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THE CUP SUBALGEBRA OF A II1 FACTOR GIVEN BY A
SUBFACTOR PLANAR ALGEBRA IS MAXIMAL AMENABLE

ARNAUD BROTHIER

To every subfactor planar algebra was associated a II1 factor with a canon-
ical abelian subalgebra generated by the cup tangle. Using Popa’s approxi-
mative orthogonality property, we show that this cup subalgebra is maximal
amenable.

Introduction

The study of maximal abelian subalgebras (MASAs) was initiated by Dixmier
[1954], who introduced an invariant coming from the normalizer. Other invariants
were provided later, such as the Takesaki equivalence relation [1963], the Tauer
length [1965], the Pukánszky invariant [1960] or the δ-invariant [Popa 1983b].

Popa [1983a] exhibited an example of a MASA A ⊂ M in a II1 factor that is
maximal amenable.

This example answers negatively a question of Kadison asking if every abelian
subalgebra of a II1 factor (with separable predual) is included in a copy of the
hyperfinite II1 factor. We recall that a von Neumann algebra is hyperfinite if and
only if it is amenable by the famous theorem of Connes [1976]. Popa introduced the
notion of approximative orthogonality property (AOP) and showed that any singular
MASA with the AOP is maximal amenable. Then he proved that the generator
MASA in a free group factor is singular and has the AOP.

Using the same scheme of proof, Cameron et al. [2010] showed that the radial
MASA in the free group factor is maximal amenable. Shen [2006], Jolissaint [2010]
and Houdayer [2012] provided other examples of maximal amenable MASAs.

In this paper, we provide maximal amenable MASAs in II1 factors using subfactor
planar algebras. The theory of subfactors has been initiated by Jones [1983]. He
introduced the standard invariant that has been formalized as a Popa system by
Popa [1995] and as a subfactor planar algebra by Jones [1999; 2011]. Popa [1993;
1995; 2002] proved that any standard invariant comes from a subfactor. Popa
and Shlyakhtenko [2003] proved that the subfactor can be realized in the infinite
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free group factor L(F∞). Using planar algebras, random matrix models and free
probability, Guionnet et al. [2010; 2011] (see also [Jones et al. 2010]) showed that
any finite depth standard invariant can be realized as a subfactor of an interpolated
free group factor. Using the same construction, Hartglass [2013] proved that any
infinite depth subfactor is realized in L(F∞).

The construction in [Jones et al. 2010] associated a II1 factor M to a subfactor
planar algebra P. This II1 factor contains a generic MASA A ⊂ M that we call the
cup subalgebra (see page 22). We now state our main theorem:

Theorem 0.1. For any nontrivial subfactor planar algebra P, the cup subalgebra
is maximal amenable.

The construction of Jones et al. has been extended for unshaded planar algebras
in [Brothier 2012; Brothier et al. 2012]. In those constructions, we have proven that
the cup subalgebra is still a MASA. It seems very plausible that it is also maximal
amenable. Note that the cup subalgebra is analogous to the radial MASA in a free
group factor. We don’t know if for a certain subfactor planar algebra those two
subalgebras are isomorphic or not.

1. Approximative orthogonality property and maximal amenability

We briefly recall Popa’s approximative orthogonality property for an abelian subal-
gebra A ⊂ M and how it implies the maximal amenability of A, whenever A ⊂ M
is a singular MASA.

Definition 1.1 [Popa 1983a, Lemma 2.1]. Consider a tracial von Neumann algebra
(M, tr) and a subalgebra A ⊂ M . Let ω be a free ultrafilter on N. Then A ⊂ M
has the approximative orthogonality property if for any x ∈ Mω

	 Aω ∩ A′ and any
b ∈ M 	 A we have xb ⊥ bx in L2(Mω), that is, limn→ω tr(xnbx∗n b∗)= 0, where
(xn)n is a representative of x .

Remark 1.2. By polarization, the definition of AOP is equivalent to asking that
for any x1, x2 ∈ Mω

	 Aω ∩ A′ and any b1, b2 ∈ M 	 A we have x1b1 ⊥ b2x2.

We recall the fundamental theorem of Popa that is contained in the proof of
[Popa 1983a, Theorem 3.2]. A more detailed explanation of it has been given in
[Cameron et al. 2010, Lemma 2.2 and Corollary 2.3].

Theorem 1.3 [Popa 1983a]. Let A ⊂ M be a singular MASA with the AOP in a II1

factor M. Then A ⊂ M is maximal amenable.

2. Construction of the cup subalgebra

Construction of a II1 factor from a subfactor planar algebra. Consider a subfac-
tor planar algebra P= (Pn)n>0 with modulus δ > 1. Let us recall the construction
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given in [Jones et al. 2010]. We assume that the reader is familiar with planar
algebras. For more details on planar algebras, see [Jones 1999; 2011] or the
introduction of [Peters 2010]. Let Gr(P) be the graded vector space equal to the
algebraic direct sum

⊕
n>0 Pn . We decorate strands in a planar tangle with natural

numbers to represent cabling of that strand. For example:

k =

k︷︸︸︷
·

An element a ∈ Pn will be represented as a box:

a =

2n

a

We assume that the distinguished first interval is at the top left of the box. We
consider the inner product 〈 · , · 〉 on each Pn:

〈a, b〉 = a b∗
2n for all a, b ∈ Pn.

We extend this inner product on Gr(P) in such a way that the spaces Pn are pairwise
orthogonal. We still write Pn when it is considered as the n-graded part of Gr(P).
Let H be the Hilbert space equal to the completion of Gr(P) for its pre-Hilbert
structure. Note that H is the Hilbert space equal to the orthogonal direct sum of the
spaces Pn . We define a multiplication on Gr(P) given by the tangle

ab =
min(2n,2m)∑

j=0
a b

2n− j 2m− j
j

for all a ∈ Pn, b ∈ Pm .

For a fixed a ∈ Gr(P), the map b ∈ Gr(P) 7→ ab ∈ Gr(P) is bounded for the
inner product 〈 · , · 〉. This gives us a representation of the ∗-algebra Gr(P) on H.
We denote by M the von Neumann algebra equal to the bicommutant of this
representation. It is a II1 factor by [Jones et al. 2010]. We identify the graded
algebra Gr(P) and its image in the von Neumann algebra M . The unique faithful
normal trace tr of M is the one coming from the planar algebra structure of P. It is
equal to the formula tr(a)= 〈a, 1〉, where 1 is the unity of Gr(P). Let L2(M) be
the Hilbert space coming from the Gelfand–Naimark–Segal construction over the
trace tr. Note that the standard representation of the von Neumann algebra M on
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the Hilbert space L2(M) is conjugate to the action of M on the Hilbert space H.
We will identify those two representations. Also, we identify M with its image in
L2(M). The left and right actions of M on the Hilbert space L2(M) are denoted
by π and ρ, so π(x)ρ(y)z = xzy, for x, y, z ∈ M . The norm of M is denoted by
‖ · ‖ and that of L2(M) by ‖ · ‖2, or by ‖ · ‖ if the context is clear. We define a
multiplication on Gr(P) by requiring that if a ∈Pn and b ∈Pm , then a • b ∈Pn+m

is given by

a • b = a b

2n 2m

We remark that ‖a • b‖2 = ‖a‖2‖b‖2, for all a ∈ Pn and b ∈ Pm . By the triangle
inequality, the bilinear function

Gr(P)×Gr(P)→ Gr(P), (a, b) 7→ a • b,

is continuous for the norm ‖ · ‖2. We extend this operation to L2(M)× L2(M) and
still denote it by •.

The cup subalgebra. The cup subalgebra A ⊂ M is the abelian von Neumann
algebra generated by the self-adjoint element cup:

We denote cup by the symbol ∪. Also we use the following notation:

∪
•k
=

k cups︷ ︸︸ ︷
· · ·

We use the convention that 0=∪•k for k < 0 and 1=∪•0. Let n > 1 and Vn be the
subspace of Pn of elements which vanish when a cap is placed at the top right and
vanish when a cap is placed at the top left, i.e.,

Vn =

a ∈ Pn,

2n− 2

a =

2n− 2

a = 0

 .
We denote by V the orthogonal direct sum of the Vn:

V =
∞⊕

n=1

Vn.
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Let `2(N) be the separable Hilbert space with orthonormal basis {en, n > 0} and
S ∈ B(`2(N)) the unilateral shift operator.

Proposition 2.1 [Jones et al. 2010, Theorem 4.9]. The map

2 : L2(M)→ `2(N)⊕ (`2(N)⊗ V ⊗ `2(N))

defined by

δ−k/2
∪
•k
7→ ek ⊕ 0, δ−(l+r)/2

∪
•l
•v •∪

•r
7→ 0⊕ el ⊗ v⊗ er ,

defines a unitary transformation, where k, l, r > 0, v ∈ V and δ is the modulus of
the planar algebra. We have

2π

(
∪− 1
δ1/2

)
2∗ =

(
S+S∗− qe0 0

0 (S+ S∗)⊗ 1V ⊗ 1`2(N)

)
and

2ρ

(
∪− 1
δ1/2

)
2∗ =

(
S+S∗− qe0 0

0 1`2(N)⊗ 1V ⊗ (S+S∗)

)
,

where qe0 is the rank-one projection on Ce0 and 1V , 1`2(N) are the identity operators
of the Hilbert spaces V and `2(N).

Corollary 2.2. The cup subalgebra is a singular MASA.

Proof. The A-bimodule L2(M)	 L2(A) is isomorphic to an infinite direct sum of
the coarse bimodule L2(A)⊗ L2(A). This implies that A ⊂ M is maximal abelian.
See [Jones et al. 2010] for more details. Suppose that there exists a unitary u in the
normalizer of A inside M which is orthogonal to A. It generates a A-subbimodule

(1) K⊂

∞⊕
j=0

L2(A)⊗ L2(A).

We have the inclusion (1) if and only if the automorphism a ∈ A 7→ uau∗ is trivial.
This implies that u ∈ A′ ∩M . Hence u ∈ A, a contradiction. Therefore, A ⊂ M is
singular. �

Basic facts on the unilateral shift operator. Consider the semicircular measure

dν(t)=

√
4− t2

2π
dt

defined on the interval [−2; 2]. Let Pi ∈ R[X ] be the family of polynomials such
that

(2) P0(X)= 1, P1(X)= X, Pi (X)= X Pi−1(X)− Pi−2(X) for i > 2.
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By [Voiculescu et al. 1992, Example 3.4.2], the map

(3) 9 : `2(N)→ L2([−2; 2], ν), ei 7→ Pi ,

defines a unitary transformation. Further, for any continuous function f ∈C([−2; 2])
we have (9∗ f (S+S∗)9)(t)= t f (t) for almost every t ∈ [−2; 2].

Lemma 2.3. For I > 0, let RI : [−2; 2] → R be given by RI (t) =
I∑

i=0
Pi (t)2. The

sequence (RI )I>0 converges uniformly to +∞.

Proof. Let us prove the simple convergence to+∞. Suppose there exists t0∈[−2; 2]
such that the sequence (RI (t0))k does not converge to +∞. The polynomials Pi

have real coefficient. Hence, for any t ∈ [−2; 2], Pi (t) is real; thus, (RI (t0))k is an
increasing sequence in R. If this sequence does not diverge, then it is bounded. Then,
the sequence (Pi (t0))i is square summable. In particular we have limi→∞ Pi (t0)= 0.
We put εi = Pi (t0). We have that εi+1= t0εi−εi−1 and limi→∞ εi = 0. There is only
one sequence that satisfies those axioms and it is the sequence equal to zero. Since
0 6= 1 = P0(t0) = ε0, we arrive at a contradiction and thus, limI→∞ SI (t) = +∞
for any t ∈ [−2; 2]. To conclude we use the following well known result due to
Dini: Let ( f I )I be a sequence of continuous functions from a compact topological
space K to R such that f I 6 f I+1. If for any t ∈ K , limI→∞ f I (t)=+∞, then the
sequence ( f I )I converges uniformly to +∞. �

Proof of Theorem 0.1. According to Theorem 1.3 and Corollary 2.2, it is sufficient
to show that the cup subalgebra has the AOP. Fix x ∈Mω

	 Aω∩ A′ and b ∈M	 A.
Let us show that xb ⊥ bx . By the Kaplansky density theorem we can assume that
there exists J > 1 such that b ∈

⊕J
j=0 P j . Suppose that ‖x‖6 1 and fix a sequence

xn ∈ M which is a representative of x such that xn ∈ M 	 A and ‖xn‖6 1 for all
n > 0.

Consider the closed subspaces of L2(M) given by

YL = span{∪•l • v •∪•r , l, r 6 L , v ∈ V },

ZL = span{∪•l • v •∪•r , l or r 6 L , v ∈ V },

for all L > 0. Note that b is in YJ−1.
We claim that for any z ∈ M which is orthogonal to A and Z J−1 we have

(4) zb ⊥ bz.

The element z is a weak limit of finite linear combinations of ∪•i • v •∪• j , where
i, j > J and v ∈ V . The element b is a finite linear combination of ∪•k • ṽ •∪•r ,
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where k, r 6 J − 1 and ṽ ∈ V . We have

(∪
•i
• v •∪

• j )(∪
•k
• ṽ •∪

•r )

= (∪
•i
• v •∪

• j+k
• ṽ •∪

•r )+ (∪
•i
• v •∪

• j+k−1
• ṽ •∪

•r )+ · · ·

+ δk(∪
•i
• v •∪

• j−k
• ṽ •∪

•r )+ δk(∪
•i
• v •∪

• j−k−1
• ṽ •∪

•r ),

for any i, j > J and k, r 6 J − 1. It is easy to see that v •∪•n • ṽ is an element of
V for any n. Hence, the product (∪•i • v •∪• j )(∪

•k
• ṽ •∪

•r ) is in the vector space

span{∪•l •w •∪•r , l > J, w ∈ V, r 6 J − 1}

and so is zb. A similar computation shows that bz is in the closed vector space

span{∪•l • v •∪•r , l 6 J − 1, w ∈ V, r > J }.

Therefore, we have zb ⊥ bz. This proves (4). Hence, if we show that x is in
the orthogonal of ZωJ−1 then we would have proven that xb is orthogonal to bx .
Consider Q J : L2(M) → Z J−1, the orthogonal projection of range Z J−1. We
remark that

2Q J2
∗
=

J−1⊕
j=0

(
(qe j ⊗ 1V ⊗ 1`2(N))⊕ (1`2(N)⊗ 1V ⊗ qe j )

)
,

where 2 is the unitary transformation defined in Proposition 2.1 and 1V , 1`2(N) are
the identity operators of V and `2(N). By symmetry, it is sufficient to show that

(5) lim
n→ω
‖(qe j ⊗ 1V ⊗ 1`2(N))ξn‖ = 0 for any j > 0,

where ξn :=2(xn). We know that x ∈ Mω
∩ A′. Hence by conjugation by 2 we

obtain the equation

(6) lim
n→ω
‖((S+S∗)⊗ 1V ⊗ 1`2(N)− 1`2(N)⊗ 1V ⊗ (S+S∗))ξn‖ = 0.

We will show that (6) implies (5).
All the operators involved in our context act trivially on the factor V . For

simplicity of the notations we stop writing the extra “⊗1V⊗” in the formula and
denote the identity operator 1`2(N) by 1. Therefore, we assume that ξn is a vector of
`2(N)⊗ `2(N). Equations (5) and (6) become

(7) lim
n→ω
‖(qei ⊗ 1)ξn‖ = 0 for any i > 0

and

(8) lim
n→ω
‖((S+S∗)⊗ 1− 1⊗ (S+S∗))ξn‖ = 0.
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Consider the partial isometry vi ∈ B(`2(N)) such that v∗i vi = qei and viv
∗

i = qe0 .
We claim that for all i > 0 we have

(9) lim
n→ω
‖((vi ⊗ 1)− (qe0 ⊗ Pi (S+S∗)))ξn‖ = 0,

where {Pi }i is the family of polynomials defined in (2). For all k > 2 we have

(S+S∗)k ⊗ 1− 1⊗ (S+S∗)k

= ((S+S∗)⊗ 1− 1⊗ (S+S∗)) ◦
(k−1∑

j=0

(S+S∗) j
⊗ (S+S∗)k−1− j

)
.

Therefore, (8) implies that

lim
n→ω
‖(P(S+S∗)⊗ 1− 1⊗ P(S+S∗))ξn‖ = 0 for all polynomials P.

In particular,

lim
n→ω
‖(Pi (S+S∗)⊗ 1− 1⊗ Pi (S+S∗))ξn‖ = 0 for all i > 0.

Note that Pi (S+S∗)(e0) = ei for all i > 0. Furthermore, Pi has real coefficients.
Therefore, the operator Pi (S+S∗) is self-adjoint. We have

〈qe0 ◦ Pi (S+S∗)el, er 〉 = 〈Pi (S+S∗)el, qe0er 〉 = δr,0〈Pi (S+S∗)el, e0〉

= δr,0〈el, Pi (S+S∗)e0〉 = δr,0δl,i ,

where i, l, r > 0 and δn,m is the Kronecker symbol. Hence qe0 ◦ Pi (S+S∗) = vi ,
for all i > 0. We have

lim
n→ω
‖(qe0 ⊗ 1) ◦ (Pi (S+S∗)⊗ 1− 1⊗ Pi (S+S∗))ξn‖ = 0.

Therefore, we have

lim
n→ω
‖(vi ⊗ 1− qe0 ⊗ Pi (S+S∗))ξn‖ = 0.

This proves the claim. We have

lim
n→ω
‖(qei ⊗ 1− v∗i qe0 ⊗ Pi (S+ S∗))ξn‖ = 0.

This means that

lim
n→ω
‖(qei ⊗ 1)ξn − (v

∗

i ⊗ Pi (S+S∗)) ◦ (qe0 ⊗ 1)ξn‖ = 0.

Hence, we have

lim
n→ω
‖(qei ⊗ 1)ξn‖6 lim

n→ω
‖(v∗i ⊗ Pi (S+S∗)) ◦ (qe0 ⊗ 1)ξn‖

6 ‖v∗i ⊗ Pi (S+S∗)‖ lim
n→ω
‖(qe0 ⊗ 1)ξn‖.



THE CUP SUBALGEBRA IS MAXIMAL AMENABLE 27

Therefore, to prove (7) it is sufficient to show that

lim
n→ω
‖(qe0 ⊗ 1)ξn‖ = 0.

Let us fix ε > 0; we have to find an element of the ultrafilter E ∈ ω such that
‖(qe0 ⊗ 1)ξn‖< ε for any n ∈ E . By the triangle inequality, we have

‖(qe0 ⊗ Pi (S+S∗))ξn‖6 ‖(qe0 ⊗ Pi (S+S∗))ξn − (vi ⊗ 1)ξn‖+‖(vi ⊗ 1)ξn‖,

for all i > 0. We have ‖(vi ⊗ 1)ξn‖6 ‖ξn‖6 1; thus,

(10) ‖(vi⊗1)ξn‖
2>‖(qe0⊗Pi (S+S∗))ξn‖

2
−‖(qe0⊗Pi (S+S∗))ξn−(vi⊗1)ξn‖

2

− 2‖(qe0 ⊗ Pi (S+S∗))ξn − (vi ⊗ 1)ξn‖.

By Lemma 2.3, there exists an integer I ∈ N such that inf
t∈[−2;2]

SI (t) >
2
ε

. We have

I∑
i=0

‖(qe0 ⊗ Pi (S+S∗))ξn‖
2
=

I∑
i=0

‖(1⊗ Pi (S+S∗)) ◦ (qe0 ⊗ 1)ξn‖
2(11)

=

I∑
i=0

∫
[−2;2]

‖Pi (t)((qe0 ⊗9)ξn)(t)‖2 dν(t)

=

∫
[−2;2]

‖((qe0⊗9)ξn)(t)‖2
I∑

i=0

Pi (t)2 dν(t)

> 2
ε
‖(qe0 ⊗9)ξn‖

2
=

2
ε
‖(qe0 ⊗ 1)ξn‖

2,

where 9 is the unitary transformation defined in (3).
By (9), there exists an element of the ultrafilter E ∈ ω such that for any n ∈ E

and i ∈ {0, . . . , I } we have

(12) ‖((qe0 ⊗ Pi (S+S∗))− (vi ⊗ 1))ξn‖<
1
4 .

By Pythagoras’ theorem and the inequalities (10), (11) and (12) we have

1> ‖ξn‖
2
=

∑
i>0

‖(qei ⊗ 1)ξn‖
2 >

I∑
i=0

‖(qei ⊗ 1)ξn‖
2
=

I∑
i=0

‖(vi ⊗ 1)ξn‖
2

>
I∑

i=0

‖(qe0 ⊗ Pi (S+S∗))ξn‖
2
− (I + 1)

( 1
42 + 2 · 1

4

)
> 2(I+1)

ε
‖(qe0 ⊗ 1)ξn‖− (I + 1).

This implies
‖(qe0 ⊗ 1)ξn‖6 ε for all n ∈ E .
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We have proved that
lim
n→ω
‖(qe0 ⊗ 1)ξn‖2 = 0.

Therefore, limn→ω ‖Q J (xn)‖ = 0 which implies that x is orthogonal to ZωJ−1. The
equality (4) implies that xb ⊥ bx . Thus, the cup subalgebra A ⊂ M has the AOP.
By Corollary 2.2, A ⊂ M is a singular MASA. Hence, by Theorem 1.3, the cup
subalgebra is maximal amenable.
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