u_j < c_j \). Similarly, we can prove \(u_i < c_i \). Therefore, by Theorem 2.15, we conclude that \(f \) is indispensable in \(I_\mathcal{A} \cap \mathbb{k}[x_i, x_j, x_k, x_l] \).

It is worth noting here that [García Sánchez et al. 2013, Theorem 6] offers a characterization of the family of affine semigroups for which \(C_\mathcal{A} = \text{Gr}(\mathcal{A}) \).

3. Classification of monomial curves in \(\mathbb{A}^4(\mathbb{k}) \)

Let \(\mathcal{A} = \{a_1, a_2, a_3, a_4\} \) be a set of relatively prime positive integers. First we will provide a minimal system of binomial generators for the critical ideal \(C_\mathcal{A} \). This will be done by comparing the \(\mathcal{A} \)-degrees of the monomials \(x_i^{u_i} \), for \(i = 1, \ldots, 4 \).

Lemma 3.1. Let \(f_i = x_i^{c_i} - \prod_{j \neq i} x_j^{u_{ij}} \), \(i = 1, \ldots, 4 \), be a set of critical binomials of \(I_\mathcal{A} \) and let \(g_i \in I_\mathcal{A} \) be a critical binomial with respect to \(x_i \), for some \(l \in \{1, \ldots, 4\} \). If \(f_i \neq -f_i \) for every \(i \), then \(g_i \in \{f_1, f_2, f_3, f_4\} \).

Proof. For simplicity we assume \(l = 1 \). Let \(g_1 = x_1^{c_1} - x_2^{u_{12}} x_3^{u_{13}} x_4^{u_{14}} \in I_\mathcal{A} \) be a critical binomial. If \(g_1 = f_1 \), there is nothing to prove. If \(g_1 \neq f_1 \), without loss of generality we may assume that \(u_{12} > v_2, u_{13} \leq v_3 \) and \(u_{14} \leq v_4 \), so \(g_1 - f_1 = m_1 g_2 \), with \(m_1 = x_2^{u_{12}} x_3^{u_{13}} x_4^{u_{14}} \) and \(g_2 = x_2^{u_{12} - v_2} - x_3^{u_{13} - v_3} x_4^{u_{14} - v_4} \in I_\mathcal{A} \) (in particular \(u_{12} - v_2 \geq 2c_2 \)). But \(x_1^{c_1} - x_2^{u_{21}} x_3^{u_{23}} x_4^{u_{24}} \in I_\mathcal{A} \) and also \(f_1 \neq -f_2 \), thus from the minimality of \(c_1 \) it follows that \(u_{21} = 0 \), that is to say, \(f_2 \in \mathbb{k}[x_2, x_3, x_4] \). For the sake of simplicity, write \(g_2 = x_2^{b} - x_3^{c} x_4^{d} \) with \(b, c, d \in \mathbb{N} \) and \(b \geq c \). Hence \(g_2 - x_2^{b-c} f_2 = x_2^{b-c} x_3^{u_{23}} x_4^{u_{24}} - x_3^{c} x_4^{d} \). If \(b - c \geq 2 \), we repeat the process. After a finite number of steps, \(g_2 = h_2 f_2 = x_2^{b-2c} x_3^{u_{23}} x_4^{u_{24}} - x_3^{c} x_4^{d} \) with \(0 \leq b - 2c < 2 \) and \(h_2 \in \mathbb{k}[x_2, x_3, x_4] \). Then \((b - 2c)a_2 + ku_{23}a_3 + ku_{24}a_4 = ca_3 + da_4 \). Since \(0 \leq b - 2c < 2 \) then \(x_3^{ku_{23}} x_4^{ku_{24}} \) does not divide \(x_3^{c} x_4^{d} \). The case \(x_3^{c} x_4^{d} \) divides \(x_3^{ku_{23}} x_4^{ku_{24}} \) leads to \(b = kc_2, c = ku_{23} \) and \(d = ku_{24} \). In this setting, \(g_2 = h_2 f_2 \), \(g_1 = f_1 = m_1 h_2 f_2 \) and we are done. The remaining cases are \(ku_{23} \geq c \) and \(d \geq ku_{24} \), or \(ku_{23} \leq c \) and \(d \geq ku_{24} \). Without loss of generality (by swapping variables if necessary), we may assume that \(ku_{23} \leq c \) and \(d \leq ku_{24} \). Hence \((b - 2c)a_2 + (ku_{24} - d)a_4 = (c - ku_{23})a_3 \), and consequently \(c - ku_{23} \geq 3 \). We also deduce that \(g_2 - h_2 f_2 = x_3^{ku_{23}} x_4^{d} (x_2^{b-2c} x_3^{ku_{24} - d} - x_3^{c-ku_{23}}) \). Set \(m_3 = x_3^{ku_{23}} x_4^{d} \) and \(g_3 = x_2^{b-2c} x_3^{ku_{24} - d} - x_3^{c-ku_{23}} \). Since \(v_3 - u_{13} - ku_{23} = c - ku_{23} \geq 3 \), we have that \(v_2 \geq 3 \). Thus \(x_1^{c_1} - x_2^{u_{12}} x_3^{u_{13} + v_3} x_4^{v_4} \in I_\mathcal{A} \) and \(f_1 \neq -f_3 \), from
the minimality of c_1 it follows that $u_{31} = 0$, that is to say, $f_3 \in \mathbb{k}[x_2, x_3, x_4]$. Analogously, by using a similar argument as before (and by swapping variables x_2 and x_4, if necessary), we obtain $h_3 \in \mathbb{k}[x_2, x_3, x_4]$ such that either $g_3 = h_3 f_3$ or $g_3 - h_3 f_3 = m_3 g_4$, with $m_3 = -x_2 u_i x_4^m$, $g_4 = x_4^{u_i} - u_i + u_4 - u_2 x_3^{v_i} - v_3 < c_3$. If $g_3 \neq h_3 f_3$, then $g_1 = f_1 + m_1 h_2 f_2 + m_1 m_2 h_3 f_2 f_3$ and we are done. Otherwise, since $x_1 \in \mathbb{k}[x_2, x_3, x_4]$ that is indispensable in $I_β$, then $u_{44} = 0$, that is to say, $f_4 \in \mathbb{k}[x_2, x_3, x_4]$. Therefore, we have $f_2, f_3, f_4 \in \mathbb{k}[x_2, x_3, x_4]$. Taking into account that $I_β \cap \mathbb{k}[x_2, x_3, x_4]$ is generated by f_2, f_3 and f_4 (see [Sturmfels 1996, Proposition 4.13(a)] and [Ojeda and Písón Casares 2004, Theorem 2.2], for instance), we conclude that $g_2 = g_2 f_2 + g_2 f_3 + g_2 f_4$ and hence $g_1 = f_1 + m_1 g_2 f_2 + m_1 g_2 f_3 + m_1 g_2 f_4$, with $g_2 f_1 \in \mathbb{k}[x_2, x_3, x_4], j = 1, 3, 4$. □

Proposition 3.2. Let $f_i = x_i^c_i - \prod_{j \neq i} x_j^{u_j}, i = 1, \ldots, 4$, be a set of critical binomials. If $f_i \neq -f_j$ for every $i \neq j$, then $C_{ββ} = \langle f_1, f_2, f_3, f_4 \rangle$.

Proof. The proof follows directly from Lemma 3.1. □

Observe that $f_i = -f_j$ if and only if $f_i = x_i^c_i - x_j^c_j$ and $f_j = x_j^c_i - x_i^c_i$; in particular, f_i and f_j are circuits. The following proposition provides an upper bound for the minimal number of generators of the critical ideal.

Proposition 3.3. The minimal number of generators $\mu(C_{ββ})$ of $C_{ββ}$ is less than or equal to four.

Proof. Let $\overline{F} = \{f_1, \ldots, f_4\} \subseteq I_{ββ}$ be such that f_i is critical with respect to x_i. If $f_i \neq -f_j$, for every $i \neq j$, then we are done by Proposition 3.2. Otherwise, without loss of generality we may assume $f_1 = -f_2$, that is to say, $f_1 = x_1^c_1 - x_2^c_2$. Suppose that \overline{F} is not a generating set of $C_{ββ}$. We distinguish the following cases:

1. f_1 is indispensable in $I_{ββ}$. Then there exists a critical binomial $g \in I_{ββ}$ with respect to at least one of the variables x_3 and x_4, say x_4, such that $g \neq \pm f_1$, for every i. By substitution of f_4 with g in \overline{F} we have, from Lemma 3.1, that every critical binomial with respect to x_3 or x_4 is in the ideal generated by the binomials of \overline{F}. Consequently the new set \overline{F} generates $I_{ββ}$.

2. f_1 is not indispensable in $I_{ββ}$. Then there exists a critical binomial $g \in I_{ββ}$ with respect to at least one of the variables x_1 and x_2, for instance x_2, such that $g \neq \pm f_1$, for every i. We substitute f_2 with g in \overline{F}. If $f_3 \neq -f_4$, then we have, from Proposition 3.2, that the new set \overline{F} generates $I_{ββ}$. Otherwise, we substitute f_3 with a critical binomial h with respect to x_3 in \overline{F} such that $h \neq \pm f_1$, for every i, when f_3 is not indispensable. So, in this case, $C_{ββ}$ is generated by a set of four critical binomials. □
Lemma 3.4. If $c_ia_i \neq c_ka_k$ and $c_ia_i \neq c_la_l$, where $k \neq l$, then either the only critical binomial of $I_{i\ell}$ with respect to x_i is $f = x_i^{c_i} - x_j^{c_j}$ or there exists a critical binomial $f \in I_{i\ell}$ with respect to x_i such that $\text{supp}(f)$ has cardinality greater than or equal to three, where $\{i, j, k, l\} = \{1, 2, 3, 4\}$.

Proof. Suppose the contrary and let $f_i = x_i^{c_i} - x_j^{c_j} \in I_{i\ell}$ where $u_j > c_j$. We define $f_i = x_i^{c_i} - x_i^{v_i}x_j^{v_j-c_j}x_k^{v_k}x_l^{v_l} = f_i + x_j^{u_j-c_j}f_j \in I_{i\ell}$ with $f_j = x_j^{c_j} - x_i^{v_i}x_k^{v_k}x_l^{v_l} \in I_{i\ell}$. Now, from the minimality of c_j, it follows that $v_i = 0$, thus at least one of v_k or v_l is different from zero since $f_j \in I_{i\ell}$, otherwise $f - f_i = x_i^{u_i} - x_i^{v_i}x_j^{v_j-c_j} \in I_{i\ell}$, and this is impossible. Therefore we conclude that $\text{supp}(f)$ has cardinality greater than or equal to 3, a contradiction. The cases $f_i = x_i^{c_i} - x_k^{u_k} \in I_{i\ell}$ and $f_i = x_i^{c_i} - x_l^{u_l} \in I_{i\ell}$ are analogous, by using that $c_ia_i \neq c_ka_k$ and $c_ia_i \neq c_la_l$, respectively.

Lemma 3.5. There is no minimal generating set of $C_{i\ell}$ of the form $S = \{x_i^{c_i} - x_j^{c_j}, x_i^{c_i} - x_j^{u_j}, x_k^{c_k} - x_i^{c_i}, x_i^{c_i} - x_l^{u_l}\}$, where $\{i, j, k, l\} = \{1, 2, 3, 4\}$. In particular, if $c_ia_i = c_ka_k$ and $c_ia_i = c_la_l$, then $\mu(C_{i\ell}) < 4$.

Proof. Set $u_j = (u_{j1}, \ldots, u_{jk})$ and $u_l = (u_{l1}, \ldots, u_{lk})$. The minimality of c_i, $i \in \{1, 2, 3, 4\}$, forces $u_{ji} = 0 = u_{lj}, 0 < u_{jk} < c_k, 0 < u_{jl} < c_l, 0 < u_{li} < c_i, 0 < u_{lj} < c_j, u_{lk} = 0 = u_{ll}$.

Set $d_n = \gcd(\mathcal{A} \setminus \{a_i\}), n \in \{1, 2, 3, 4\}$. By [Herzog 1970, Theorem 3.10], the numerical semigroup generated by $\{a_i/d_i, a_j/d_j, a_k/d_k\}$ is symmetric and, from the proof of [Theorem 10.6.23], it is derived that $a_i/d_i = c_jc_k$, $a_j/d_j = c_ik_k$, $c_k = \gcd(a_i/d_i, a_j/d_j)$ and $c_ka_k/d_k = u_{li}a_i/d_i + u_{lj}a_j/d_j$. Hence $a_i = c_jc_kd_i$, $a_j = c_ik_kd_j$ and $a_k = (u_{li}c_j + u_{lj}c_k)d_i$. Arguing analogously with $\{a_i/d_i, a_j/d_j, a_k/d_k\}$, we get $a_1 = c_jc_2d_k$, $a_2 = c_1c_2d_k$ and $a_1 = (u_{j1}c_j + u_{j2}c_k)d_k$. Thus, since $\gcd(c_j, c_k) = 1$, we conclude that $d_k = c_k$ and $d_l = c_l$. By considering now the symmetric semigroups $\{a_i/d_i, a_j/d_j, a_k/d_k\}$ and $\{a_i/d_i, a_k/d_k, a_l/d_l\}$, we get $a_1 = (u_{j1}c_1 + u_{j2}c_k)c_l$, $a_j = (u_{j1}c_1 + u_{j2}c_l)c_l$, $a_k = c_kc_2c_l$ and $a_1 = c_2c_kc_l$.

Putting all this together, we obtain that $u_{j1}c_1 + u_{j2}c_k = c_1c_k$ which forces either $u_{j2} = 0$ or $u_{j2} \geq c_k$, and this is a contradiction in both cases.

Theorem 3.6. After permuting variables, if necessary, there exists a minimal system of binomial generators S of $C_{i\ell}$ of the following form:

Case 1: If $c_ia_i \neq c_ja_j$ for every $i \neq j$, then $S = \{x_i^{c_i} - x_i^{u_i}, i = 1, \ldots, 4\}$.

Case 2: If $c_ia_1 = c_2a_2$ and $c_3a_3 = c_4a_4$, then $S = \{x_i^{c_i} - x_i^{u_i}, i = 1, \ldots, 4\}$ and

(a) $S = \{x_1^{c_1} - x_2^{c_2}, x_3^{c_3} - x_4^{c_4}, x_4^{c_4} - x_4^{u_4}\}$ when $\mu(C_{i\ell}) = 3$,

(b) $S = \{x_1^{c_1} - x_2^{c_2}, x_3^{c_3} - x_4^{c_4}\}$ when $\mu(C_{i\ell}) = 2$,

or $c_2a_2 = c_3a_3$ and

(c) $S = \{x_1^{c_1} - x_2^{c_2}, x_2^{c_2} - x_3^{c_3}, x_3^{c_3} - x_4^{c_3}\}$.

Case 3: If $c_ia_1 = c_2a_2 = c_3a_3 \neq c_4a_4$, then $S = \{x_i^{c_i} - x_i^{c_2}, x_2^{c_2} - x_3^{c_3}, x_4^{c_4} - x_4^{u_4}\}$.
Case 4: If \(c_1a_1 = c_2a_2 \) and \(c_1a_i \neq c_ja_j \) for all \(i, j \) \(\neq \{1, 2\} \), then

(a) \(\mathcal{S} = \{x_i^{c_i} - x_2^{c_2}, x_i^{c_i} - x_i^{a_1} | i = 2, 3, 4\} \) when \(\mu(C_{\mathcal{S}}) = 4 \),

(b) \(\mathcal{S} = \{x_i^{c_i} - x_2^{c_2}, x_i^{c_i} - x_i^{a_1} | i = 3, 4\} \) when \(\mu(C_{\mathcal{S}}) = 3 \)

where, in each case, \(x_i^{a_1} \) denotes an appropriate monomial whose support has cardinality greater than or equal to two.

Proof. First, we observe that our assumption on the cardinality of \(x_i^{a_1} \) follows from Lemma 3.4. We also notice that \(C_{\mathcal{S}} \) has no minimal generating set of the form \(\mathcal{S} = \{x_i^{c_i} - x_2^{c_2}, x_3^{c_3} - x_i^{c_i}, x_4^{c_4} - x_i^{a_1}\} \), by Lemma 3.5.

Let \(J \) be the ideal generated by \(\mathcal{S} \). For the cases 1, 2(a-c), 3 and 4(a), it easily follows that \(J = C_{\mathcal{S}} \) by Proposition 3.2. Indeed, in order to satisfy the hypothesis of Proposition 3.2, we may take \(f_4 = x_4^{c_4} - x_1^{c_1} \in J \) and \(f_3 = x_3^{c_3} - x_1^{c_1} \in J \) in the cases 2(c) and 3, respectively. The cases 2(a) and 4(b) happen when the only critical binomials of \(I_{\mathcal{S}} \) with respect to \(x_1 \) and \(x_2 \) are \(f_1 = x_1^{c_1} - x_2^{c_2} \) and \(f_2 = -f_1 \), respectively, then our claim follows from Lemma 3.1. Furthermore, the case 2(b) occurs when the only critical binomials of \(I_{\mathcal{S}} \) are \(\pm(x_1^{c_1} - x_2^{c_2}) \) and \(\pm(x_3^{c_3} - x_4^{c_4}) \), so \(J = C_{\mathcal{S}} \) by definition. On the other hand, since \(x_i^{c_i} \) is an indispensable monomial of \(I_{\mathcal{S}} \), for every \(i \), by Corollary 1.6, we have that \(x_i^{c_i} \) is an indispensable monomial of the ideal \(J \), for every \(i \). Then, we conclude that \(\mathcal{S} \) is minimal in the sense that no proper subset of \(\mathcal{S} \) generates \(J \).

Example 3.7. This example illustrates all possible cases of Theorem 3.6.

<table>
<thead>
<tr>
<th>Case</th>
<th>(\mathcal{S})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{17, 19, 21, 25}</td>
</tr>
<tr>
<td>2(a)</td>
<td>{30, 34, 42, 51}</td>
</tr>
<tr>
<td>2(b)</td>
<td>{39, 91, 100, 350}</td>
</tr>
<tr>
<td>2(c)</td>
<td>{60, 132, 165, 220}</td>
</tr>
<tr>
<td>3</td>
<td>{12, 19, 20, 30}</td>
</tr>
<tr>
<td>4(a)</td>
<td>{12, 13, 17, 20}</td>
</tr>
<tr>
<td>4(b)</td>
<td>{4, 6, 11, 13}</td>
</tr>
</tbody>
</table>

The reader may perform the computations in detail by using the GAP package NumericalSgps ([Delgado et al. 2013]).

Since \(C_{\mathcal{S}} \subseteq I_{\mathcal{S}} \), any minimal system of generators of \(I_{\mathcal{S}} \) can not contain more than 4 critical binomials. This provides an affirmative answer to the question after Corollary 2 in [Bresinsky 1988]. Notice that the only cases in which \(C_{\mathcal{S}} \) can have a unique minimal system of generators are 1, 2(b) and 4(b); in these cases \(C_{\mathcal{S}} \) has a unique minimal system of binomial generators if and only if the monomials \(x_i^{a_1} \) are indispensable.

Now we focus our attention on finding a minimal set of binomial generators of \(I_{\mathcal{S}} \), that will help us to solve the classification problem. The following lemma will be useful in the proof of Proposition 3.9 and Theorem 3.10.
Lemma 3.8. (i) If $f = x_i^{v_i} - x^v$ is a minimal generator of $I_{\mathcal{A}}$ that is not critical, then there exists $j \neq i$ such that $\text{supp}(x^v) \cap \{i, j\} = \emptyset$ and $c_i a_i = c_j a_j$. Moreover, if x^v is not indispensable, then $c_k a_k = c_i a_i$, with $\{i, j, k, l\} = \{1, 2, 3, 4\}$.

(ii) If $f = x_i^{v_i} x_j^{v_j} - x^v$ is a minimal generator of $I_{\mathcal{A}}$ with $u_i \neq 0$ and $u_j \geq c_j$, then $\text{supp}(x^v) \cap \{i, j\} = \emptyset$ and $c_i a_i = c_j a_j$. In addition, if x^v is not indispensable, then $c_k a_k = c_i a_i$, with $\{i, j, k, l\} = \{1, 2, 3, 4\}$.

Proof. (i) Let $b = c_i a_i$. Since f is not a critical binomial, we have that $u_i > c_i$. If $c_i a_i \neq c_j a_j$, for every $j \neq i$, then, from Lemma 3.4, there exists a critical binomial $f = x_i^{v_i} - x^v \in I_{\mathcal{A}}$ such that $\text{supp}(x^v)$ has cardinality greater than or equal to two. If $\text{supp}(x^v) \cap \text{supp}(x^v) \neq \emptyset$, then $x_i^{v_i} \leftrightarrow x_i^{u_i-c_i} x^v \leftrightarrow x^v$ is a path in $G_b(I_{\mathcal{A}})$, a contradiction to the fact that f is a minimal generator by Theorem 1.8. Hence $\text{supp}(x^v) \cap \text{supp}(x^v) = \emptyset$. We have that $\text{supp}(x^v + x^v) \subseteq \{j, k, l\}$, $\text{supp}(x^v) \cap \text{supp}(x^v) = \emptyset$ and the cardinality of $\text{supp}(x^v)$ is at least two. This implies that x^v is a power of a variable, say $x^v = x_i^{v_i}$. Observe that $v_i \geq c_i$ and as f is not a critical binomial, $v_i \neq c_i$, whence $x^v = x_i^{v_i-c_i} x^v \leftrightarrow x^v$ is a path in $G_b(I_{\mathcal{A}})$, a contradiction. Thus $c_i a_i = c_j a_j$, for an $j \neq i$. We have that $\text{supp}(x^v) \cap \{i, j\} = \emptyset$; otherwise $x_i^{v_i} \leftrightarrow x_i^{u_i-c_i} x_j^{c_j} \leftrightarrow x^v$ is a path in $G_b(I_{\mathcal{A}})$, a contradiction again.

Finally, if x^v is not indispensable, then, by Theorem 1.9, there exists a monomial $x^v \in \text{deg}^{-1}_{\mathcal{A}}(b) \setminus \{x^v\}$ such that $\text{supp}(x^v) \cap \text{supp}(x^v) \neq \emptyset$. If $j \in \text{supp}(x^v)$, then $x_i^{v_i} \leftrightarrow x_i^{u_i-c_i} x_j^{c_j} \leftrightarrow x^v \leftrightarrow x^v$ is a path in $G_b(I_{\mathcal{A}})$, a contradiction to the fact that f is a minimal generator. Moreover $i \notin \text{supp}(x^v)$, by the minimality of c_i. Thus $\text{supp}(x^v) \subseteq \{k, l\}$ and also $x_k^{v_k} x_i^{v_i} - x_k^{v_k} x_i^{v_i} \in I_{\mathcal{A}}$. Suppose that $c_k a_k \neq c_i a_i$. Then $v_k a_k + v_i a_i = w_k a_k + w_i a_i$. Assume without loss of generality that $w_i \geq v_i$. We have that $(v_k - w_i) a_k = (w_i - v_i) a_i \neq 0$. Hence $v_k - w_k \geq c_k$. If $w_k \neq 0$, then $v_k > c_k$. If $w_k = 0$, $v_k a_k = (w_i - v_i) a_i$ and $v_i \neq 0$, since $\text{supp}(x^v) \cap \text{supp}(x^v) \neq \emptyset$. Thus $w_i - v_i \geq c_i$ and $w_i > c_i$. By using similar arguments as in the first part of the proof we arrive at a contradiction. Consequently $c_k a_k = c_i a_i$.

(ii) The proof is an easy adaptation of the arguments used in (i).

For the rest of this section we keep the same notation as in Theorem 3.6.

The following result was first proved by Bresinsky [1988, Theorem 3], but our argument seems to be shorter and more appropriate in our context.

Proposition 3.9. There exists a minimal system of binomial generators of $I_{\mathcal{A}}$ consisting of the union of \mathcal{F} and a set of binomials in $I_{\mathcal{A}}$ with full support.

Proof. By Lemma 3.8(i), if for instance $f = x_i^{v_i} - x^v$ is in a minimal generating set of $I_{\mathcal{A}}$ and it is not a critical binomial with respect to any variable, then $c_i a_i = c_j a_j$, for $j \neq i$. We replace f by $g = f - x_i^{u_i-c_i} (x_i^{c_i} - x_j^{c_j}) = x_i^{u_i-c_i} x_j^{c_j} - x^v \in I_{\mathcal{A}}$ in the minimal
generating set of \(I_{\mathcal{A}} \). Moreover, either \(\text{supp}(x^v) = \{ k, l \} \) and \(\{ k, l \} \cap \{ i, j \} = \emptyset \), so \(g \) has full support, or \(x^v \) is a power of a variable, say \(x^v = x^v_k \), with \(v_k > c_k \). In this case, by using again Lemma 3.8(i), we replace \(g \) with \(h = g + x^v_k - c_k (x^v_k - x^v_i) = x^v_k - c_k x^v_i \in I_{\mathcal{A}} \) with \(\{ k, l \} \cap \{ i, j \} = \emptyset \). Hence, there exists a system of generators of \(I_{\mathcal{A}} \) consisting of the union of a system of binomials generators of \(C_{\mathcal{A}} \) and a set \(\mathcal{F}' \) of binomials in \(I_{\mathcal{A}} \) with full support. Furthermore, by Theorem 3.6, we may assume that \(\mathcal{F} \) is a system of binomials generators of \(C_{\mathcal{A}} \).

Now, let \(f = x^c_i - x^u \in \mathcal{F} \) and suppose that \(f = \sum_{n=1}^{s} g_n f_n \) where every \(f_n \in (\mathcal{F} \setminus \{ f \}) \cup \mathcal{F}' \). From the minimality of \(c_i \), we have that \(f_n = \pm (x^c_i - x^v) \) and \(|g_n| = 1 \), for some \(n \). Then, according to the cases in Theorem 3.6, either \(x^u \) or \(x^v \) is equal to \(x^c_j \), for some \(j \neq i \). Now in the above expression of \(f \) the term \(x^c_j \) should be canceled, so, from the minimality of \(c_j \), we have \(f_m = \pm (x^c_j - x^w) \) or \(f_m = \pm (x^c_j - x^v), \pm (x^c_j - x^w) \) is a subset of \(\mathcal{F} \). So, the only possible case is \(\mathcal{F} = \{ x^c_i, x^c_j, x^c_k, x^c_l \} \). Since, in this case, \(I_{\mathcal{A}} = C_{\mathcal{A}} \) by Theorem 2.9, and \(\mathcal{F}' = \emptyset \), we are done.

From the above proposition it follows that \(I_{\mathcal{A}} \) is generic (see [Ojeda 2008], for instance) only in Case 1. The next theorem provides a minimal generating set for \(I_{\mathcal{A}} \).

Theorem 3.10. A minimal system of generators of \(I_{\mathcal{A}} \) (up to permutation of indices) is provided by the union of \(\mathcal{F} \), the set \(\mathcal{F} \) of all binomials \(x^{u_1}_{i_1} x^{u_2}_{i_2} - x^{u_3}_{i_3} x^{u_4}_{i_4} \in I_{\mathcal{A}} \) with \(0 < u_{i_1} < c_j \), \(j = 1, 2, u_{i_3} > 0, u_{i_4} > 0 \) and \(x^{u_3}_{i_3} x^{u_4}_{i_4} \) indispensable, and the set \(\mathcal{R} \) of all binomials \(x^{u_1}_{i_1} x^{u_2}_{i_2} - x^{u_3}_{i_3} x^{u_4}_{i_4} \in I_{\mathcal{A}} \) with full support and satisfying the following conditions:

- \(u_1 \leq c_1 \) and \(x^{u_3}_{x^{u_3}} x^{u_4}_{x^{u_4}} \) is indispensable, in Cases 2(a) and 4(b).
- \(u_1 \leq c_1 \) and/or \(u_3 \leq c_3 \) and there is no \(x^{v_1}_{x^{v_1}} x^{v_2}_{x^{v_2}} x^{v_3}_{x^{v_3}} x^{v_4}_{x^{v_4}} \in I_{\mathcal{A}} \) with full support such that \(x^{v_1}_{x^{v_1}} x^{v_2}_{x^{v_2}} \) properly divides \(x^{u_1}_{x^{u_1} + c_1} x^{u_2}_{x^{u_2} - c_2} \) or \(x^{v_3}_{x^{v_3}} x^{v_4}_{x^{v_4}} \) properly divides \(x^{u_3}_{x^{u_3} + \alpha c_3} x^{u_4}_{x^{u_4} - \alpha c_4} \) for some \(\alpha \in \mathbb{N} \), in Case 2(b).

Proof. By Proposition 3.9, there exists a minimal system of binomial generators \(\mathcal{F} \cup \mathcal{F}' \) of \(I_{\mathcal{A}} \) such that \(\mathcal{F} \) is a minimal system of generators of \(C_{\mathcal{A}} \) and \(\text{supp}(f) = \{ 1, 2, 3, 4 \} \), for every \(f \in \mathcal{F}' \). Moreover, since all the binomials in the set \(\mathcal{F} \) are indispensable by Corollary 2.16, we have \(\mathcal{F}' = \mathcal{F} \cup \mathcal{R} \), where \(\mathcal{R} \) is a set of binomials of \(I_{\mathcal{A}} \) of the form \(x^{u_1}_{i_1} x^{u_2}_{i_2} - x^{u_3}_{i_3} x^{u_4}_{i_4} \) with \(u_{i_1} \neq 0 \), for every \(j \), and \(u_{i_j} \geq c_j \) for some \(j \).

Observe that if \(\mathcal{R} = \emptyset \), then the set defined in the statement of the theorem coincides with \(\mathcal{F} \cup \mathcal{F}' \) and therefore it is a minimal set of generators. So, we assume that \(\mathcal{R} \neq \emptyset \), that is to say, there exists a minimal generator \(x^{u_1}_{i_1} x^{u_2}_{i_2} - x^{u_3}_{i_3} x^{u_4}_{i_4} \in \mathcal{R} \) with \(u_2 \geq c_2 \) (by permuting variables if necessary). By Lemma 3.8(ii) we have
\(c_1a_1 = c_2a_2\), so in Case 1 we have \(\mathcal{R} = \emptyset\) and therefore we are done. Moreover, if \(c_2a_2 = c_1a_i\), for an \(i \in \{3, 4\}\), then \(x_1^{u_1}x_2^{u_2} \leftrightarrow x_1^{u_1}x_2^{u_2-c}x_i^{c_i} \leftrightarrow x_3^{u_3}x_4^{u_4}\) is a path in \(G_b(I_{\mathcal{R}})\), where \(b = u_1a_1 + u_2a_2\), a contradiction with Theorem 1.8. Therefore, we conclude that the theorem is also true in Case 2(c) and Case 3. Notice that, in Case 4(a), we can proceed similarly to reach a contradiction; indeed, since \(x_2^{c_2} - x^v \in \mathcal{I}\), where \(\text{supp}(x^v) = \{3, 4\}\), then \(x_1^{c_1} - x^v \in I_{\mathcal{R}}\) and therefore \(x_1^{u_1}x_2^{u_2} \leftrightarrow x_1^{u_1+c_1}x_2^{u_2-c} \leftrightarrow x_1^{u_1}x_2^{u_2-c}x^v \leftrightarrow x_3^{u_3}x_4^{u_4}\) is a path in \(G_b(I_{\mathcal{R}})\), a contradiction with Theorem 1.8. Thus \(\mathcal{R} = \emptyset\) in Case 4(a), too.

Suppose now that \(x_1^{v_1}x_i^{v_i} - x_2^{v_2}x_j^{v_j} \in \mathcal{R}\). By Lemma 3.8(ii) again, we obtain that at least one of the equalities \(c_1a_1 = c_1a_i\) and \(c_2a_2 = c_2a_j\) holds. But, as we proved above, these equalities are incompatible with the condition \(x_1^{u_1}x_2^{u_2} - x_3^{u_3}x_4^{u_4} \in \mathcal{R}\) with \(u_2 \geq c_2\). Hence, all the binomials in \(\mathcal{R}\) are of the form \(x_1^{v_1}x_i^{v_i} - x_3^{v_3}x_4^{v_4}\) and \(x_2\) arises, with exponent greater than or equal to 2, in at least one of the variables.

We distinguish the following cases:

Case 2(a) or 4(b). If there exists \(x_1^{v_1}x_2^{v_2} - x_3^{v_3}x_4^{v_4} \in \mathcal{R}\) such that for instance \(v_4 \geq c_4\), then \(c_3a_3 = c_4a_4\) by Lemma 3.8(ii). This is clearly incompatible with Cases 2(a) and 4(b), since \(x_3^{v_3}x_4^{v_4} \leftrightarrow x_3^{v_3}x_4^{v_4-c_4}x^{u_4} \leftrightarrow x_1^{v_1}x_2^{v_2}\) is a path in \(G_d(I_{\mathcal{R}})\), \(d = a_1v_1 + a_2v_2\), a contradiction with Theorem 1.8. Thus the binomials in \(\mathcal{R}\) are of the form \(x_1^{u_1}x_2^{u_2} - x_3^{u_3}x_4^{u_4}\) with \(u_i < c_i\), \(i = 3, 4\). If \(x_3^{u_3}x_4^{u_4}\) is not indispensable, then there exists \(x^u - x_3^{v_3}x_4^{v_4} \in I_{\mathcal{R}}\) such that \(0 < v_i \leq u_i\), for \(i = 3, 4\), with at least one inequality strict and \(\text{supp}(x^v) \subseteq \{1, 2\}\). So, \(x_3^{v_3}x_4^{v_4} \leftrightarrow x_3^{v_3-v_i}x_4^{v_4-v_i}x^v \leftrightarrow x_1^{v_1}x_2^{v_2}\) is a path in \(G_b(I_{\mathcal{R}})\) where \(b = a_3u_3 + a_4u_4\), a contradiction with Theorem 1.8. Moreover, since \(x_1^{c_1} - x_2^{c_2} \in I_{\mathcal{R}}\), we may change, if it is necessary, \(\mathcal{R}\) by replacing every binomial \(x_1^{u_1}x_2^{u_2} - x_3^{u_3}x_4^{u_4}\), where \(u_1 > c_1\), with \(x_1^{u_1-c_1}x_2^{u_2+c_2} - x_3^{u_3}x_4^{u_4} \in I_{\mathcal{R}}\) such that \(0 < u_1 - c_1 \leq 1\) and \(u_2 + c_2 \geq c_2\). Now the new set \(\mathcal{I} \cup \mathcal{J} \cup \mathcal{R}\) has the desired form.

We have that

\[
x_1^{u_1}x_2^{u_2} - x_3^{u_3}x_4^{u_4} = (x_1^{u_1-c_1}x_2^{u_2+c_2} - x_3^{u_3}x_4^{u_4}) + x_1^{u_1-c_1}x_2^{u_2}(x_1^{c_1} - x_2^{c_2}),
\]

so \(\mathcal{I} \cup \mathcal{J} \cup \mathcal{R}\) is a generating set of \(I_{\mathcal{R}}\). To see that this is actually minimal, by indispensability reasons, it suffices to show that if \(x_1^{u_1}x_2^{u_2} - x_3^{u_3}x_4^{u_4} \in \mathcal{R}\) and \(x_1^{v_1}x_2^{v_2} - x_3^{v_3}x_4^{v_4} \in \mathcal{I} \cup \mathcal{J} \cup \mathcal{R}\), then \(x_1^{u_1}x_2^{u_2} = x_1^{v_1}x_2^{v_2}\). Otherwise \(x_1^{u_1}x_2^{u_2} - x_1^{v_1}x_2^{v_2} \in I_{\mathcal{R}}\), but \(0 < u_1 \leq c_1\) and \(v_1 \leq c_1\). Thus \(|u_1 - v_1| \leq c_1\), so \(u_1 = c_1\), \(v_1 = 0\) and therefore \(v_2 = c_2\), since every binomial in \(\mathcal{I} \cup \mathcal{J} \cup \mathcal{R}\) with cardinality less than four is critical. We have that \(c_1a_1 + a_2u_2 = c_2a_2\) and also \(c_1a_1 = c_2a_2\), so \(u_2 = 0\) a contradiction.

Case 2(b). Now, by modifying \(\mathcal{R}\) as in the previous case if necessary, we have that the binomials in \(\mathcal{R}\) are of the following form: \(x_1^{u_1}x_2^{u_2} - x_3^{u_3}x_4^{u_4}\) with \(0 < u_1 \leq c_1\), \(u_2 \neq 0\) and/or \(0 < u_3 \leq c_3\), \(u_4 \neq 0\). If there exists \(c \in \mathbb{N}\) and \(x_1^{v_1}x_2^{v_2} - x_3^{v_3}x_4^{v_4} \in I_{\mathcal{R}}\) with full support such that \(x_1^{u_1+c_1}x_2^{u_2-c_2} = mx_1^{v_1}x_2^{v_2}\) (or \(x_3^{u_3+c_3}x_4^{u_4-c_4} = mx_3^{v_3}x_4^{v_4}\), respectively) with \(m \neq 1\), then \(x_1^{u_1}x_2^{u_2} \leftrightarrow mx_3^{v_3}x_4^{v_4} \leftrightarrow x_3^{u_3}x_4^{u_4}\) (or \(x_1^{u_1}x_2^{u_2} \leftrightarrow x_1^{v_1}x_2^{v_2}m \leftrightarrow\)
$x_3^u x_4^u$, respectively) is a path in $G_b(I_d)$, where $b = u_1 a_1 + u_2 a_2$, a contradiction with Theorem 1.8. So, we conclude that all the binomials in \mathcal{R} are of the desired form.

Moreover, given $f = x_1^{u_1} x_2^{u_2} - x_3^{u_3} x_4^u \in \mathcal{R}$ and a monomial x^u with $\deg_{\mathcal{A}}(x^u) = u_1 a_1 + u_2 a_2$, then either $v_1 = v_2 = 0$ or $v_1 = v_3 = v_4 = 0$ and $v_2 > c_2$. Indeed, since $x_1^{u_1} x_2^{u_2} - x_1^{v_1} x_2^{v_2} x_3^{v_3} x_4^u \in I_d$, we have the following possibilities:

(i) $g = x_1^{u_1-v_1} x_2^{u_2-v_2} - x_3^{v_3} x_4^u \in I_d$, when $v_1 \leq u_1$ and $v_2 < u_2$. If g has full support, then $v_1 = v_2 = 0$, otherwise $f \not\in \mathcal{R}$. If for instance $u_1 - v_1 = 0$, then $u_2 - v_2 \geq c_2$, because of the minimality of c_2. Thus, $g' = x_1^{u_1-v_1+c_1} x_2^{u_2-v_2-c_2} - x_3^{v_3} x_4^u \in I_d$. If g' has full support, then $v_1 = v_2 = 0$; otherwise the monomial $x_1^{u_1-v_1+c_1} x_2^{u_2-v_2-c_2}$ properly divides $x_1^{u_1-v_1+c_1} x_2^{u_2-v_2-c_2}$, that is to say, $f \not\in \mathcal{R}$. If g' does not have full support, say $v_3 = 0$, then $v_4 \geq c_4$ (due to the minimality of c_4). So, we may define $g'' = x_1^{u_1-v_1+c_1} x_2^{u_2-v_2-c_2} - x_3^{v_3} x_4^{v_4-c_4} \in I_d$ and conclude that $v_1 = v_2 = 0$, as before.

(ii) $g = x_1^{u_1-v_1} - x_2^{v_2-u_2} x_3^{v_3} x_4^u \in I_d$, when $v_1 < u_1$ and $v_2 \geq u_2$. Since $0 < u_1 \leq c_1$, we have that $v_1 = 0$ and also $u_1 = c_1$. Thus $v_2 - u_2 = c_2$ and $v_3 = v_4 = 0$, since $x_1^{c_1} - x_2^{c_2}$ is the only critical binomial with respect to x_1.

(iii) $g = x_2^{v_2} - x_1^{u_1-v_1} x_3^{v_3} x_4^u \in I_d$, when $v_1 \geq u_1$ and $v_2 < u_2$. Now, by the minimality of c_2, we have that $u_2 - v_2 \geq c_2$ and therefore $h = x_1^{c_1} x_2^{v_2-u_2} - x_1^{v_1-u_1} x_2^{v_2} x_3^{v_3} x_4^u \in I_d$. So, either $x_1^{c_1-u_1} x_2^{u_2-v_2-c_2} - x_3^{v_3} x_4^u \in I_d$, when $c_1 \geq v_1 - u_1$, or $x_2^{u_2-v_2-c_2} - x_1^{v_1-u_1-c} x_3^{v_3} x_4^u \in I_d$, when $c_1 < v_1 - u_1$. In the first case we proceed as in (i), while in the other we repeat the same argument and so on. This process can not continue indefinitely, since there exists $\alpha \in \mathbb{N}$ such that $\alpha c_1 < v_1 - u_1$, and thus we are done.

From Theorem 1.8 we have that there exists a minimal generator of \mathcal{A}-degree $\deg_{\mathcal{A}}(f)$ for each $f \in \mathcal{R}$. Furthermore, by direct checking one can show that all the binomials in $\mathcal{I} \cup \mathcal{R}$ have a different \mathcal{A}-degree, and all these \mathcal{A}-degrees are different from both $c_1 a_1$ and $c_2 a_2$. Thus, we conclude that $\mathcal{I} \cup \mathcal{I} \cup \mathcal{R}$ is a minimal system of generators of I_d. \hfill \Box

Combining Theorem 3.10 with Corollaries 2.5 and 2.16 yields the following theorem.

Theorem 3.11. With the same notation as in Theorem 3.10, the ideal I_d has a unique minimal system of generators if and only if C_d has a unique minimal system of generators and $\mathcal{R} = \emptyset$.

In [Ojeda 2008], it is shown that there exist semigroup ideals of $\mathcal{K}[x_1, \ldots, x_4]$ with unique minimal system of binomial generators of cardinality m, for every $m \geq 7$.

Example 3.12. Let $\mathcal{A} = \{6, 8, 17, 19\}$. The critical binomial $x_1^4 - x_2^3$ of I_d is indispensable, while the critical binomial $x_1^2 - x_1 x_2^3$ is not indispensable. Thus
we are in Case 4(b). The binomial $x_1^2x_2^3 - x_3x_4$ belongs to \mathcal{R} and therefore, from Theorem 3.11, the toric ideal $I_\mathcal{A}$ does not have a unique minimal system of binomial generators.

Example 3.13. Let $\mathcal{A} = \{25, 30, 57, 76\}$, then the minimal number of elements of $I_\mathcal{A}$ is 7. The only critical binomials of $I_\mathcal{A}$ are $\pm(x_1^6 - x_5^2)$ and $\pm(x_1^4 - x_4^2)$, so we are in Case 2(b). The binomial $x_1^2x_2^3 - x_3x_4$ belongs to \mathcal{R} and therefore, from Theorem 3.11, the toric ideal $I_\mathcal{A}$ does not have a unique minimal system of binomial generators.

Observe that $I_\mathcal{A}$ is a complete intersection only in cases 2(a-c), 3 and 4(b). Moreover, except from 2(b), in all the other cases $I_\mathcal{A} = C_\mathcal{A}$. In the case 2(b) a minimal system of binomial generators is $x_1^{c_1} - x_2^{c_2} - x_3^{c_3} - x_4^{c_4}$ and $x_1^{f_1}x_2^{f_2} - x_3^{f_3}x_4^{f_4}$ where $a_1u_1 + a_2u_2 = a_3u_3 + a_4u_4 = \text{lcm}(\gcd(a_1, a_2), \gcd(a_3, a_4))$; [Delorme 1976].

It is well known that the ring $k[x]/I_\mathcal{A}$ is Gorenstein if and only if the semigroup $\mathbb{N}\mathcal{A}$ is symmetric, see [Kunz 1970]. We will prove that if $\mathbb{N}\mathcal{A}$ is symmetric and $I_\mathcal{A}$ is not a complete intersection, then $I_\mathcal{A}$ has a unique minimal system of binomial generators.

Theorem 3.14. If $f_1 = x_1^{c_1} - x_3^{u_{13}}x_4^{u_{14}}$, $f_2 = x_2^{c_2} - x_1^{u_{21}}x_4^{u_{24}}$, $f_3 = x_3^{c_3} - x_1^{u_{31}}x_2^{u_{32}}$ and $f_4 = x_4^{c_4} - x_2^{u_{42}}x_3^{u_{43}}$ are critical binomials of $I_\mathcal{A}$ such that $\text{supp}(f_i)$ has cardinality equal to 3, for every $i \in \{1, \ldots, 4\}$, then $I_\mathcal{A}$ has a unique minimal system of binomial generators.

Proof. Every exponent u_{ij} of x_j is strictly less than c_j, for each $j = 1, \ldots, 4$. If for instance $u_{13} \geq c_3$, then $x_1^{c_1} - x_1^{u_{13}}x_2^{u_{23}}x_3^{u_{33}}x_4^{u_{43}} = f_3 + x_1^{u_{13}} - x_1^{u_{14}}f_3 \in I_\mathcal{A}$ and therefore $x_1^{c_1} - x_3^{u_{13}}x_3^{u_{33}}x_4^{u_{43}} \in I_\mathcal{A}$, a contradiction to the minimality of c_1. By Proposition 2.3 we have that $c_ja_j \neq c_ja_j$, for every $i \neq j$. We will prove that every f_i is indispensable in $C_\mathcal{A}$. Suppose for example that f_1 is not indispensable in $C_\mathcal{A}$, then there is a binomial $g = x_1^{v_1} - x_2^{v_2}x_3^{v_3}x_4^{v_4} \in I_\mathcal{A}$. So $x_3^{u_{13}}x_4^{u_{14}} - x_2^{v_2}x_3^{v_3}x_4^{v_4} \in I_\mathcal{A}$, and thus $v_3 < u_{13}$ and $v_4 < u_{14}$, since $u_{13} < c_3$ and $u_{14} < c_4$. We have that $x_2^{v_2} - x_3^{u_{13}}x_4^{u_{14}} \in I_\mathcal{A}$ and also $x_1^{c_1} - x_1^{u_{21}}x_2^{v_2} - x_3^{u_{33}}x_4^{u_{44}} = g + x_2^{v_2} - x_3^{u_{33}}x_4^{u_{44}}f_2 \in I_\mathcal{A}$. Therefore $x_1^{c_1} - x_1^{u_{21}} - x_2^{v_2} - x_3^{u_{33}}x_4^{u_{44}} \in I_\mathcal{A}$, a contradiction to the minimality of c_1. Analogously we can prove that f_2, f_3 and f_4 are indispensable in $C_\mathcal{A}$. Thus $C_\mathcal{A}$ is generated by its indispensable binomials and therefore, from Theorem 3.11, the toric ideal $I_\mathcal{A}$ has a unique minimal system of binomial generators. □

Corollary 3.15. Let $\mathbb{N}\mathcal{A}$ be a symmetric semigroup. If $I_\mathcal{A}$ is not a complete intersection, then it has a unique minimal system of binomial generators.

Proof. From [Bresinsky 1975, Theorem 3] the toric ideal $I_\mathcal{A}$ has a minimal generating set consisting of five binomials, namely four critical binomials of the form defined in the above theorem and a non critical binomial. By Theorem 3.14 the toric ideal $I_\mathcal{A}$ is generated by its indispensable binomials. □
According to [Bresinsky 1975, Theorem 4] the integers a_i are polynomials in the exponents of the binomial in a minimal generating system of $I_{\mathcal{A}}$. We can see these expressions as a system of four polynomial equations, which in light of Corollary 3.15, has a unique solution over the positive integers.

Remark 3.16. Theorem 6.4 of [Komeda 1982] shows that if $\mathbb{N}\mathcal{A}$ is pseudosymmetric (see [Rosales and García 2009] for a definition), then $f_1 = x_1^{c_1} - x_3 x_4^{c_4-1}$, $f_2 = x_2^{c_2} - x_4^{u_{21}} x_4$, $f_3 = x_3^{c_3} - x_1^{c_1-u_{21}-1} x_2$, $f_4 = x_4^{c_4} - x_1 x_2^{c_2-1} x_3^{c_3-1}$ and $g = x_1^{u_{21}+1} x_3^{c_3-1} - x_2 x_4^{c_4-1}$ with $c_i > 1$ for $i = 1, \ldots, 4$, and $u_{21} - 1 < c_1$, is a minimal system of generators of $I_{\mathcal{A}}$. Now, an easy check shows that $c_i a_i \neq c_j a_j$ for every $i \neq j$. The interested reader may prove that $C_{\mathcal{A}}$ has a unique minimal system of generators if and only if $u_{21} = c_1 - 2$. Thus, since $\mathcal{R} = \emptyset$, by Theorem 3.11, we conclude that $I_{\mathcal{A}}$ is generated by its indispensable binomials if and only if $c_2 n_2 \neq (c_1 - 2) n_1 + n_4$.

If the cardinality of \mathcal{A} is greater than 4, the analogous of Corollary 3.15 is not true in general. In [Rosales 2001] it is shown that the semigroup generated by $\mathcal{A} = \{15, 16, 81, 82, 83, 84\}$ is symmetric. Since the monomials $x_1^{11}, x_3 x_6$ and $x_4 x_5$ have the same \mathcal{A}-degree, we conclude, by Theorem 1.8, that the ideal $I_{\mathcal{A}}$ does not have a unique minimal system of binomial generators.

Acknowledgments

Part of this work was done during a visit of the first author to the University of Extremadura financed by the Plan Propio 2010 of the University of Extremadura. We thank the referee for helpful comments and suggestions that improved the paper.

References

AN INDISPENSABLE CLASSIFICATION OF MONOMIAL CURVES IN $\mathbb{A}^4(k)$

Received July 26, 2012. Revised October 7, 2013.
ANARGYROS KATSABEKIS
CENTRUM WISKUNDE & INFORMATICA (CWI)
POSTBUS 94079
1090 GB AMSTERDAM
THE NETHERLANDS
katsabek@aegean.gr

IGNACIO OJEDA
DEPARTAMENTO DE MATEMATICAS
UNIVERSIDAD DE EXTREMADURA
FACULTAD DE CIENCIAS
AVENIDA DE ELVAS S/N
06071 BADAJOZ
SPAIN
ojedamc@unex.es
ALEXANDRE PAIVA BARRETO
A transport inequality on the sphere obtained by mass transport 23

DARIO CORDERO-ERASQUIN
A cohomological injectivity result for the residual automorphic spectrum of GL_n 33

HARALD GROBNER
Gradient estimates and entropy formulae of porous medium and fast diffusion equations for the Witten Laplacian 47

GUANGYUE HUANG and HAIZHONG LI
Controlled connectivity for semidirect products acting on locally finite trees 79

KEITH JONES
An indispensible classification of monomial curves in $A^4(k)$ 95

ANARGYROS KATSABEKIS and IGNACIO OJEDA
Contracting an axially symmetric torus by its harmonic mean curvature 117

CHRISTOPHER KIM
Composition operators on strictly pseudoconvex domains with smooth symbol 135

HYUNGWOON KOO and SONG-YING LI
The Alexandrov problem in a quotient space of $H^2 \times R$ 155

ANA MENEZES
Twisted quantum Drinfeld Hecke algebras 173

DEEPAK NAIDU
L^p harmonic 1-forms and first eigenvalue of a stable minimal hypersurface 205

KEOMKYO SEO
Reconstruction from Koszul homology and applications to module and derived categories 231

RYO TAKAHASHI
A virtual Kawasaki–Riemann–Roch formula 249

VALENTIN TONITA