A VIRTUAL KAWASAKI–RIEMANN–ROCH FORMULA

Valentin Tonita
A VIRTUAL KAWASAKI–RIEMANN–ROCH FORMULA

Valentin Tonita

Kawasaki’s formula is a tool to compute holomorphic Euler characteristics of vector bundles on a compact orbifold \(\mathcal{X} \). Let \(\mathcal{X} \) be an orbispace with perfect obstruction theory which admits an embedding in a smooth orbifold. One can then construct the virtual structure sheaf and the virtual fundamental class of \(\mathcal{X} \). In this paper we prove that Kawasaki’s formula “behaves well” with working “virtually” on \(\mathcal{X} \) in the following sense: if we replace the structure sheaves, tangent and normal bundles in the formula by their virtual counterparts then Kawasaki’s formula stays true. Our motivation comes from studying the quantum \(K \)-theory of a complex manifold \(X \) (Givental and Tonita, 2014), with the formula applied to Kontsevich moduli spaces of genus-0 stable maps to \(X \).

1. Introduction

Given a manifold \(\mathcal{X} \) and a vector bundle \(V \) on \(\mathcal{X} \), then the Hirzebruch–Riemann–Roch formula states that

\[
\chi(\mathcal{X}, V) = \int_{\mathcal{X}} \text{ch}(V) T d(T_{\mathcal{X}}).
\]

Kawasaki [1979] generalized this formula to the case when \(\mathcal{X} \) is an orbifold. He reduces the computation of Euler characteristics on \(\mathcal{X} \) to the computation of certain cohomological integrals on the inertia orbifold \(I\mathcal{X} \):

\[
\chi(\mathcal{X}, V) = \sum_{\mu} \frac{1}{m_{\mu}} \int_{\mathcal{X}_{\mu}} T d(T_{\mathcal{X}_{\mu}}) \text{ch}\left(\frac{\text{Tr}(V)}{\text{Tr}(\Lambda^* N^*)} \right).
\]

We explain below the ingredients in the formula:

\(I\mathcal{X} \) is defined as follows: around any point \(p \in \mathcal{X} \) there is a local chart \((\tilde{U}_p, G_p) \) such that locally \(\mathcal{X} \) is represented as the quotient of \(\tilde{U}_p \) by \(G_p \). Consider the set of conjugacy classes \((1) = (h_p^1, h_p^2, \ldots, h_p^n) \) in \(G_p \). Define

\[
I\mathcal{X} := \{(p, (h_p^i)) \mid i = 1, 2, \ldots, n_p\}.
\]

MSC2010: 19L10.

Keywords: Gromov–Witten theory, Riemann–Roch type formulae.
Pick an element h^i_p in each conjugacy class. Then a local chart on $I \mathcal{X}$ is given by

$$\bigcup_{i=1}^{n_p} \tilde{U}_p^{(h^i_p)} / Z_{G_p}(h^i_p),$$

where $Z_{G_p}(h^i_p)$ is the centralizer of h^i_p in G_p. Denote by \mathcal{X}_μ the connected components of the inertia orbifold (we’ll often refer to them as Kawasaki strata). The multiplicity m_μ associated to each \mathcal{X}_μ is given by

$$m_\mu := |\ker(Z_{G_p}(g) \to \text{Aut}(\tilde{U}_p^g))|.$$

For a vector bundle V we will denote by V^* the dual bundle to V. The restriction of V to \mathcal{X}_μ decomposes in characters of the g action. Let $E_{r}^{(l)}$ be the subbundle of the restriction of E to \mathcal{X}_μ on which g acts with eigenvalue $e^{2\pi il/r}$. Then the trace $\text{Tr}(V)$ is defined to be the orbibundle whose fiber over the point $(p, (g))$ of \mathcal{X}_μ is

$$\text{Tr}(V) := \sum_l e^{2\pi il/r} E_{r}^{(l)}.$$

Finally, $\Lambda^* N^*_{\mu}$ is the K-theoretic Euler class of the normal bundle N_{μ} of \mathcal{X}_μ in \mathcal{X}. $\text{Tr}(\Lambda^* N^*_{\mu})$ is invertible because the symmetry g acts with eigenvalues different from 1 on the normal bundle to the fixed point locus. We call the terms corresponding to the identity component in the formula fake Euler characteristics:

$$\chi^f(\mathcal{X}, V) = \int_{\mathcal{X}} \text{ch}(V) T d(T\mathcal{X}).$$

In the case where \mathcal{X} is a global quotient, formula (1) is the Lefschetz fixed point formula.

Now let \mathcal{X} be a compact, complex orbispace (Deligne–Mumford stack) with a perfect obstruction theory $E^{-1} \to E^0$. This is used to define the intrinsic normal cone, which is embedded in E_1 — the dual bundle to E^{-1} (see [Li and Tian 1998; Behrend and Fantechi 1997]). The virtual structure sheaf $\mathcal{O}_\mathcal{X}^{\text{vir}}$ was defined in [Lee 2004] as the K-theoretic pullback by the zero section of the structure sheaf of this cone. Let $I \mathcal{X} = \coprod \mathcal{X}_\mu$ be the inertia orbifold of \mathcal{X}. We denote by i_μ the inclusion of a stratum \mathcal{X}_μ in \mathcal{X}. For a bundle V on \mathcal{X}, we write $i^* V = V_f^\mu \oplus V_m^\mu$ for its decomposition as the direct sum of the fixed part and the moving part under the action of the symmetry associated to \mathcal{X}_μ. To avoid ugly notation we will often simply write V^m, V^f. The virtual normal bundle to \mathcal{X}_μ in \mathcal{X} is defined as $[E_0^m] - [E_1^m]$. We will in addition assume that \mathcal{X} admits an embedding j in a smooth compact orbifold \mathcal{Y}. This is always true for the moduli spaces of genus-0 stable maps $X_{0,n,d}$ because an embedding $X \hookrightarrow \mathbb{P}^N$ induces an embedding $X_{0,n,d} \hookrightarrow (\mathbb{P}^N)_{0,n,d}$.
Theorem 1.1. Denote by N^vir_μ the virtual normal bundle of \mathcal{X}_μ in \mathcal{X}. Then

$$
\chi(\mathcal{X}, j^*(V) \otimes \mathcal{O}^{\text{vir}}_{\mathcal{X}}) = \sum_{\mu} \frac{1}{m_\mu} \chi^f(\mathcal{X}_\mu, \frac{\text{Tr}(V_\mu \otimes \mathcal{O}^{\text{vir}}_{\mathcal{X}_\mu})}{\text{Tr}(\Lambda^*(N^\text{vir}_\mu)^*)}).
$$

Remark 1.2. A perfect obstruction theory $E^{-1} \to E^0$ on \mathcal{X} induces canonically a perfect obstruction theory on \mathcal{X}_μ by taking the fixed part of the complex $E^{-1}_\mu \to E^0_\mu$. The proof is the same as that of Proposition 1 in [Graber and Pandharipande 1999]. This is then used to define the sheaf $\mathcal{O}^{\text{vir}}_{\mathcal{X}_\mu}$.

Remark 1.3. It is proved in [Fantechi and Göttsche 2010] that if \mathcal{X} is a scheme, the Grothendieck–Riemann–Roch theorem is compatible with virtual fundamental classes and virtual fundamental sheaves, that is,

$$
\chi^f(\mathcal{X}, V \otimes \mathcal{O}^{\text{vir}}_{\mathcal{X}}) = \int_{[\mathcal{X}]} \chi(V \otimes \mathcal{O}^{\text{vir}}_{\mathcal{X}}) \cdot T d(T^{\text{vir}}),
$$

where $[\mathcal{X}]$ is the virtual fundamental class of \mathcal{X} and T^{vir} is its virtual tangent bundle. Their arguments carry over to the case when \mathcal{X} is a stack.

Remark 1.4. The bundles V to which we apply Theorem 1.1 in [Givental and Tonita 2014] are (sums and products of) cotangent line bundles L_i and evaluation classes $\text{ev}_i^*(a_i)$ (where a_i are K-theoretic classes on the target). They are pullbacks of the corresponding bundles on $(\mathbb{P}^N)_{0,n,d}$.

2. Proof of Theorem 1.1

Before proving Theorem 1.1 we recall a couple of background facts and lemmata on K-theory which we will use.

Let $K_0(X)$ be the Grothendieck group of coherent sheaves on X. Given a map $f : X \to Y$, the K-theoretic pullback $f^* : K_0(Y) \to K_0(X)$ is defined as the alternating sum of derived functors $\text{Tor}_i^f(\mathcal{F}, \mathcal{G}_X)$, provided that the sum is finite. This is always true for instance if f is flat or if it is a regular embedding.

For any fiber square

$$
\begin{array}{ccc}
V' & \to & V \\
\downarrow & & \downarrow \\
B' & \to & B
\end{array}
$$

with i a regular embedding one can define K-theoretic refined Gysin homomorphisms $i^! : K_0(V) \to K_0(V')$ (see [Lee 2004]). One way to define the map $i^!$ is the following: The class $i_*^!(\mathcal{O}_{B'}) \in K^0(B)$ has a finite resolution of vector bundles, which is exact off B'. We pull it back to V and then cap (i.e., tensor product) with classes in $K_0(V)$, to get a class on $K_0(V)$ with homology supported on V', which
we can regard as an element of $K_0(V')$, because there is a canonical isomorphism between complexes on V with homology supported on V' and $K_0(V')$.

In the following two lemmata, X, Y, Y' are assumed DM stacks. We will use the following result:

Lemma 2.1. Consider the diagram:

$$
\begin{array}{ccc}
\iota^* C_{X/Y} & \longrightarrow & C_{X/Y} \\
\downarrow & & \downarrow \\
X' & \longrightarrow & X \\
\downarrow & & \downarrow \\
Y' & \longrightarrow & Y
\end{array}
$$

with i a regular embedding and j an embedding, $C_{X/Y}$ is the normal cone of X in Y and both squares are fiber diagrams. Then

$$
i^! [\mathcal{O}_{C_{X/Y}}] = [\mathcal{O}_{C_{X'/Y'}}] \in K_0(i^* C_{X/Y}).
$$

This is stated and proved in [Lee 2004, Lemma 2]. The proof is based on a more general statement (Lemma 1 of [Lee 2004]), which has been worked out in [Kresch 1999] on the level of Chow rings. Since K-theoretic statements are stronger, we give below the key ingredient which allows one to carry over Kresch’s proof to K-theory:

Lemma 2.2. Let $f : X \to Y$ be a closed embedding and let $g : Y \to \mathbb{P}^1$ be a surjection such that $g \circ f$ is flat. Denote by X_0 and Y_0 the fibers over 0 of $g \circ f$ and g, respectively. Moreover, assume that the restriction of f to $X \setminus X_0$ is an isomorphism. Then if i is the inclusion of $\{0\}$ in \mathbb{P}^1, we have $i^!(\mathcal{O}_Y) = \mathcal{O}_{X_0} \in K_0(Y_0)$.

Proof. The skyscraper sheaves at all points of \mathbb{P}^1 represent the same element in $K_0(\mathbb{P}^1)$, hence if we pull back a resolution of any point $P \in \mathbb{P}^1$ by g we get the same elements of $K_0(Y)$. On the other hand since f is an isomorphism above $\mathbb{P}^1 \setminus \{0\}$, pulling back by g of the structure sheaf of a point $P \neq 0$ is the same as pulling back by $g \circ f$ followed by f_*. By what we said above we can replace P with 0. Now from the flatness of $g \circ f$ above 0 the pullback of the structure sheaf of 0 by $g \circ f$ is the structure sheaf of the fiber X_0. The result then follows from the definition of $i^!$. \qed

Remark 2.3. Lemma 2.2 allows one to show Lemma 2.1: intermediately one shows, following [Kresch 1999] (notation is as in Lemma 2.1), that $[\mathcal{O}_{C_1}] = [\mathcal{O}_{C_2}]$ in $K_0(C_{X'Y \times_Y C_X Y})$, where $C_1 := C_{i^* C_{X/Y}}(C_X Y)$ and $C_2 := C_{j^* C_{Y'/Y}}(C_{Y'Y})$.
We now go on to prove Theorem 1.1. We have
\[\chi(\mathcal{X}, j^* V \otimes \mathcal{O}_\mathcal{X}^{\text{vir}}) = \chi(\mathcal{Y}, V \otimes j_* \mathcal{O}_\mathcal{X}^{\text{vir}}). \]
Kawasaki’s formula applied to the sheaf \(V \otimes j_* \mathcal{O}_\mathcal{X}^{\text{vir}} \) on \(\mathcal{Y} \) gives
\[\chi(\mathcal{Y}, V \otimes j_* \mathcal{O}_\mathcal{X}^{\text{vir}}) = \sum_{\mu} \frac{1}{m_\mu} \chi^f(\mathcal{Y}_\mu, \frac{\text{Tr}(V_\mu \otimes i_{\mu*} j_\ast \mathcal{O}_\mathcal{X}^{\text{vir}})}{\text{Tr}(\Lambda^\bullet N^\ast_\mu)}). \]
From the fiber diagram
\[\mathcal{X}_\mu \xrightarrow{i_\mu'} \mathcal{X} \]
\[j' \downarrow \quad j \downarrow \]
\[\mathcal{Y}_\mu \xrightarrow{i_\mu} \mathcal{Y} \]
and Theorem 6.2 in [Fulton 1998] (where this is proved for Chow rings) we have
\[i_{\mu*} j_* \mathcal{O}_\mathcal{X}^{\text{vir}} = j'_\ast i_\mu \mathcal{O}_\mathcal{X}^{\text{vir}}. \]
Plugging this in (4) gives
\[\chi^f(\mathcal{Y}_\mu, \frac{\text{Tr}(V_\mu \otimes i_{\mu*} j_\ast \mathcal{O}_\mathcal{X}^{\text{vir}})}{\text{Tr}(\Lambda^\bullet N^\ast_\mu)}) = \chi^f(\mathcal{Y}_\mu, \frac{\text{Tr}(V_\mu \otimes j'_{\ast} i_\mu \mathcal{O}_\mathcal{X}^{\text{vir}})}{\text{Tr}(\Lambda^\bullet N^\ast_\mu)}). \]
Let \(G_\mu \) be the cyclic group generated by one element of the conjugacy class associated to \(\mathcal{X}_\mu \). Then we will show that
\[\text{Tr}(\frac{i_{\mu*} \mathcal{O}_\mathcal{X}^{\text{vir}}}{\Lambda^\bullet (N^\ast_\mu)}) = \text{Tr}(\frac{\mathcal{O}_\mathcal{X}^{\text{vir}}}{\Lambda^\bullet (N^{\text{vir}})^\ast_\mu}) \]
in the \(G_\mu \)-equivariant \(K \)-ring of \(\mathcal{X}_\mu \). This is essentially the computation of Section 3 in [Graber and Pandharipande 1999] carried out in \(\mathbb{C}^\ast \)-equivariant \(K \)-theory. Relation (6) then follows by embedding the group \(G_\mu \) in the torus and specializing the value of the variable \(t \) in the ground ring of \(\mathbb{C}^\ast \)-equivariant \(K \)-theory to a \(|G_\mu| \)-root of unity.

If we define a cone \(D := C_{\mathcal{X}/\mathcal{Y}} \times E_0 \), then this is a \(T_{\mathcal{Y}} \) cone (see [Behrend and Fantechi 1997]). The virtual normal cone \(D^{\text{vir}} \) is defined as \(D/T_{\mathcal{Y}} \) and \(\mathcal{O}_\mathcal{X}^{\text{vir}} \) is the pullback by the zero section of the structure sheaf of \(D^{\text{vir}} \). Alternatively there is a fiber diagram
\[T_{\mathcal{Y}} \longrightarrow D \]
\[\downarrow \quad \downarrow \]
\[\mathcal{X} \longrightarrow \mathcal{0}_E \]
\[E_1 \]
where the bottom map is the zero section of \(E_1 \). Then one can define \(\mathcal{O}_\mathcal{X}^{\text{vir}} \) as \(0_{T_{\mathcal{Y}}} \mathcal{0}_E^{0_{E_1}} [\mathcal{O}_D] \). We’ll prove formula (6) following closely the calculation in [Graber
and Pandharipande 1999]. First, by definition of $\mathcal{O}^{\text{vir}}_{\mathcal{X}}$ and by commutativity of Gysin maps, we have

\begin{equation}
 i^!_{\mu} \mathcal{O}^{\text{vir}}_{\mathcal{X}} = i^!_{\mu} 0^*_T \mathcal{O}^1_{E_1} [\mathcal{O}_D] = 0^*_T 0^!_{E_1} i^!_{\mu} [\mathcal{O}_D].
\end{equation}

We pull back relation (3) to $(i^!_{\mu})^* D = (i^!_{\mu})^* (C_{\mathcal{X}/y} \times E_0)$ to get

\begin{equation}
 i^!_{\mu} [\mathcal{O}_D] = [\mathcal{O}_{D^\mu} \times (E^m_0)^*].
\end{equation}

In the equality above we have used the fact that $D_{\mu} = C_{\mathcal{X}/\mathcal{Y}_\mu} \times E_0^f$ and we identified the sheaf of sections of the bundle E^m_0 with the dual bundle $(E^m_0)^*$. Plugging (8) in (7) we get

\begin{equation}
 i^!_{\mu} \mathcal{O}^{\text{vir}}_{\mathcal{X}} = 0^*_T \mathcal{O}^1_{E_1} [\mathcal{O}_D \times (E^m_0)^*].
\end{equation}

Notice that the action of $T_{\mathcal{Y}_\mu}$ leaves $D_{\mu} \times (E^m_0)^*$ invariant (it acts trivially on $(E^m_0)^*$). Now we can write $0^*_T = 0^*_T \mathcal{O}^1_{E_1} \times 0^*_T \mathcal{O}^1_{\mathcal{Y}_\mu}$ and since $D^\text{vir}_{\mu} = D_{\mu}/T_{\mathcal{Y}_\mu}$ we rewrite (9) as

\begin{equation}
 i^!_{\mu} \mathcal{O}^{\text{vir}}_{\mathcal{X}} = 0^*_T \mathcal{O}^1_{E_1} [\mathcal{O}_{D^\text{vir}_{\mu}} \times (E^m_0)^*].
\end{equation}

The proof of Lemma 1 in [Graber and Pandharipande 1999] works in our set-up as well: it uses excess intersection formula which holds in K-theory. It shows that the following relation holds in the \mathbb{C}^*-equivariant K-ring of \mathcal{X}_μ:

\begin{equation}
 0^*_T \mathcal{O}^1_{E_1} [\mathcal{O}_{D^\text{vir}_{\mu}} \times (E^m_0)^*] = 0^*_E (0^!_{E_1} \mathcal{O}^1_{D^\text{vir}_{\mu}} \times (E^m_0)^*) \cdot \Lambda^*(T_{\mathcal{Y}_\mu})^*. \tag{11}
\end{equation}

The class $0^!_{E_1} \mathcal{O}^1_{D^\text{vir}_{\mu}} \times (E^m_0)^*$ lives in the \mathbb{C}^*-equivariant K-ring of E^m_0. The class doesn’t depend on the bundle map $E^m_0 \to E^m_1$ so we can assume this map to be 0. Then by excess intersection formula and the definition of $\mathcal{O}^{\text{vir}}_{\mathcal{X}_\mu}$ we get

\begin{equation}
 0^*_E (0^!_{E_1} \mathcal{O}^1_{D^\text{vir}_{\mu}} \times (E^m_0)^*) = \mathcal{O}^{\text{vir}}_{\mathcal{X}_\mu} \cdot \Lambda^*(E^m_1)^*. \tag{12}
\end{equation}

Formula (12) holds because $D^\text{vir}_{\mu} \times (E^m_0) \subset E^f_1 \times E^m_0$ and $0^!_{E_1}$ acts as $0^!_{E_1} \times 0^!_{E_1}$ on factors. $0^!_{E_1} \mathcal{O}^1_{D^\text{vir}_{\mu}} = \mathcal{O}^{\text{vir}}_{\mathcal{X}_\mu}$ by definition of $\mathcal{O}^{\text{vir}}_{\mathcal{X}_\mu}$. By excess intersection formula applied to the fiber square

\[
\begin{array}{ccc}
E^m_0 & \longrightarrow & E^m_0 \\
\downarrow \pi & & \downarrow \\
\mathcal{X}_\mu & \longrightarrow & E^m_1
\end{array}
\]

we have $0^*_E 0^!_{E_1} [(E^m_0)^*] = 0^*_E \pi^* \Lambda^*(E^m_1)^* = \Lambda^*(E^m_1)^*$. Plugging formula (12) in (11) (note that $N_{\mu} = T_{\mathcal{Y}_\mu}$ and $N^\text{vir}_{\mu} = [E^m_0] - [E^m_1]$) and taking traces proves (6).
We now plug (6) in (5) and then pull back to \mathcal{X}_μ to get

$$
\chi^f \left(\mathcal{Y}_\mu, \frac{\text{Tr}(V_\mu \otimes j_\mu^* \mathcal{N}_\mu^{\text{vir}})}{\text{Tr}(\Lambda^* \mathcal{N}_\mu^*)} \right) = \chi^f \left(\mathcal{Y}_\mu, \frac{\text{Tr}(\mathcal{N}_\mu^{\text{vir}})}{\text{Tr}(\Lambda^* \mathcal{N}_\mu^{\text{vir}})^*)} \right)
$$

$$
= \chi^f \left(\mathcal{X}_\mu, \frac{\text{Tr}(V_\mu \otimes \mathcal{N}_\mu^{\text{vir}})}{\text{Tr}(\Lambda^* \mathcal{N}_\mu^{\text{vir}})^*)} \right).
$$

\[\square\]

Acknowledgements

I would like to thank Alexander Givental for suggesting the problem and for useful discussions. Thanks are also due to Yuan-Pin Lee who patiently answered my questions on the material in his work [Lee 2004] and to Hsian-Hua Tseng who read a preliminary draft of the paper.

References

Received October 19, 2012. Revised September 23, 2013.
ALEXANDRE PAIVA BARRETO

A transport inequality on the sphere obtained by mass transport

DARIO CORDERO-ERAUSQUIN

A cohomological injectivity result for the residual automorphic spectrum of GL_n

HARALD GROBNER

Gradient estimates and entropy formulae of porous medium and fast diffusion equations for the Witten Laplacian

GUANGYUE HUANG and HAIZHONG LI

Controlled connectivity for semidirect products acting on locally finite trees

KEITH JONES

An indispensable classification of monomial curves in \(\mathbb{A}^4(\mathbb{k}) \)

ANARGYROS KATSABEKIS and IGNACIO OJEDA

Contracting an axially symmetric torus by its harmonic mean curvature

CHRISTOPHER KIM

Composition operators on strictly pseudoconvex domains with smooth symbol

HYUNGWOO KOO and SONG-YING LI

The Alexandrov problem in a quotient space of \(H^2 \times \mathbb{R} \)

ANA MENEZES

Twisted quantum Drinfeld Hecke algebras

DEEPAK NAIDU

\(L^p \) harmonic 1-forms and first eigenvalue of a stable minimal hypersurface

KEOMKYO SEO

Reconstruction from Koszul homology and applications to module and derived categories

RYO TAKAHASHI

A virtual Kawasaki–Riemann–Roch formula

VALENTIN TONITA