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In loving memory of my dear mother

Let K be a field and G a finite group. Let G act on the rational function field
K (x(g) : g ∈ G) by K -automorphisms defined by g · x(h)= x(gh) for any g,
h ∈ G. Denote by K (G) the fixed field K (x(g) : g ∈ G)G . Noether’s problem
then asks whether K (G) is rational (i.e., purely transcendental) over K . The
first main result of this article is that K (G) is rational over K for a certain
class of p-groups having an abelian subgroup of index p. The second main
result is that K (G) is rational over K for any group of order p5 or p6 (where
p is an odd prime) having an abelian normal subgroup such that its quotient
group is cyclic. (In both theorems we assume that if char K 6= p then K
contains a primitive pe-th root of unity, where pe is the exponent of G.)

1. Introduction

Let K be a field. A field extension L of K is called rational over K (or K -rational,
for short) if L ' K (x1, . . . , xn) for some integer n, with x1, . . . , xn algebraically
independent over K . Now let G be a finite group. Let G act on the rational
function field K (x(g) : g ∈ G) by K -automorphisms defined by g · x(h)= x(gh)
for any g, h ∈ G. Denote by K (G) the fixed field K (x(g) : g ∈ G)G . Noether’s
problem then asks whether K (G) is rational over K . This is related to the inverse
Galois problem, to the existence of generic G-Galois extensions over K , and to the
existence of versal G-torsors over K -rational field extensions [Swan 1983; Saltman
1982; Garibaldi et al. 2003, §33.1, p. 86]. Noether’s problem for abelian groups was
studied extensively by Swan, Voskresenskii, Endo, Miyata and Lenstra, etc. The
reader is referred to [Swan 1983] for a survey of this problem. Fischer’s theorem is a
starting point of investigating Noether’s problem for finite abelian groups in general.

Theorem 1.1 (Fischer [Swan 1983, Theorem 6.1]). Let G be a finite abelian group
of exponent e. Assume that (i) either char K = 0 or char K > 0 with char K - e, and
(ii) K contains a primitive e-th root of unity. Then K (G) is rational over K .
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On the other hand, just a handful of results about Noether’s problem have been
obtained when the groups are nonabelian. This is the case even when the group G
is a p-group. The reader is referred to [Chu and Kang 2001; Hu and Kang 2010;
Kang 2006; 2011; 2009] for previous results on Noether’s problem for p-groups.
The following theorem of Kang generalizes Fischer’s theorem for the metacyclic
p-groups.

Theorem 1.2 [Kang 2006, Theorem 1.5]. Let G be a metacyclic p-group with
exponent pe, and let K be any field such that (i) char K = p, or (ii) char K 6= p and
K contains a primitive pe-th root of unity. Then K (G) is rational over K .

The next job is to study Noether’s problem for metabelian groups. Three results
due to Haeuslein, Hajja and Kang, respectively, are known.

Theorem 1.3 [Haeuslein 1971]. Let K be a field and G be a finite group. Assume
that (i) G contains an abelian normal subgroup H such that G/H is cyclic of prime
order p, (ii) Z[ζp] is a unique factorization domain, and (iii) ζpe ∈ K , where e is
the exponent of G. If G→ GL(V ) is any finite-dimensional linear representation
of G over K , then K (V )G is rational over K .

Theorem 1.4 [Hajja 1983]. Let K be a field and G be a finite group. Assume that
(i) G contains an abelian normal subgroup H such that G/H is cyclic of order n,
(ii) Z[ζn] is a unique factorization domain, and (iii) K is algebraically closed with
char K = 0. If G→ GL(V ) is any finite-dimensional linear representation of G
over K , then K (V )G is rational over K .

Theorem 1.5 [Kang 2009, Theorem 1.4]. Let K be a field and G be a finite group.
Assume that (i) G contains an abelian normal subgroup H such that G/H is cyclic
of order n, (ii) Z[ζn] is a unique factorization domain, and (iii) ζe ∈ K , where e is
the exponent of G. If G→ GL(V ) is any finite-dimensional linear representation
of G over K , then K (V )G is rational over K .

Note that those integers n for which Z[ζn] is a unique factorization domain are
determined by Masley and Montgomery.

Theorem 1.6 [Masley and Montgomery 1976]. Z[ζn] is a unique factorization
domain if and only if 1≤ n ≤ 22, or n = 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36,
38, 40, 42, 45, 48, 50, 54, 60, 66, 70, 84, 90.

Therefore, Theorem 1.3 holds only for primes p such that 1≤ p ≤ 19. One of
the goals of our paper is to show that the this condition can be waived, under some
additional assumptions regarding the structure of the abelian subgroup H .

Consider the following situation. Let G be a group of order pn for n ≥ 2 with an
abelian subgroup H of order pn−1. Bender [1927/28] determined some interesting
properties of these groups. We study further the case when the p-th lower central
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subgroup G(p) is trivial. (Recall that G(0) = G and G(i) = [G,G(i−1)] for i ≥ 1
form the so-called lower central series.) For our purposes we need to classify with
generators and relations these groups. We achieve this in the following lemma.

Lemma 1.7. Let G be a group of order pn for n ≥ 2 with an abelian subgroup H of
order pn−1. Choose any α ∈ G such that α generates G/H , that is, α /∈ H, α p

∈ H.
Define H(p)= {h ∈ H : h p

= 1, h /∈ H p
}∪{1}, and assume that [H(p), α] ⊂ H(p).

Assume also that the p-th lower central subgroup G(p) is trivial. Then H is a direct
product of normal subgroups of G belonging to four types:

(1) (C p)
s for some s ≥ 1. There exist generators α1, . . . , αs of (C p)

s such that
[α j , α] = α j+1 for 1≤ j ≤ s− 1 and αs ∈ Z(G).

(2) C pa for some a≥ 1. There exists a generator β of C pa such that [β, α]=βbpa−1

for some b : 0≤ b ≤ p− 1.

(3) C pa1 × C pa2 × · · · × C pak × (C p)
s for some k ≥ 1, ai ≥ 2, s ≥ 1. There

exist generators α11, α21, . . . , αk1 of C pa1 × C pa2 × · · · × C pak such that
[αi,1, α] = α

pai+1−1

i+1,1 ∈ Z(G) for i = 1, . . . , k − 1. There also exist generators
αk,2, . . . , αk,s+1 of (C p)

s such that [αk, j , α] = αk, j+1 for 1 ≤ j ≤ s and
αk,s+1 ∈ Z(G).

(4) C pa1 ×C pa2 × · · · ×C pak for some k ≥ 2, ai ≥ 2. For any i : 1 ≤ i ≤ k there
exists a generator αi,1 of the factor C pai such that [αi,1, α] = α

pai−1

i+1,1 ∈ Z(G)
and [αk,1, α] ∈

〈
α pa1−1

1,1 , . . . , α pak−1

k,1

〉
.

The first main result of this paper is a generalization of Theorem 1.3:

Theorem 1.8. Let G be a group of order pn for n ≥ 2 with an abelian subgroup H
of order pn−1, and let G be of exponent pe. Choose any α ∈G such that α generates
G/H , that is, α /∈ H, α p

∈ H. Define H(p)= {h ∈ H : h p
= 1, h /∈ H p

}∪ {1}, and
assume that [H(p), α] ⊂ H(p). Let the p-th lower central subgroup G(p) be trivial.
Assume that (i) char K = p > 0, or (ii) char K 6= p and K contains a primitive
pe-th root of unity. Then K (G) is rational over K .

The key idea to prove Theorem 1.8 is to find a faithful G-subspace W of the
regular representation space

⊕
g∈G K ·x(g) and to show that W G is rational over K .

The subspace W is obtained as an induced representation from H by applying
Lemma 1.7.

The next goal of our article is to study Noether’s problem for some groups of
orders p5 and p6 for any odd prime p. We use the list of generators and relations
for these groups, given by James [1980]. It is known that K (G) is always rational
if G is a p-group of order at most p4 and ζe ∈ K , where e is the exponent of G
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(see [Chu and Kang 2001]). However, in [Hoshi and Kang 2011] it is shown that
there exists a group G of order p5 such that C(G) is not rational over C.

The second main result of this article is the following rationality criterion for
the groups of orders p5 and p6 having an abelian normal subgroup such that its
quotient group is cyclic.

Theorem 1.9. Let G be a group of order pn for n ≤ 6 with an abelian normal
subgroup H such that G/H is cyclic. Let G be of exponent pe. Assume that
(i) char K = p > 0, or (ii) char K 6= p and K contains a primitive pe-th root of
unity. Then K (G) is rational over K .

We do not know whether Theorem 1.9 holds for any n ≥ 7. However, we should
not “overgeneralize” Theorem 1.9 to the case of any metabelian group because of
the following theorem of Saltman.

Theorem 1.10 [Saltman 1984]. For any prime number p and for any field K with
char K 6= p (in particular, K may be an algebraically closed field), there is a
metabelian p-group G of order p9 such that K (G) is not rational over K .

We organize this paper as follows. We recall some preliminaries in Section 2
that will be used in the proofs of Theorems 1.8 and 1.9. There we also prove
Lemma 2.5, which is a generalization of Kang’s argument [2011, Case 5, Step
II]. In Section 3 we prove Lemma 1.7, which is of independent interest, since it
provides a list of generators and relations for any p-group G having an abelian
subgroup H of index p, provided that [H(p), α] ⊂ H(p) and G(p) = 1. Our main
results — Theorems 1.8 and 1.9 — are proved in Sections 4 and 5, respectively.

2. Preliminaries

We list several results which will be used in the sequel.

Theorem 2.1 [Hajja and Kang 1995, Theorem 1]. Let G be a finite group acting on
L(x1, . . . , xm), the rational function field of m variables over a field L , such that

(1) for any σ ∈ G, σ (L)⊂ L ,

(2) the restriction of the action of G to L is faithful,

(3) for any σ ∈ G, σ(x1)
...

σ (xm)

= A(σ )

x1
...

xm

+ B(σ ),

where A(σ ) ∈ GLm(L) and B(σ ) is an m× 1 matrix over L. Then there exist
z1, . . . , zm ∈ L(x1, . . . , xm) such that L(x1, . . . , xm)

G
= LG(z1, . . . , zm) and

σ(zi )= zi for any σ ∈ G and 1≤ i ≤ m.
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Theorem 2.2 [Ahmad et al. 2000, Theorem 3.1]. Let G be a finite group acting on
L(x), the rational function field of one variable over a field L. Assume that, for
any σ ∈ G, σ(L)⊂ L and σ(x)= aσ x + bσ for any aσ , bσ ∈ L with aσ 6= 0. Then
L(x)G = LG(z) for some z ∈ L[x].

Theorem 2.3 [Chu and Kang 2001, Theorem 1.7]. If char K = p > 0 and G is a
finite p-group, then K (G) is rational over K .

The following lemma can be extracted from some proofs in [Kang 2011; Hu and
Kang 2010].

Lemma 2.4. Let 〈τ 〉 be a cyclic group of order n > 1, acting on K (v1, . . . , vn−1),
the rational function field of n− 1 variables over a field K , such that

τ : v1 7→ v2 7→ · · · 7→ vn−1 7→ (v1 · · · vn−1)
−1
7→ v1.

Suppose that K contains a primitive n-th root of unity ξ . Then K (v1, . . . , vn−1)=

K (s1, . . . , sn−1), where τ : si 7→ ξ i si for 1≤ i ≤ n− 1.

Proof. Define w0= 1+v1+v1v2+· · ·+v1v2 · · · vn−1, w1= (1/w0)−1/n, wi+1=

(v1v2 · · · vi/w0)−1/n for 1≤ i ≤ n−1. Thus K (v1, . . . , vn−1)= K (w1, . . . , wn)

with w1+w2+ · · ·+wn = 0 and

τ : w1 7→ w2 7→ · · · 7→ wn−1 7→ wn 7→ w1.

Define si =
∑

1≤ j≤n ξ
−i jw j for 1≤ i ≤ n−1. Then τ : si 7→ ξ i si for 1≤ i ≤ n−1

and K (w1, . . . , wn)= K (s1, . . . , sn−1). �

Next, generalizing an argument used in [Kang 2011, Case 5, Step II], we obtain
a result that will play an important role in our work.

Lemma 2.5. Let k > 1, let p be any prime and let 〈α〉 be a cyclic group of order p,
acting on K (y1i , y2i , . . . , yki : 1≤ i ≤ p−1), the rational function field of k(p−1)
variables over a field K , such that

α : y j1 7→ y j2 7→ · · · 7→ y j p−1 7→ (y j1 y j2 · · · y j p−1)
−1 for 1≤ j ≤ k.

Assume that K (v1i , v2i , . . . , vki :1≤ i ≤ p−1)= K (y1i , y2i , . . . , yki :1≤ i ≤ p−1)
where for any j : 1 ≤ j ≤ k and for any i : 1 ≤ i ≤ p − 1 the variable v j i is a
monomial in the variables y1i , y2i , . . . , yki . Assume also that the action of α on
K (v1i , v2i , . . . , vki : 1≤ i ≤ p− 1) is given by

α : v j1 7→ v j1v
p
j2, v j2 7→ v j3 7→ · · · 7→ v j p−1 7→ A j (v j1v

p−1
j2 v

p−2
j3 · · · v

2
j p−1)

−1

for 1 ≤ j ≤ k, where A j is some monomial in v1i , . . . , v j−1i for 2 ≤ j ≤ k and
A1 = 1. If K contains a primitive p-th root of unity ζ , then

K (v1i , v2i , . . . , vki : 1≤ i ≤ p− 1)= K (s1i , s2i , . . . , ski : 1≤ i ≤ p− 1),
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where α : s j i 7→ ζ i s j i for 1≤ j ≤ k, 1≤ i ≤ p− 1.

Proof. We write the additive version of the multiplication action of α; that is,
consider the Z[π ]-module M=

⊕
1≤m≤k

(⊕
1≤i≤p−1 Z·vmi

)
, where π=〈α〉. Define

submodules M j =
⊕

1≤m≤ j

(⊕
1≤i≤p−1 Z · vmi

)
for 1 ≤ j ≤ k. Thus α has the

following additive action

α : v j1 7→ v j1+ pv j2,

v j2 7→ v j3 7→ · · · 7→ v j p−1 7→ A j−v j1−(p−1)v j2−(p−2)v j3−· · ·−2v j p−1,

where A j ∈ M j−1.
By Lemma 2.4, M1 is isomorphic to the Z[π ]-module N =

⊕
1≤i≤p−1 Z · ui ,

where u1 = v12, ui = α
i−1
· v12 for 2≤ i ≤ p− 1, and

α : u1 7→ u2 7→ · · · 7→ u p−1 7→ −u1− u2− · · ·− u p−1 7→ u1.

Let 8p(T )∈Z[T ] be the p-th cyclotomic polynomial. Since Z[π ] is isomorphic
to Z[T ]/(T p

− 1), we find that Z[π ]/8p(α) ' Z[T ]/8p(T ) ' Z[ω], the ring of
p-th cyclotomic integers. As 8p(α) · x = 0 for any x ∈ N , the Z[π ]-module N
can be regarded as a Z[ω]-module through the morphism Z[π ] → Z[π ]/8p(α).
When N is regarded as a Z[ω]-module, we have N ' Z[ω], the rank-one free
Z[ω]-module.

We claim that M itself can be regarded as a Z[ω]-module, that is, 8p(α) ·M = 0.
We return to multiplicative notation. Note that all v j i are monomials in the y j i .

The action of α on y j i given in the statement satisfies
∏

0≤m≤p−1 α
m(y j i )= 1 for

any 1≤ j ≤ k, 1≤ i ≤ p− 1. Using the additive notations, we get 8p(α) · y j i = 0.
Hence 8p(α) ·M = 0.

Define M ′ = M/Mk−1. We have a short exact sequence of Z[π ]-modules

(2-1) 0→ Mk−1→ M→ M ′→ 0.

Since M is a Z[ω]-module, (2-1) is a short exact sequence of Z[ω]-modules. Pro-
ceeding by induction, we obtain that M is a direct sum of free Z[ω]-modules
isomorphic to N . Hence, M '

⊕
1≤ j≤k N j , where N j ' N is a free Z[ω]-module

and so a Z[π ]-module also (for 1≤ j ≤ k).
Finally, we interpret the additive version of M '

⊕
1≤ j≤k N j ' N k in terms of

the multiplicative version as follows: There exist w j i that are monomials in v j i for
1≤ j ≤ k, 1≤ i ≤ p− 1 such that K (w j i )= K (v j i ) and α acts as

α : w j1 7→ w j2 7→ · · · 7→ w j p−1 7→ (w j1w j2 · · ·w j p−1)
−1 for 1≤ j ≤ k.

According to Lemma 2.4, the above action can be linearized as pointed out in the
statement. �
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Now, let G be any metacyclic p-group generated by two elements σ and τ with
relations σ pa

= 1, τ pb
=σ pc

and τ−1στ =σ ε+δpr
where ε= 1 if p is odd, ε=±1 if

p= 2, δ= 0, 1 and a, b, c, r ≥ 0 are subject to some restrictions. For the description
of these restrictions see, for example, [Kang 2006, p. 564].

Theorem 2.6 [Kang 2006, Theorem 4.1]. Let p be a prime number, m, n and r
positive integers, k = 1+ pr if (p, r) 6= (2, 1) or k =−1+ 2r if p = 2 and r ≥ 2.
Let G be a split metacyclic p-group of order pm+n and exponent pe defined by
G = 〈σ, τ : σ pm

= τ pn
= 1, τ−1στ = σ k

〉. Let K be any field such that char K 6= p
and K contains a primitive pe-th root of unity, and let ζ be a primitive pm-th
root of unity. Then K (x0, x1, . . . , x pn−1)

G is rational over K , where G acts on
x0, . . . , x pn−1 by

σ : xi 7→ ζ ki
xi , τ : x0 7→ x1 7→ · · · 7→ x pn−1 7→ x0.

3. Proof of Lemma 1.7

It is well known that H is a normal subgroup of G. We divide the proof into steps.

Step I. Let β1 be any element of H that is not central. Since G(p) = {1}, there exist
β2, . . . , βk ∈ H for some k : 2≤ k≤ p such that [β j , α]=β j+1, where 1≤ j ≤ k−1
and βk 6= 1 is central. We are going to show now that the order of β2 is not greater
than p. In particular, from the multiplication rule [a, α][b, α] = [ab, α] (for any
a, b ∈ H ) it follows that all p-th powers are contained in the center of G.

From [β j , α] = β j+1 there follows the well known formula

(3-1) α−pβ1α
p
= β1β

(p
1)

2 β
(p

2)
3 · · ·β

( p
p−1)

p βp+1,

where we put βk+1 = · · · = βp+1 = 1. Since α p is in H , we obtain the formula

β
(p

1)
2 β

(p
2)

3 · · ·β
( p

k−1)
k = 1.

Hence
(
β2·
∏

j 6=2 β
a j
j

)p
=1 for some integers a j . It is not hard to see that this identity

is impossible if the order of β2 exceeds p. Indeed, if `=max{ j :β p
j 6= 1}, then β p

` is
in the subgroup generated by β p

2 , . . . , β
p
`−1. Thus [β p

` , α] = [β
b2 p
2 · · ·β

b`−1 p
`−1 , α] =

β
b2 p
3 · · ·β

b`−1 p
` 6= 1 for some b2, . . . , b`−1 ∈ Zp. On the other hand, [β p

` , α] =

β
p
`+1 = 1, which is a contradiction.

Step II. Let us write the decomposition of H as a direct product of cyclic subgroups
(not necessarily normal in G): H ' (C p)

t
×C pa1 ×C pa2 × · · · ×C pas for 0 ≤ t ,

2 ≤ a1 ≤ a2 ≤ · · · ≤ as . Choose a generator α11 ∈ C pa1 . Since G(p) = {1}, there
exist α12, . . . , α1k ∈ H for some k : 2 ≤ k ≤ p such that [α1 j , α] = α1 j+1, where
1 ≤ j ≤ k − 1 and α1k 6= 1 is central. From Step I it follows that the order of
α12 is not greater than p. We are going to define a normal subgroup of G which



174 IVO M. MICHAILOV

depends on the nature of the element α12. We will denote it by 〈〈α11〉〉, and call it
the commutator chain of α11. Simultaneously, we will define a complement in H
denoted by 〈〈α11〉〉.

Case II.1. Let α12 = α
pa1−1

11 c1 for some c1 : 0≤ c1 ≤ p− 1. Define 〈〈α11〉〉 = 〈α11〉

and 〈〈α11〉〉 = (C p)
t
· 〈α21, . . . , αs1〉. Clearly, 〈〈α11〉〉 is a normal subgroup of type 2.

Case II.2. Let α12 /∈ H p. According to the assumptions of our lemma, we have
[H(p), α] ∩ H p

= {1}, so α1 j /∈ H p for all j . Define 〈〈α11〉〉 = 〈α11, . . . , α1k〉.
Then 〈〈α11〉〉 ' C pa1 × (C p)

k−1 is a normal subgroup of type 3. Define 〈〈α11〉〉 =

(C p)
t−k+1

·〈α21, . . . , αs1〉, where (C p)
t−k+1 is the complement of (C p)

k−1 in (C p)
t .

Case II.3. Let α12 ∈ H p. Then α12 =
∏

i∈A α
pai−1di
i1 , where A ⊂ {1, 2, . . . , s},

1≤ di ≤ p− 1. Put i0 =min{i ∈ A}.
If i0 = 1, then α12 =

(
αd1

11
∏

i∈A,i 6=1 α
pai−a1
i1 di

)pa1−1

. We replace the generator α11

with α′11 = α
d1
11
∏

i∈A,i 6=1 α
pai−a1 di
i1 . Clearly, ordα′11 = ordα11 and [α′11, α] ∈ 〈α

′

11〉,
so this case is reduced to Case I.

If i0>1, then α12=
(
α

di0
i01
∏

i∈A,i 6=i0
α pai−ai0 di

i1

)pai0
−1

. We replace the generator αi01

with α′i01 = α
di0
i01
∏

i∈A,i 6=i0
α pai−ai0 di

i1 . Clearly, ordα′i01 = ordαi01 and α′p
ai0
−1

i01 = α12.
Abusing notation we will assume henceforth that i0 = 2 and α pa2−1

21 = α12.
Consider α22 = [α21, α]. We have three possibilities now.

Subcase II.3.1. If α22 ∈ 〈α
pa1−1

11 , α pa1−1

21 〉, define 〈〈α11〉〉 = 〈α11, α21〉. Then 〈〈α11〉〉 '

C pa1 ×C pa2 is a normal subgroup of type 4.

Subcase II.3.2. If α22 /∈ H p, there exist α22, . . . , α2` ∈ H for some ` : 2 ≤ ` ≤ p
such that [α2 j , α] = α2 j+1, where 1 ≤ j ≤ `− 1 and α2` 6= 1 is central. Define
〈〈α11〉〉= 〈α11, α21, α22, . . . , α2`〉. Then 〈〈α11〉〉'C pa1×C pa2×(C p)

`−1 is a normal
subgroup of type 3.

Subcase II.3.3. α22 ∈ H p. According to the observations we have just made, this
subcase leads to the following two final possibilities.

• α22 = α
pa3−1

31 , . . . , αr−12 = α
par−1

r1 , αr2 ∈ 〈α
pa1−1

11 , . . . , α par−1

r1 〉. Define 〈〈α11〉〉 =

〈α11, α21, . . . , αr1〉. Then 〈〈α11〉〉 ' C pa1 ×C pa2 × · · ·×C par is a normal subgroup
of type 4. Define 〈〈α11〉〉 = (C p)

t
· 〈αr+11, . . . , αs1〉.

• α22 = α
pa3−1

31 , . . . , αr−12 = α
par−1

r1 , αr2 /∈ H p. Then there exist αr2, . . . , αr` ∈ H
for some ` : 2 ≤ ` ≤ p such that [αr j , α] = αr j+1, where 1 ≤ j ≤ ` − 1 and
αr` 6= 1 is central. Define 〈〈α11〉〉 = 〈α11, α21, . . . , αr1, αr2, . . . , αr`〉. In this case
〈〈α11〉〉 ' C pa1 × C pa1 × · · · × C par × (C p)

`−1 is a normal subgroup of type 3.
Define 〈〈α11〉〉 = (C p)

t−`+1
· 〈αr+11, . . . , αs1〉, where (C p)

t−`+1 is the complement
of (C p)

`−1 in (C p)
t .

Step III. Put H1= 〈〈α11〉〉 and H2= 〈〈α11〉〉. Note that H1∩H2= {1}. However, H2

may not be a normal subgroup of G. That is why we need to show that there exist
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a commutator chain H1 and a normal subgroup H2 of G such that H =H1×H2.
In this step, we will describe a somewhat algorithmic approach which replaces the
generators of H until the desired result is obtained.

Assume henceforth that H2 is not normal in G. Then there exists a generator
β ∈ H2 such that α−1βα = hh1 for some h ∈ H2, h1 ∈ H1, h1 /∈ H2. Since h = βh2

for some h2 ∈ H2, we get [β, α] = h1h2.
Let us assume first that ordβ = p. If h1 ∈ H p, then h2 /∈ [H(p), α]; otherwise
[H(p), α] ∩ H p

6= {1}. In other words, h2 does not appear in similar chains, so we
can simply put h1h2, instead of h2, as a generator of H2. In this way we obtain a
group that is G-isomorphic to H2. Thus we get that [β, α] is in this new copy of
H2. Similarly, if h1 ∈ H(p) and h2 /∈ [H(p), α], we can obtain a new copy of H2

such that [β, α] is in H2. If h2 ∈ [H(p), α], we may assume that [β, α] ∈ H1. In
this case 〈〈α11〉〉 must be of type 3. Let 〈〈α11〉〉 ' C pa1 ×C pa2 × · · ·×C pak × (C p)

s

be generated by elements α11, . . . , αk1, αk2, . . . , αks+1 with relations given in the
statement of the lemma. Assume that αk` = [β, α] for some ` : 2 ≤ ` ≤ s + 1.
If ` > 2, replace β with β ′ = βα−1

k`−1. Hence [β ′, α] = 1. If ` = 2, we can put
α′k1= αk1β

−1, instead of αk1, as a generator of H1. In this way we obtain a group of
type 4, since [α′k1, α] = 1. Clearly, [β, α] is not in this new commutator chain H1.
It is not hard to see that with similar replacements we can treat the general case
[β, α] =

∏
i α

pai−1ci
i1 ·

∏
j αk j . Thus we obtain the decomposition H = H1 ×H2,

where H1 and H2 are normal subgroups of G.
Next, we are going to assume that ordβ > p. According to the definition of the

commutator chain of α11 we need to consider the three cases of Step II separately.

Case III.1. α12 = α
pa1−1c1
11 for some c1 : 1 ≤ c1 ≤ p − 1. Here we must have

h1 = α
pa1−1d1
11 for some d1 : 1≤ d1 ≤ p− 1. We can replace β with β ′ = βα−d1/c1

11 ,
so [β ′, α] = h2.

Case III.2. α12 /∈ H p. If h1 =
∏

j≥2 α
d j
1 j for some d j : 0 ≤ d j ≤ p − 1, we can

replace β with β ′= β
∏

j≥2 α
−d j
1 j−1. Hence [β ′, α] = h2. This reduces the analysis to

the case h1= α
pa1−1d1
11 for some d1 : 0≤ d1 ≤ p−1. We now have three possibilities

for h2.

Subcase III.2.1. Let h2 /∈ H p and h2 /∈ [H, α]. We can put h1h2, instead of h2, as
a generator of H2. In this way we obtain a group that is G-isomorphic to H2. Thus
we get that [β, α] is in this new copy of H2.

Subcase III.2.2. Let h2 /∈ H p and h2 ∈ [H, α], that is, there exists γ /∈ H p such that
[γ, α] = h2. Put β ′ = βγ−1. Then [β ′, α] = h1 = α

pa1−1d1
11 . Hence the commutator

chain of α11 is contained in the commutator chain 〈〈β ′〉〉 which is a normal subgroup
of G of type 3.

Subcase III.2.3. Let h2 ∈ H p; that is, h2=
∏

i∈B α
pai−1di
i1 , where B={i :αi1 ∈ H2},
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0≤ di ≤ p− 1. We can replace α11 with α′11 = α
d1
11
∏

i∈B α
pai−a1 di
i1 . Now we have

[β, α] = α′p
a1−1

11 , so the commutator chain of α′11 is contained in the commutator
chain 〈〈β〉〉, which is a normal subgroup of G of type 3.

Case III.3. α12 ∈ H p. We have that either 〈〈α11〉〉 ' C pa1 ×C pa2 × · · · ×C par is a
normal subgroup of type 4, or 〈〈α11〉〉 ' C pa1 ×C pa1 × · · · ×C par × (C p)

`−1 is a
normal subgroup of type 3.

Similarly to Case III.2, if h1 is a product of elements of order p that are not in
〈α pa1−1

11 〉, by a suitable change of the generator β we will obtain [β, α]=h2. Thus we
again reduce the considerations to the case h1=α

pa1−1d1
11 for some d1 : 0≤d1≤ p−1.

We have three possibilities for h2, which are identical to the three subcases in
Case III.2. The only slight difference is that the new commutator chain here can be
of type 3 or type 4.

In this way, we have investigated all possibilities for the proper construction of
the normal factors of H . The construction is algorithmic in nature. When we define
a new commutator chain 〈〈β ′〉〉 or 〈〈β〉〉 (as in Subcases III.2.2 and III.2.3), we have
to start the same process all over again until we can not get a new commutator chain
that contains the previous one. Denote by H1 the last commutator chain obtained by
the described algorithm from H1. We have that H1 is a normal subgroup of G of one
of the types 1–4. Denote by H2 the subgroup obtained from H2 by the replacements
described above. Then H is a direct product of H1 and H2, where H2 is normal in G.
Proceeding by induction we will obtain the decomposition given in the statement.

4. Proof of Theorem 1.8

If char K = p > 0, we can apply Theorem 2.3. Therefore, we will assume that
char K 6= p.

According to Lemma 1.7, H ' H1 × · · · ×Ht , where H1, . . . ,Ht are normal
subgroups of G that are isomorphic to any of the four types described in Lemma 1.7.

Let V be a K -vector space whose dual space V ∗ is defined as V ∗=
⊕

g∈G K ·x(g),
where G acts on V ∗ by h · x(g) = x(hg) for any h, g ∈ G. Therefore K (V )G =
K (x(g) : g ∈ G)G = K (G).

Now, for any subgroup Hi (1 ≤ i ≤ t) we can define a faithful representation
subspace Vi =

⊕
1≤ j≤ki

K · Y j , where ki is the number of the generators of Hi as
an abelian group. (For details see Cases I–IV.) Therefore,

⊕
1≤i≤t Vi is a faithful

representation space of the subgroup H .
Next, for any subgroup Hi (1 ≤ i ≤ t) we define x jk = α

k
· Y j for 1 ≤ j ≤ ki ,

0 ≤ k ≤ p − 1. Define Wi =
⊕

j,k K · x jk ⊂ V ∗. Then W =
⊕

1≤i≤t Wi is
a faithful G-subspace of V ∗. Thus, by Theorem 2.1 it suffices to show that
W G is rational over K . Note that W G

= (W H )〈α〉 = ((· · · (W H1)H2 · · · )Ht )〈α〉 =

((· · · (W H1
1

⊕
2≤ j≤t

W j )
H2 · · · )Ht )〈α〉 = · · · =

⊕
1≤ j≤t

(W H j
j )〈α〉. Therefore, we need
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to calculate W H j
j when H j is isomorphic to any of the four types described in

Lemma 1.7. Finally, we will show that the action of α on W H can be linearized.

Case I. Assume that H1 is of type 3; that is, for some k ≥ 1, ai ≥ 2, s ≥ 1,
H1 ' C pa1 ×C pa2 × · · · ×C pak × (C p)

s . Denote by α1, . . . , αk the generators of
C pa1 × · · · ×C pak , and by αk+1, . . . , αk+s the generators of (C p)

s . According to
Lemma 1.7, we have the relations [αi , α] = α

pai+1−1

i+1 ∈ Z(G) for 1 ≤ i ≤ k − 1;
[αk+ j , α] = αk+ j+1 for 0≤ j ≤ s− 1; and αk+s ∈ Z(G). Because of the frequent
use of k+ s in this case, we put r = k+ s.

We divide the proof into several steps.

Step 1. Define X1, X2, . . . , Xr ∈ V ∗ by

X j =
∑
`1,...,`r

x
(∏

i 6= j

α
`i
i

)
for 1≤ j ≤ r.

Note that αi · X j = X j for j 6= i . Let ζpai ∈ K be a primitive pai -th root of unity
for 1≤ i ≤ k, and let ζ be a primitive p-th root of unity. Define Y1, Y2, . . . , Yr ∈ V ∗

by

Yi =

pai−1∑
m=0

ζ−m
pai α

m
i · X i , Y j =

p−1∑
m=0

ζ−mαm
j · X j ,

for 1≤ i ≤ k and k+ 1≤ j ≤ r .
It follows that

αi : Yi 7→ ζpai Yi , Y j 7→ Y j for j 6= i and 1≤ i ≤ k,

α j : Y j 7→ ζY j , Yi 7→ Yi for i 6= j and k+ 1≤ j ≤ r.

Thus V1 =
⊕

1≤ j≤r K · Y j is a faithful representation space of the subgroup H1.
Define x j i = α

i
· Y j for 1 ≤ j ≤ r and 0 ≤ i ≤ p − 1. Recall that [αi , α] =

α pai+1−1

i+1 ∈ Z(G) for 1 ≤ i ≤ k − 1; [αk+ j , α] = αk+ j+1 for 0 ≤ j ≤ s − 1; and
αr ∈ Z(G). Hence

α−iα jα
i
= α jα

i pai+1−1

j+1 for 1≤ j ≤ k− 1, 1≤ i ≤ p− 1

and

α−iα jα
i
= α jα

(i
1)

j+1α
(i

2)
j+2 · · ·α

( i
r− j)

r for k ≤ j ≤ r − 1, 1≤ i ≤ p− 1.

It follows that

α` : x`i 7→ ζpa` x`i , x`+1i 7→ ζ i x`+1i , x j i 7→ x j i for 1≤ `≤ k− 1, j 6= `, `+ 1,

αk : xki 7→ ζpak xki , xwi 7→ ζ (
i

w−k)xwi , xvi 7→ xvi for 1≤ v ≤ k− 1,
k+ 1≤ w ≤ r,
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αm : xui 7→ ζ (
i

u−m)xui , xvi 7→ xvi for k+ 1≤ m ≤ r,
1≤ v ≤ m− 1,m ≤ u ≤ r,

α : x j0 7→ x j1 7→ · · · 7→ x j p−1 7→ ζ
b j

pc j x j0 for 1≤ j ≤ r,

where 0≤ i ≤ p− 1, and c j , b j are some integers such that 0≤ b j < pc j ≤ pa j .
Let W1 =

⊕
j,i

K · x j i ⊂ V ∗. As noted at the start of the proof, we must find W H1
1 .

Step 2. For 1 ≤ j ≤ r and for 1 ≤ i ≤ p − 1 define y j i = x j i/x j i−1. Thus
W1 = K (x j0, y j i : 1≤ j ≤ r, 1≤ i ≤ p− 1) and for every g ∈ G,

g · x j0 ∈ K (y j i : 1≤ j ≤ r, 1≤ i ≤ p− 1) · x j0 for 1≤ j ≤ r,

while the subfield K (y j i : 1≤ j ≤ r, 1≤ i ≤ p− 1) is invariant by the action of G,
that is,

α` : y`+1i 7→ ζ y`+1i , y j i 7→ y j i for 1≤ `≤ k− 1,
j 6= `+ 1,

αm : yui 7→ ζ (
i−1

u−m−1)yui , yvi 7→ yvi for k ≤ m ≤ r − 1,
1≤ v ≤ m,
m+ 1≤ u ≤ r,

αr : yvi 7→ yvi for 1≤ v ≤ r,

α : y j1 7→ y j2 7→ · · · 7→ y j p−1 7→ ζ
b j

pc j (y j1 · · · y j p−1)
−1 for 1≤ j ≤ r.

From Theorem 2.2 it follows that if K (y j i : 1≤ j ≤ r, 1≤ i ≤ p− 1)G is rational
over K , so is K (x j0, y j i : 1≤ j ≤ r, 1≤ i ≤ p− 1)G over K .

Since K contains a primitive pe-th root of unity ζpe , where pe is the exponent
of G, K contains as well a primitive pc j+1-th root of unity, and we may replace the
variables y j i by y j i/ζ

b j

pc j+1 so that we obtain a more convenient action of α without
changing the actions of the α j . Namely we may assume that

α : y j1 7→ y j2 7→ · · · 7→ y j p−1 7→ (y j1 y j2 · · · y j p−1)
−1 for 1≤ j ≤ r.

Define ur1 = y p
r1, uri = yri/yri−1 for 2≤ i ≤ p− 1. Then

K (y j i , uri : 1≤ j ≤ r−1, 1≤ i ≤ p−1)= K (y j i : 1≤ j ≤ r, 1≤ i ≤ p−1)〈αr−1〉.

From Theorem 2.2 it follows that if K (y j i , uri : 1≤ j ≤ r − 1, 2≤ i ≤ p− 1)G is
rational over K , so is K (y j i , uri : 1≤ j ≤ r − 1, 1≤ i ≤ p− 1)G over K . We have
the actions

α` : uri 7→ uri for 1≤ `≤ k− 1,

αm : uri 7→ ζ (
i−2

r−m−2)uri for 2≤ i ≤ p− 1, k ≤ m ≤ r − 2,
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α : ur2 7→ ur3 7→ · · · 7→ ur p−1 7→

(ur1u p−1
r2 u p−2

r3 · · · u
2
r p−1)

−1
7→ ur1u p−2

r2 u p−3
r3 · · · u

2
r p−2ur p−1.

For 2≤ i ≤ p− 1 define

vri = uri y−1
r−1i yr−2i y−1

r−3i · · · y
(−1)r−k

k+2i y(−1)r−k+1

k+1i ,

and put vr1 = ur1.
With the aid of the well known property

(n
m

)
−
(n−1

m

)
=
(n−1

m−1

)
, it is not hard to

verify the identity(
i − 2

r −m− 2

)
−

(
i − 1

r −m− 2

)
+

(
i − 1

r −m− 3

)
−

(
i − 1

r −m− 4

)
+ · · ·

· · · + (−1)r−m−1
(

i − 1
2

)
+ (−1)r−m

(
i − 1

1

)
+ (−1)r−m+1

(
i − 1

0

)
= 0.

It follows that

αm : vri 7→ vri for 1≤ i ≤ p− 1 and 1≤ m ≤ r − 2,

α : vr2 7→ vr3 7→ · · · 7→ vr p−1 7→ Ar · (vr1v
p−1
r2 v

p−2
r3 · · · v

2
r p−1)

−1.

where Ar is some monomial in y j i for 2≤ j ≤ r − 1, 1≤ i ≤ p− 1.
Define ur−11 = y p

r−11, ur−1i = yr−1i/yr−1i−1 for 2≤ i ≤ p− 1. Then

K (y j i , ur−1i :1≤ j≤r−2, 1≤ i≤ p−1)=K (y j i :1≤ j≤r−1, 1≤ i≤ p−1)〈αr−2〉.

From Theorem 2.2 it follows that if K (y j i , ur−1i : 1≤ j ≤ r − 2, 2≤ i ≤ p− 1)G

is rational over K , so is K (y j i , ur−1i : 1 ≤ j ≤ r − 2, 1 ≤ i ≤ p − 1)G over K .
Similarly to the definition of vri , we can define vr−1i so that αm(vr−1i )= vr−1i for
2 ≤ i ≤ p− 1 and 1 ≤ m ≤ r − 3. It is obvious that we can proceed in the same
way, defining elements vr−2i , vr−3i , . . . , vk+1i such that αm acts trivially on all the
v j i for k ≤ m ≤ r − 3.

Recall that the actions of α` on the y j i for 1≤ `≤ k− 1 are

α` : y`+1i 7→ ζ y`+1i , y j i 7→ y j i , for 1≤ i ≤ p− 1, 1≤ `≤ k− 1, j 6= `+ 1.

For any 1 ≤ ` ≤ k − 1 define v`+11 = y p
`+11, v`+1i = y`+1i/y`+1i−1, where

2≤ i ≤ p− 1. Put also v1i = y1i for 1≤ i ≤ p− 1. Then

K (v j i : 1≤ j ≤ r, 1≤ i ≤ p− 1)= K (y j i : 1≤ j ≤ r, 1≤ i ≤ p− 1)H1 .

The action of α is given by

α : v11 7→ v12 7→ · · · 7→v1p−1 7→ (v11v12 · · · v1p−1)
−1, vm1 7→ vm1v

p
m2,

vm2 7→vm3 7→ · · · 7→vmp−1 7→ Am · (vm1v
p−1
m2 v

p−2
m3 · · · v

2
mp−1)

−1,
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for 2≤m ≤ r , where Am is some monomial in vk+1i , . . . , vm−1i for k+ 2≤m ≤ r
and A2= A3= · · · = Ak+1= 1. From Lemmas 2.4 and 2.5 it follows that the action
of α on K (v j i : 1≤ j ≤ r, 1≤ i ≤ p− 1) can be linearized.

Case II. Assume that H1 is of type 1; that is, H1' (C p)
s+1 for some s ≥ 0. Denote

by β1, . . . , βs+1 the generators of (C p)
s+1. According to Lemma 1.7, we have the

relations [β j , α] = β j+1 for 1≤ j ≤ s and βs+1 ∈ Z(G).
Define X1, X2, . . . , Xs+1 ∈ V ∗ by

X j =
∑

`1,...,`s+1

x
(∏

m 6= j

β`m
m
)

for 1≤ j ≤ s+ 1. Note that β j · X i = X i for j 6= i . Let ζ be a primitive p-th root
of unity. Define Y1, Y2, . . . , Ys+1 ∈ V ∗ by

Y j =

p−1∑
r=0

ζ−rβr
j · X j

for 1≤ j ≤ s+ 1.
It follows that

β j : Y j 7→ ζY j , Yi 7→ Yi for i 6= j and 1≤ j ≤ s+ 1.

Thus V1 =
⊕

1≤ j≤s+1 K · Y j is a representation space of the subgroup H1.
Define x j i = α

i
·Y j for 1≤ j ≤ s+1, 0≤ i ≤ p−1. Recall that [β j , α] = β j−1.

Hence

α−iβ jα
i
= β jβ

(i
1)

j+1β
(i

2)
j+2 · · ·β

( i
s+1− j)

s+1 .

It follows that

β1 : x1i 7→ ζ x1i , x j i 7→ ζ (
i

j−1)x j i for 2≤ j ≤ s+ 1, 0≤ i ≤ p− 1,

β j : x`i 7→ x`i , xmi 7→ ζ (
i

m− j)xmi for 1≤ `≤ j − 1,
j ≤ m ≤ s+ 1, 0≤ i ≤ p− 1,

α : x j0 7→ x j1 7→ · · · 7→ x j p−1 7→ ζ b j x j0 for 1≤ j ≤ s+ 1, 0≤ b j ≤ p− 1.

Compare the actions of α, β1, . . . , βs+1 with the actions of α, αk, . . . , αk+s from
Case I, Step 1. They are almost the same. Apply the proof of Case I.

Case III. Assume that H1 is of type 2; that is, H1 ' C pa for some a ≥ 1. Denote
by β the generator of C pa . Then [β, α] = βbpa−1

for some b : 0 ≤ b ≤ p− 1. Let
ζpa ∈ K be a primitive pa-th root of unity, and let ζ be a primitive p-th root of
unity. Define X =

∑
i ζ
−i
pa x(β i ). Then β(X) = ζpa X , and define xi = α

i
· X for
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0≤ i ≤ p− 1. It follows that

β : xi 7→ ζpaζ ibxi for 0≤ i ≤ p− 1,

α : x0 7→ x1 7→ · · · 7→ x p−1 7→ ζ c
pa x0 for 0≤ c ≤ pa

− 1.

Define W1 =
⊕

i K · xi ⊂ V ∗. For 1 ≤ i ≤ p − 1 define yi = xi/xi−1. Thus
W1 = K (x0, yi : 1≤ i ≤ p− 1) and for every g ∈ G

g · x0 ∈ K (yi : 1≤ i ≤ p− 1) · x0,

while the subfield K (yi : 1≤ i ≤ p− 1) is invariant by the action of G, that is,

β : yi 7→ ζ b yi for 1≤ i ≤ p− 1,

α : y1 7→ y2 7→ · · · 7→ ζ c
pa (y1 · · · yp−1)

−1 for 0≤ c ≤ pa
− 1.

From Theorem 2.2 it follows that if K (yi : 1≤ i ≤ p− 1)G is rational over K , so
is K (x0, yi : 1≤ i ≤ p− 1)G over K .

Since K contains a primitive pe-th root of unity ζpe , where pe is the exponent
of G, K contains ζ c

pa+1 as well. We may replace the variables yi by yi/ζ
c
pa+1 so that

we obtain

α : y1 7→ y2 7→ · · · 7→ yp−1 7→ (y1 y2 · · · yp−1)
−1.

Define u1 = y p
1 , ui = yi/yi−1 for 2≤ i ≤ p− 1. Then K (ui : 1≤ i ≤ p− 1)=

K (yi : 1≤ i ≤ p− 1)〈β〉. The action of α is given by

α : u1 7→ u1u p
2 , u2 7→ u3 7→ · · · 7→ u p−1 7→ (u1u p−1

2 u p−2
3 · · · u2

p−1)
−1.

From Lemma 2.4 (or 2.5) it follows that the action of α can be linearized.

Case IV. Assume that H1 is of type 4, that is, H1 ' C pa1 ×C pa2 × · · · ×C pak for
some k ≥ 2. Denote by α1, . . . , αk the generators of H1. According to Lemma 1.7,
we have the relations [αi , α] = α

pai+1−1

i+1 ∈ Z(G) for 1 ≤ i ≤ k − 1 and [αk, α] =∏k
j=1 α

pa j−1c j
j ∈ Z(G) for some 0≤ c j ≤ p− 1.

Similarly to the previous cases, define Y1, Y2, . . . , Yk ∈ V ∗ so that

αi : Yi 7→ ζpai Yi , Y j 7→ Y j for j 6= i and 1≤ i ≤ k.

Thus V1 =
⊕

1≤ j≤k K · Y j is a faithful representation space of the subgroup H1.
Next, define x j i = α

i
· Y j for 1≤ j ≤ k, 0≤ i ≤ p− 1. Note that

α−iα jα
i
= α jα

i pa j+1−1

j+1 for 1≤ j ≤ k− 1, 1≤ i ≤ p− 1

and

α−iαkα
i
= αk

k∏
j=1

α
i pa j−1c j
j for 1≤ i ≤ p− 1.
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It follows that

α` : x`i 7→ ζpa` x`i , x`+1i 7→ ζ i x`+1i , x j i 7→ x j i for 1≤ `≤ k− 1, j 6= `, `+ 1,

αk : xki 7→ ζpak ζ
ick xki , x j i 7→ ζ ic j x j i for 1≤ j ≤ k− 1,

α : x j0 7→ x j1 7→ · · · 7→ x j p−1 7→ ζ
b j

pa j x j0 for 1≤ j ≤ k,

where 0≤ i ≤ p− 1, 0≤ c j ≤ p− 1 and 0≤ b j ≤ pa j − 1.
Define W1 =

⊕
j,i K · x j i ⊂ V ∗, and for 1≤ i ≤ p−1 define yi = xi/xi−1. Thus

W1 = K (x j0, y j i : 1≤ j ≤ k, 1≤ i ≤ p− 1) and for every g ∈ G,

g · x j0 ∈ K (y j i : 1≤ j ≤ k, 1≤ i ≤ p− 1) · x j0 for 1≤ j ≤ k,

while the subfield K (y j i : 1≤ j ≤ k, 1≤ i ≤ p− 1) is invariant by the action of G,
that is,

α` : y`+1i 7→ ζ y`+1i , y j i 7→ y j i for 1≤ i ≤ p− 1,
1≤ `≤ k− 1, j 6= `+ 1,

αk : y j i 7→ ζ c j y j i for 1≤ i ≤ p− 1, 1≤ j ≤ k,

α : y j1 7→ y j2 7→ · · · 7→ y j p−1 7→ ζ
b j

pa j (y j1 · · · y j p−1)
−1.

From Theorem 2.2 it follows that if K (y j i : 1≤ j ≤ k, 1≤ i ≤ p− 1)G is rational
over K , so is K (x j0, y j i : 1 ≤ j ≤ k, 1 ≤ i ≤ p− 1)G over K . As before, we can
again assume that α acts in this way:

α : y j1 7→ y j2 7→ · · · 7→ y j p−1 7→ (y j1 y j2 · · · y j p−1)
−1.

Now, assume that 0< c1 ≤ p−1. For 2≤ j ≤ k choose e j such that c1e j +c j ≡

0 (mod p), and define u1i = y1i , u j i = ye j
1i y j i . It follows that

α` : u`+1i 7→ ζu`+1i , u j i 7→ u j i for 1≤ i ≤ p− 1,
1≤ `≤ k− 1, j 6= `+ 1,

αk : u1i 7→ ζ c1u1i , u j i 7→ u j i for 1≤ i ≤ p− 1, 2≤ j ≤ k.

Define v j1 = u p
j1, v j i = u j i/u j i−1 for 2≤ i ≤ p− 1, 1≤ j ≤ k. Then

K (v j i : 1≤ j ≤ k, 1≤ i ≤ p− 1)= K (u j i : 1≤ j ≤ k, 1≤ i ≤ p− 1)H1 .

The action of α is given by

α : v j1 7→ v j1v
p
j2, v j2 7→ v j3 7→ · · · 7→ v j p−1 7→ (v j1v

p−1
j2 v

p−2
j3 · · · v

2
j p−1)

−1

for 2≤ j ≤ k. Lemma 2.5 implies the action of α on K (v j i : 1≤ j ≤ k, 1≤ i ≤ p−1)
can be linearized.
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Finally, let c1= 0. Define v j1= u p
j1, v j i = u j i/u j i−1 for 2≤ i ≤ p−1, 2≤ j ≤ k.

Then K (u1i , v j i : 2≤ j ≤ k, 1≤ i ≤ p− 1)= K (u j i : 1≤ j ≤ k, 1≤ i ≤ p− 1)H1 .
The action of α again can be linearized as before. We are done.

5. Proof of Theorem 1.9

By studying the classification of all groups of order p5 made by James [1980], we
see that the nonabelian groups with an abelian subgroup of index p and that are not
direct products of smaller groups are precisely the groups from the isoclinic families
with numbers 2, 3, 4 and 9. Notice that all these groups satisfy the conditions of
Theorem 1.8. The isoclinic family 8 contains only the group 88(32) which is
metacyclic, so we can apply Theorem 1.2. It is not hard to see that there are no
other groups of order p5 containing a normal abelian subgroup H such that G/H
is cyclic.

The groups of order p6 with an abelian subgroup of index p and that are not direct
products of smaller groups are precisely the groups from the isoclinic families with
numbers 2, 3, 4 and 9. Again, all these groups satisfy the conditions of Theorem 1.8.
The groups of order p6, containing a normal abelian subgroup H such that G/H
is cyclic of order > p are precisely the groups from the isoclinic families with
numbers 8 and 14. Note that the groups 88(42),88(33),814(42) are metacyclic,
and the group 88(321)a is a direct product of the metacyclic group 88(32) and
the cyclic group C p. Therefore, we need to consider the remaining groups, whose
presentations we write down for convenience of the reader.

88(321)b=〈α1, α2, β, γ : [α1, α2]=β=α
p
1, [β,α2]=β

p
=γ p, α p2

2 =β
p2
=1〉,

88(321)cr=〈α1, α2, β : [α1, α2]=β, [β,α2]
r+1
=β p(r+1)

=α p2

1 , α
p2

2 =β
p2
=1〉,

88(321)cp−1=〈α1, α2, β : [α1, α2]=β, [β,α2]=β
p
=α p2

2 , α
p2

1 =β
p2
=1〉,

88(222)=〈α1, α2, β : [α1, α2]=β, [β,α2]=β
p, α p2

1 =α
p2

2 =β
p2
=1〉,

814(321)=〈α1, α2, β : [α1, α2]=β, α
p2

1 =β
p, α p2

2 =β
p2
=1〉,

814(222)=〈α1, α2, β : [α1, α2]=β, α
p2

1 =α
p2

2 =β
p2
=1〉.

Case I. G =88(321)b. Denote by H the abelian normal subgroup of G generated
by α1 and γ . Then H = 〈α1, γβ

−1
〉 ' C p3 ×C p and G/H = 〈α2〉 ' C p2 .

Let V be a K -vector space whose dual space V ∗ is defined as V ∗=
⊕

g∈G K ·x(g),
where G acts on V ∗ by h · x(g)= x(hg) for any h, g ∈G. Thus we have K (V )G =
K (x(g) : g ∈ G)G = K (G).

Define X1, X2 ∈ V ∗ by

X1 =

p−1∑
i=0

x((γβ−1)i ), X2 =

p3
−1∑

i=0

x(αi
1).
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Note that γβ−1
· X1 = X1 and α1 · X2 = X2.

Let ζp3 ∈ K be a primitive p3-th root of unity and put ζ = ζ p2

p3 , a primitive p-th
root of unity. Define Y1, Y2 ∈ V ∗ by

Y1 =

p3
−1∑

i=0

ζ−i
p3 α

i
1 · X1, Y2 =

p−1∑
i=0

ζ−i (γβ−1)i · X2.

It follows that

α1 : Y1 7→ ζp3Y1, Y2 7→ Y2,

γβ−1
: Y1 7→ Y1, Y2 7→ ζY2,

γ : Y1 7→ ζp2Y1, Y2 7→ ζY2.

Thus K · Y1+ K · Y2 is a representation space of the subgroup H .
Define xi = α

i
2 · Y1, yi = α

i
2 · Y2 for 0≤ i ≤ p2

− 1. From the relations α1α
i
2 =

αi
2α1β

iβ(
i
2)p it follows that

α1 : xi 7→ ζp3ζ i
p2ζ
(i

2)xi , yi 7→ yi ,

γ : xi 7→ ζp2 xi , yi 7→ ζ yi ,

α2 : x0 7→ x1 7→ · · · 7→ x p2−1 7→ x0,

y0 7→ y1 7→ · · · 7→ yp2−1 7→ y0,

for 0≤ i ≤ p2
− 1.

We find that Y =
(⊕

0≤i≤p2−1 K · xi
)
⊕
(⊕

0≤i≤p2−1 K · yi
)

is a faithful G-sub-
space of V ∗. Thus, by Theorem 2.1, it suffices to show that K (xi , yi :0≤ i≤ p2

−1)G

is rational over K .
For 1≤ i ≤ p2

− 1, define ui = xi/xi−1 and vi = yi/yi−1. Thus

K (xi , yi : 0≤ i ≤ p2
− 1)= K (x0, y0, ui , vi : 1≤ i ≤ p2

− 1)

and for every g ∈ G

g · x0 ∈ K (ui , vi : 1≤ i ≤ p2
− 1) · x0, g · y0 ∈ K (ui , vi : 1≤ i ≤ p2

− 1) · y0,

while the subfield K (ui , vi : 1≤ i ≤ p2
− 1) is invariant by the action of G. Thus

K (xi , yi : 0≤ i ≤ p2
−1)G = K (ui , vi : 1≤ i ≤ p2

−1)G(u, v) for some u, v such
that α1(v)= γ (v)= α2(v)= v and α1(u)= γ (u)= α2(u)= u. We now have

(5-1)

α1 : ui 7→ ζp2ζ i−1ui , vi 7→ vi ,

γ : ui 7→ ui , vi 7→ vi ,

α2 : u1 7→ u2 7→ · · · 7→ u p2−1 7→ (u1u2 · · · u p2−1)
−1,

v1 7→ v2 7→ · · · 7→ vp2−1 7→ (v1v2 · · · vp2−1)
−1,
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for 1≤ i ≤ p2
−1. If K (ui , vi : 1≤ i ≤ p2

−1)G(u, v) is rational over K , it follows
from Theorem 2.2 that K (xi , yi : 0≤ i ≤ p2

− 1)G is rational over K .
Since γ acts trivially on K (ui , vi : 1≤ i ≤ p2

− 1), we find that

K (ui , vi : 1≤ i ≤ p2
− 1)G = K (ui , vi : 1≤ i ≤ p2

− 1)〈α1,α2〉.

Now, consider the metacyclic p-group

G̃ = 〈σ, τ : σ p3
= τ p2

= 1, τ−1στ = σ k, k = 1+ p〉.

Define X =
∑

0≤ j≤p3−1
ζ
− j
p3 x(σ j ), Vi = τ

i X for 0≤ i ≤ p2
− 1. It follows that

σ : Vi 7→ ζ ki

p3 Vi ,

τ : V0 7→ V1 7→ · · · 7→ Vp2−1 7→ V0.

Note that K (V0, V1, . . . , Vp2−1)
G̃ is rational by Theorem 2.6.

Define Ui = Vi/Vi−1 for 1 ≤ i ≤ p2
− 1. Then K (V0, V1, . . . , Vp2−1)

G̃
=

K (U1,U2, . . . , Up2−1)
G̃(U ), where

σ :U 7→U, Ui 7→ ζ ki
−ki−1

p3 Ui ,

τ :U 7→U, U1 7→U2 7→ · · · 7→Up2−1 7→ (U1U2 · · ·Up2−1)
−1.

Notice that ki
− ki−1

= (1+ p)i−1 p ≡ (1+ (i − 1)p)p (mod p3), so ζ ki
−ki−1

p3 =

ζ
1+(i−1)p
p2 . Compare the first and third entries of (5-1) (i.e., the actions of α1, α2 on

K (ui : 1≤ i ≤ p2
− 1)) with the actions of G̃ on K (Ui : 1≤ i ≤ p2

− 1). They are
the same. Hence, according to Theorem 2.6, we get that K (u1, . . . , u p2−1)

G(u)∼=
K (U1, . . . ,Up2−1)

G̃(U ) = K (V0, V1, . . . , Vp2−1)
G̃ is rational over K . Since by

Lemma 2.4 we can linearize the action of α2 on K (vi : 1≤ i ≤ p2
− 1), we finally

obtain that K (ui , vi : 1≤ i ≤ p2
− 1)〈α1,α2〉 is rational over K .

Case II. G=88(321)cr . Denote by H the abelian normal subgroup of G generated
by α1 and β. Then H = 〈α1, α

−p
1 βr+1

〉 ' C p3 ×C p and G/H = 〈α2〉 ' C p2 . Let
a = (r+1)−1

∈ Zp2 , hence β = αap
1 (α

−p
1 βr+1)a . Similarly to Case I, we can define

Y1, Y2 ∈ V ∗ such that

α1 : Y1 7→ ζp3Y1, Y2 7→ Y2,

α
−p
1 βr+1

: Y1 7→ Y1, Y2 7→ ζY2,

β : Y1 7→ ζ a
p2Y1, Y2 7→ ζ aY2.

Thus K · Y1+ K · Y2 is a representation space of the subgroup H .
Define xi = α

i
2 · Y1, yi = α

i
2 · Y2 for 0≤ i ≤ p2

− 1. From the relations α1α
i
2 =

αi
2α1β

iβ(
i
2)p and βαi

2 = α
i
2β

1+i p it follows that, for 0≤ i ≤ p2
− 1,
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α1 : xi 7→ ζp3ζ ai
p2ζ

a(i
2)xi , yi 7→ ζ ai yi ,

β : xi 7→ ζ a
p2ζ

ai xi , yi 7→ ζ a yi ,

α2 : x0 7→ x1 7→ · · · 7→ x p2−1 7→ x0,

y0 7→ y1 7→ · · · 7→ yp2−1 7→ y0.

We find that Y =
(⊕

0≤i≤p2−1 K · xi
)
⊕
(⊕

0≤i≤p2−1 K · yi
)

is a faithful G-sub-
space of V ∗. Thus, by Theorem 2.1, it suffices to show that K (xi , yi :0≤ i≤ p2

−1)G

is rational over K .
For 1≤ i ≤ p2

− 1, define ui = xi/xi−1 and vi = yi/yi−1. We now have

α1 : ui 7→ ζ a
p2ζ

a(i−1)ui , vi 7→ ζ avi ,

β : ui 7→ ζ aui , vi 7→ vi ,

α2 : u1 7→ u2 7→ · · · 7→ u p2−1 7→ (u1u2 · · · u p2−1)
−1,

v1 7→ v2 7→ · · · 7→ vp2−1 7→ (v1v2 · · · vp2−1)
−1,

for 1≤ i ≤ p2
−1. Theorem 2.2 implies that if K (ui , vi : 1≤ i ≤ p2

−1)G(u, v) is
rational over K , so is K (xi , yi : 0≤ i ≤ p2

− 1)G over K .
Since β acts in the same way as α p

1 on K (ui , vi : 1≤ i ≤ p2
− 1), we find that

K (ui , vi : 1≤ i ≤ p2
− 1)G = K (ui , vi : 1≤ i ≤ p2

− 1)〈α1,α2〉.
For 1≤ i ≤ p2

− 1 define Vi = vi/u
p
i . It follows that, for 1≤ i ≤ p2

− 1,

(5-2)

α1 : ui 7→ ζ a
p2ζ

a(i−1)ui , Vi 7→ Vi ,

α2 : u1 7→ u2 7→ · · · 7→ u p2−1 7→ (u1u2 · · · u p2−1)
−1,

V1 7→ V2 7→ · · · 7→ Vp2−1 7→ (V1V2 · · · Vp2−1)
−1.

Compare (5-2) with (5-1). They look almost the same. Apply the proof of Case I.

Case III. G = 88(321)cp−1. Denote by H the abelian normal subgroup of G
generated by α1 and β. Then H ' C p2×C p2 and G/H ' C p2 . Similarly to Case I,
we can define Y1, Y2 ∈ V ∗ such that

α1 : Y1 7→ ζp2Y1, Y2 7→ Y2,

β : Y1 7→ Y1, Y2 7→ ζp2Y2.

Thus K · Y1+ K · Y2 is a representation space of the subgroup H .
Define xi = α

i
2 · Y1, yi = α

i
2 · Y2 for 0≤ i ≤ p2

− 1. From the relations α1α
i
2 =

αi
2α1β

iβ(
i
2)p and βαi

2 = α
i
2β

1+i p it follows that, for 0≤ i ≤ p2
− 1,

α1 : xi 7→ ζp2 xi , yi 7→ ζ i
p2ζ
(i

2)yi ,

β : xi 7→ xi , yi 7→ ζp2ζ i yi ,
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α2 : x0 7→ x1 7→ · · · 7→ x p2−1 7→ x0,

y0 7→ y1 7→ · · · 7→ yp2−1 7→ ζ y0.

For 1≤ i ≤ p2
− 1, define ui = xi/xi−1 and vi = yi/yi−1. We now have

α1 : ui 7→ ui , vi 7→ ζp2ζ i−1vi ,

β : ui 7→ ui , vi 7→ ζvi ,

α2 : u1 7→ u2 7→ · · · 7→ u p2−1 7→ (u1u2 · · · u p2−1)
−1,

v1 7→ v2 7→ · · · 7→ vp2−1 7→ ζ(v1v2 · · · vp2−1)
−1,

for 1≤ i ≤ p2
−1. Since β acts in the same way as α p

1 on K (ui , vi : 1≤ i ≤ p2
−1),

we find that K (ui , vi : 1≤ i ≤ p2
− 1)G = K (ui , vi : 1≤ i ≤ p2

− 1)〈α1,α2〉.
Let ζp3 ∈ K be a primitive p3-th root of unity such that ζ p2

p3 = ζ . For 1≤ i ≤ p2
−1

define wi = vi/ζp3 . It follows that

(5-3)

α1 : ui 7→ ui , wi 7→ ζp2ζ i−1wi ,

α2 : u1 7→ u2 7→ · · · 7→ u p2−1 7→ (u1u2 · · · u p2−1)
−1,

w1 7→ w2 7→ · · · 7→ wp2−1 7→ (w1w2 · · ·wp2−1)
−1,

for 1≤ i ≤ p2
− 1. Compare (5-3) with (5-1) or (5-2). They look almost the same.

Apply the proof of Case I.

Case IV. G =88(222). Denote by H the abelian normal subgroup of G generated
by α1 and β. Then H 'C p2×C p2 and G/H 'C p2 . The proof henceforth is almost
the same as Case III.

Case V. G =814(321). Denote by H the abelian normal subgroup of G generated
by α2 and β. Then H ' C p2 ×C p2 and G/H ' C p2 .

As before, we can define Y1, Y2 ∈ V ∗ such that

α2 : Y1 7→ ζp2Y1, Y2 7→ Y2,

β : Y1 7→ Y1, Y2 7→ ζp2Y2.

Thus K · Y1+ K · Y2 is a representation space of the subgroup H .
Define xi = α

i
1 · Y1, yi = α

i
1 · Y2 for 0≤ i ≤ p2

− 1. From the relations α2α
i
1 =

αi
1α2β

−i it follows that, for 0≤ i ≤ p2
− 1,

α2 : xi 7→ ζp2 xi , yi 7→ ζ−i
p2 yi ,

β : xi 7→ xi , yi 7→ ζp2 yi ,

α1 : x0 7→ x1 7→ · · · 7→ x p2−1 7→ x0,

y0 7→ y1 7→ · · · 7→ yp2−1 7→ ζ y0.



188 IVO M. MICHAILOV

For 1≤ i ≤ p2
− 1, define ui = xi/xi−1 and vi = yi/yi−1. We now have

α2 : ui 7→ ui , vi 7→ ζ−1
p2 vi ,

β : ui 7→ ui , vi 7→ vi ,

α1 : u1 7→ u2 7→ · · · 7→ u p2−1 7→ (u1u2 · · · u p2−1)
−1,

v1 7→ v2 7→ · · · 7→ vp2−1 7→ ζ(v1v2 · · · vp2−1)
−1,

for 1≤ i ≤ p2
−1. Since β acts trivially on K (ui , vi : 1≤ i ≤ p2

−1), we find that
K (ui , vi : 1≤ i ≤ p2

− 1)G = K (ui , vi : 1≤ i ≤ p2
− 1)〈α1,α2〉.

Define w1 = v
p2

1 ζ
−1, wi = vi/vi−1 for 2≤ i ≤ p2

− 1. We now have

K (v1, . . . , vp2−1)
〈α2〉 = K (w1, . . . , wp2−1)

and

α1 : w1 7→ w p2

2 w1,

w2 7→ w3 7→ · · · 7→ wp2−1 7→ 1/(w1w
p2
−1

2 w p2
−2

3 · · ·w2
p2−1).

Define z1=w2, zi = α
i−1
1 ·w2 for 2≤ i ≤ p2

−1. Then K (wi : 1≤ i ≤ p2
−1)=

K (zi : 1≤ i ≤ p2
− 1) and

α1 : z1 7→ z2 7→ · · · 7→ z pt−1 7→ (z1z2 · · · z p2−1)
−1.

The action of α1 can be linearized by Lemma 2.4. Thus K (ui , zi : 1≤ i ≤ p2
−1)〈α1〉

is rational over K by Theorem 2.1. We are done.

Case VI. G =814(222). Denote by H the abelian normal subgroup of G generated
by α2 and β. Then H 'C p2×C p2 and G/H 'C p2 . The proof henceforth is almost
the same as Case V.
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