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Let G be a connected reductive algebraic group defined over a number
field k. In this paper, we introduce the Ryshkov domain R for the arith-
metical minimum function mQ defined from a height function associated to
a maximal k-parabolic subgroup Q of G . The domain R is a Q.k/-invariant
subset of the adele group G.A/. We show that a fundamental domain � for
Q.k/nR yields a fundamental domain for G.k/nG.A/. We also see that any
local maximum of mQ is attained on the boundary of �.

Introduction

Let Pn be the cone of positive definite n by n real symmetric matrices, and let
m.A/ be the arithmetical minimum min0¤x2Zn

txAx of A 2 Pn. The function
f WA 7!m.A/=.detA/1=n on Pn is called the Hermite invariant. Since the maximum
of f gives the Hermite constant 
n for dimension n, the determination of local
maxima of f is a fundamental problem of lattice sphere packings in Euclidean
spaces and the arithmetic theory of quadratic forms. Voronoi’s theorem [1908,
Théorème 17] states that f attains a local maximum at a point A if and only
if A is perfect and eutactic. Moreover, perfect forms play an essential role in
Voronoi’s reduction theory of Pn with respect to the action of GLn.Z/ (see, e.g.,
[Martinet 2003] and [Schürmann 2009]). Ryshkov [1970] introduced a locally finite
polyhedron R.m/ in Pn defined by the condition m.A/ � 1. It is not difficult to
show that A is perfect with m.A/D 1 if and only if A is a vertex of the boundary
of R.m/. In particular, any local maximum of the Hermite invariant f is attained
on the boundary of R.m/. In this sense, we can say that the Ryshkov polyhedron
R.m/ is well matched with f .

Let G be a connected isotropic reductive algebraic group defined over a number
field k, and let Q be a maximal k-parabolic subgroup of G. In previous papers
[Watanabe 2000; 2003], we investigated a constant 
 .G;Q; k/ as a generalization
of Hermite’s constant 
n. Precisely, the constant 
 .G;Q; k/ is defined to be
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the maximum of the function mQ.g/Dminx2Q.k/nG.k/HQ.xg/ on G.k/nG.A/1,
where HQ denotes the height function associated to Q. To prove the existence of
the maximum of mQ, we used Borel and Harish-Chandra’s reduction theory for the
adele group G.A/ with respect to G.k/. However, a Siegel set in G.A/ is not well
matched with mQ in a sense that one cannot obtain any information on locations of
extreme points of mQ in a Siegel set.

The purpose of this paper is to construct a fundamental domain of G.A/1 with
respect to G.k/ which is well matched with mQ. We first consider an analog of
the Ryshkov polyhedron. We set XQ.g/D fx 2Q.k/nG.k/ WmQ.g/DHQ.xg/g
for a given g 2G.A/1. This is a finite subset of Q.k/nG.k/ and is regarded as an
analog of the set of minimal vectors of a positive definite real quadratic form. We
define the domain R.mQ/ as follows:

R.mQ/D fg 2G.A/
1
W Ne 2XQ.g/g;

where Ne denotes the trivial class Q.k/ in Q.k/nG.k/. The set R.mQ/ is a left Q.k/-
invariant closed set with nonempty interior. The interior of R.mQ/ is just a subset
R1 consisting of g 2 R.mQ/ such that XQ.g/ is the one-point set f Neg. We denote
by R�1 the closure of R1 in G.A/1. Both R1 and R�1 are also left Q.k/-invariant. By
Baer and Levi’s theorem [1931, Satz 7], there exists an open fundamental domain
�Q of R�1 with respect to Q.k/, that is, �Q is a relatively open subset of R�1
satisfying

� Q.k/��Q D R�1 , where ��Q denotes the closure of �Q in R�1 , and

� 
�Q \�
�
Q D∅ for any 
 2Q.k/ n feg.

Let �ıQ denote the interior of �Q in G.A/1. Then our main theorem is stated as
follows:

Theorem. The set �ıQ is an open fundamental domain of G.A/1 with respect to
G.k/. Any local maximum of mQ is attained on the intersection of the boundary of
�ıQ and the boundary of R�1 .

If we denote by rG the k-rank of the commutator subgroup of G, then G has
rG standard maximal k-parabolic subgroups. Since �Q depends on Q, we obtain
rG different kinds of fundamental domains of G.A/1 with respect to G.k/. The
method to construct �Q may be viewed as a generalization of the highest point
method (see [Grenier 1988] and [Terras 1988, §4,4]). For example, let k D Q,
G D GLn and Q be a standard maximal Q-parabolic subgroup such that QnG
is a projective space. Then our construction gives a fundamental domain �Q
whose Archimedean part is isomorphic with Grenier’s fundamental domain. If we
choose another standard maximal Q-parabolic subgroup of GLn as Q, then the
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Archimedean part of �Q yields a new kind of fundamental domain of Pn with
respect to GLn.Z/ (see Example 3 in Section 7).

Notation. For a given ring A, the set of all n by k matrices with entries in A is
denoted by Mn;k.A/. We write Mn.A/ for Mn;n.A/. The transpose of a given
matrix a 2Mn;k.A/ is denoted by ta. In this paper, k denotes an algebraic number
field of finite degree over Q and o the ring of integers of k. The sets of all infinite
and finite places of k are denoted by p1 and pf , respectively. For � 2 p1 [ pf ,
k� denotes the completion of k at � . For � 2 pf , o� denotes the closure of o in
k� . The étale R-algebra k1 D k˝Q R is identified with

Q
�2p1

k� . Let A and A�

denote the adele ring and the idèle group of k, respectively. The idèle norm of A�

is denoted by j � jA.

1. Height functions

Let G be a connected affine algebraic group defined over k. For any k-algebra
A, G.A/ stands for the set of A-rational points of G. Let X�.G/k be the free
Z-module consisting of all k-rational characters of G. For each g 2 G.A/, we
define the homomorphism #G.g/ W X

�.G/k! R>0 by #G.g/.�/ D j�.g/jA for
� 2X�.G/k. Then #G is a homomorphism from G.A/ into HomZ.X

�.G/k;R>0/.
We write G.A/1 for the kernel of #G .

In the following, let G be a connected isotropic reductive group defined over k.
We fix a maximal k-split torus S of G and a minimal k-parabolic subgroup P0 of G
containing S . Denote by ˆk and �k the relative root system of G with respect to S
and the set of simple roots of ˆk corresponding to P0, respectively. Let M0 be the
centralizer of S in G. Then P0 has a Levi decomposition P0 DM0U0, where U0
is the unipotent radical of P0. A k-parabolic subgroup of G containing P0 is called
a standard k-parabolic subgroup of G. Every standard k-parabolic subgroup R of
G has a unique Levi subgroup MR containing M0. We denote by UR the unipotent
radical of R and by ZR the greatest central k-split torus in MR. Throughout this
paper, we fix a maximal compact subgroup K D

Q
�2p1

K� �
Q
�2pf

K� of G.A/
satisfying the following property: for every standard k-parabolic subgroup R of G,
K \MR.A/ is a maximal compact subgroup of MR.A/, and MR.A/ possesses an
Iwasawa decomposition .MR.A/\U0.A//M0.A/.K \MR.A//.

Let Q be a standard proper maximal k-parabolic subgroup of G. There is only
one simple root ˛0 2�k such that the restriction of ˛0 to ZQ is nontrivial. Let nQ
be the positive integer such that n�1Q ˛0jZQ

is a Z-basis of X�.ZQ=ZG/k. We write
˛Q for n�1Q ˛0jZQ

and y̨Q for ydQn�1Q ˛0jZQ
, where

ydQ D ŒX
�.ZQ=ZG/k WX

�.MQ=ZG/k�:

Then y̨Q is a Z-basis of the submodule X�.MQ=ZG/k of X�.ZQ=ZG/k. Define
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the map zQ WG.A/!ZG.A/MQ.A/
1nMQ.A/ by zQ.g/DZG.A/MQ.A/

1m if
g D umh with u 2 UQ.A/, m 2MQ.A/ and h 2K. This is well defined and left
ZG.A/Q.A/

1-invariant. Since ZG.A/1 DZG.A/\G.A/1 �MQ.A/
1, zQ gives

rise to a map from YQ DQ.A/
1nG.A/1 to MQ.A/

1n.MQ.A/\G.A/
1/. Namely,

we have the following commutative diagram, whose vertical arrows are natural
maps:

YQ
zQ

����! MQ.A/
1n.MQ.A/\G.A/

1/??y ??y
ZG.A/Q.A/

1nG.A/
zQ

����! ZG.A/MQ.A/
1nMQ.A/:

We define the height function HQ WG.A/!R>0 by HQ.g/D jy̨Q.zQ.g//j�1A for
g 2 G.A/. We notice that the restriction of HQ to MQ.A/ is a homomorphism
from MQ.A/ onto R>0.

Example 1. Let G be a general linear group GLn defined over the rational number
field Q, P0 the group of upper triangular matrices in G and S the group of diagonal
matrices in G. We fix an integer k 2 f1; : : : ; n� 1g, and let

Q.Q/D

��
a b

0 d

�
W a 2 GLk.Q/; b 2Mk;n�k.Q/; d 2 GLn�k.Q/

�
:

Then Q is a standard maximal Q-parabolic subgroup of G. The rational character
y̨Q and the height HQ are given by

y̨Q

��
a 0

0 d

��
D .det a/.n�k/=r.det d/�k=r

and

HQ

��
a 0

0 d

��
D jdet aj�.n�k/=rA jdet d jk=rA ;

where r denotes the greatest common divisor of k and n� k. The height HQ has
another expression. To explain this, let Qn be an n-dimensional column vector
space over Q with standard basis e1; : : : ; en. The maximal parabolic subgroup
Q.Q/ stabilizes the subspace spanned by e1; : : : ; ek . Let Vn;k.Q/ D

Vk
Qn be

the k-th exterior product of Qn. We set Vn;k.A/D Vn;k.Q/˝Q A and Vn;k.Q� /D

Vn;k.Q/˝Q Q� for � 2 p1[pf . A Q-basis of Vn;k.Q/ is formed by the elements
eI D ei1 ^ � � � ^ eik

with I D fi1 < i2 < � � � < ikg � f1; : : : ; ng. For a unique
infinite place12 p1, we define the local height H1 W Vn;k.Q1/! R>0 by

H1

�X
I

aIeI

�
D

�X
I

jaI j
2
1

�1=2
;
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where j � j1 denotes the usual absolute value of Q1 D R. For each finite prime
p 2 pf , we define the local height Hp W Vn;k.Qp/! R>0 by

Hp

�X
I

aIeI

�
D sup

I

jaI jp;

where j � jp denotes the p-adic absolute value of Qp normalized so that jpjp Dp�1.
Then the global height Hn;k W Vn;k.Q/! R>0 is defined to be a product of all
local heights, that is, Hn;k.x/D

Q
�2p1[pf

H� .x/ for x 2 Vn;k.Q/. This Hn;k
is immediately extended to the subset GL.Vn;k.A//Vn;k.Q/ of the adele space
Vn;k.A/ by

Hn;k.Ax/D
Y

�2p1[pf

H� .A�x/

for A D .A� / 2 GL.Vn;k.A// and x 2 Vn;k.Q/. In particular, for g 2 G.A/ D
GLn.A/, we can take the valueHn;k.ge1^ge2^ � � � ^ge

k
/. We choose a maximal

compact subgroup K1 of G.Q1/ as
˚
g 2G.Q1/ W

tg�1 D g
	
. Let

Kf D
Y
p2pf

GLn.Zp/ and K DK1 �Kf :

Then, by elementary computations, we have

Hn;k.ge1 ^ge2 ^ � � � ^gek/D jdet ajA if g D h
�
a b

0 d

�
with h 2 K, a 2 GLk.A/, b 2 Mk;n�k.A/ and d 2 GLn�k.A/. Therefore, if
g 2G.A/1, that is, jdetgjA D 1, then

HQ.g/DHn;k
�
g�1e1 ^g

�1e2 ^ � � � ^g
�1ek

�n=r
:

2. Twisted height functions restricted to one parameter subgroups

Let NG.S/ be the normalizer of S in G and WG D NG.S/.k/=M0.k/ the Weyl
group of G with respect to S . For a simple root ˛ 2 �k, s˛ 2 WG denotes the
simple reflection corresponding to ˛. Then fs˛g˛2�k

generates WG . We denote
by W Q

G the subgroup of WG generated by fs˛g˛2�knf˛0g
. For each w 2WG , we

use the same notation w for a representative of w in NG.S/.k/. The following
cell decomposition of G.k/ holds via Bruhat decomposition [Borel and Tits 1965,
Proposition 4.10, Corollaire 5.20]:

G.k/D
G

Œw�2W
Q

G nWG=W
Q

G

Q.k/wQ.k/;

where Œw� stands for the class W Q
G wW

Q
G in W Q

G nWG=W
Q
G .
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The Weyl group WG acts on X�.S/k by w �� W t 7! �
�
w�1tw

�
for w 2WG and

� 2X�.S/k. We consider the restriction y̨QjS of the rational character y̨Q of MQ

to S .

Lemma 1. The subgroup of WG fixing y̨QjS is equal to W Q
G .

Proof. Put W 0D fw 2WG W w � y̨QjS D y̨QjSg. Since a representative of w 2W Q
G

is contained in MQ.k/, we have y̨Q.w�1tw/D y̨Q.w/�1 y̨Q.t/y̨Q.w/D y̨Q.t/
for all t 2 S . Hence W Q

G is contained in W 0. By [Humphreys 1990, §1.12 Theorem
(a) and (c)] , W 0 is generated by a subset W 0 \ fs˛g˛2�k

of simple reflections.
From W

Q
G � W

0, it follows fs˛g˛2�knf˛0g
� W 0 \ fs˛g˛2�k

� fs˛g˛2�k
. Since

y̨Q is nontrivial on S=ZG , W 0 \ fs˛g˛2�k
must equal fs˛g˛2�knf˛0g

. Therefore
W 0 coincides with W Q

G . �

Let X�.S/k be the free Z-module consisting of all k-rational cocharacters of S .
A natural pairing

h � ; � i WX�.S/k �X�.S/k! Z

defined as in [Borel 1991, §8.6] is a regular pairing over Z.

Lemma 2. Letw1 andw2 be elements ofWG such thatw�11 W
Q
G ¤w

�1
2 W

Q
G . Then

there exist a cocharacter � D �w1;w2
2X�.S/k such that

HQ
�
w1�.�/w

�1
1

�
>HQ

�
w2�.�/w

�1
2

�
holds for all � 2 A�>1, where A�>1 denotes the set of � 2 A� satisfying j�jA > 1.

Proof. Since w�11 � y̨QjS �w
�1
2 � y̨QjS ¤ 0 by Lemma 1, there is a � 2X�.S/k such

that hw�11 � y̨QjS �w
�1
2 � y̨QjS ; �i<0. The value `Dhw�11 � y̨QjS �w

�1
2 � y̨QjS ; �i

is a negative integer. We have

y̨Q.w1�.�/w
�1
1 / � y̨Q.w2�.�/w

�1
2 /�1 D �`

for all � 2Gm. Therefore,

HQ.w1�.�/w
�1
1 /HQ.w2�.�/w

�1
2 /�1 D j�j�`A > 1

holds for all � 2 A�>1. �

3. The Hermite function associated to Q and minimal points

We set XQ DQ.k/nG.k/, which is regarded as a subset of YQ DQ.A/1nG.A/1.
Let �X W G.k/! XQ be the natural quotient map. The symbol Ne D �X .e/ 2 XQ
denotes the class of the unit element e 2G.k/. The Hermite function

mQ WG.A/
1
! R>0
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is defined to be
mQ.g/D min

x2XQ

HQ.xg/:

By definition, mQ is a positive valued continuous function on G.k/nG.A/1=K.
For each g 2G.A/1, we put

XQ.g/D fx 2XQ WmQ.g/DHQ.xg/g;

which is a finite subset of XQ. Thus we can define the counting function nQ.g/D

#XQ.g/.

Lemma 3. For any g 2 G.A/1, 
 2 G.k/ and h 2 K, one has XQ.
gh/ D
XQ.g/


�1. Especially, the counting function nQ is left G.k/-invariant and right
K-invariant.

The following lemma is proved by the same method as in [Watanabe 2012, Proof
of Proposition 4.1].

Lemma 4. For g 2 G.A/1, there is a neighborhood U of g in G.A/1 such that
XQ.g

0/�XQ.g/ for all g0 2U.

Example 2. LetG be a general linear group GLn defined over Q. We keep notations
used in Example 1. In this case, we can express mQ in terms of some minimum
of positive definite symmetric matrices. Since GLn =Q is of class number one,
G.A/1 D fg 2 GLn.A/ W jdetgjA D 1g has the following decomposition:

G.A/1 DG.Q/.G.Q1/
1
�Kf /;

where G.Q1/1 D fg 2 GLn.Q1/ W detg D˙1g and Kf D
Q
p2pf

GLn.Zp/. We
fix g D ı.g1 �gf / 2G.A/1 with ı 2G.Q/, g1 2G.Q1/1 and gf 2Kf . From
the left G.Q/-invariance and the right K-invariance of mQ, it follows that

mQ.g/DmQ.g1/D min
x2XQ

HQ.xg1/D min

2G.Q/

HQ.
g1/:

Furthermore, since G.Q/DQ.Q/GLn.Z/ andHQ is leftQ.Q/-invariant, we have

mQ.g/D min

2GLn.Z/

HQ.
g1/:

An elementary proof of the decomposition G.Q/ D Q.Q/GLn.Z/ is found in
[Shimura 1994, Theorem 3]. By Example 1,

HQ.
g1/DHn;k
�
g�11 
�1e1^ � � � ^g

�1
1 
�1ek

�n=r
DH1

�
g�11 
�1e1^ � � � ^g

�1
1 
�1ek

�n=r Q
p2pf

Hp
�

�1e1^ � � � ^


�1ek
�n=r

DH1
�
g�11 
�1e1^ � � � ^g

�1
1 
�1ek

�n=r
:
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Here we notice that Hp.
�1e1^ � � � ^

�1e

k
/D 1 for all p 2 pf and 
 2GLn.Z/.

For a given 
 2 GLn.Z/, X
 stands for the n by k matrix consisting of the first k
columns of 
 . Binet’s formula (see [Bombieri and Gubler 2006, Proposition 2.8.8])
yields

H1
�
g�11 
�1e1 ^ � � � ^g

�1
1 
�1ek

�
D det

�
tX
�1

tg�11 g�11 X
�1

�1=2
:

As a consequence, we obtain

mQ.g/D min
X2Mn;k.Z/�

det
�
tX tg�11 g�11 X

�n=2r
;

where Mn;k.Z/
� denotes the set of X
 for all 
 2 GLn.Z/. In the case of k D 1,

Mn;1.Z/
� is just the set of primitive vectors of the lattice Zn, and hence mQ.g/

coincides with the n=2 power of the arithmetical minimum of the positive definite
symmetric matrix tg�11 g�11 .

4. The Ryshkov domain of G associated to Q

We define the Ryshkov domain RD R.mQ/ of mQ by

RD R.mQ/D
˚
g 2G.A/1 WmQ.g/=HQ.g/� 1

	
:

Since mQ.g/�HQ.g/ holds for all g 2G.A/1, we have

RD
˚
g 2G.A/1 WmQ.g/DHQ.g/

	
D
˚
g 2G.A/1 W Ne 2XQ.g/

	
:

Since both HQ and mQ are continuous, R is a closed subset in G.A/1.

Lemma 5. One has Q.k/RK D R and G.A/1 DG.k/R.

Proof. The first assertion is obvious by the definition of HQ. To prove the second
assertion, we choose a minimal point x 2XQ.g/ for a given g 2G.A/1. There is
a 
 2G.k/ such that x D �X .
 /. Then HQ.xg/DHQ.
g/DmQ.g/DmQ.
g/

since mQ is left G.k/-invariant. Therefore, 
g 2 R. �

Lemma 6. Let C be an arbitrary subset of G.A/1, and let g2G.A/1 and 
 2G.k/.

(1) 
g 2 R if and only if �X .
 / 2XQ.g/.

(2) XQ.g/D �X .f
 2G.k/ W 
g 2 Rg/.

(3) 
C � R if and only if �X .
 / 2
T
g2C XQ.g/.

(4)
T
g2RXQ.g/D fNeg.

(5) 
R� R if and only if 
 2Q.k/.
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Proof. By definition, 
g2R if and only if mQ.
g/DHQ.
g/. This is equivalent to
�X .
 / 2XQ.g/ because mQ.
g/DmQ.g/. Both (2) and (3) follow from (1). For
a point xD�X .
 /2

T
g2RXQ.g/, we have 
Q.k/R�R; in other words, xQ.k/�T

g2RXQ.g/. Since xQ.k/ is an infinite set for x ¤ Ne by Bruhat decomposition,
we must have x D Ne. This shows (4). Item (5) follows from (3) and (4). �

Lemma 7. Let g0 2 R be an element such that nQ.g0/ > 1 and x0 an arbitrary
element in XQ.g0/. Then, any neighborhood U of g0 in G.A/1 contains a point g
such that XQ.g/�XQ.g0/ and x0 62XQ.g/.

Proof. We may assume U satisfies XQ.g/� XQ.g0/ for all g 2U by Lemma 4.
Since nQ.g0/ > 1, there is an x 2XQ.g0/ such that x ¤ Ne. This x is of the form
�X .w
 / with w 2WG nW

Q
G and 
 2Q.k/. By Lemma 2, there is a cocharacter

� D �w;e 2X�.S/k such that HQ
�
w�.�/w�1

�
>HQ.�.�// holds for all � 2 A�>1.

Let � 2 A� be an element sufficiently close to 1 so that g� D 
�1�.�/
g0 is
contained in U. We have

HQ.g�/DHQ.�.�/
g0/DHQ.�.�//HQ.
g0/

DHQ.�.�//HQ.g0/DHQ.�.�//mQ.g0/

and

HQ.xg�/DHQ.w�.�/
g0/DHQ.w�.�/w
�1/HQ.w
g0/

DHQ.w�.�/w
�1/mQ.g0/:

If x0 D Ne, then we choose � sufficiently close to 1 satisfying ��1 2 A�>1. Since
XQ.g�/�XQ.g0/ and mQ.g�/�HQ.xg�/<HQ.g�/, XQ.g�/ does not contain
Ne. If x0 ¤ Ne, then we choose x as x0 and � 2 A�>1 sufficiently close to 1. Since
mQ.g�/�HQ.g�/ < HQ.x0g�/, XQ.g�/ does not contain x0. �

Lemma 8. ming2G.A/1 nQ.g/Dming2R nQ.g/D 1.

Proof. From Lemma 5 and the G.k/-invariance of nQ, it follows that

min
g2G.A/1

nQ.g/Dmin
g2R

nQ.g/:

If g0 2 R satisfies ming2R nQ.g/D nQ.g0/ > 1, then by Lemmas 5 and 7, there
exist a point g1 2G.A/1 and 
1 2G.k/ such that nQ.
1g1/D nQ.g1/ < nQ.g0/

and 
1g1 2 R. This is a contradiction. �

We define the subset R1 of R by

R1 D fg 2 R W nQ.g/D 1g D
˚
g 2G.A/1 WXQ.g/D fNeg

	
:

Lemma 9. R1 coincides with the interior Rı of R in G.A/1.
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Proof. For g 2 R1, we choose a neighborhood U of g in G.A/1 as in Lemma 4.
Then U � R1. Therefore, R1 is open and is contained in Rı. If there exists an
element g0 2 Rı such that nQ.g0/ > 1, then, by Lemma 7, Rı contains an element
g satisfying Ne 62XQ.g/. This contradicts g 2 R. �

It is obvious that G.k/R1 D
˚
g 2G.A/1 W nQ.g/D 1

	
.

Lemma 10. G.k/R1 is open and dense in G.A/1.

Proof. Since R1 is open inG.A/1, so isG.k/R1. We assumeG.A/1nG.k/R1 has an
interior point g0. Let U be a neighborhood of g0 in G.A/1 so that U\G.k/R1D∅.
By Lemma 5, we can take 
0 2 G.k/ such that 
0g0 2 R. Since nQ.
0g0/ D

nQ.g0/ > 1, by Lemmas 5 and 7, there exist g1 2 
0U and 
1 2 G.k/ such that
nQ.g1/ < nQ.g0/ and 
1g1 2 R. If nQ.g1/ > 1, then there exist g2 2 
1
0U and

2 2G.k/ such that nQ.g2/ < nQ.g1/ and 
2g2 2R. This process terminates after
finitely many iterations. At the last step, we obtain an element g` 2 
`�1 � � � 
0U

such that nQ.g`/D 1. Then .

`�1
� � � 
0/

�1g` is contained in U\G.k/R1. This
contradicts U \G.k/R1 D ∅. Therefore, G.A/1 nG.k/R1 is nowhere dense in
G.A/1. �

Lemma 11. For 
 2G.k/, R1\ 
R¤∅ if and only if 
 2Q.k/.

Proof. If R1\
R has an element g, then �X .
�1/2XQ.g/DfNeg by Lemma 6. �

Lemma 12. Let R�1 be the closure of R1. Then we have the following subdivision
of G.A/1:

G.A/1 D
[


Q.k/2G.k/=Q.k/


R�1 :

Proof. We fix an arbitrary g 2 G.A/1. By Lemma 10, there exists a sequence
fgng �G.k/R1 such that limn!1 gn D g. We take a neighborhood U of g as in
Lemma 4 and may assume that fgng � U. Since gn 2 G.k/R1, XQ.gn/ consists
of a single element �X .
n/, where 
n 2 G.k/. From gn 2 U, it follows that
�X .
n/ 2XQ.g/ for all n. Since XQ.g/ is a finite set, we can take a subsequence
fgnj
g such that �X .
nj

/D �X .
 / 2XQ.g/ for all nj . Then fgnj
g � 
�1R1, and

g is contained in the closure of 
�1R1. �

For g 2G.A/1, we put

SQ.g/D �X .f
 2G.k/ W 
g 2 R
�
1 g/:

By Lemmas 6 and 12, SQ.g/ is a nonempty subset of XQ.g/.

Lemma 13. For g0 2G.A/1, there is a neighborhood U of g0 in G.A/1 such that
SQ.g/� SQ.g0/ for all g 2U.
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Proof. Let U be a neighborhood of g0 such that XQ.g/� XQ.g0/ for all g 2U.
Since g0 62 
�1R�1 for any �X .
 / 2XQ.g0/ nSQ.g0/, we can take a sufficiently
small U so that U\ 
�1R�1 D∅ for all �X .
 / 2XQ.g0/ nSQ.g0/. Then, for any
g 2U, SQ.g/\XQ.g0/ nSQ.g0/ is empty; that is, SQ.g/� SQ.g0/. �

Remark. We do not know whether R�1 D R holds or not in general. If it does, then
SQ.g/DXQ.g/ holds for all g.

5. A fundamental domain of G.A/1 with respect to G.k/

Definition. Let T be a locally compact Hausdorff space and � be a discrete group
acting on T from the left. Assume that the action of� on T is properly discontinuous.
An open subset � of T is called an open fundamental domain of T with respect to
� if � satisfies the following conditions:

(1) T D ���, where �� stands for the closure of � in T , and

(2) �\ 
�� D∅ if 
 2 � n feg.

A subset F of T is called a fundamental domain of T with respect to � if there is
an open fundamental domain � as above such that �� F���.

By Baer and Levi’s theorem [1931] (see also [van der Waerden 1935, §10]),
an open fundamental domain of T with respect to � exists if the set of points
stabilized by some nontrivial element of � is discrete in T . Thus there exists an
open fundamental domain �Q of R�1 with respect to Q.k/. For a given subset A
of R�1 , Aı and A� denote the interior and the closure of A in G.A/1, respectively.
Since R�1 is closed in G.A/1, the closure of A in R�1 coincides with A�.

Lemma 14. Let �Q be an open fundamental domain of R�1 with respect to Q.k/.
Then one has �ıQ D�Q \R1 and ��Q D .�Q \R1/

�.

Proof. Since�Q is an open set in R�1 with respect to the relative topology, there is an
open set U inG.A/1 such that�QDR�1 \U. Therefore,�Q\R1DU\R1 is open
in G.A/1, and hence �ıQD�Q\R1. Since R1 is dense in R�1 and �Q is relatively
open in R�1 , the closure of �Q\R1 in R�1 contains �Q, that is, �Q � .�Q\R1/�.
Hence ��Q D .�Q \R1/

�. �

Theorem 15. Let �Q be an open fundamental domain of R�1 with respect to Q.k/.
Then �ıQ is an open fundamental domain of G.A/1 with respect to G.k/.

Proof. From R�1 D Q.k/�
�
Q and Lemma 12, it follows G.A/1 D G.k/��Q. For


 2 G.k/, we assume �ıQ \ 
�
�
Q ¤ ∅. By Lemma 11, 
 is contained in Q.k/.

Since �Q is an open fundamental domain of R�1 with respect to Q.k/, 
 must be
equal to e. �

For a given subset A of G.A/1, we denote by @A the boundary of A.
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Lemma 16. If g0 2 R�1 attains a local maximum of mQ, then g0 is in @R�1 .

Proof. Suppose g0 2 R1. Since R1 is open, zg0 is contained in R1 if z 2ZQ.A/ is
sufficiently close to e. Then

mQ.zg0/DHQ.zg0/DHQ.z/HQ.g0/DHQ.z/mQ.g0/:

Since HQ.z/ can vary on the interval .1� �; 1C �/ for a sufficiently small � > 0,
mQ.g0/ is not a local maximum of mQ. �

Since .��Q/
ı D �ıQ � R1, the following theorem immediately follows from

Lemma 16.

Theorem 17. Let �Q be the same as in Theorem 15. If g0 2��Q attains a local
maximum of mQ, then g0 is in @��Q \ @R

�
1 .

Remark. A point g0 2G.A/1 is said to be extreme if g0 attains a local maximum
of mQ. By Theorem 17, any extreme point is contained in G.k/.@��Q \ @R

�
1 /. A

candidate of the notion analogous to perfect quadratic forms is the following: a
point g 2G.A/1 is said to be Q-perfect if there is a neighborhood U of g such that

U\
\

�X .ı/2SQ.g/

ı�1R�1 D fgg:

6. The case when G is of class number one

We put Kf D
Q
�2pf

K� , GA;1 D G.k1/ �Kf , G1A;1 D GA;1 \G.A/
1 and

Go DG.k/\GA;1. By identifying G.k1/ with the subgroup

f.g� / 2G.A/ W g� D e for all � 2 pf g

of G.A/, we put G.k1/1 DG.k1/\G.A/1. The number nk.G/ of double cosets
in G.A/ modulo G.k/ and GA;1 is called the class number of G. For example,
nk.GLn/ is equal to the class number of k. If G is almost k-simple, k-isotropic
and simply connected, then nk.G/D 1 by the strong approximation theorem. In
this section, we assume that nk.G/ D 1. Then G.A/1 D G.k/G1A;1. Let hQ
be the number of double cosets of G.k/ modulo Q.k/ and Go. By [Borel 1963,
Proposition 7.5], hQ is equal to the class number ofMQ. Let f�1D e; �2; : : : ; �hQ

g

be a complete system of representatives of Q.k/nG.k/=Go. For each �i , we define

R�i ;1 D
˚
g1 2G.k1/

1
WmQ.g1/DHQ.�ig1/

	
:

Since G.k/ is a disjoint union of Q.k/�iGo for i D 1; : : : ; hQ, mQ.g1/ equals

min
1�i�hQ

min
ı2Go

HQ.�iıg1/:
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Lemma 18. RD

hQG
iD1

Q.k/�i .R�i ;1 �Kf /:

Proof. For each i , Q.k/�i .R�i ;1 �Kf /� R is trivial. Since

G.A/1 D

hQG
iD1

Q.k/�iG
1
A;1

by [Borel 1963, §7], a given g 2 R is represented as g D 
 �i .g1 �gf / for some
i , 
 2 Q.k/ and g1 � gf 2 G1A;1. Then mQ.g/ D HQ.g/ implies mQ.g1/ D

HQ.�ig1/. Therefore, g1 2 R�i ;1. �

We write Qi for the conjugate ��1i Q�i of Q. This Qi is a maximal k-parabolic
subgroup of G. We put Qi;o DQi .k/\GA;1.

Lemma 19. If g.R�i ;1 �Kf /\ .R�i ;1 �Kf / is nonempty for g 2 Qi .k/, then
g 2Qi;o.

Proof. If there is an h 2 R�i ;1 �Kf such that gh 2 R�i ;1 �Kf , then

g 2 .R�i ;1 �Kf /h
�1
�GA;1: �

It is easy to prove that the groupQi;o stabilizes R�i ;1�Kf by left multiplication.
We fix a complete system f
ij gj of representatives of Qi .k/=Qi;o. It follows from
Lemma 19 that 
ij .R�i ;1 �Kf /\ 
ik.R�i ;1 �Kf /D∅ if j ¤ k. Therefore, we
obtain the following subdivision of R:

(1) RD

hQG
iD1

G
j

�i
ij .R�i ;1 �Kf /:

Let Rı
�i ;1

be the interior of R�i ;1 and R�
�i ;1

the closure of Rı
�i ;1

inG.k1/1. Since
the union of (1) is disjoint, it is obvious that

(2) R�1 D

hQG
iD1

G
j

�i
ij .R
�
�i ;1
�Kf /:

Proposition 20. Let �i;1 be an open fundamental domain of R�
�i ;1

with respect
to Qi;o for i D 1; : : : ; hQ. Then the set

�D

hQG
iD1

�i .�i;1 �Kf /

gives an open fundamental domain of R�1 with respect to Q.k/.
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Proof. Let ��i;1 denote the closure of �i;1 in G.k1/1. For g 2Q.k/, we assume
�\g�� ¤∅. Then, for some i; j ,

(3) �i .�i;1 �Kf /\g�j .�
�
j;1 �Kf /¤∅:

There exist 

jk

and ı 2Qj;o such that ��1j g�j D 
jkı. Then (3) is the same as

�i .�i;1 �Kf /\ �j 
jk.ı�
�
j;1 �Kf /¤∅:

By (1), we have i D j , 

jk
D e and �j;1 \ ı��j;1 ¤ ∅. Since �j;1 is an

open fundamental domain of R�
�j ;1

with respect to Qj;o, ı must be equal to e.
Therefore, �\g�� ¤∅ implies g D e. Finally, Q.k/�� D R�1 follows from (2)
and Qi;o��i;1 D R�

�i ;1
. �

By Theorem 17, we obtain the following.

Corollary 21. If g0 2�� attains a local maximum of mQ, then g0 is contained in
the set

hQG
iD1

�i
�
.@��i;1\ @R

�
�i ;1

/�Kf
�
:

We consider the infinite part �1 of � given in Proposition 20, that is,

�1 D

hQ[
iD1

�i�i;1:

Let�ı1 and��1 be the interior and the closure of�1 inG.k1/1, respectively. The
projection from G.A/1 DG.k/G1A;1 to the infinite component G.k1/1 gives an
isomorphism G.k/nG.A/1=Kf ŠGonG.k1/

1. Since � is a fundamental domain
of G.A/1 with respect to G.k/ by Theorem 15, we have Go�

�
1 DG.k1/

1.

Corollary 22. If hQ D 1, then �1 is a fundamental domain of G.k1/1 with
respect to Go.

Proof. Since �1 D �1;1 is a relatively open set in R�e;1, we have �ı1 D
�1\Rıe;1. Thus the closure of �ı1 coincides with ��1. If �ı1\g�

�
1 ¤∅ for

g 2Go, then .�ı1 �Kf /\ g.�
�
1 �Kf /¤∅ because gKf DKf . This implies

g D e since �ı1 �Kf is an open fundamental domain of G.A/1 with respect to
G.k/. �

7. Examples

Example 3. Let G be a general linear group GLn defined over Q. We continue an
illustration given in Examples 1 and 2. We fix an integer k 2 f1; : : : ; n� 1g, and
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let

Q.Q/D

��
a b

0 d

�
W a 2 GLk.Q/; b 2Mk;n�k.Q/; d 2 GLn�k.Q/

�
:

Since hQ D 1, we have �1 D e and Q1 DQ.
Let Pn be the cone of positive definite n by n real symmetric matrices, and

let P1n be the intersection of Pn and SLn.R/. The group G.Q1/D GLn.R/ acts
on Pn from the right by .A; g/ 7! AŒg� D tgAg for .A; g/ 2 Pn �G.Q1/. The
maximal compact subgroup K1 of G.Q1/, defined as in Example 2, stabilizes the
identity matrix In 2 Pn. The map � W g 7! tg�1g�1 from G.Q1/ onto Pn gives
an isomorphism between G.Q1/=K1 and Pn. Since

G.Q1/
1
D fg 2G.Q1/ W detg D˙1g;

we have G.Q1/1=K1 Š �.G.Q1/1/D P1n. An element A 2 Pn is written as

AD

�
Ik 0
tu In�k

��
v 0

0 w

��
Ik u

0 In�k

�
;

where v 2 Pk , w 2 Pn�k and u 2Mk;n�k.R/. We write uA, AŒk� and AŒn�k� for u,
v and w, respectively.

By definition, GZ DG.Q/\GA;1 and QZ DQ.Q/\GA;1 are just the groups
GLn.Z/ and Q.Q/\GLn.Z/ of unimodular integral matrices in G.Q/ and Q.Q/,
respectively. As in Example 2, X
 stands for the n by k matrix consisting of the
first k-columns of 
 2GZ, and Mn;k.Z/

� stands for the set of X
 for all 
 2GZ.
We define the closed subset Fn;k of Pn as follows:

Fn;k D
˚
A 2 Pn W detAŒk� � det. tXAX/ for allX 2Mn;k.Z/

�
	
:

In Example 2, we showed

HQ.
g/D det
�
tX
�1�.g/X
�1

�n=2r
for any 
 2GZ and g 2G.Q1/1. Since HQ.g/D

�
det�.g/Œk�

�n=2r , we obtain

Re;1=K1 Š �.Re;1/D Fn;k \SLn.R/:

Therefore, QZnRe;1=K1 is isomorphic to .Fn;k \SLn.R//=QZ. If 
 2QZ is of
the form


 D

�
a b

0 d

�
with a 2 GLk.Z/, d 2 GLn�k.Z/ and b 2Mk;n�k.Z/, then components of t
A

for A 2 Pn are given by

u t
A
 D a
�1.uAd C b/;

�
t
A


�Œk�
D

taAŒk�a;
�
t
A


�
Œn�k�

D
tdAŒn�k�d:
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Let D and E be arbitrary fundamental domains for the quotients Pk=GLk.Z/ and
Pn�k=GLn�k.Z/, respectively. We define the subset Fn;k.D;E/ of Fn;k as

Fn;k.D;E/D fA 2 Fn;k W A
Œk�
2D; AŒn�k� 2 E;

uA D .uij /; �
1
2
� uij �

1
2

for all i; j; and 0� u11g:

Since Fn;k.D;E/ is a fundamental domain of Fn;k with respect to QZ, the inverse
image ��1.Fn;k.D;E/\ SLn.R// of Fn;k.D;E/\ SLn.R/ gives a fundamental
domain of Re;1 with respect to QZ. As a consequence of Theorem 15 and
Proposition 20, the set

��1.Fn;k.D;E/\SLn.R//�Kf

gives a fundamental domain of G.A/1 with respect to G.Q/. Moreover, from
Corollary 22, it follows that Fn;k.D;E/ is a fundamental domain of Pn with respect
to GLn.Z/.

In the case of kD 1, this gives an inductive construction of a fundamental domain
�n of Pn with respect to GLn.Z/ as follows. First, put �2D F2;1.P1;P1/. By def-
inition, �2 is Minkowski’s fundamental domain of P2. Then we define inductively
�3 D F3;1.P1; �2/; : : : ; �n D Fn;1.P1; �n�1/. The domain �n coincides with
Grenier’s fundamental domain [1988].

Finally, we show that, in the case of k D 1, Re;1=K1 corresponds to a face of
the Ryshkov polyhedron R.m/D

˚
A 2 Pn W m.A/D min0¤x2Zn

txAx � 1
	
. For

A 2 Pn, let S.A/ denote the set of minimal integral vectors of A:

S.A/D fx 2 Zn Wm.A/D txAxg:

We take e1 D
t.1; 0; : : : ; 0/ 2 Zn. It is obvious that the subset fA 2 Pn W e1 2

S.A/g of Pn coincides with Fn;1. As was shown in [Watanabe 2012, Lemma 1.5],
Ffe1g

D Fn;1 \ @R.m/ D fA 2 Fn;1 W m.A/ D 1g is a face of R.m/. It is easy to
see that the map A 7!m.A/�1A gives a bijection from Fn;1\SLn.R/ onto Ffe1g

.
Therefore, Re;1=K1 Š �.Re;1/ corresponds to Ffe1g

.

Example 4. Let k be a totally real number field of degree r and nD 2m be an even
integer. We consider a symplectic group

G.k/D Spn.k/D
�
g 2 GL2m.k/ W tg

�
0 �Im
Im 0

�
g D

�
0 �Im
Im 0

��
:

For a fixed k 2 f1; 2; : : : ; mg, let Q denote the maximal parabolic subgroup of G
given by

Q.k/D U.k/M.k/;
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where

M.k/D

8̂̂<̂
:̂ı.a; b/D

0BB@
a 0 0 0

0 b11 0 b12
0 0 ta�1 0

0 b21 0 b22

1CCA W a 2 GLk.k/;
b D .bij / 2 Sp2.m�k/.k/

9>>=>>; ;

U.k/D

8̂̂<̂
:̂
0BB@
Ik � � �

0 Im�k � 0

0 0 Ik 0

0 0 � Im�k

1CCA 2G.k/
9>>=>>; :

The module of k-rational characters X�.M/k of M is a free Z-module of rank 1
generated by the character

y̨Q.ı.a; b//D det a:

The height HQ W G.A/! R>0 is given by HQ.g/ D jdet aj�1A if g D uı.a; b/h
with u 2 U.A/, ı.a; b/ 2M.A/ and h 2K.

We restrict ourselves to the case k Dm. An element of M.A/ is denoted by

ı.a/D

�
a 0

0 ta�1

�
; a 2 GLm.A/:

Let
Hm D

˚
Z 2Mm.C/ W

tZ DZ; ImZ 2 Pm
	

be the Siegel upper half space and Hrm the direct product of r copies of Hm. For
ZD .Z� /�2p1 2H

r
m, ReZ, ImZ and detZ stand for .ReZ� /�2p1 , .ImZ� /�2p1

and .detZ� /�2p1 , respectively. The group G.k1/ acts transitively on Hrm by

ghZi D
�
.a�Z� C b� /.c�Z� C d� /

�1
�
�2p1

for Z D .Z� / 2 Hrm and

g D .g� /D

�
a� b�
c� d�

�
�2p1

2G.k1/:

The stabilizer K1 of Z0 D .
p
�1Im; : : : ;

p
�1Im/ 2 H

r
m in G.k1/ is a maximal

compact subgroup of G.k1/. We choose K as K1 �
Q
�2pf

Spn.o� /. The map
� W g1 7! ghZ0i from G.k1/ onto Hrm gives an isomorphism G.k1/=K1 Š Hrm,
and hence G.k/nG.A/=K Š GonH

r
m. Since Im

˚
.uı.a/h/hZ0i

	
D a ta holds for

u 2 U.k1/, a 2 GLm.k1/ and h 2K1, we have

HQ.g1/D Nrk1=R.det Imfg1hZ0ig/�1=2 D
� Y
�2p1

det Im
˚
g�
˝p
�1Im

˛	��1=2
for any g1 D .g� / 2G.k1/, where Nrk1=R denotes the norm of k1 over R.



254 TAKAO WATANABE

The class number hQ of M Š GLm defined over k is equal to the class number
hk of k. We assume hk D 1 for simplicity. Then G.k/ D Q.k/Go and G.A/ D
Q.k/GA;1, and hence

mQ.g1/D min

2Go

HQ.
g1/:

Since

Nrk1=R.det Imf
 hZig/D
Y
�2p1

jdet.�.c/Z� C �.d//j�2Nrk1=R.det ImZ/

for Z D .Z� / 2 Hrm and


 D
�
� �

c d

�
2Go D Spn.o/;

the condition mQ.g1/DHQ.g1/ of g1 is equivalent with the following condition
of Z D g1hZ0i:Y

�2p1

jdet.�.c/Z� C �.d//j � 1 for all
�
� �

c d

�
2Go:

Therefore, the domain Re;1 modulo K1 is isomorphic to

FD

(
.Z� / 2 H

r
m W

Y
�2p1

jdet.�.c/Z� C �.d//j � 1 for all
�
� �

c d

�
2Go

)
:

Let C be an arbitrary fundamental domain of the additive group Mm.k1/ with
respect to Mm.o/, and let D be an arbitrary fundamental domain of Prm with respect
to GLm.o/. It is easy to see that

F.C;D/D fZ 2 F W ReZ 2 C; ImZ 2Dg

is a fundamental domain of F with respect to Qo. By Corollary 22, F.C;D/ is a
fundamental domain of Hrm with respect to Go.

If k D Q and D is Minkowski’s fundamental domain, then F.C;D/ coincides
with Siegel’s fundamental domain [1939].

Acknowledgments. The author would like to thank Professor Takahiro Hayata
for useful discussions.
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