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ON STABLE SOLUTIONS OF THE BIHARMONIC PROBLEM
WITH POLYNOMIAL GROWTH

HATEM HAJLAOUI, ABDELLAZIZ HARRABI AND DONG YE

We prove the nonexistence of smooth stable solutions to the biharmonic
problem 12u= u p, u> 0 in RN for 1< p<∞ and N < 2(1+ x0), where x0

is the largest root of the equation

x4
−

32 p( p+ 1)
( p− 1)2

x2
+

32 p( p+ 1)( p+ 3)
( p− 1)3

x−
64 p( p+ 1)2

( p− 1)4
= 0.

In particular, as x0 > 5 when p > 1, we obtain the nonexistence of smooth
stable solutions for any N ≤ 12 and p > 1. Moreover, we consider also
the corresponding problem in the half-space RN

+ , and the elliptic problem
12u = λ(u + 1) p on a bounded smooth domain � with the Navier bound-
ary conditions. We prove the regularity of the extremal solution in lower
dimensions.

1. Introduction

Consider the biharmonic equation

(1-1) 12u = u p, u > 0 in RN

where N ≥ 5 and p > 1. Let

(1-2) 3(φ) :=

∫
RN
|1φ|2 dx − p

∫
RN

u p−1φ2 dx for all φ ∈ H 2(RN ).

A solution u is said to be stable if 3(φ)≥ 0 for any test function φ ∈ H 2(RN ).
In this note, we prove the following classification result.

Theorem 1.1. Let N ≥ 5 and p> 1. Equation (1-1) has no classical stable solution
if N < 2+ 2x0, where x0 is the largest root of the polynomial

(1-3) H(x)= x4
−

32p(p+ 1)
(p− 1)2

x2
+

32p(p+ 1)(p+ 3)
(p− 1)3

x −
64p(p+ 1)2

(p− 1)4
.

Moreover, we have x0 > 5 for any p > 1. Consequently, if N ≤ 12, (1-1) has no
classical stable solution for all p > 1.
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For the corresponding second-order problem,

(1-4) 1u+ |u|p−1u = 0 in RN , p > 1,

Farina has obtained the optimal Liouville type result for all finite Morse index
solutions. He proved in [Farina 2007] that a smooth finite Morse index solution to
(1-4) exists if and only if p ≥ pJL and N ≥ 11, or p = N+2

N−2 and N ≥ 3. Here pJL
is the so-called Joseph–Lundgren exponent; see (1.11) in [Gui et al. 1992].

The nonexistence of positive solutions to (1-1) is shown if p < N+4
N−4 , and all

entire solutions are classified if p = N+4
N−4 ; see [Lin 1998; Wei and Xu 1999]. On

the other hand, the radially symmetric solutions to (1-1) are studied in [Ferrero
et al. 2009; Gazzola and Grunau 2006; Guo and Wei 2010; Karageorgis 2009].
In particular, Karageorgis [2009] proved that the radial entire solution to (1-1) is
stable if and only if p ≥ pJL4

and N ≥ 13. Here pJL4
stands for the corresponding

Joseph–Lundgren exponent to 12.
The general fourth-order case (1-1) is more delicate, since the integration by

parts argument used by Farina cannot be adapted easily. The first nonexistence
result for general stable solutions was proved by Wei and Ye [2013], who proposed
we consider (1-1) as a system

(1-5) −1u = v, −1v = u p in RN ,

and introduced the idea to use different test functions with u but also v. Using
estimates in [Souplet 2009] they showed that for N ≤ 8, (1-1) has no smooth stable
solutions. For N ≥ 9, using a blow-up argument, they proved that the classification
holds still for p < N/(N − 8)+ εN with εN > 0, but without any explicit value of
εN . This result was improved by Wei, Xu and Yang in [Wei et al. 2013] for N ≥ 20
with a more explicit bound.

Using the stability of system (1-5) and an interesting iteration argument, Cowan
[2013, Theorem 2] proved that there is no smooth stable solution to (1-1) if N <

2+ 4(p+1)
p−1 t0, where

(1-6) t0 =
√

2p
p+1

+

√
2p

p+1
−

√
2p

p+1
for all p > 1.

In particular, if N ≤ 10, (1-1) has no stable solution for any p > 1.
However, the study for radial solutions in [Karageorgis 2009] suggests the

following conjecture.

Conjecture. A smooth stable solution to (1-1) exists if and only if p ≥ pJL4
and

N ≥ 13.

Consequently, the Liouville type result for stable solutions of (1-1) should hold
true for N ≤ 12 with any p > 1; that’s what we prove here. More precisely, by
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[Karageorgis 2009, Theorem 1], the radial entire solutions to (1-1) are unstable if
and only if

(1-7)
N 2(N − 4)2

16
< pQ4

(
−

4
p−1

)
,

where Q4(m)=m(m−2)(m+N −2)(m+N −4). The left-hand side comes from
the best constant of the Hardy–Rellich inequality (see [Rellich 1969]): Let N ≥ 5,∫

RN
|1ϕ|2 dx ≥

N 2(N − 4)2

16

∫
RN

ϕ2

|x |4
dx for all ϕ ∈ H 2(RN ).

The right-hand side of (1-7) comes from the weak radial solutionw(x)=|x |−4/(p−1).
When p > N+4

N−4 , we can check that w ∈ H 2
loc(R

N ) and

12w = Q4

(
−

4
p−1

)
w p in D′(RN ).

Since w p−1(x)= |x |−4, and in view of the Hardy–Rellich inequality, the condition
(1-7) means just thatw is not a stable solution in RN, that is, there exists ϕ ∈H 2(RN )

such that

3w(ϕ) :=

∫
RN
|1ϕ|2 dx − p

∫
RN

Q4

(
−

4
p−1

)
w p−1ϕ2 dx < 0.

If we set N = 2+2x , a direct calculation shows that (1-7) is equivalent to HJL4(x)<
0, where

HJL4
(x) := (x2

− 1)2−
32p(p+ 1)
(p− 1)2

x2
+

32p(p+ 1)(p+ 3)
(p− 1)3

x −
64p(p+ 1)2

(p− 1)4
.

By [Gazzola and Grunau 2006], (1-7) is equivalent to N < 2+ 2x1 if x1 denotes
the largest root of HJL4

. Note that closeness between the fourth-order polynomials
HJL4

and H (in Theorem 1.1); they differ only by H(x)− HJL4
(x)= 2x2

− 1.
Furthermore, Theorem 1.1 improves the bound given in [Cowan 2013] for all

p > 1. Indeed, Lemmas 2.2 and 2.4 below imply that x0 >
2(p+1)

p−1 t0.
Recall that to handle the equation (1-1), we prove in general that v=−1u> 0 in

RN by studying function averages on the sphere; see [Wei and Xu 1999]. Applying
the blow-up argument as in [Souplet 2009; Wei and Ye 2013], we can assume that
u and v are uniformly bounded in RN. Therefore the following Souplet’s estimate
[2009] holds true in RN, which was established for any bounded solution u of (1-1):

(1-8) v ≥

√
2

p+1
u(p+1)/2.

Here we propose a new approach. Without assuming the boundedness of u or
showing immediately the positivity of v, we prove first some integral estimates for
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stable solutions of (1-1), which will enable us the estimate (1-8). This idea permits
us to handle more general biharmonic equations: let N ≥ 5 and p> 1, and consider

(1-9) 12u = u p, u > 0 in 6 ⊂ RN , u =1u = 0 on ∂6.

Let E = H 2(6)∩ H 1
0 (6) and

(1-10) 30(φ) :=

∫
6

|1φ|2 dx − p
∫
6

u p−1φ2 dx for all φ ∈ E .

A solution u of (1-9) is said to be stable if 30(φ)≥ 0 for any φ ∈ E .

Proposition 1.2. Let u be a classical stable solution of (1-9) where 6 is one of
RN , the half-space 6 = RN

+
, or the exterior domain 6 = RN

\� or RN
+
\�, where

� is a bounded smooth domain of RN. Then the inequality (1-8) holds in 6, and
consequently v > 0 in 6.

Using this, we obtain a Liouville type result for (1-9) in the half-space situation,
which improves the result in [Wei and Ye 2013] for a wider range of N , and without
assuming the boundedness of u or v =−1u.

Theorem 1.3. Let x0 be defined as in Theorem 1.1. If N < 2+ 2x0, there exists no
classical stable solution of (1-9) if 6 = RN

+
.

Our proof combines also many ideas from [Wei and Ye 2013; Cowan and
Ghoussoub 2014; Cowan 2013]. Briefly, for (1-1), we apply different test functions
to both equations of the system (1-5) and make use of the following inequality in
[Cowan and Ghoussoub 2014] (see also [Cowan 2013; Dupaigne et al. 2013a]): if
u is a stable solution of (1-1), then

(1-11)
∫

RN

√
pu(p−1)/2ϕ2 dx ≤

∫
RN
|∇ϕ|2 dx for all ϕ ∈ C1

0(R
N ).

This will enable us to make two estimates. From these estimates, we prove that for
any stable solution u of (1-1), φ ∈ C2

0(R
N ) and s ≥ 1,

(1-12) L(s) < 0 ⇒
∫

RN
u pvs−1φ2 dx ≤ C

∫
RN
vs(
|1(φ2)| + |∇φ|2

)
dx .

Here L is a polynomial of degree 4, see (2-9) below, and the constant C depends
only on p and s. Applying then the iteration argument of Cowan [2013], we show
that u ≡ 0 if N < 2+ 2x0, which is a contradiction, since u is positive.

Using similar ideas, we consider the elliptic equation on bounded domains:

(Pλ)
{
12u = λ(u+ 1)p in a bounded smooth domain �⊂ RN, N ≥ 1
u =1u = 0 on ∂�.

It is well known (see [Berchio and Gazzola 2005; Gazzola et al. 2010]) that there
exists a critical value λ∗ > 0 depending on p > 1 and � such that:
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• If λ ∈ (0, λ∗), (Pλ) has a minimal and classical solution uλ which is stable.

• If λ = λ∗, then u∗ = lim
λ→λ∗

uλ is a weak solution to (Pλ∗); u∗ is called the
extremal solution.

• No solution of (Pλ) exists whenever λ > λ∗.

In [Cowan et al. 2010; Wei and Ye 2013], it was proved that if 1 < p < ((N −
8)/N )−1

+ , or equivalently N < 8p/(p − 1), the extremal solution u∗ is smooth.
Recently, Cowan and Ghoussoub improved the above result by showing that u∗

is smooth if N < 2+ 4(p+ 1)/(p− 1)t0 with t0 in (1-6), so u∗ is smooth for any
p > 1 when N ≤ 10. Our result is this:

Theorem 1.4. The extremal solution u∗ is smooth if N < 2+ 2x0 with x0 given by
Theorem 1.1. In particular, u∗ is smooth for any p > 1 if N ≤ 12.

We remark that our proof does not use the a priori estimate of v =−1u as in
[Cowan et al. 2010; Cowan and Ghoussoub 2014].

The paper is organized as follows. We prove some preliminary results and
Proposition 1.2 in Section 2. The proofs of Theorems 1.1, 1.3 and 1.4 are given in
Sections 3 and 4.

2. Preliminaries

We show first how to obtain the estimate (1-8) for stable solutions of (1-9). Our
idea is to use the stability condition (1-10) to get some decay estimates for stable
solutions of (1-9). In the following, we denote by Br the ball of center 0 and radius
r > 0.

Lemma 2.1. Let u be a stable solution to (1-9) and set v =−1u. Then

(2-1)
∫
6∩BR

(v2
+ u p+1) dx ≤ C RN−4−8/(p−1) for all R > 0.

Proof. We proceed similarly as in Step 1 of the proof for [Wei and Ye 2013,
Theorem 1.1], but we do not assume here that v > 0 or u is bounded in 6. For any
ξ ∈ C4(6) satisfying ξ =1ξ = 0 on ∂6 and η ∈ C∞0 (R

N ), we have

(2-2)
∫
6

(12ξ)ξη2 dx =
∫
6

[1(ξη)]2 dx +
∫
6

[
−4(∇ξ · ∇η)2+ 2ξ1ξ |∇η|2

]
dx

+

∫
6

ξ 2[2∇(1η) · ∇η+ (1η)2] dx .

The proof is direct as in [Wei and Ye 2013, Lemma 2.3], noticing just that in the
integrations by parts, all boundary integration terms on ∂6 vanish under the Navier
conditions for ξ .
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Let u be a solution of (1-9). Taking ξ = u in (2-2), we have∫
6

[1(uη)]2 dx −
∫
6

u p+1η2 dx

= 4
∫
6

(∇u∇η)2 dx + 2
∫
6

uv|∇η|2 dx −
∫
6

u2[2∇(1η) · ∇η+ (1η)2] dx,

where v =−1u. Using φ = uη in (1-10), we obtain easily

(2-3)
∫
6

[
(1(uη))2+ u p+1η2] dx

≤C1

∫
6

[
|∇u|2|∇η|2+u2

|∇(1η)·∇η|+u2(1η)2
]

dx+C2

∫
6

uv|∇η|2 dx .

Here and below, C and Ci denote generic positive constants independent of u,
which can change from one line to another. Since 1(uη)= 2∇u · ∇η+ u1η− vη
we get from (2-3)

(2-4)
∫
6

[
v2η2
+ u p+1η2] dx

≤C1

∫
6

[
|∇u|2|∇η|2+u2

|∇(1η)·∇η|+u2(1η)2
]

dx+C2

∫
6

uv|∇η|2 dx .

On the other hand, since u = 0 on ∂6,

2
∫
6

|∇u|2|∇η|2 dx =
∫
6

1(u2)|∇η|2 dx + 2
∫
6

uv|∇η|2 dx

=

∫
6

u21(|∇η|2) dx + 2
∫
6

uv|∇η|2 dx .

By inputting this into (2-4), we arrive at

(2-5)
∫
6

[
v2η2
+ u p+1η2] dx

≤ C1

∫
6

u2[
|∇(1η) · ∇η| + (1η)2+ |1(|∇η|2)|

]
dx +C2

∫
6

uv|∇η|2 dx .

If we let η = ϕm with m > 2 and ϕ ∈ C∞0 (R
N ), ϕ ≥ 0, it follows that∫

6

uv|∇η|2 dx = m2
∫
6

uvϕ2(m−1)
|∇ϕ|2 dx

≤
1

2C

∫
6

(vϕm)2 dx +C
∫
6

u2ϕ2(m−2)
|∇ϕ|4 dx .

Now choose a cutoff function ϕ0 in C∞0 (B2) satisfying 0≤ ϕ0 ≤ 1 and ϕ0 = 1 for
|x |< 1. Inputting the above inequality into (2-5) with ϕ = ϕ0(R−1x) for R > 0 and
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η = ϕm with m = (2p+ 2)/(p− 1) > 2, we arrive at

(2-6)
∫
6

(v2
+u p+1)ϕ2m dx ≤ C

R4

∫
6

u2ϕ2m−4 dx

≤
C
R4

(∫
6

u p+1ϕ(p+1)(m−2) dx
)2/(p+1)

RN (p−1)/(p+1)

=
C
R4

(∫
6

u p+1ϕ2m dx
)2/(p+1)

RN (p−1)/(p+1).

Hence ∫
6

u p+1ϕ2m dx ≤ C RN−4(p+1)/(p−1).

Combining with (2-6) we get (2-1), since ϕ2m
= 1 for x ∈ BR := {x ∈RN

: |x | ≤ R}.
�

Proof of Proposition 1.2. Let

ζ = βu(p+1)/2
− v, where β =

√
2

p+1
.

Then a direct computation shows that 1ζ ≥ β−1u(p−1)/2ζ in 6. Consider ζ+ :=
max(ζ, 0). For any R > 0, we have

(2-7)
∫
6∩BR

|∇ζ+|
2 dx =−

∫
6∩BR

ζ+1ζ dx +
∫
∂(6∩BR)

ζ+
∂ζ

∂ν
dσ

≤

∫
6∩∂BR

ζ+
∂ζ

∂ν
dσ.

Here we used ζ+1ζ ≥ 0 in 6 and ζ = 0 on ∂6. Now let SN−1 denote the unit
sphere in RN and

e(r)=
∫

SN−1∩(r−16)

ζ 2
+
(rσ) dσ for r > 0.

We remark that there exists an R0 > 0 satisfying

(2-8)
∫
6∩∂Br

ζ+
∂ζ

∂ν
dσ = r N−1

2
e′(r) for all r ≥ R0.

Moreover, for R ≥ R0, we deduce from (2-1) that∫ R

R0

r N−1e(r) dr ≤
∫

BR∩6

ζ 2
+

dx ≤ C
∫

BR∩6

(v2
+ u p+1) dx

≤ C RN−4−8/(p−1)
= o(RN ).

This means that the function e cannot be nondecreasing at infinity, so there exists
a sequence R j → ∞ satisfying e′(R j ) ≤ 0. Combining (2-7) and (2-8) with
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R = R j →∞, we obtain ∫
6

|∇ζ+|
2 dx = 0.

Using ζ = 0 on ∂6, we have ζ+ ≡ 0 in 6, or equivalently (1-8) holds true in 6.
Clearly v > 0 in 6 by (1-8). �

In the following, we show some properties of the polynomials L and H , useful
for our proofs. Let

(2-9) L(s)= s4
− 32

p
p+ 1

s2
+ 32

p(p+ 3)
(p+ 1)2

s− 64
p

(p+ 1)2
, s ∈ R.

Lemma 2.2. L(2t0) < 0 and L has a unique root s0 in the interval (2t0,∞).

Proof. Obviously

L(2t0)= 16t4
0 − 128

p
p+ 1

t2
0 + 64

p(p+ 3)
(p+ 1)2

t0− 64
p

(p+ 1)2
.

Since t2
0/(2t0−1)=

√
2p/(p+ 1) (see [Cowan 2013]), we have t4

0 =
2p

p+ 1
(2t0−1)2.

A direct computation yields

(p+ 1)2L(2t0)
32p

= (p+ 1)(2t0− 1)2− 4(p+ 1)t2
0 + 2(p+ 3)t0− 2

= (p− 1)(1− 2t0).

Since t0 > 1 for any p> 1, we have L(2t0) < 0. Furthermore, for all p> 1, s ≥ 2t0,
we have

(p+ 1)L ′′(s)= 12(p+ 1)s2
− 64p ≥ 48(p+ 1)t2

0 − 64p

≥ 48(p+ 1)
2p

p+ 1
− 64p = 32p > 0

in [2t0,∞), where we used t2
0 ≥ 2p/(p+ 1), which holds by (1-6). Therefore L

is convex in [2t0,∞). Since lims→∞ L(s) =∞ and L(2t0) < 0, it’s clear that L
admits a unique root in (2t0,∞). �

Remark 2.3. After the change of variable x = p+1
p−1

s, a direct calculation gives

H(x)=
(

p+ 1
p− 1

)4

L(s),

hence H(x) < 0 if and only if L(s) < 0. Using the lemma above, we see that
x0 =

p+1
p−1 s0 is the largest root of H , and x0 is the only root of H for x ≥ 2(p+1)

p−1 t0.

Lemma 2.4. If x0 =
p+1
p−1

s0 is the largest root of H , then x0 > 5 for any p > 1.
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Proof. Since x0 is the largest root of H , to have x0 > 5 it suffices to show H(5) < 0.
Let J (p)= (p−1)4 H(5); then J (p)=−15p4

−1284p3
+4262p2

−3844p+625.
Therefore,

J ′(p)=−60p3
−3852p2

+8524p−3844, J ′′(p)=−180p2
−7704p+8524.

We see that J ′′ < 0 in [2,∞). Consequently J ′(p) < 0 and J (p) < 0 for p ≥ 2.
Hence x0 > 5 if p ≥ 2. For p ∈ (1, 2), we have x0 >

2(p+1)
p−1 t0 ≥ 6t0, which exceeds

5 since t0 > 1. �

3. Proof of Theorems 1.1 and 1.3

We will prove only Theorem 1.1, since the proof of Theorem 1.3 is completely
similar, just changing Br to Br ∩RN

+
.

The following result generalizes [Cowan 2013, Lemma 4], which is a crucial
argument for our proof. As above, the constant C always denotes a positive number
which may change term by term, but does not depend on the solution u. For k ∈ N,
let Rk := 2k R with R > 0.

Lemma 3.1. Assume that u is a classical stable solution of (1-1). Then for all
2≤ s < s0, there is C <∞ such that

(3-1)
∫

BRk

u pvs−1 dx ≤ C
R2

∫
BRk+1

vs dx for all R > 0.

Proof. Let u be a classical stable solution of (1-1). Let φ ∈ C2
0(R

N ) and ϕ =
u(q+1)/2φ with q ≥ 1. With this ϕ, the stability inequality (1-11) gives

(3-2)
√

p
∫

RN
u(p−1)/2uq+1φ2

≤

∫
RN

uq+1
|∇φ|2+

∫
RN

∣∣∇u(q+1)/2∣∣2φ2
+ (q + 1)

∫
RN

uqφ∇u∇φ.

Integrating by parts, we get

(3-3)
∫

RN

∣∣∇u
q+1

2
∣∣2φ2 dx =

(q+1)2

4

∫
RN

uq−1
|∇u|2φ2 dx

=
(q+1)2

4q

∫
RN
φ2
∇(uq)∇u dx

=
(q+1)2

4q

∫
RN

uqvφ2 dx−
q+1
4q

∫
RN
∇(uq+1)∇(φ2) dx

=
(q+1)2

4q

∫
RN

uqvφ2 dx+
q+1
4q

∫
RN

uq+11(φ2) dx
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and

(3-4) (q + 1)
∫

RN
uqφ∇u∇φ dx = 1

2

∫
RN
∇(uq+1)∇(φ2) dx

=−
1
2

∫
RN

uq+11(φ2) dx .

Combining (3-2)–(3-4), we conclude that
(3-5)

a1

∫
RN

u(p−1)/2uq+1φ2 dx ≤
∫

RN
uqvφ2 dx +C

∫
RN

uq+1(
|1(φ2)| + |∇φ|2

)
dx

where a1 = (4q
√

p )/(q + 1)2. Now choose φ(x)= h(R−1
k x), where h ∈ C∞0 (B2)

is such that h ≡ 1 in B1. Then

(3-6)
∫

RN
u(p−1)/2uq+1φ2 dx ≤ 1

a1

∫
RN

uqvφ2 dx + C
R2

∫
BRk+1

uq+1 dx .

Now, apply the stability inequality (1-11) with ϕ = v(r+1)/2φ, r ≥ 1, to obtain

√
p
∫

RN
u(p−1)/2vr+1φ2

≤

∫
RN
vr+1
|∇φ|2+

∫
RN

∣∣∇v(r+1)/2∣∣2φ2
+ (r + 1)

∫
RN
vrφ∇v∇φ.

By a very similar computation (recalling that −1v = u p), we have

(3-7)
∫

RN
u(p−1)/2vr+1φ2 dx ≤ 1

a2

∫
RN

u pvrφ2 dx + C
R2

∫
BRk+1

vr+1 dx

where a2 = (4r
√

p )/(r + 1)2.
Using (3-6) and (3-7), we get

(3-8) I1+ ar+1
2 I2 :=

∫
RN

u(p−1)/2uq+1φ2 dx + ar+1
2

∫
RN

u(p−1)/2vr+1φ2 dx

≤
1
a1

∫
RN

uqvφ2 dx + ar
2

∫
RN

u pvrφ2 dx

+
C
R2

∫
BRk+1

(uq+1
+ vr+1) dx .

Now fix

(3-9) 2q = (p+ 1)r + p− 1, or equivalently q + 1= 1
2(p+ 1)(r + 1).
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By Young’s inequality, we get

1
a1

∫
RN

uqvφ2 dx

=
1
a1

∫
RN

u(p−1)/2u(p+1)/2rvφ2 dx

=
1
a1

∫
RN

u(p−1)/2u(q+1)r/(r+1)vφ2 dx

≤
r

r+1

∫
RN

u(p−1)/2uq+1φ2 dx +
1

ar+1
1 (r + 1)

∫
RN

u(p−1)/2vr+1φ2 dx

=
r

r + 1
I1+

1

ar+1
1 (r + 1)

I2,

and similarly

ar
2

∫
RN

u pvrφ2 dx ≤ 1
r+1

I1+
ar+1

2 r
r + 1

I2.

Combining the above two inequalities and (3-8), we deduce that

ar+1
2 I2 ≤

(
ar+1

2 r
r + 1

+
1

ar+1
1 (r+1)

)
I2+

C
R2

∫
BRk+1

(uq+1
+ vr+1) dx;

hence
(a1a2)

r+1
− 1

r + 1
I2 ≤

Car+1
1

R2

∫
BRk+1

(uq+1
+ vr+1) dx .

Thus, if a1a2 > 1, by the choice of φ,∫
BRk

u(p−1)/2vr+1 dx ≤ I2 ≤
C
R2

∫
BRk+1

(uq+1
+ vr+1) dx .

From (1-8) and (3-9), we get uq+1
≤ Cvr+1. Setting s = r + 1, we can conclude

that if a1a2 > 1,

(3-10)
∫

BRk

u pvs−1 dx ≤ C1

∫
BRk

u(p−1)/2vs dx ≤
C2

R2

∫
BRk+1

(uq+1
+ vr+1) dx

≤
C3

R2

∫
BRk+1

vs dx .

On the other hand, a simple verification shows that a1a2 > 1 is equivalent to
L(s) < 0. By Lemma 2.2, for s ∈ [2t0, s0), this last inequality holds. So the
inequality (3-10), which is (3-1), holds for any 2t0 ≤ s < s0. On the other hand,
the estimate (3-1) is valid for 2 ≤ s < 2t0 [Cowan 2013, Lemma 4], hence for
2≤ s < s0. �
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We can then follow the iteration process in [Cowan 2013] (see Proposition 1 or
Corollary 2 there) to obtain this consequence:

Corollary 3.2. Suppose u is a classical stable solution of (1-1). For all 2 ≤ β <
N

N−2 s0, there are ` ∈ N and C <∞ such that

(∫
BR

vβ dx
)1/β

≤ C R
1
2

N (2/β−1)
(∫

BR3`

v2 dx
)1/2

for all R > 0.

Now we are in position to complete the proof of Theorem 1.1. Let u be a smooth
stable solution to (1-1). Corollary 3.2 and (2-1) imply that for any 2≤ β < N

N−2 s0,
there exists C > 0 such that(∫

BR

vβ dx
)1/β

≤ C R
1
2

N (2/β−1)+ 1
2 N−2−4/(p−1)

for all R > 0.

Note that

1
2

N (2/β − 1)+ 1
2

N − 2− 4
p−1

< 0 ⇐⇒ N <
2(p+ 1)

p− 1
β.

Considering the allowable range of β given in Corollary 3.2, if N < 2+ 2(p+1)
p−1 s0,

after sending R→∞ we get ‖v‖Lβ (RN )= 0, which is impossible since v is positive.
To conclude, the equation (1-1) has no classical stable solution if N < 2+ 2x0

where x0 =
p+1
p−1 s0.

Moreover, by Lemma 2.4, x0 > 5 for any p > 1, which means that if N ≤ 12,
(1-1) has no classical stable solution for all p > 1. �

4. Proof of Theorem 1.4

In this section, we consider the elliptic problem (Pλ). Let uλ be the minimal solution
of (Pλ). It is well known that uλ is stable. To simplify the presentation, we erase
the index λ. By [Cowan and Ghoussoub 2014; Dupaigne et al. 2013a],

(4-1)
√
λp
∫
�

(u+ 1)(p−1)/2ϕ2 dx ≤
∫
�

|∇ϕ|2 dx for all ϕ ∈ H 1
0 (�).

Using ϕ = u(q+1)/2 as a test function in (3-2), by similar computation as for (3-5)
in Section 3, we obtain

(4-2) a1
√
λ

∫
�

(u+ 1)(p−1)/2uq+1 dx ≤
∫
�

uqv dx, where a1 =
4q
√

p
(q + 1)2

.

Here we do not need a cutoff function φ, because all boundary terms appearing in
the integrations by parts vanish under the Navier boundary conditions, hence the
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calculations are even easier. We can use Young’s inequality as for Theorem 1.1,
but we show here a proof inspired by [Dupaigne et al. 2013b].

Similarly as for (3-7), using ϕ = v(r+1)/2 in (4-1), we have
(4-3)

a2
√
λ

∫
�

(u+ 1)(p−1)/2vr+1 dx ≤
∫
�

λ(u+ 1)pvr dx, where a2 =
4r
√

p
(r + 1)2

.

Fix 2q = (p+ 1)r + p− 1. Applying Hölder’s inequality,
(4-4)∫

�

uqv dx ≤
(∫

�

u(p−1)/2vr+1 dx
)1/(r+1)(∫

�

u(p−1)/2+q+1 dx
)r/(r+1)

≤

(∫
�

(u+ 1)(p−1)/2vr+1 dx
)1/(r+1)(∫

�

u(p−1)/2+q+1 dx
)r/(r+1)

and
(4-5)∫
�

(u+1)pvr dx≤
(∫

�

(u+1)(p−1)/2vr+1 dx
)r/(r+1)(∫

�

(u+1)(p−1)/2+q+1 dx
)1/(r+1)

.

Multiplying (4-2) with (4-3), using (4-4) and (4-5), we get immediately

(4-6)
(∫

�

(u+1)(p−1)/2uq+1 dx
)1/(r+1)

≤
1

a1a2

(∫
�

(u+1)(p−1)/2+q+1 dx
)1/(r+1)

.

On the other hand, for any ε > 0 there exists Cε > 0 such that

(u+ 1)(p−1)/2+q+1
≤ (1+ ε)(u+ 1)(p−1)/2uq+1

+Cε in R+.

If a1a2 > 1, there exists ε0 > 0 satisfying 1+ ε0 < (a1a2)
r+1. We deduce from

(4-6) that (
1−

1+ ε0

(a1a2)r+1

)∫
�

(u+ 1)(p−1)/2uq+1 dx ≤ C.

Therefore, when L(s) < 0, or equivalently when a1a2 > 1, there is C > 0 such that∫
�

u(p−1)/2+q+1 dx ≤
∫
�

(u+ 1)(p−1)/2uq+1 dx ≤ C.

Since u∗ = limλ→λ∗ uλ, we conclude, using Lemma 2.2,

(4-7) u∗ ∈ L(p−1)/2+q+1(�) for all q satisfying
2(q + 1)

p+ 1
= r + 1= s < s0.

Furthermore, by [Gazzola et al. 2010], we know that u∗ ∈ H 2(�). Since u∗ ≥ 0
satisfies 12u∗ = λ∗(u∗ + 1)p

≤ C(u∗)p−1u∗ +C with u∗ = 1u∗ = 0 on ∂�, by
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standard elliptic estimate, we know that u∗ is smooth if

N
4
<
( p− 1

2
+ q + 1

) 1
p−1

=
1
2

(
1+

p+ 1
p− 1

s
)
.

Therefore, u∗ is smooth if N < 2+2x0. By Lemma 2.4, u∗ is smooth for any p> 1
if N ≤ 12. �
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