Vol. 268, No. 2, 2014

Download this article
Download this article For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Formes modulaires sur la $\mathbb Z_p$-extension cyclotomique de $\mathbb Q$

Laurent Clozel

Vol. 268 (2014), No. 2, 259–274
Abstract

Soit F la p-extension cyclotomique de . On peut se demander s’il existe une théorie non triviale des formes modulaires pour GL(2,F). On montre qu’une telle théorie existe en caractéristique p, au moins si GL(2) est remplacé par une algèbre de quaternions définie en (p,). En particulier, une telle théorie réalise naturellement le changement de base de Saito–Shintani–Langlands.

Let F be the cyclotomic p-extension of the rationals. It is natural to ask whether there exists a nontrivial theory of modular forms on GL(2,F). We show that this is the case if the ring of coefficients has characteristic p and if GL(2) is replaced by the quaternion algebra ramified at (p,). In particular, such a theory incorporates the base change of Saito, Shintani and Langlands.

In memoriam Jon Rogawski

Keywords
extension cyclotomique, forme modulaire, Saito–Shintani–Langlands, modular form, cyclotomic extension
Mathematical Subject Classification 2010
Primary: 11F11, 11F99
Milestones
Received: 13 March 2013
Revised: 13 June 2013
Accepted: 19 June 2013
Published: 21 June 2014
Authors
Laurent Clozel
Mathématiques
Université Paris-Sud
Bât. 425
91405 Orsay CEDEX
France