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HYPERSURFACES WITH PRESCRIBED ANGLE FUNCTION

HENRIQUE F. DE LIMA, ERALDO A. LIMA JR. AND ULISSES L. PARENTE

We deal with two-sided complete hypersurfaces immersed in a Riemannian
product space, whose base is assumed to have sectional curvature bounded
from below. In this setting, we obtain sufficient conditions which assure
that such a hypersurface is a slice of the ambient space, provided that its
angle function has some suitable behavior. Furthermore, we establish a
natural relation between our results and the classical problem of describing
the geometry of a hypersurface immersed in the Euclidean space through
the behavior of its Gauss map.

1. Introduction and statements of the main results

Let ψ :6n
→Mn+1 be an immersion of an orientable Riemannian manifold 6n in

a Riemannian space form Mn+1 and let N be the unit normal vector field along 6n .
When Mn+1 is the Euclidean space Rn+1 and ψ is the complete graph of a smooth
function f : Rn

→ R, the image N (6) of its Gauss map is contained in an open
hemisphere of the unit Euclidean sphere Sn . The behavior of the Gauss map has
deeper consequences for the immersion. For instance, one of the most celebrated
theorems of the theory of minimal surfaces in R3 is Bernstein’s theorem [1910],
which establishes that the only complete minimal graphs in R3 are planes. This
result was extended under the weaker hypothesis that the image of the Gauss map of
62 lies in an open hemisphere of S2, as we can see in [Barbosa and do Carmo 1974].

Meanwhile, Osserman [1959] answered a conjecture due to Nirenberg, showing
that if a complete minimal surface 62 in R3 is not a plane, then its normals must be
everywhere dense on the unit sphere S2. More generally, Fujimoto [1988] proved
that if the Gaussian image misses more than four points, then it is a plane. On the
other hand, Hoffman, Osserman and Schoen [Hoffman et al. 1982] showed that if a
complete oriented surface 62 with constant mean curvature in R3 is such that the
image of its Gauss map N (6) lies in some open hemisphere of S2, then 62 is a
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plane. Moreover, if N (6) lies in a closed hemisphere, then 62 is a plane or a right
circular cylinder.

When the ambient space is a Riemannian product Mn+1
=R×Mn , the condition

that the image of the Gauss map is contained in a closed hemisphere becomes that
the angle function η=〈N , ∂t 〉 does not change sign, as was observed in [Espinar and
Rosenberg 2009]. Here, N denotes a unit normal vector field along a hypersurface
ψ :6n

→ Mn+1 and ∂t stands for the unit vector field which determines on Mn+1

a codimension-one foliation by totally geodesic slices {t}×Mn . In this setting, our
purpose in this work is to establish analogous results to those ones above described.
In other words, we aim to give new satisfactory answers to the following question:
under what reasonable geometric restrictions on the angle function must a complete
hypersurface immersed in a certain product space be a slice?

We can truly say that one of the first remarkable results in this direction was the
celebrated theorem of Bombieri, De Giorgi and Miranda [Bombieri et al. 1969],
who proved that an entire minimal positive graph over Rn is a totally geodesic
slice. Many other authors have approached problems in this branch. For instance,
Rosenberg [2002] showed that when M2 is a complete surface with nonnegative
Gaussian curvature, an entire minimal graph in R×M2 is totally geodesic. Hence,
in this case, the graph is a horizontal slice or M2 is a flat R2 and the graph is a
tilted plane. Bérard and Sá Earp [2008] described all rotation hypersurfaces with
constant mean curvature in R×Hn , and used them as barriers to prove existence and
characterization of certain vertical graphs with constant mean curvature and to give
symmetry and uniqueness results for constant mean curvature compact hypersurfaces
whose boundary is one or two parallel submanifolds in slices. Espinar and Rosenberg
[2009] studied constant mean curvature surfaces in R×M2, and classified them
according to the infimum of the Gaussian curvature of their horizontal projection,
under the assumption that the angle function does not change sign.

In [Aquino and Lima 2011] and [Lima and Parente 2012], we applied the well-
known generalized maximum principle of Omori [1967] and Yau [1975], and
an extension of it due to Akutagawa [1987], in order to obtain rigidity theorems
concerning complete vertical graphs with constant mean curvature in R×Mn . In
[Lima 2014], the first author extended the technique developed in [Yau 1976] in
order to investigate the rigidity of entire vertical graphs in a Riemannian product
space R×Mn , whose base Mn is assumed to have Ricci curvature with strict sign.
Under a suitable restriction on the norm of the gradient of the function u which
determines such a graph 6n(u), he proved that 6n(u) must be a slice {t}×Mn .

Now, motivated by the previous discussion, we will state our results. In what
follows, H2 = 2/(n(n− 1))S2 stands for the mean value of the second elementary
symmetric function S2 on the eigenvalues of the Weingarten operator A of the
hypersurface 6n . Moreover, we recall that a hypersurface is said to be two-sided if
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its normal bundle is trivial, that is, if there is a globally defined unit normal vector
field on it.

Theorem 1. Let Mn+1
= R× Mn be a Riemannian product space whose base

Mn has sectional curvature KM such that KM ≥ −κ for some κ > 0, and let
ψ :6n

→Mn+1 be a two-sided complete hypersurface with constant mean curvature
H and H2 bounded from below. Suppose that the angle function η of 6n is bounded
away from zero and that its height function h satisfies one of the following conditions:

(1-1) |∇h|2 ≤
α

(n− 1)κ
|A|2

for some constant 0< α < 1; or

(1-2) |∇h|2 ≤
n

(n− 1)κ
H 2.

Then, 6n is a slice of Mn+1.

As a consequence of Example 10 given in Section 4, we cannot extend estimate
(1-1) to the limit case α = 1. On the other hand, taking into account estimate (1-2),
when Mn

= Rn , we note that Theorem 1 reads as follows:

Corollary 2. Let 6n be a two-sided complete hypersurface of Rn+1 with constant
mean curvature and scalar curvature bounded from below. If the closure of the
image of the Gauss map of 6n is contained in an open hemisphere of Sn , then 6n

is minimal.

Proceeding, we treat the case where the mean curvature H is not assumed to be
constant, but is just assumed to not change sign along the hypersurface:

Theorem 3. Let Mn+1
= R×Mn be a Riemannian product space whose base Mn

has sectional curvature bounded from below, and let ψ :6n
→Mn+1 be a two-sided

complete hypersurface that lies between two slices of Mn+1. Suppose the angle
function η of 6n is bounded away from 1 or from −1. If H2 is bounded from below
and H is bounded and does not change sign on 6n , then inf6 H = 0. In particular,
if H is constant, then 6n is minimal.

Thanks to the result of Osserman already cited, Theorem 3 yields:

Corollary 4. The only two-sided complete constant mean curvature surfaces of R3

with Gaussian curvature bounded from below, lying between two planes and such
that both poles of S2 are not in the closure of the image of the Gauss map, that are
orthogonal to such planes, are planes of R3.

On the other hand, Example 10 will show that the assumption that 6n lies
between two slices of R×Mn is necessary in Theorem 3 in order to conclude that
the mean curvature of 6n cannot be globally bounded away from zero. Moreover,
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we observe that the horizontal circular cylinder C ⊂ R3 satisfies almost all the
hypothesis of Corollary 4, except the one which requires that neither pole of S2

orthogonal to C is in the closure of the image of the Gauss map N of C. Actually,
C is unbounded in all directions where N is isolated.

Rosenberg, Schulze and Spruck [Rosenberg et al. 2013] showed that an entire
minimal graph with nonnegative height function in a product space R×Mn , whose
base Mn is a complete Riemannian manifold having nonnegative Ricci curvature
and with sectional curvature bounded from below, must be a slice. Consequently,
Theorem 3 yields:

Corollary 5. Let Mn be a complete Riemannian manifold with nonnegative Ricci
curvature and whose sectional curvature is bounded from below. Let 6n(u) =
{(u(x), x) : x ∈Mn

}⊂R×Mn be the entire graph of a nonnegative smooth function
u : Mn

→ R, with H constant and H2 bounded from below. If u is bounded, then
u ≡ t0 for some t0 ∈ R.

Again from Theorem 3, this time combined with Theorem 1.2 of [Rosenberg
et al. 2013], we obtain:

Corollary 6. Let Mn be a parabolic complete Riemannian manifold with bounded
sectional curvature. Let 6n(u) = {(u(x), x) : x ∈ Mn

} ⊂ R× Mn be the entire
graph of a smooth function u : Mn

→ R, with H constant and H2 bounded from
below. If u is bounded, then u ≡ t0 for some t0 ∈ R.

In the situation of Theorem 3, we saw that a constant mean curvature hypersurface
satisfying the hypotheses of the theorem must be minimal. Theorem 1 suggests
an interesting, related question: If a constant mean curvature hypersurface trapped
between two planes is a graph, and the closure of the image of the Gauss map
does not contain either pole, must the hypersurface be trivial? Osserman’s theorem
asserts that the hypersurface is indeed a plane when the ambient space is R3. When
the ambient space is a product whose base has nonnegative Ricci curvature and
sectional curvature bounded from below, Corollary 5 also gives a positive answer
for this question, provided that the hypersurface is already a graph of a bounded
and nonnegative function, while Corollary 6 deals with the parabolic case using the
conformal invariance of parabolicity.

The proofs of Theorems 1 and 3 are given in Section 3.

2. Preliminaries

We consider an (n+1)-dimensional product space Mn+1 of the form R×Mn , where
Mn is an n-dimensional connected Riemannian manifold and Mn+1 is endowed
with the standard product metric

〈 , 〉 = π∗R(dt2)+π∗M(〈 , 〉M),
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where πR and πM denote the canonical projections from R×Mn onto each factor
and 〈 , 〉M is the Riemannian metric on Mn . For simplicity, we will just write
Mn+1

= R × Mn and 〈 , 〉 = dt2
+ 〈 , 〉M . For a fixed t0 ∈ R, we say that

Mn
t0 = {t0}×Mn is a slice of Mn+1. It is not difficult to prove that such a slice of

Mn+1 is a totally geodesic hypersurface (see, for instance, [O’Neill 1983]).
Throughout this paper, we will deal with two-sided complete hypersurfaces

ψ : 6n
→ R×Mn . Let ∇ and ∇ denote the Levi-Civita connections in R×Mn

and 6n , respectively. The Gauss and Weingarten formulas for ψ are respectively

(2-1) ∇X Y =∇X Y +〈AX, Y 〉N

and

(2-2) AX =−∇X N

where X, Y ∈ X(6) are tangent vector fields, and A : X(6)→ X(6) is the Wein-
garten operator of 6n with respect to its orientation (unit normal vector field) N .

We will consider two particular functions naturally attached to such a hypersur-
face6n: the (vertical) height function h= (πR)|6 and the angle function η=〈N , ∂t 〉.
Since 6n is assumed to be two-sided its angle function η is globally defined.

A simple computation shows that the gradient of πR on R×Mn is given by

(2-3) ∇πR = 〈∇πR, ∂t 〉∂t = ∂t .

Consequently, from (2-3) we have that the gradient of h on 6n is

(2-4) ∇h = (∇πR)
>
= ∂>t = ∂t − ηN ,

where ( )> denotes the tangential component of a vector field in X(Mn+1) along6n .
Hence, from (2-4) we get the relation

(2-5) |∇h|2 = 1− η2,

where | | denotes the norm of a vector field on 6n . From Proposition 7.35 of
[O’Neill 1983] we have

(2-6) ∇X∂t = 0

for every X ∈ X(6). Thus, from (2-4) and (2-6) we get

(2-7) ∇X (∇h)=∇X (∂
>

t )= ηAX

for every tangent vector field X ∈ X(6). Therefore, the Laplacian on 6n of the
height function is given by

(2-8) 1h = nHη,
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where H = (1/n) tr(A) is the mean curvature of 6n relative to N . Moreover, as a
particular case of Proposition 3.1 of [Caminha and Lima 2009], we obtain a useful
formula for the Laplacian on 6n of the angle function η:

Lemma 7. Let ψ : 6n
→ R×Mn be a hypersurface with orientation N , and let

η = 〈N , ∂t 〉 be its angle function. If 6n has constant mean curvature H , then

1η =−(RicM(N ∗, N ∗)+ |A|2)η,

where RicM denotes the Ricci curvature of the base Mn , N ∗ is the projection of the
unit normal vector field N onto the base Mn and |A| is the Hilbert–Schmidt norm
of the shape operator A.

On the other hand, as in [O’Neill 1983], the curvature tensor R of a hypersurface
ψ :6n

→ R×Mn is given by

R(X, Y )Z =∇[X,Y ]Z − [∇X ,∇Y ]Z ,

where [ , ] denotes the Lie bracket and X, Y, Z ∈X(6). A well known fact is that,
using (2-1) and (2-2), we can describe the curvature tensor R of the hypersurface
6n in terms of the shape operator A and the curvature tensor R of R×Mn by the
so-called Gauss equation given by

(2-9) R(X, Y )Z = (R(X, Y )Z)>+〈AX, Z〉AY −〈AY, Z〉AX

for tangent vector fields X, Y, Z ∈ X(6).
To close this section, we recall the generalized maximum principle of Omori

[1967] and Yau [1975], which will be the main analytical tool used in proving to
prove our Bernstein-type results:

Lemma 8. Let 6n be an n-dimensional complete Riemannian manifold whose
Ricci curvature is bounded from below, and f :6n

→R a smooth function which is
bounded from below on 6n . Then there is a sequence of points (pk) in 6n such that

lim
k→∞

f (pk)= inf
6

f, lim
k→∞
|∇ f (pk)| = 0 and lim inf

k→∞
1 f (pk)≥ 0.

3. Proofs of Theorems 1 and 3

Proof of Theorem 1. Since we are assuming that η is bounded away from zero, we
can suppose that η > 0 and, consequently, inf η > 0. From Lemma 7, we have

(3-1) 1η =−(RicM(N ∗, N ∗)+ |A|2)η.

Since we are also assuming that the sectional curvature KM of the base Mn is such
that KM ≥−κ for some κ > 0, with a straightforward computation we get

RicM(N ∗, N ∗)≥−(n− 1)κ|N ∗|2 =−(n− 1)κ(1− η2),
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where N ∗ stands for the component of N tangent to Mn . Then, from (2-5) and
(3-1) we obtain

(3-2) 1η ≤−(|A|2− (n− 1)κ|∇h|2)η.

Thus, if we assume that the height function of 6n satisfies the hypothesis (1-1),
from (1-1) and (3-2) we have

(3-3) 1η ≤−(1−α)|A|2η.

On the other hand, we claim that the Ricci curvature of 6n is bounded from
below. Therefore we can apply Lemma 8 to the function η, obtaining a sequence of
points pk ∈6

n such that lim infk→∞1η(pk)≥ 0 and limk→∞ η(pk)= infp∈6 η(p).
Consequently, since we are assuming that the Weingarten operator A is bounded
on 6n , from (3-3), up to a subsequence, we get

0≤ lim inf
k→∞

1η(pk)≤−(1−α) lim
k→∞
|A|2(pk) inf

p∈6
η(p)≤ 0.

Thus, we obtain that limk→∞ |A|(pk)= 0 and, from (1-1), limk→∞ |∇h|(pk)= 0.
Hence, from (2-5) we conclude that infp∈6 η(p) = 1 and, consequently, η ≡ 1.
Therefore, 6 is a slice.

It just remains to prove our claim that the Ricci curvature of 6n is bounded
from below. For this, let us consider X ∈ X(6) and a local orthonormal frame
{E1, . . . , En} of X(6). Then, it follows from the Gauss equation (2-9) that

(3-4) Ric6(X, X)=
∑

i

〈R(X, Ei )X, Ei 〉+ nH〈AX, X〉− 〈AX, AX〉.

Thus, taking into account once more the lower bound of the sectional curvature of
the base Mn , we have

(3-5) 〈R(X, Ei )X, Ei 〉 ≥ −κ
(
〈X∗, X∗〉Mn 〈E∗i , E∗i 〉Mn −〈X∗, E∗i 〉

2
Mn

)
,

where X∗ = X − 〈X, ∂t 〉∂t and E∗i = Ei − 〈Ei , ∂t 〉∂t are the projections of the
tangent vector fields X and Ei onto Mn , respectively. Then, adding up the relation
(3-5) we get∑

i

〈R(X, Ei )X, Ei 〉 ≥ −κ
(
(n− 1)|X |2− |∇h|2|X |2− (n− 2)〈X,∇h〉2

)
≥−κ(n− 1)|X |2.

Therefore, from (3-4), and using the Cauchy–Schwarz inequality, we have that the
Ricci curvature of 6n satisfies the lower estimate

(3-6) Ric6(X, X)≥−
(
(n− 1)κ − |A||A− nH I |

)
|X |2
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for all X ∈ X(6). Therefore, taking into account that

(3-7) |A|2 = n2 H 2
− n(n− 1)H2,

our restrictions on H and H2 guarantee that the Ricci curvature tensor of 6n is
bounded from below and, hence, we conclude the first part of the proof of Theorem 1.

Now, let us suppose that the height function of 6n satisfies the hypothesis (1-2).
In this case, from (3-2) and (3-7) we obtain

(3-8) 1η ≤−n(n− 1)(H 2
− H2)η.

Consequently, in a similar way as in the previous case, we can apply Lemma 8 in
order to obtain a sequence of points pk ∈6

n such that

0≤ lim inf
k→∞

1η(pk)≤−n(n− 1) lim inf
k→∞

(H 2
− H2)(pk) inf

p∈6
η(p)≤ 0.

Hence, up to a subsequence, limk→∞(H 2
− H2)(pk) = 0. Moreover, since H is

assumed to be constant, we get from (3-7) that

lim
k→∞
|A|2(pk)= nH 2.

Now we recall that |A|2 =
∑

i κ
2
i , where the κi are the eigenvalues of A. Thus,

up to taking a subsequence, for all 1 ≤ i ≤ n we have that limk κi (pk) = κ
∗

i for
some κ∗i ∈ R. Motivated by this fact, we set

n(n− 1)
2

H 2 =
∑
i< j

κ∗i κ
∗

j ,

and we note that H = 1
n

∑
i κ
∗

i . Thus H 2
= H 2 and κ∗i = H for all 1≤ i ≤ n. So, let

{ei } be a local orthonormal frame of eigenvectors associated to the eigenvalues {κi }

of A. We can write ∇h =
∑

i λi ei , where the λi are continuous functions on 6n .
On the other hand, from (2-4) and (2-6) we have

X (η)=−〈A(X), ∂t 〉 = −〈X, A(∂>t )〉 = −〈X, A(∇h)〉

for all X ∈ X(6). Thus,

(3-9) ∇η =−A(∇h).

By applying Lemma 8 once more to the function η, from (3-9) we then get

0= limk |A(∇h)|2(pk)=
∑

i

limk(κ
2
i λ

2
i )(pk)

=

∑
i

(κ∗i )
2 limk λ

2
i (pk)= H 2

∑
i

limk λ
2
i (pk),
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up to taking a subsequence. If H = 0, from hypothesis (1-1) we have immediately
that 6n is a slice. If H 2 > 0, then for all 1≤ i ≤ n we have limk λi (pk)= 0. Thus,
limk |∇h|(pk)= 0 and, from (2-5),

inf
p∈6

η(p)= limk→∞ η(pk)= 1.

Therefore, η = 1 on 6n , and hence 6n is a slice. �

Proof of Theorem 3. Note that, as in the proof of Theorem 1, our restrictions on the
sectional curvature of the base Mn and the hypothesis on the mean curvatures H
and H2 guarantee that the Ricci curvature of 6n is bounded from below.

Now, suppose for instance that H ≥ 0 on 6n . Thus, since 6n lies between two
slices of R×Mn , from (2-8) and Lemma 8 we obtain a sequence of points pk ∈6

n

such that
0≥ lim sup

k→∞
1h(pk)= n lim sup

k→∞
(Hη)(pk).

From (2-5) we also have

0= lim
k→∞
|∇h|(pk)= 1− lim

k→∞
η2(pk).

Thus, if we suppose, for instance, that −1 is not in the closure of the image of η,
we get lim

k→∞
η(pk)= 1. Consequently,

0≥ lim sup
k→∞

1h(pk)= n lim sup
k→∞

H(pk)≥ 0,

and, hence, we conclude that

lim sup
k→∞

H(pk)= 0.

If H ≤0, from (2-8) and (2-5) we can once more apply Lemma 8 in order to obtain
a sequence qk ∈ 6

n such that 0 ≤ lim infk→∞1h(qk) = n lim infk→∞(Hη)(qk),
and, supposing once more that −1 is not in the closure of the image of η, we get

0≤ lim inf
k→∞

1h(pk)= n lim inf
k→∞

H(pk)≤ 0.

Consequently, we have
lim inf
k→∞

H(pk)= 0.

Therefore, in this case we also conclude that inf6 H = 0. �

4. Entire vertical graphs in R × Mn

We recall that a vertical graph over a connected domain� of a complete Riemannian
manifold Mn is determined by a smooth function u ∈ C∞(�), and is given by
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6n(u)= {(u(x), x) : x ∈�} ⊂ R×Mn.

From the product metric on the ambient space, 6n(u) induces on � the metric

(4-1) 〈 , 〉 = du2
+〈 , 〉Mn .

A vertical graph 6n(u) is said to be entire if �= Mn . Now, when the base Mn is
complete, any entire vertical graph 6n(u) in the product space R×Mn is complete,
because such a graph is properly immersed in R×Mn , which is obviously complete
if Mn is. (Alternatively one can argue as follows: the Cauchy–Schwarz inequality
and (4-1) give

〈X, X〉 = 〈X, X〉Mn +〈Du, X〉2Mn ≥ (1+ |Du|2)〈X, X〉Mn

for every tangent vector field X on 6n . Hence, 〈X, X〉 ≥ 〈X, X〉Mn . This implies
that L ≥ L Mn , where L and L Mn denote the length of a curve on 6n(u) with respect
to the Riemannian metrics 〈 , 〉 and 〈 , 〉Mn ; the completeness of 6n(u) follows.)

Let 6n(u) = {(u(x), x) : x ∈ Mn
} ⊂ R× Mn be an entire vertical graph. The

function g : R×Mn
→ R given by g(t, x)= t −u(x) is such that 6n(u)= g−1(0).

Moreover, for all tangent vector fields X on R×Mn ,

X (g)= 〈X, ∂t 〉∂t(g)+ X∗(g)= 〈∂t − Du, X〉,

where X∗ = X −〈X, ∂t 〉∂t is the projection of X onto the base Mn and Du is the
gradient of u in Mn . Thus,

∇g(u(x), x)= ∂t |(u(x),x)− Du(x) for all x ∈ Mn.

Hence, the unit vector field

(4-2) N (x)=
1√

1+ |Du|2
(∂t |(u(x),x)− Du(x)), x ∈ Mn

gives an orientation for 6n(u) such that η > 0 on it. Consequently, taking into
account (2-5), from (4-2) we get

(4-3) |∇h|2 =
|Du|2

1+ |Du|2
.

Let us study the shape operator A of 6n(u) with respect to the orientation given
by (4-2). For any X ∈ X(6(u)), since X = 〈Du, X〉Mn∂t + X∗, we have

(4-4) AX =−∇X N =−〈Du, X〉∇∂t N −∇X N .

Consequently, from (4-2) and (4-4), and with the aid of Proposition 7.35 of [O’Neill
1983], we verify that

(4-5) AX =
1√

1+ |Du|2
DX Du+

〈DX Du, Du〉

(1+ |Du|2)3/2
Du,
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where D denotes the Levi-Civita connection in Mn with respect to its metric 〈 , 〉Mn .
Consequently, the mean curvature of 6n(u) is given by

(4-6) nH = Div
Du√

1+ |Du|2
,

where Div stands for the divergence on the base Mn .

Remark 9. Salavessa [1989] showed that when the base Mn is complete noncom-
pact, an entire graph 6n(u) in R×Mn with constant mean curvature H is minimal
provided that the Cheeger constant b(M) of the base Mn vanishes. We recall that

b(M)= infD
A(∂D)
V (D)

,

where D ranges over all open submanifolds of Mn with compact closure in Mn

and smooth boundary, and where V (D), A(∂D) are the volume of D and the area
of ∂D, respectively, relative to the metric of Mn .

Returning to the context of Theorem 1, we observe the condition that the angle
function η of the hypersurface 6n is bounded away from zero assures that 6n

is, in fact, an entire vertical graph 6n(u) for some smooth function u : Mn
→ R.

Consequently, considering the case that there exists a hypersurface with positive
constant mean curvature H , and supposing that (1-2) holds, from (4-3) and (4-6)
we see that Salavessa’s argument allows us to get

nH V (D)≤
∫

D
nH dV =

∫
D

Div
∇u√

1+ |∇u|2
dV

=

∮
∂D

〈
Du√

1+ |Du|2
, ν

〉
d A ≤

√
n

(n− 1)κ
H A(∂D),

where ν is the outward unit normal of ∂D. This yields the following lower estimate
for the Cheeger constant of the base Mn:√

n(n− 1)κ ≤ b(M).

Furthermore, recalling the stability operator L=−1−Ric(N , N )−|A|2, a constant
mean curvature hypersurface 6n is said to be stable if

(4-7)
∫
6

(L f ) f ≥ 0 for all f ∈ C2
0(6).

We also note that under the stated hypothesis of Theorem 1, the hypersurface is a
slice and therefore Ric(∂t , ∂t)= 0 and |A|2 ≡ 0. Hence, in this case from (4-7) we
see that the minimal hypersurface is stable.

We close our paper by presenting a suitable example of a nontrivial complete
vertical graph 62(u) with constant mean curvature in the product space R×H2,
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which is directly related to the hypothesis of Theorems 1 and 3 (see the comments
in Section 1).

Example 10. We consider the upper half-plane model for the two-dimensional
hyperbolic space H2; that is, H2

= {(x, y)∈R2
: y> 0}, endowed with the complete

metric 〈 , 〉H2 = (1/y2)(dx2
+ dy2).

In this setting, let us define the smooth function u :H2
→ R by u(x, y)= a ln y,

a ∈ R, and consider the entire vertical graph

62(u)= {(a ln y, x, y) : y > 0} ⊂ R×H2.

We have Du(x, y)= (0, ay) and hence |Du(x, y)|2 = a2. Moreover, the height
function h of 62(u) satisfies

|∇h|2 =
|Du|2

1+ |Du|2
=

a2

1+ a2 .

Thus, from (2-5) we have that the angle function η of 62(u) with respect to the
orientation (4-2) is given by

η =
1√

1+ |a|2
.

Consequently, by using that Div=Div0−(2/y)dy, where Div0 denotes the divergent
on R2, with a straightforward computation we verify that

(4-8) 2Hr3
= r2 y210u− y3(yQ(u)+ u y|D0u|20),

where 10, D0 and | |0 stand for the Laplacian, the gradient and the norm in the
canonical Euclidean metric, r =

√
1+ |Du|2 =

√
1+ a2 and

Q(u)= u2
x uxx + 2ux u yuxy + u2

yu yy .

Thus, replacing u(x, y)= a ln y in (4-8), we obtain

H =
a

2
√

1+ a2

and, since η is a positive constant, from Lemma 7 we get

(4-9) 0=1η =−(|A|2− |∇h|2)η,

and, hence,
|∇h|2 = |A|2.

Furthermore, from (3-7) we easily see that H2 = 0 on 62(u). But, H2 = κ1κ2,
where κ1, κ2 denote the eigenvalues of A. Therefore, considering κ2 = 0 and using
that H = (κ1+ κ2)/2= κ1/2, we obtain that κ1 = a/

√
1+ a2.
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Finally, according to the stability criteria given in (4-7), from (4-9) we also
conclude that 62(u) constitutes a nontrivial example of a stable surface in R×H2.
Consequently, concerning the context of Theorem 1, we see that the stability of the
hypersurface cannot alone guarantee the uniqueness result.
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