AN EXPLICIT MAJORANA REPRESENTATION
OF THE GROUP $3^2:2$ OF $3C$-PURE TYPE

HSIAN-YANG CHEN AND CHING HUNG LAM
AN EXPLICIT MAJORANA REPRESENTATION OF THE GROUP $3^2:2$ OF $3C$-PURE TYPE

HSIAN-YANG CHEN AND CHING HUNG LAM

We study a coset vertex operator algebra (VOA) \tilde{W} in the lattice VOA V_{E_8}. We show that the coset VOA \tilde{W} is generated by nine Ising vectors such that any two Ising vectors generate a $3C$ subVOA U_{3C}, and the group generated by the corresponding Miyamoto involutions has shape $3^2:2$. This gives an explicit example for Majorana representations of the group $3^2:2$ of $3C$-pure type.

1. Introduction

A vertex operator algebra (VOA) $V = \bigoplus_{n=0}^{\infty} V_n$ is said to be of moonshine type if $\dim(V_0) = 1$ and $V_1 = 0$. In this case, the weight-2 subspace V_2 has a commutative nonassociative product defined by $a \cdot b = a_1 b$ for $a, b \in V_2$ and it has a symmetric invariant bilinear form $\langle \cdot, \cdot \rangle$ given by $\langle a, b \rangle_1 = a_3 b$ for $a, b \in V_2$ [Frenkel et al. 1988]. The algebra $(V_2, \cdot, \langle \cdot, \cdot \rangle)$ is often called the Griess algebra of V. An element $e \in V_2$ is called an Ising vector if $e \cdot e = 2e$ and the subVOA generated by e is isomorphic to the simple Virasoro VOA $L(\frac{1}{2}, 0)$ of central charge $\frac{1}{2}$. In [Miyamoto 1996], the basic properties of Ising vectors have been studied. Miyamoto also gave a simple method to construct involutive automorphisms of a VOA V from Ising vectors. These automorphisms are often called Miyamoto involutions. When V is the famous Moonshine VOA V\textasciitilde, Miyamoto [2004] showed that there is a one-to-one correspondence between the $2A$-involutions of the Monster group and Ising vectors in V\textasciitilde (see also [Höhn 2010]). This correspondence is very useful for studying some mysterious phenomena of the Monster group and many problems about $2A$-involutions in the Monster group may also be translated into questions about Ising vectors. For example, McKay’s observation on the affine E_8-diagram was studied in [Lam et al. 2007] using Miyamoto involutions and certain VOAs generated by two Ising vectors were constructed. Nine VOAs were constructed, denoted by U_{1A}, U_{2A}, U_{2B}, U_{3A}, U_{3C}, U_{4A}, U_{4B}, U_{5A}, and U_{6A} because of their connection to the 6-transposition property of the Monster group (see [ibid., Introduction]).
where $1A, 2A, \ldots, 6A$ are the labels for certain conjugacy classes of the Monster as denoted in [Conway et al. 1985]. In [Sakuma 2007], Griess algebras generated by two Ising vectors contained in a moonshine-type VOA over \mathbb{R} with a positive definite invariant form are classified. There are also nine possible cases, and they correspond exactly to the Griess algebras \mathcal{U}_{nX} of the nine VOAs \mathcal{U}_{nX} for nX in $\{1A, 2A, 2B, 3A, 3C, 4A, 4B, 5A, 6A\}$. Therefore, there is again a correspondence between the dihedral subgroups generated by two $2A$-involutions, up to conjugacy and the Griess subalgebras generated by two Ising vectors in V^2, up to isomorphism. It is also conjectured that the subVOA generated by two Ising vectors is isomorphic to one of the \mathcal{U}_{nX}, for $nX \in \{1A, 2A, 2B, 3A, 3C, 4A, 4B, 5A, 6A\}$. However, this conjecture is still open except for the cases $1A, 2A, 2B, 3A, \text{and} 4B$.

Motivated by [Sakuma 2007], Ivanov [2009] axiomatized the properties of Ising vectors and introduced the notion of Majorana representations for finite groups. Ivanov and his research group also initiated a program on classifying the Majorana representations for various finite groups [Ivanov et al. 2010; Ivanov 2011a; 2011b; Ivanov and Seress 2012]. In particular, the famous 196884-dimensional Monster Griess algebra constructed by Griess [1982] is a Majorana representation of the Monster simple group. In fact, most known examples of Majorana representations are constructed as certain subalgebras of this Monster Griess algebra.

In this article, we construct explicitly a moonshine-type VOA $\tilde{\mathcal{W}}$ in the lattice VOA V_{E_8}. We show that the VOA $\tilde{\mathcal{W}}$ is generated by nine Ising vectors such that (1) any two of them generate a $3C$ subVOA \mathcal{U}_{3C}; and (2) the group generated by the corresponding Miyamoto involutions has the shape $3^2:2$. Thus, we obtain an example for a Majorana representation of the group $3^2:2$ of $3C$-pure type. Recall that the centralizer of a $3C$-element in the Monster is isomorphic to $3 \times \text{Th}$, where Th is the Thompson simple group [Conway et al. 1985]. The Thompson group Th has exactly three conjugacy classes of order 3 and by the character table, one can show that the Th conjugacy classes $3A, 3B, 3C$ are of the classes $3A, 3B, 3B$ in the Monster, respectively (see [ibid.] and [Wilson 1988, Section 4]). Therefore, there are no $3C$-pure 3^2 subgroups in the Monster and hence the VOA that we constructed cannot be embedded into the Moonshine VOA.

Our method is essentially a combination of the construction of the so-called dihedral subVOA from [Lam et al. 2007] and the construction of EE_8 pairs from [Griess and Lam 2011]. In fact, it is quite straightforward to find Ising vectors satisfying our hypotheses. The main difficulty is to show that the subVOA generated by these Ising vectors has zero weight-1 subspace.

The organization of this article is as follows. In Section 2, we recall some basic definitions and notation. We also review the structure of the so-called $3C$-algebra from [Lam et al. 2005; 2007]. In Section 3, we give an explicit construction of a coset subVOA $\tilde{\mathcal{W}}$ in the lattice V_{E_8}. We also construct explicitly several
Ising vectors satisfying our main hypotheses and show that the subVOA \(W \) they generate is of moonshine type. In Section 4, we show that the VOA \(W \) is isomorphic to the commutant subVOA \(\tilde{W} = \text{Com}_{\mathfrak{sl}_3}(\mathfrak{sl}_3(\mathbb{C}), (3,0)) \) using the theory of parafermion VOA. The decomposition of \(W \) as a sum of irreducible modules of the parafermion VOA \(K(\mathfrak{sl}_3(\mathbb{C}), 9) \) is also obtained. In Section 5, we give several structural results about Griess algebras generated by Ising vectors. We show that the Griess algebra generated by Ising vectors such that the subgroup generated by the corresponding Miyamoto involutions has the shape \(3^2:2 \) and is of \(3C \)-pure type is uniquely determined, up to isomorphisms. We also show that the VOA generated by these Ising vectors has central charge 4 and has a full subVOA isomorphic to \(L(\frac{1}{2},0) \otimes L(\frac{21}{22},0) \otimes L(\frac{28}{11},0) \). In the Appendix, we explain several results which are used to show that \(\dim(\tilde{W}_2) = 9 \).

\section{Preliminaries}

First we will recall some definitions and review several basic facts.

Definition 2.1. Let \(V \) be a VOA. A bilinear \(\langle \cdot, \cdot \rangle \) form on \(V \) is said to be invariant (or contragredient; see [Frenkel et al. 1993]) if

\[\langle Y(a, z)u, v \rangle = \langle u, Y(e^{zL(1)}(-z^{-2})L(0)a, z^{-1})v \rangle \]

for any \(a, u, v \in V \).

Definition 2.2. Let \(V \) be a VOA over \(\mathbb{C} \). A real form of \(V \) is a subVOA \(V_R \) of \(V \) over \(\mathbb{R} \) (with the same vacuum and Virasoro elements) such that \(V = V_R \otimes \mathbb{C} \). A real form \(V_R \) is said to be positive definite if the invariant form \(\langle \cdot, \cdot \rangle \) restricted to \(V_R \) is real-valued and positive definite.

Definition 2.3. Let \(V \) be a VOA. An element \(v \in V_2 \) is called a simple Virasoro vector of central charge \(c \) if the subVOA \(\text{Vir}(v) \) generated by \(e \) is isomorphic to the simple Virasoro VOA \(L(c,0) \) of central charge \(c \).

Definition 2.4. A simple Virasoro vector of central charge \(\frac{1}{2} \) is called an Ising vector.

Remark 2.5. It is well known that the VOA \(L(\frac{1}{2},0) \) is rational and has exactly three irreducible modules \(L(\frac{1}{2},0), L(\frac{1}{2}, \frac{1}{2}), \) and \(L(\frac{1}{2}, \frac{1}{16}) \) (see [Dong et al. 1994; Miyamoto 1996]).

Remark 2.6. Let \(V \) be a VOA and let \(e \in V \) be an Ising vector. Then we have the decomposition

\[V = V_e(0) \oplus V_e(\frac{1}{2}) \oplus V_e(\frac{1}{16}) , \]

where \(V_e(h) \) denotes the sum of all irreducible \(\text{Vir}(e) \)-submodules of \(V \) isomorphic to \(L(h,0) \) for \(h \in \{0, \frac{1}{2}, \frac{1}{16}\} \).
Theorem 2.7 [Miyamoto 1996]. The linear map $\tau_e : V \to V$ defined by
\begin{equation}
\tau_e := \begin{cases}
1 & \text{on } V_e(0) \oplus V_e\left(\frac{1}{2}\right), \\
-1 & \text{on } V_e\left(\frac{1}{16}\right),
\end{cases}
\end{equation}
is an automorphism of V.

Remark 2.8. On the fixed point subspace V^{τ_e} of τ_e, we have $V^{\tau_e} = V_e(0) \oplus V_e\left(\frac{1}{2}\right)$. The linear map $\sigma_e : V^{\tau_e} \to V^{\tau_e}$ which acts as 1 on $V_e(0)$ and -1 on $V_e\left(\frac{1}{2}\right)$ also defines an automorphism of V^{τ_e} [ibid.]. Nevertheless, we do not need this fact in this article.

The 3C-algebra. We recall the properties of the 3C-algebra U_{3C} from [Lam et al. 2005, Section 3.9] (see also [Sakuma 2007]).

Lemma 2.9. Let $U = U_{3C}$ be the 3C-algebra. Then:
(1) $U_1 = 0$ and U is generated by its weight-2 subspace U_2 as a VOA.
(2) $\dim U_2 = 3$ and it is spanned by three Ising vectors.
(3) There exist exactly three Ising vectors in U_2, say, e^0, e^1, e^2. Moreover, we have
\begin{equation}
(e^i)_{1}(e^j) = \frac{1}{32}(e^i + e^j - e^k) \quad \text{and} \quad \langle e^i, e^j \rangle = \frac{1}{2^7}
\end{equation}
for $i \neq j$ and $\{i, j, k\} = \{0, 1, 2\}$.
(4) Let $g = \tau_{e^0}\tau_{e^1}$. Then g has order 3. Moreover, $e^1 = ge^0$ and $e^2 = g^2e^0 = ge^1$.
(5) The Virasoro element of U is given by
\begin{equation}
\frac{32}{33}(e^0 + e^1 + e^2).
\end{equation}
(6) Let $a = \frac{32}{33}(e^0 + e^1 + e^2) - e^0$. Then a is a simple Virasoro vector of central charge $\frac{21}{22}$. Moreover, the subVOA generated by e^0 and a is isomorphic to $L\left(\frac{1}{2}, 0\right) \otimes L\left(\frac{21}{22}, 0\right)$.

3. Commutant subVOAs in $V_{E_8 \perp E_8 \perp E_8}$

In this section, we shall construct explicitly a VOA \tilde{W} inside the lattice VOA $V_{E_8 \perp E_8 \perp E_8}$ such that (1) \tilde{W} is generated by nine Ising vectors and any two Ising vectors generate a 3C subVOA U_{3C}; and (2) the group generated by the corresponding Miyamoto involutions has the shape $3^2:2$.

Our notation for the lattice vertex operator algebra
\begin{equation}
V_L = M(1) \otimes \mathbb{C}[L]
\end{equation}
associated with a positive definite even lattice L is standard [Frenkel et al. 1988]. In particular, $\hat{\mathfrak{h}} = \mathbb{C} \otimes_\mathbb{Z} L$ is an abelian Lie algebra and we extend the bilinear form to $\hat{\mathfrak{h}}$ by \mathbb{C}-linearity. Also, $\hat{\mathfrak{h}} = \mathfrak{h} \otimes \mathbb{C}[t, t^{-1}] \oplus \mathbb{C}k$ is the corresponding affine
We simply denote the tensor product of the lattices $A(6.1.27)-(6.1.29)$. Moreover, e is an orthonormal basis of $M(3-2)$.

It is easy to check by direct calculations that E for all α, β.

Note that E also define the root lattice of type E.

Definition 3.1. Let A and B be integral lattices with the inner products $\langle ., . \rangle_A$ and $\langle ., . \rangle_B$, respectively. The tensor product of the lattices A and B is defined to be the integral lattice which is isomorphic to $A \otimes_Z B$ as a \mathbb{Z}-module and has the inner product given by

$$\langle \alpha \otimes \beta, \alpha' \otimes \beta' \rangle = \langle \alpha, \alpha' \rangle_A \cdot \langle \beta, \beta' \rangle_B,$$

for any $\alpha, \alpha' \in A, \beta, \beta' \in B$.

We simply denote the tensor product of the lattices A and B by $A \otimes B$.

$\sqrt{2}E_8$-sublattices. Let $L = E_8 \perp E_8 \perp E_8$ be the orthogonal sum of 3 copies of the root lattice of type E_8. Set

$$M = \{ (\alpha, -\alpha, 0) | \alpha \in E_8 \} \subset L,$$

(3-2)

$$N = \{ (0, \alpha, -\alpha) | \alpha \in E_8 \} \subset L.$$

Then $M \cong N \cong \sqrt{2}E_8$ and $M + N \cong A_2 \otimes E_8$ (see [Griess and Lam 2011]). We also define

$$E := \text{Ann}_L (M + N) = \{ \beta \in L \mid \langle \beta, \beta' \rangle = 0 \text{ for all } \beta' \in M + N \}.$$

(3-3)

Note that $E = \{ (\alpha, \alpha, \alpha) | \alpha \in E_8 \} < L$ and there is a third $\sqrt{2}E_8$-sublattice

$$\widetilde{N} = \{ (\alpha, 0, -\alpha) | \alpha \in E_8 \} < M + N.$$

We shall fix a (bilinear) 2-cocycle $\varepsilon_0 : E_8 \times E_8 \to \mathbb{Z}_2$ such that

$$\varepsilon_0(\alpha, \alpha) \equiv \frac{1}{2} \langle \alpha, \alpha \rangle \text{ mod } 2,$$

(3-4)

$$\varepsilon_0(\alpha, \beta) - \varepsilon_0(\beta, \alpha) \equiv \langle \alpha, \beta \rangle \text{ mod } 2,$$

for all $\alpha, \beta \in E_8$. Note that such a 2-cocycle exists (see [Frenkel et al. 1988, (6.1.27)-(6.1.29)]). Moreover, $e^\alpha e^{-\alpha} = -e^0$ for any $\alpha \in E_8$ such that $\langle \alpha, \alpha \rangle = 2$.

We shall extend ε_0 to L by defining

$$\varepsilon_0((\alpha, \alpha', \alpha''), (\beta, \beta', \beta'')) = \varepsilon_0(\alpha, \beta) + \varepsilon_0(\alpha', \beta') + \varepsilon_0(\alpha'', \beta'').$$

It is easy to check by direct calculations that ε_0 is trivial on M, N, or \widetilde{N}.
Affine vertex operator algebras. We recall the notion of affine vertex operator algebras [Frenkel and Zhu 1992; Dong and Lepowsky 1993]. Let g be a finite-dimensional simple Lie algebra and \hat{g} the affine Kac–Moody Lie algebra associated with g. Let $\Pi = \{\alpha_1, \ldots, \alpha_n\}$ be a set of simple roots and θ the highest root. Let Q be the root lattice of g. For any positive integer k, we set

$$P^k_+(g) = \{\Lambda \in Q \otimes \mathbb{Z} | \langle \alpha_i, \Lambda \rangle \in \mathbb{Z}_{\geq 0} \text{ for all } i = 1, \ldots, n \text{ and } \langle \theta, \Lambda \rangle \leq k\},$$

the set of dominant integral weights for g with level k.

Let $L_{\hat{g}}(k, \Lambda)$ be the irreducible module of \hat{g} with highest weight Λ and level k. Then $L_{\hat{g}}(k, 0)$ forms a simple VOA with the Virasoro element given by the Sugawara construction

$$\Omega_{g,k} = \frac{1}{2(k + h^\vee)} \sum (u_i)_{-1} u^i,$$

where h^\vee is the dual Coxeter number, $\{u_i\}$ is a basis of g and $\{u^i := (u_i)^*\}$ is the dual basis of $\{u_i\}$ with respect to the normalized Killing form (see [Frenkel and Zhu 1992]). Moreover, the central charge of $L_{\hat{g}}(k, 0)$ is

$$\frac{k \dim g}{k + h^\vee}.$$

A commutant subVOA. Consider the lattice VOA

$$V_L \cong V_{E_8} \otimes V_{E_8} \otimes V_{E_8}$$

and let a be an element of E_8 such that

$$K := \{\beta \in E_8 | \langle \beta, a \rangle \in 3\mathbb{Z}\} \cong A_8.$$

Then, we have an embedding

$$V_{K \perp K \perp K} \cong V_K \otimes V_K \otimes V_K \hookrightarrow V_L.$$

It is also well known that $V_K \cong V_{A_8}$ is an irreducible level-1 representation of the affine Lie algebra $\widehat{sl}_9(\mathbb{C})$ [Frenkel et al. 1988]. Moreover, the weight-1 subspace $(V_K)_1$ is a simple Lie algebra isomorphic to $\widehat{sl}_9(\mathbb{C})$.

Let $\eta_i : K \rightarrow K \perp K \perp K$, $i = 1, 2, 3$, be the embedding of K into the i-th direct summand of $K \perp K \perp K$, i.e.,

$$\eta_1(\alpha) = (\alpha, 0, 0), \quad \eta_2(\alpha) = (0, \alpha, 0), \quad \eta_3(\alpha) = (0, 0, \alpha),$$

for any $\alpha \in K$.

Notation 3.2. For any $\alpha \in K(2) := \{\alpha \in K | \langle \alpha, \alpha \rangle = 2\}$, set

$$H_{\alpha} = (\alpha, \alpha, \alpha)(-1) \cdot \mathbb{1},$$

$$E_{\alpha} = e^{\eta_1(\alpha)} + e^{\eta_2(\alpha)} + e^{\eta_3(\alpha)}.$$
Then \(\{ H_\alpha, E_\alpha \mid \alpha \in K(2) \} \) generates a subVOA isomorphic to the affine VOA \(L_{\tilde{A}_8}(\mathbb{C}) (3, 0) \) in \(V_L \) (see [Frenkel and Zhu 1992; Dong and Lepowsky 1993, Proposition 13.1]). Moreover, the Virasoro element of \(L_{\tilde{A}_8}(\mathbb{C}) (3, 0) \) is given by

\[
\Omega = \frac{1}{2(3+9)} \left[\frac{8}{2} (h^k, h^k, h^k)(-1)^2 \cdot 1 + \sum_{\alpha \in K(2)} (E_\alpha - 1)(-E_\alpha) \right],
\]

where \(\{ h^1, \ldots, h^8 \} \) is an orthonormal basis of \(K \otimes \mathbb{C} = E_8 \otimes \mathbb{C} \). Note that the dual vector of \(E_\alpha \) is \(-E_\alpha\).

Lemma 3.3. Let \(M, N \) and \(E \) be defined as in (3-2) and (3-3) and denote the Virasoro element of a lattice VOA \(V_S \) by \(\omega_S \). Then we have

\[
\Omega = \omega_E + \frac{3}{4} \omega_{M+N} - \frac{1}{12} \sum_{\alpha \in K(2)} e^{\eta_i(\alpha) - \eta_j(\alpha)}.
\]

Proof. Let \(\{ h^1, \ldots, h^8 \} \) be an orthonormal basis of \(A_8 \otimes \mathbb{C} = E_8 \otimes \mathbb{C} \). Then

\[
\Omega = \frac{1}{24} \left[6 \omega_E + \sum_{\alpha \in K(2)} \frac{3}{2} (\eta_i(\alpha)(-2) \cdot 1 + \eta_j(\alpha)(-1)^2 \cdot 1) - 2 \sum_{\alpha \in K(2)} e^{\eta_i(\alpha) - \eta_j(\alpha)} \right]
\]

\[
= \frac{1}{4} \omega_E + \frac{18}{24} \omega_L - \frac{1}{12} \sum_{\alpha \in K(2)} e^{\eta_i(\alpha) - \eta_j(\alpha)}.
\]

Since \(\omega_L = \omega_{M+N} + \omega_E \), we have

\[
\Omega = \omega_E + \frac{3}{4} \omega_{M+N} - \frac{1}{12} \sum_{\alpha \in K(2)} e^{\eta_i(\alpha) - \eta_j(\alpha)}
\]

as desired. \(\square \)

Theorem 3.4. Let

\[
\tilde{W} = \text{Com}_{V_L}(L_{\tilde{A}_8}(\mathbb{C}) (3, 0)) = \{ v \in V_L \mid x_n v = 0 \text{ for all } x \in L_{\tilde{A}_8}(\mathbb{C}) (3, 0), n \geq 0 \}
\]

be the commutant subVOA of \(L_{\tilde{A}_8}(\mathbb{C}) (3, 0) \) in \(V_L \). Then the central charge of \(\tilde{W} \) is 4. Moreover, \(\tilde{W}_1 = 0 \).

Proof. By (3-6), the central charge of \(L_{\tilde{A}_8}(\mathbb{C}) (3, 0) \) is \(3(80)/(3+9) = 20 \). Hence, the central charge of \(\tilde{W} = \text{Com}_{V_L}(L_{\tilde{A}_8}(\mathbb{C}) (3, 0)) \) is 4 (\(= 24 - 20 \)).
We now show that $\tilde{W}_1 = 0$. Since $h(-1) \cdot 1 \in L_{\tilde{g}_b(C)}(3, 0)$ for all $h \in E$,

$$\tilde{W} = \text{Com}_{V_L}(L_{\tilde{g}_b(C)}(3, 0)) \subset V_{M+N}.$$

Therefore, it suffices to show $\tilde{W} \cap (V_{M+N})_1 = 0$.

Recall that $M + N \cong A_2 \otimes E_8$ has no roots. Thus,

$$(V_{M+N})_1 = \text{span}_C \{h(-1) \cdot 1 \mid h \in (M + N) \otimes C\}.$$

However, by Lemma 3.3,

$$\Omega_1 h(-1) \cdot 1 = \left(\omega_E + \frac{3}{4} \omega_{M+N} - \frac{1}{12} \sum_{\alpha \in K(2)} \alpha \in (M(4)) e^{\eta_i(\alpha) - \eta_j(\alpha)}\right) h(-1) \cdot 1 = \frac{3}{4} h(-1) \cdot 1 \neq 0$$

for any $0 \neq h \in (M + N) \otimes C$. Thus, $\tilde{W} \cap (V_{M+N})_1 = 0$ and we have $\tilde{W}_1 = 0$. □

Ising vectors. Next we shall define explicitly some Ising vectors in V_L.

Definition 3.5. Let a be an element of E_8 such that

$$K = \{\beta \in E_8 \mid \langle \beta, a \rangle \in 3\mathbb{Z}\} \cong A_8.$$

Set $\tilde{a} = (a, -a, 0)$ and define an automorphism ρ of V_L by

$$\rho = \exp\left(\frac{2\pi i}{3}\tilde{a}(0)\right).$$

Then ρ has order 3 and the fixed point subspace $V_{M}^\rho \cong V_{\sqrt{2}A_8}^\rho$.

Notation 3.6. Let M and N be defined as in (3-2). Set

$$e := e_M = \frac{1}{16} \omega_M + \frac{1}{32} \sum_{\alpha \in M(4)} e^\alpha,$$

$$f := e_N = \frac{1}{16} \omega_N + \frac{1}{32} \sum_{\alpha \in N(4)} e^\alpha,$$

$$e_{\tilde{N}} := \frac{1}{16} \omega_{\tilde{N}} + \frac{1}{32} \sum_{\alpha \in \tilde{N}(4)} e^\alpha,$$

$$e' := \rho(e).$$

It is shown in [Dong et al. 1998] that e, f and $e_{\tilde{N}}$ are Ising vectors and hence $e' = \rho(e)$ is also an Ising vector (see also [Lam et al. 2005; 2007]).

The following lemma can be proved by direct calculations (see [Lam et al. 2005; 2007; Griess and Lam 2011]).
Lemma 3.7. We have $\langle e, f \rangle = \langle e, e' \rangle = \langle f, e' \rangle = 1/2^8$. Moreover, the subVOAs $\text{VOA}(e, f)$, $\text{VOA}(e, g)$, $\text{VOA}(f, g)$ generated by $\{e, f\}$, $\{e, e'\}$, and $\{f, e'\}$, are isomorphic to the $3C$-algebra U_{3C}. We also have $e_M \cdot e_N = \frac{1}{12}(e_M + e_N - e_\bar{N})$, and hence $\tau_e(f) = e_\bar{N}$.

Notation 3.8. Let $W := \text{VOA}(e, f, e')$ be the subVOA generated by e, f, and e'. We also denote $h = \tau_e \tau_{e'}$ and $g = \tau_e \tau_{e''}$. Then g and h both have order 3. Note also that $e, f, e' \in V_{M+N}$ and thus $W < V_{M+N} \cong V_{A_2 \otimes E_8}$.

Lemma 3.9. The elements g and h commute as automorphisms of W.

Proof. Recall that $g = \tau_e \tau_{e'} = \rho$ on V_L (see [Lam et al. 2007]). Also, $h(e) = f = e_N$ and $h^2(e) = e_\bar{N}$.

By a direct calculation, we have

$$ hg(e) = hgh^{-1}h(e) = \rho^h(e_N), $$

where $\rho^h = h\rho h^{-1} = \exp(\frac{2\pi i}{3}(0, a, -a)(0))$.

Since $\langle (0, \beta, -\beta), (0, a, -a) \rangle = 2(\beta, a)$ and $\langle (0, \beta, -\beta), (a, -a, 0) \rangle = -\langle \beta, a \rangle$, we have

$$ gh(e) = \rho(e_N) = \rho^h(e_N) = hg(e). $$

Similarly, we have

$$ hg(e') = hgh^2(e) = (\rho^h)^2(e_N), \quad gh(e') = ghg(e) = g(\rho^h(e_N)) = (\rho^h)^2(e_N) $$

and

$$ hg(f) = hgh(e) = (hgh^2)h^2(e) = \rho^h(e_\bar{N}), \quad gh(f) = g(e_\bar{N}) = \rho(e_\bar{N}). $$

Hence $gh = hg$ on W. \qed

Notation 3.10. For any $0 \leq i, j \leq 2$, denote

$$ e^{i,j} = g^i h^j(e). $$

In particular, we have

$$ e^{0,0} = e_M, \quad e^{0,1} = e_N, \quad e^{0,2} = e_\bar{N}, $$
$$ e^{1,0} = \rho e_M, \quad e^{1,1} = \rho e_N, \quad e^{1,2} = \rho e_\bar{N}, $$
$$ e^{2,0} = \rho^2 e_M, \quad e^{2,1} = \rho^2 e_N, \quad e^{2,2} = \rho^2 e_\bar{N}. $$

Remark 3.11. By the same methods as in [Lam et al. 2007; Griess and Lam 2011], it is quite straightforward to verify that $\langle e^{i,j}, e^{i',j'} \rangle = \frac{1}{2^8}$ whenever $(i, j) \neq (i', j')$.
Lemma 3.12. Let G be the subgroup of Aut(W) generated by τ_e, τ_f and τ_e'. Then $G = \langle g, h \rangle : \langle \tau_e \rangle$, where $\langle g, h \rangle$ is elementary abelian of order 3^2 and τ_e inverts g and h.

Proof. By Lemma 3.9, we know that the group $\langle g, h \rangle$ generated by g and h is elementary abelian of order 3^2. Also, τ_e inverts g and h because $\tau_e g \tau_e = \tau_e (\tau_e \tau_e) \tau_e = \tau_e' \tau_e = g^{-1}$ and $\tau_e h \tau_e = \tau_e (\tau_e \tau_f) \tau_e = \tau_f \tau_e = h^{-1}$.

First, we shall prove that $\langle g, h \rangle$ is normal in G. By Lemma 3.9 we have $gh = hg$ and hence $\tau_f \tau_e \tau_e' = \tau_e' \tau_e \tau_f$. Thus $\tau_f h \tau_f = \tau_f \tau_e \tau_e' \tau_f = \tau_e \tau_f \tau_f^2 = \tau_e' \tau_e = h^2 \in \langle g, h \rangle$. Similar computation gives that $\langle g, h \rangle$ is normal in G.

Next we show that $G = \langle g, h \rangle \langle \tau_e \rangle$. Recall that τ_e, τ_f and τ_e' are involutions. Thus every nonidentity element in G has the form

$$\tau_{a_1} \tau_{a_2} \cdots \tau_{a_k},$$

where $a_i = e$, f, or e' and $a_i \neq a_{i+1}$ for $i = 1, \ldots, k-1$.

Note also that $\tau_e \tau_e' = g$, $\tau_e \tau_f = h$, $\tau_f \tau_e' = h^{-1} g$, and g and h have order 3. Hence, $\tau_{a_i} \tau_{a'} \in \langle g, h \rangle$ for any $a, a' \in \{e, f, e'\}$. Therefore, $\tau_{a_1} \tau_{a_2} \cdots \tau_{a_k} \in \langle g, h \rangle$ if k is even and $\tau_{a_1} \tau_{a_2} \cdots \tau_{a_k} = (\tau_{a_1} \tau_{a_2} \cdots \tau_{a_k}) \tau_e \in \langle g, h \rangle \langle \tau_e \rangle$ if k is odd. Thus we have $G = \langle g, h \rangle \langle \tau_e \rangle$.

Since $|\langle g, h \rangle| = 3^2$ and $|\langle \tau_e \rangle| = 2$, we get $\langle g, h \rangle \cap \langle \tau_e \rangle = 1$. Hence $G = \langle g, h \rangle : \langle \tau_e \rangle$ as desired. \hfill \Box

Lemma 3.13. Let Ω be the Virasoro element of $\mathcal{L}_{\Delta(\mathbb{C})}(3, 0)$. Then

$$\Omega = \omega_L - \frac{8}{9} \sum_{0 \leq i, j \leq 2} e_{i,j}.$$

Proof. By Lemma 3.3, we have

$$\Omega = \omega_E + \frac{3}{4} \omega_{M+N} - \frac{1}{12} \sum_{\alpha \in K(2)} \sum_{1 \leq i, j \leq 3, i \neq j} e_{i,j}^{\eta(\alpha) - \eta_j(\alpha)}.$$

Now let us set $\Delta^i := \{ \beta \in E_8(2) \mid \langle \alpha, \beta \rangle = i \mod 3\mathbb{Z} \}$ for $i = 0, 1, 2$. Note that $\Delta^0 = K(2)$. Then we have

$$e^{0,0} = e_M = \frac{1}{16} \omega_M + \frac{1}{32} \sum_{i=0}^2 \sum_{\alpha \in \Delta^i} e^{(\alpha,-\alpha,0)},$$

$$e^{1,0} = \rho e_M = \frac{1}{16} \omega_M + \frac{1}{32} \sum_{i=0}^2 \sum_{\alpha \in \Delta^i} \xi^{2i} e^{(\alpha,-\alpha,0)},$$

$$e^{2,0} = \rho^2 e_M = \frac{1}{16} \omega_M + \frac{1}{32} \sum_{i=0}^2 \sum_{\alpha \in \Delta^i} \xi^i e^{(\alpha,-\alpha,0)}.$$
Hence
\[\sum_{i=0}^{2} e^{i,0} = (1 + \rho + \rho^2) e_M = \frac{3}{16} \omega_M + \frac{3}{32} \sum_{\alpha \in K(2)} e^{(\alpha, -\alpha, 0)}. \]

A similar computation gives
\[\sum_{0 \leq i, j \leq 2} e^{i,j} = \frac{3}{16} (\omega_M + \omega_N + \omega_\alpha) + \frac{3}{32} \sum_{\alpha \in K(2), 1 \leq i, j \leq 3, i \neq j} e^{\eta_i(\alpha) - \eta_j(\alpha)}. \]

Recall that \(M + N \cong A_2 \otimes E_8\). It contains a full rank sublattice isometric to \((\sqrt{2} A_2)^8\) and hence \(\omega_{M+N}\) is the sum of the conformal elements of each tensor copy of \(V_{\sqrt{2} A_2}^\otimes\). We also note that the conformal element of the lattice VOA \(V_{\sqrt{2} A_2}\) is given by
\[\omega_{\sqrt{2} A_2} = \frac{1}{6} (\alpha_1(-1)^2 + \alpha_2(-1)^2 + \alpha_3(-1)^2) \cdot 1 = \frac{2}{3} \left(\frac{1}{2} \left(\alpha_1(-1) \sqrt{2} \right)^2 + \frac{1}{2} \left(\alpha_2(-1) \sqrt{2} \right)^2 + \frac{1}{2} \left(\alpha_3(-1) \sqrt{2} \right)^2 \right) \cdot 1, \]
where \(\alpha_1, \alpha_2, \alpha_3\) are positive roots of a root lattice type \(A_2\) [Dong et al. 1998].

Thus \(\omega_{M+N} = \frac{2}{3} (\omega_M + \omega_N + \omega_\alpha)\) and we get
\[\Omega = \omega_L = \frac{8}{9} \sum_{0 \leq i, j \leq 2} e^{i,j}, \]
as desired. Note that \(\omega_L = \omega_E + \omega_{M+N} \).

Lemma 3.14. For any \(0 \leq i, j \leq 2\), we have \(e^{i,j} \in \hat{W} = \text{Com}_L(L_{sl_9}(\mathbb{C})(3, 0))\).

Hence \(W \subset \hat{W}\) and \(W_1 = 0\).

Proof. Since \(e^{i,j} \in V_{M+N}\) and \(E = \{ (\alpha, \alpha, \alpha) \mid \alpha \in E_8 \}\) is orthogonal to \(M + N\), it is clear that \((H_\alpha)_n e^{i,j} = 0\) for all \(n \geq 0\). It is also clear that \((E_\alpha)_n e^{i,j} = 0\) for any root \(\alpha \in K\) and \(n \geq 2\).

Recall from [Frenkel et al. 1988] that
\[Y(e^\alpha, z) = \exp \left(\sum_{n \in \mathbb{Z}^+} \frac{\alpha(-n)}{n} z^n \right) \exp \left(\sum_{n \in \mathbb{Z}^+} \frac{\alpha(n)}{-n} z^{-n} \right) e^{\alpha z^\alpha}. \]

Now let \(\sigma = (123)\) be a 3-cycle. Then by direct calculation, we have
\[
(E_\alpha)_1 e^{i,j} = (E_\alpha)_1 (\rho^i h^j e_M)
= (e^{\eta_1(\alpha)} + e^{\eta_2(\alpha)} + e^{\eta_3(\alpha)})_1
\times \left(\frac{1}{16} \omega h(M) + \frac{1}{32} \sum_{\alpha \in \Delta^+(E_8)} \rho^i (e^{(\eta_{\alpha \\ i(1)} - \eta_{\alpha \\ i(2)})(\alpha)} + e^{-(\eta_{\alpha \\ i(1)} - \eta_{\alpha \\ i(2)})(\alpha)}) \right)
= \frac{1}{16} \langle \alpha, \alpha \rangle \left[\frac{1}{8} (e^{\eta_{\alpha \\ i(1)}(\alpha)} + e^{\eta_{\alpha \\ i(2)}(\alpha)}) + \frac{1}{32} \varepsilon(\alpha, -\alpha) (e^{\eta_{\alpha \\ i(1)}(\alpha)} + e^{\eta_{\alpha \\ i(2)}(\alpha)}) \right]
= 0,
\]
and
\[
(E_\alpha)_0 e^{i,j} = (e^{\eta_1(\alpha)} + e^{\eta_2(\alpha)} + e^{\eta_3(\alpha)}) \times \left(\frac{1}{16} \omega_{h/M} + \frac{1}{32} \sum_{\alpha \in \Delta^+(E_8)} \rho(\eta_{\sigma_{j(1)}(\alpha)} - \eta_{\sigma_{j(2)}(\alpha)}) + e^{-(\eta_{\sigma_{j(1)}(\alpha)} - \eta_{\sigma_{j(2)}(\alpha)})} \right)
\]
\[
= \frac{1}{16} \left(\alpha, \alpha \right) \frac{1}{8} \left(\eta_{\sigma_{j(1)}(\alpha)}(\alpha) - 1 \right) e^{\eta_{\sigma_{j(1)}(\alpha)}} + \eta_{\sigma_{j(2)}(\alpha)}(\alpha)(-1) e^{\eta_{\sigma_{j(2)}(\alpha)}}
- 2(\alpha, \alpha) \frac{1}{8} \left((\eta_{\sigma_{j(1)}} - \eta_{\sigma_{j(2)}})(\alpha)(-1) e^{\eta_{\sigma_{j(1)}}(\alpha)}
- (\eta_{\sigma_{j(1)}} - \eta_{\sigma_{j(2)}})(\alpha)(-1) e^{\eta_{\sigma_{j(2)}}(\alpha)} \right)
+ \frac{1}{32} e(\alpha, -\alpha) \left(\eta_{\sigma_{j(2)}(\alpha)}(\alpha)(-1) e^{\eta_{\sigma_{j(1)}(\alpha)}} + \eta_{\sigma_{j(1)}(\alpha)}(\alpha)(-1) e^{\eta_{\sigma_{j(2)}(\alpha)}} \right)
= 0
\]
for any root \(\alpha \in K \). Therefore, \((E_\alpha)_n e^{i,j} = 0 \) for all \(n \geq 0 \). Since \(L_{\hat{\mathfrak{g}}_3(\mathbb{C})}(3,0) \) is generated by \(E_\alpha \) and \(H_\alpha \), we have the desired conclusion. \(\square \)

Remark 3.15. Note that the lattice VOA \(V_L \) also contains a subVOA isomorphic to \(L_{\hat{E}_8}(3,0) \), the level-3 affine VOA associated to the Kac–Moody Lie algebra of type \(E_8^{(1)} \). The central charge of \(\text{Com}_{V_L}(L_{\hat{E}_8}(3,0)) \) is \(\frac{16}{17} \), which is the same as \(U_{3C} \). In fact, it can be shown by the similar calculation as Lemma 3.14 that \(e_M \) and \(e_N \) defined in Notation 3.6 are contained in \(\text{Com}_{V_L}(L_{\hat{E}_8}(3,0)) \). Moreover,

\[
U_{3C} \cong \text{VOA}(e_M, e_N) = \text{Com}_{V_L}(L_{\hat{E}_8}(3,0)).
\]

4. Parafermion VOA and \(W \)

In this section, we shall show that the VOA \(W \) defined in Notation 3.8 is, in fact, equal to the commutant subVOA \(\tilde{W} = \text{Com}_{V_L}(L_{\hat{\mathfrak{g}}_3(\mathbb{C})}(3,0)) \). Recall that the lattice VOA \(V_{A_4^2} \) contains a full subVOA \(K(\mathfrak{sl}_3(\mathbb{C}), 9) \otimes L_{\hat{\mathfrak{g}}_3(\mathbb{C})}(3,0) \) (see [Lam 2014]), where \(K(\mathfrak{sl}_3(\mathbb{C}), 9) \) is the parafermion VOA associated to the affine VOA \(L_{\tilde{\mathfrak{g}}_3(\mathbb{C})}(9,0) \). Therefore, the VOA \(\tilde{W} \) contains a full subVOA isomorphic to the parafermion VOA \(K(\mathfrak{sl}_3(\mathbb{C}), 9) \).

Parafermion VOA. First, we recall the definition of parafermion VOA from [Dong and Wang 2010], henceforth abbreviated [DW] (cf. [Dong et al. 2009; 2010]).

Let \(\mathfrak{g} \) be a finite-dimensional simple Lie algebra and \(\hat{\mathfrak{g}} \) the affine Kac–Moody Lie algebra associated with \(\mathfrak{g} \). The level-\(k \) affine vertex operator algebra \(L_{\hat{\mathfrak{g}}}(k,0) \) contains a Heisenberg vertex operator algebra corresponding to a Cartan subalgebra \(\mathfrak{h} \) of \(\mathfrak{g} \). Let \(M_{\hat{\mathfrak{h}}}(k,0) \) be the vertex operator subalgebra of \(L_{\hat{\mathfrak{g}}}(k,0) \) generated by \(h(-1) \cdot 1 \) for \(h \in \mathfrak{h} \). The commutant \(K(\mathfrak{g}, k) \) of \(M_{\hat{\mathfrak{h}}}(k,0) \) in \(L_{\hat{\mathfrak{g}}}(k,0) \) is called a parafermion vertex operator algebra.
The VOA $L_{\hat{g}}(k, 0)$ is completely reducible as an $M_{\hat{h}}(k, 0)$-module and we have a decomposition (see [DW]).

Lemma 4.1. For any $\lambda \in \mathfrak{h}^*$, let $M_{\hat{h}}(k, \lambda)$ be the irreducible highest weight module for \hat{h} with a highest weight vector v_λ such that $h(0)v_\lambda = \lambda(h)v_\lambda$ for $h \in \mathfrak{h}$. Set

$$K_{\mathfrak{g}, k}(\lambda) = K_{\mathfrak{g}, k}(0, \lambda) = \{ v \in L_{\hat{g}}(k, 0) \mid h(m)v = \lambda(h)\delta_{m,0} v \text{ for } h \in \mathfrak{h}, m \geq 0 \}.$$

Then we have

$$L_{\hat{g}}(k, 0) = \bigoplus_{\lambda \in Q} K_{\mathfrak{g}, k}(\lambda) \otimes M_{\hat{h}}(k, \lambda),$$

where Q is the root lattice of \mathfrak{g}.

Similarly, for any dominant integral weight $\Lambda \in P_+^k(\mathfrak{g})$, we also have the decomposition.

Lemma 4.2. Set

$$K_{\mathfrak{g}, k}(\Lambda, \lambda) = \{ v \in L_{\hat{g}}(k, \Lambda) \mid h(m)v = \lambda(h)\delta_{m,0} v \text{ for } h \in \mathfrak{h}, m \geq 0 \}.$$

Then

$$L_{\hat{g}}(k, \Lambda) = \bigoplus_{\lambda \in \Lambda + Q} K_{\mathfrak{g}, k}(\Lambda, \lambda) \otimes M_{\hat{h}}(k, \lambda).$$

A generating set. In [DW], it is shown that the parafermion VOA $K(\mathfrak{g}, k)$ is generated by subVOAs isomorphic to $K(\mathfrak{sl}_2(\mathbb{C}), k)$. We first give a brief review of their work.

Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g} and let Δ_+ be the set of all positive roots of \mathfrak{g}. Then

$$\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\alpha \in \Delta_+} (\mathbb{C}x_\alpha \oplus \mathbb{C}x_{-\alpha}),$$

where $x_{\pm\alpha} \in \mathfrak{g}_{\pm\alpha} = \{ u \in \mathfrak{g} \mid [h, u] = \pm\alpha(h)u \text{ for all } h \in \mathfrak{h} \}$.

Notation 4.3. For any $\alpha \in \Delta_+$, let $h_\alpha = [x_\alpha, x_{-\alpha}]$. Then $S_\alpha = \text{span}\{h_\alpha, x_\alpha, x_{-\alpha}\}$ is a Lie subalgebra of \mathfrak{g} isomorphic to $\mathfrak{sl}_2(\mathbb{C})$. Define

$$\omega_\alpha = \frac{1}{2k(k+2)}(kh_\alpha(-2)1 - h_\alpha(-1)211 + 2kx_\alpha(-1)x_{-\alpha}(-1)1)$$

and

$$W_\alpha^3 = k^2h_\alpha(-3)1 + 3kh_\alpha(-2)h_\alpha(-1)11 + 2h_\alpha(-1)^31$$

$$- 6kh_\alpha(-1)x_\alpha(-1)x_\alpha(-1)11 + 3k^2x_\alpha(-2)x_\alpha(-1)11 - 3k^2x_\alpha(-1)x_\alpha(-2)11.$$

We use P_α to denote the vertex operator subalgebra of $K(\mathfrak{g}, k)$ generated by ω_α and W_α^3 for $\alpha \in \Delta_+$.

Theorem 4.4 [DW, Theorem 4.2]. The simple vertex operator algebra $K(g, k)$ is generated by P_{α}, $\alpha \in \Delta_+$ and P_{α} is a simple vertex operator algebra isomorphic to the parafermion vertex operator algebra $K(sl_2(\mathbb{C}), k)$ associated to $sl_2(\mathbb{C})$.

The lattice VOA $V_{A_n^{k+1}}$. Next we recall an embedding of the VOA $K(sl_{n+1}, n+1) \otimes L_{\tilde{\mathfrak{g}}_{n+1}(\mathbb{C})}(k+1, 0)$ into the lattice VOA $V_{A_n^{k+1}}$ from [Lam 2014].

We use the standard model for the root lattice of type A_ℓ. In particular,

$$A_\ell = \left\{ \sum a_i \varepsilon_i \in \mathbb{Z}^{\ell+1} \mid a_i \in \mathbb{Z} \text{ and } \sum_{i=1}^{\ell+1} a_i = 0 \right\},$$

where ε_i is the row vector whose i-th entry is 1 and all other entries are 0. The dual lattice

$$A_\ell^* = \bigcup_{i=0}^{\ell} (\gamma_{A_\ell}(i) + A_\ell),$$

where $\gamma_{A_\ell}(i) = \frac{1}{\ell+1} \left(\sum_{j=1}^{\ell+1-i} i \varepsilon_j - \sum_{j=\ell+1-i}^{\ell+1} (\ell+1-i) \varepsilon_j \right)$ for $i = 0, \ldots, \ell$.

Notation 4.5. Let n and k be positive integers. We shall consider two injective maps $\eta_i : \mathbb{Z}^{n+1} \rightarrow \mathbb{Z}^{(n+1)(k+1)}$ and $\iota_i : \mathbb{Z}^{k+1} \rightarrow \mathbb{Z}^{(n+1)(k+1)}$ defined by

$$\eta_i(\varepsilon_j) = \varepsilon_{(n+1)(i-1)+j} \quad \text{and} \quad \iota_i(\varepsilon_j) = \varepsilon_{(n+1)(j-1)+i}$$

for $i = 1, \ldots, k+1$, $j = 1, \ldots, n+1$.

Let

$$d_{k+1} = \sum_{j=1}^{k+1} \eta_j : \mathbb{Z}^{n+1} \rightarrow \mathbb{Z}^{(n+1)(k+1)} \quad \text{and} \quad \mu_{n+1} = \sum_{j=1}^{n+1} \iota_j : \mathbb{Z}^{k+1} \rightarrow \mathbb{Z}^{(n+1)(k+1)}.$$

Then we have

$$d_{k+1}(a_1, \ldots, a_{n+1}) = (a_1, \ldots, a_{n+1}, a_1, \ldots, a_{n+1}, \ldots, a_1, \ldots, a_{n+1}),$$

$$\mu_{n+1}(a_1, \ldots, a_{k+1}) = (a_1, \ldots, a_1, a_2, \ldots, a_{k+1}, \ldots, a_1, \ldots, a_{k+1}).$$

Set $X = d_{k+1}(A_n)$ and $Y = \mu_{n+1}(A_k)$. Then $X \cong \sqrt{k+1}A_n$ and $Y \cong \sqrt{n+1}A_k$.

Moreover, we have

$$\text{Ann}_{A_{(n+1)(k+1)-1}}(Y) = \bigoplus_{i=1}^{k+1} \eta_i(A_n) \cong A_{n}^{k+1},$$

$$\text{Ann}_{A_{(n+1)(k+1)-1}}(X) = \bigoplus_{j=1}^{n+1} \iota_j(A_k) \cong A_{k}^{n+1},$$

(4-1)
where \(\text{Ann}_A(B) = \{ x \in A \mid \langle x, y \rangle = 0 \text{ for all } y \in B \} \) is the annihilator of a sublattice \(B\) in an integral lattice \(A\).

By the same construction as in Notation 3.2 (see also [Dong and Lepowsky 1993, Chapter 13]), one can obtain subVOAs isomorphic to \(\hat{L}_{\mu_{n+1}(A)}(k+1,0)\) and \(\hat{L}_{\mu_{k+1}(C)}(n+1,0)\) in the lattice VOA \(V_{A(k+1)(n+1)-1}\).

The next proposition is well known in the literature [Kac and Wakimoto 1988; Nakanishi and Tsuchiya 1992; Lam 2014].

Proposition 4.6. The VOAs \(\hat{L}_{\mu_{n+1}(A)}(k+1,0)\) and \(\hat{L}_{\mu_{k+1}(C)}(n+1,0)\) are mutually commutative in the lattice VOA \(V_{A(k+1)(n+1)-1}\). Moreover,

\[
\hat{L}_{\mu_{n+1}(A)}(k+1,0) \otimes \hat{L}_{\mu_{k+1}(C)}(n+1,0)
\]

is a full subVOA of \(V_{(n+1)(k+1)-1}\).

Remark 4.7. It is also known that the VOA \(V_{\mu_{n+1}(A)}\) is contained in the affine VOA \(\hat{L}_{\mu_{k+1}(C)}(n+1,0)\) and \(K(\mathfrak{sl}_{k+1}(C), n+1) = \text{Com}_{\hat{L}_{\mu_{k+1}(C)}(n+1,0)}(V_{\mu_{n+1}(A)})\) (see [Lam 2014, Lemma 4.1]). Moreover, for any \(\Lambda \in P_{n+1}^+(\mathfrak{sl}_{k+1}(C))\), we have the decomposition

\[
(4-2) \quad \hat{L}_{\mu_{k+1}(C)}(n+1, \Lambda) = \bigoplus_{\lambda \in \frac{1}{n+1}(A_{k+1})} K(\mathfrak{sl}_{k+1}(C), n+1)(\Lambda, (n+1)\lambda) \otimes V_{\lambda + \mu_{n+1}(A)}
\]

as a module of \(V_{\mu_{n+1}(A)} \otimes K(\mathfrak{sl}_{k+1}(C), n+1)\) such that \(\mu_{n+1}(\lambda) = \lambda\) (see [ibid., Lemma 4.3]).

Note that it is shown in [Dong and Lepowsky 1993, Theorem 14.20] that \(K(\mathfrak{sl}_{k+1}(C), n+1, n+1\lambda)\), for \(\Lambda \in P_{n+1}^+(\mathfrak{sl}_{k+1}(C))\), \(\lambda \in (\mu_{n+1}(A_k))^*\), are irreducible \(K(\mathfrak{sl}_{k+1}(C), n+1)-\)modules.

Next we consider the case \(n = 8, k = 2\). Then \((n+1)(k+1) - 1 = 26\). We shall study the decomposition of \(\tilde{W} = \text{Com}_{V^3_{E_8}}(L_{\mathfrak{sl}_3}(C), 3, 0)\) as a \(K(\mathfrak{sl}_3(C), 9)\)-module.

Set

\[
v_1 = \eta_1 - \eta_2, \quad v_2 = \eta_2 - \eta_3,
\]

and define \(\mu = \mu_3 : \mathbb{Z}^3 \to \mathbb{Z}^{27}\) by

\[
\mu(a_1, a_2, a_3) = (a_1, \ldots, a_1, a_2, \ldots, a_2, a_3, \ldots a_3).
\]

Note that \(Y = \mu(A_2) \cong 3A_2\) and

\[
\text{Ann}_{A_{26}}(Y) = \{ \alpha \in A_{26} \mid \langle \alpha, \beta \rangle = 0 \text{ for any } \beta \in Y \} \cong A_8^3.
\]

Next we discuss the coset decomposition \(Y + A_3^3\) in \(A_{26}\).
Lemma 4.8. Let $\alpha_1 = (1, -1, 0)$ and $\alpha_2 = (0, 1, -1)$ be roots of A_2. Then we have

$$A_{26} = \bigcup_{0 \leq i, j \leq 8} \left(\left(-\frac{1}{9}(i\mu(\alpha_1) + j\mu(\alpha_2)) + Y \right) + (v_1(\gamma_{A_8}(i)) + v_2(\gamma_{A_8}(j)) + A_8^3) \right).$$

Proof. First we note that $[A_{26} : Y + A_8^3] = \sqrt{(9^2 \cdot 3)} \cdot 9^3 / 27 = 9^2$. Moreover, we have

$$-\frac{1}{9}(i\mu(\alpha_1) + j\mu(\alpha_2)) + v_1(\gamma_{A_8}(i)) + v_2(\gamma_{A_8}(j)) = \sum_{k=10-i}^9 t_k(\alpha_1) + \sum_{k' = 10-i}^9 t_{k'}(\alpha_2).$$

Note that $\sum_{k=10-i}^9 t_k(\alpha_p) \notin Y + A_8^3$ for any $i \neq 0$, $p = 1, 2$. Therefore,

$$\left(-\frac{1}{9}(i\mu(\alpha_1) + j\mu(\alpha_2)) + Y \right) + (v_1(\gamma_{A_8}(i)) + v_2(\gamma_{A_8}(j)) + A_8^3),$$

for $i, j = 0, \ldots, 8$, give 9^2 distinct cosets in $A_{26} / (Y + A_8^3)$. Thus, we have the desired conclusion.

Lemma 4.9. Let $\delta = \gamma_{A_8}(3) = \frac{1}{3} (1^6, -2^3) \in A_8^8$. Then for any $k, \ell = 0, \pm 1$, we have

$$\text{Com}_{v_{(kv_1 + \ell v_2)(\delta) + A_8^3}}(L_{\tilde{g}_9}(C), 0) = \{ v \in V_{(kv_1 + \ell v_2)(\delta) + A_8^3} | \Omega_n v = 0 \text{ for all } n \geq 0 \}$$

$$\cong K_{sl_3(C), 9}(0, -3(k\alpha_1 + \ell\alpha_2)).$$

Proof. By Lemma 4.8,

$$V_{A_{26}} = \bigoplus_{0 \leq i, j \leq 8} V_{-\frac{1}{9}(i\mu(\alpha_1) + j\mu(\alpha_2)) + Y} \otimes V_{v_1(\gamma_{A_8}(i)) + v_2(\gamma_{A_8}(j)) + A_8^3}.$$

Moreover, by (4.2),

$$L_{\tilde{g}_9}(9, 0) = \text{Com}_{V_{A_{26}}}(L_{\tilde{g}_9}(C), 0) = \bigoplus_{\lambda \in \frac{1}{9}Y} V_{\lambda} \otimes K_{sl_3(C), 9}(0, 9\tilde{\lambda}).$$

Take $i = 3k$ and $j = 3\ell$. Then we have

$$\text{Com}_{v_{(kv_1 + \ell v_2)(\delta) + A_8^3}}(L_{\tilde{g}_9}(C), 0) \cong K_{sl_3(C), 9}(0, 9 \cdot -\frac{1}{9}(3k\alpha_1 + 3\ell\alpha_2))$$

$$= K_{sl_3(C), 9}(0, -3(k\alpha_1 + \ell\alpha_2))$$

as desired.

Lemma 4.10. We have the decomposition

$$\tilde{W} = \text{Com}_{V_{\tilde{g}_9^3}}(L_{\tilde{g}_9(C)}, 0) = \bigoplus_{i, j = 0, \pm 1} K_{sl_3(C), 9}(0, 3(i\alpha_1 + j\alpha_2)).$$

Proof. First we note that $M + N \cong A_2 \otimes E_8$ and

$$M + N = \bigcup_{0 \leq k, \ell \leq 2} ((kv_1 + \ell v_2)(\delta) + A_2 \otimes A_8).$$
Since $A_2 \otimes A_8 \cong \text{Ann} A_8^4(d_3(A_8))$ and $V_{d_3(A_8)} \subset L_{\hat{A}_9}(3, 0)$, we have

$$\tilde{W} = \text{Com}_{\mathbb{F}_8}(L_{\hat{A}_9}(3, 0)) < V_{M+N}.$$

The conclusion now follows from Lemma 4.9.

Now let $\alpha \in A_2$ be a root. Then $\mathbb{Z}\alpha \cong A_1$ and

$$L(\alpha) = \bigoplus_{j=1}^9 t_j(\mathbb{Z}\alpha) \cong A_1^9 \subset A_{26}.$$

Let H_α and E_α be defined as in Notation 3.2. Then $\{H_\alpha, E_\alpha, -E_\alpha\}$ forms a \mathfrak{sI}_2-triple in the lattice VOA $V_{A_1^9} < V_{A_{26}}$. Moreover, it generates a subVOA \mathcal{L}_α isomorphic to the affine VOA $L_{\mathfrak{sl}_2}(\mathbb{C})(9, 0)$. Let $M_\alpha(9, 0)$ be the subVOA generated by H_α. Then

$$\mathcal{K}_\alpha := \text{Com}_{\mathcal{L}_\alpha}(M_\alpha(9, 0)) \cong K(\mathfrak{sl}_2(\mathbb{C}), 9).$$

Note also that $\mathcal{K}_\alpha = \text{Com}_{\mathcal{L}_\alpha}(M_\alpha(9, 0)) < \text{Com}_{L_{\mathfrak{sl}_3}(\mathbb{C})(9, 0)}(V_{\mu(\mathfrak{A}_2)}) = K(\mathfrak{sl}_3(\mathbb{C}), 9)$.

Set $h_\alpha = H_\alpha$, $x_\alpha = E_\alpha$ and $x_{-\alpha} = -E_{-\alpha}$. Then the elements ω_α and W_α defined in Notation 4.3 are contained in \mathcal{K}_α. In fact, \mathcal{K}_α is generated by ω_α and W_α^3 (see [Dong et al. 2009]).

Theorem 4.11. The VOA W defined in Notation 3.8 contains a full subVOA isomorphic to $K(\mathfrak{sl}_3(\mathbb{C}), 9)$.

Proof. Recall that $W = (e^{i,j} \mid 0 \leq i, j \leq 2)$. We also have

$$M = (\eta_1 - \eta_2)(E_8), \quad N = (\eta_2 - \eta_3)(E_8), \quad \tilde{N} = (\eta_1 - \eta_3)(E_8).$$

Let $\alpha_1 = (1, -1, 0)$, $\alpha_2 = (0, 1, -1)$ and $\alpha_3 = \alpha_1 + \alpha_2 = (1, 0, -1)$ be the positive roots of A_2. Then by the same calculations as in [Lam et al. 2007], it is straightforward to verify that

$$\mathcal{K}_{\alpha_1} < \text{VOA}(e_M, \rho e_M), \quad \mathcal{K}_{\alpha_2} < \text{VOA}(e_N, \rho e_N), \quad \mathcal{K}_{\alpha_3} < \text{VOA}(e_{\tilde{N}}, \rho e_{\tilde{N}}),$$

where $e_M, e_N, e_{\tilde{N}}$ and ρ are defined as in Notation 3.6.

Now by Theorem 4.4, $\mathcal{K}_{\alpha_1}, \mathcal{K}_{\alpha_2}$ and \mathcal{K}_{α_3} generate a subVOA isomorphic to $K(\mathfrak{sl}_3(\mathbb{C}), 9)$ in W. It is a full subVOA of W because they have the same central charge.

Theorem 4.12. We have $W = \tilde{W} = \text{Com}_{\mathbb{F}_8}(L_{\hat{A}_9}(3, 0)).$

Proof. By the previous lemma, the subVOA W contains $K(\mathfrak{sl}_3(\mathbb{C}), 9)$ as a full subVOA.

Therefore, it suffices to show that $K_{\mathfrak{sl}_3(\mathbb{C}), 9}(0, 3(i\alpha_1 + j\alpha_2))$ is contained in W for any $i, j = 0, \pm 1$.
By [Lam et al. 2007, Proposition 2.2],
\[
X^+_{v_1} = \frac{1}{32} \sum_{\gamma \in \nu_1(\delta) + \nu_1(A_8) \atop \langle \gamma, \gamma \rangle = 4} e^\gamma \quad \text{and} \quad X^-_{v_1} = \frac{1}{32} \sum_{\gamma \in -\nu_1(\delta) + \nu_1(A_8) \atop \langle \gamma, \gamma \rangle = 4} e^\gamma
\]
are contained in \(\text{VOA}(e_M, \rho e_M) < W \). Moreover, it is straightforward to verify that
\[
X^+_{v_1} \in \text{Com}_{\nu_1(\delta) + A_8^3} (L_{\tilde{\mathfrak{g}}_0}(C)(3, 0)) \cong K_f(C), g(0, -3\alpha_1)
\]
and
\[
X^-_{v_1} \in \text{Com}_{-\nu_1(\delta) + A_8^3} (L_{\tilde{\mathfrak{g}}_0}(C)(3, 0)) \cong K_f(C), g(0, 3\alpha_1).
\]
Therefore, \(W \) contains \(K_f(C), g(0, \pm 3\alpha_1) \) as \((\mathfrak{sl}_3(C), 9) \)-submodules. Similarly, \(W \) also contains \(K_f(C), g(0, \pm 3\alpha_2) \) and \(K_f(C), g(0, \pm (3\alpha_1 + \alpha_2)) \) as \((\mathfrak{sl}_3(C), 9) \)-submodules.

Moreover, it is clear that \(0 \neq (X^+_{v_1})_3 (X^-_{v_2}) \in V_{(v_1-v_2)(\delta) + A_8^3} \). Since \(X^+_{v_1} \) and \(X^-_{v_2} \) are contained in the commutant of \(L_{\tilde{\mathfrak{g}}_0}(C)(3, 0) \), we have
\[
(X^+_{v_1})_3 (X^-_{v_2}) \in \text{Com}_{(v_1-v_2)(\delta) + A_8^3} (L_{\tilde{\mathfrak{g}}_0}(C)(3, 0)).
\]
Hence \(W \) contains \(K_f(C), g(0, 3(\alpha_1 - \alpha_2)) \). Similarly, \(K_f(C), g(0, 3(\alpha_2 - \alpha_1)) \) is contained in \(W \), also. \(\square \)

Remark 4.13. Recall that \(e^{i,j} \in V_{E_8^3}, 0 \leq i, j \leq 2 \), are fixed by the diagonal action of the Weyl group of \(K \). Therefore, the VOA \(\hat{W} \) is fixed by the Weyl group of \(K \) pointwise. Using this fact and Lemma 4.9, it is straightforward to show that \(\dim(K_f(C), g(0, 3\alpha_2)) = 1 \) for any root \(\alpha \) of \(A_8 \), \(\dim(K_f(C), g(0, 0)\mathbb{Z}) = 3 \), and \(\dim(K_f(C), g(0, \pm (3\alpha_1 - \alpha_2))\mathbb{Z}) = 0 \) (see the Appendix). Thus, \(\dim(W_2) = 9 \) and \(\hat{W}_2 \) is spanned by \(\{e^{i,j} \mid 0 \leq i, j \leq 2\} \).

A positive definite real form. Next we shall show that the Ising vectors \(e^{i,j} \), for \(0 \leq i, j \leq 2 \), are contained in a positive definite real form of \(V_{E_8^3} \).

First we recall that the lattice VOA constructed in [Frenkel et al. 1988] can be defined over \(\mathbb{R} \). Let \(V_{L,\mathbb{R}} = S(\hat{h}_{\mathbb{R}}) \otimes \mathbb{R}[L] \) be the real lattice VOA associated to an even positive definite lattice, where \(\hat{h} = \mathbb{R} \otimes \mathbb{Z} L, \hat{h}^- = \bigoplus_{n \in \mathbb{Z}^+} \hat{h} \otimes \mathbb{R} t^{-n} \). As usual, we use \(x(-n) \) to denote \(x \otimes t^{-n} \) for \(x \in \hat{h} \) and \(n \in \mathbb{Z}^+ \).

Notation 4.14. Let \(\theta : V_{L,\mathbb{R}} \to V_{L,\mathbb{R}} \) be defined by
\[
\theta(x(-n_1) \cdots x(-n_k) \otimes e^\alpha) = (-1)^k x(-n_1) \cdots x(-n_k) \otimes e^{-\alpha}.
\]
Then \(\theta \) is an automorphism of \(V_{L,\mathbb{R}} \), which is a lift of the \((-1)\)-isometry of \(L \) [ibid.]. We shall denote the \((\pm 1)\)-eigenspaces of \(\theta \) on \(V_{L,\mathbb{R}} \) by \(V_{L,\mathbb{R}}^\pm \).

The following result is well-known [Frenkel et al. 1988; Miyamoto 2004].
\textbf{Proposition 4.15} (cf. Proposition 2.7 of [Miyamoto 2004]). Let \(L \) be an even positive definite lattice. Then the real subspace \(\widetilde{V}_L^{+,R} = V_L^{+} \oplus \sqrt{-1}V_L^{-} \) is a real form of \(V_L \). Furthermore, the invariant form on \(\widetilde{V}_L^{+} \) is positive definite.

Now apply the above theorem to the case \(L = E_8^3 \). We have the following result.

\textbf{Proposition 4.16.} Let \(\widetilde{V}_{E_8^3}^{+} = V_{E_8^3}^{+} \oplus \sqrt{-1}V_{E_8^3}^{-} \). Then \(\widetilde{V}_{E_8^3}^{+} \) is a positive definite real form of \(V_{E_8^3} \).

The next lemma is clear by the definitions of \(e_N, e_N \), and \(e_{\overline{N}} \).

\textbf{Lemma 4.17.} The Ising vectors \(e_M, e_N \) and \(e_{\overline{N}} \) defined in Notation 3.6 lie in \(V_{E_8^3}^{+} \).

Recall the automorphism \(\rho = \exp\left(\frac{2\pi i}{3}(a, -a, 0)(0)\right) \) defined in Definition 3.5, where \(a \) is an element of \(E_8 \) such that \(K = \{ \beta \in E_8 \mid \langle \beta, a \rangle \in 3\mathbb{Z} \} \cong A_8 \). Then we have the coset decomposition

\[
E_8 = A_8 \cup (b + A_8) \cup (-b + A_8),
\]

where \(b \) is a root of \(E_8 \) such that \(\langle b, a \rangle \equiv 1 \mod 3 \).

Note that

\[
M = \{ (\alpha, -\alpha, 0) \mid \alpha \in E_8 \} \cong \sqrt{2}E_8,
\]

\[
\tilde{K} = \{ (\alpha, -\alpha, 0) \mid \alpha \in K \} \cong \sqrt{2}A_8.
\]

Set

\[
X^0 := \frac{1}{3}(e_M + \rho e_M + \rho^2 e_M),
\]

\[
X^1 := \frac{1}{3}(e_M + \xi \rho e_M + \xi^2 \rho^2 e_M),
\]

\[
X^2 := \frac{1}{3}(e_M + \xi^2 \rho e_M + \xi \rho^2 e_M),
\]

where \(\xi = \exp\left(\frac{2\pi i}{3}\right) = \frac{1}{2}(-1 + \sqrt{-3}) \).

The next lemma can be proved by the same calculations as in [Lam et al. 2007]. Note that \(\rho X^0 = X^0 \), \(\rho X^1 = \xi X^1 \) and \(\rho X^2 = \xi X^2 \).

\textbf{Lemma 4.18.} The vector \(X^0 \) is contained in \(V_{M,\mathbb{R}}^+ \). Moreover,

\[
X^1 = \frac{1}{32} \sum_{\gamma \in \langle b, -b, 0 \rangle + \tilde{K}, (\gamma, \gamma') = 4} e^{\gamma'} \quad \text{and} \quad X^2 = \frac{1}{32} \sum_{\gamma \in \langle b, -b, 0 \rangle + \tilde{K}, (\gamma, \gamma') = 4} e^{\gamma'}.
\]

Therefore, \(X^1 + X^2 \in V_{M,\mathbb{R}}^+ \) and \(X^1 - X^2 \in V_{M,\mathbb{R}}^- \).

\textbf{Lemma 4.19.} The Ising vectors \(e^{i-j}, 0 \leq i, j \leq 2 \), are all contained in \(\widetilde{V}_{E_8^3}^{+} \).

\textbf{Proof.} By the discussion above, we have

\[
\rho e_M = X^0 + \frac{1}{2}(X^1 + X^2) + \frac{1}{2} \sqrt{-3}(X^1 - X^2).
\]
Thus, \((I) \) \(\langle e, e' \rangle = \langle e, e' \rangle = \langle e', e'' \rangle = 1/2^8 \) and \(e_t e_{e'}, e_{e'} e_t e'' \) are of order 3.

Then each of \(\{e_t, e_{e'}\}, \{e_{e'}, e_{e''}\}, \) and \(\{e_{e'}, e_{e''}\} \) generates a dihedral group of order 6 and the Griess algebras generated by \(\{e, e'\}, \{e, e''\}, \) and \(\{e', e''\} \) are isomorphic to the Griess algebra \(G_{U3C} \) of the \(3C \)-algebra \(U3C \).

5. Griess algebras generated by Ising vectors

In this section, we shall give few structural results about Griess algebras generated by Ising vectors in a moonshine-type VOA \(V \) over \(\mathbb{R} \) such that the invariant bilinear form is positive definite. Our setting is as follows.

Notation 5.1. Let \(e, e', e'' \) be three distinct Ising vectors in \(V \). Assume that

\((I) \) \(\langle e, e' \rangle = \langle e, e' \rangle = \langle e', e'' \rangle = 1/2^8 \) and \(e_t e_{e'}, e_{e'} e_t e'' \) are of order 3.

Then each of \(\{e_t, e_{e'}\}, \{e_{e'}, e_{e''}\}, \) and \(\{e_{e'}, e_{e''}\} \) generates a dihedral group of order 6 and the Griess algebras generated by \(\{e, e'\}, \{e, e''\}, \) and \(\{e', e''\} \) are isomorphic to the Griess algebra \(G_{U3C} \) of the \(3C \)-algebra \(U3C \).

For any \(0 \leq i, j \leq 2 \), denote \(e^{i,j} := g_i h^j e \). Note that \(e' = ge = e^{1,0} \) and \(e'' = he = e^{0,1} \) by Lemma 2.9(4). Furthermore, we assume that

\((II) \) the subgroup \(H \) generated by \(g \) and \(h \) is elementary abelian of order 3.

Therefore, the Griess subalgebra generated by \(e^{0,0}, e^{1,1} \) is also isomorphic to \(G_{U3C} \).

Lemma 5.2. Let \(G \) be the subgroup generated by \(\tau_e, \tau_{e'}, \) and \(\tau_{e''} \). Then \(G = H : \langle \tau_e \rangle \), where \(H \cong 3^2 \) is normal in \(G \) and \(\tau_e \) inverts every element in \(H \), i.e., \(\tau_e y \tau_e = y^{-1} \) for all \(y \in H \).

Proof. The proof is essentially the same as Lemma 3.12 because \(H = \langle g, h \rangle \) is elementary abelian of order 3² by our assumption.

Lemma 5.3. For any \((i, j) \neq (i', j') \), we have \(\langle e^{i,j}, e^{i',j'} \rangle = 1/2^8 \).

Proof. By definition, \(\langle e^{i,j}, e^{i',j'} \rangle = \langle g_i h_j e, g_{i'} h_{j'} e \rangle = \langle e, g^{i-i'} h^{j-j'} e \rangle \).

By our assumption, we have

\[\langle e, ge \rangle = \langle e, g^{-1} e \rangle = \langle e, he \rangle = \langle e, h^{-1} e \rangle = 1/2^8, \]
\[\langle e, gh^{-1} e \rangle = \langle e, g^{-1} he \rangle = \langle ge, he \rangle = \langle e', e'' \rangle = 1/2^8, \]
\[\langle e, ghe \rangle = \langle e, g^{-1} h^{-1} e \rangle = 1/2^8. \]

Thus, \(\langle e^{i,j}, e^{i',j'} \rangle = 1/2^8 \) if \((i, j) \neq (i', j') \).

Lemma 5.4. Let \(G \) be the Griess subalgebra generated by \(\{e, e', e''\} \). Then \(G \) is spanned by \(\{e^{i,j} \mid 0 \leq i, j \leq 2 \} \) and \(\dim G = 9 \). The algebra structure of \(G \) is unique.
Proof. Recall that \(g \) commutes with \(h \) and for any \((i, j) \) and \((i', j') \), we have

\[
\tau_{e^{i,j}} \tau_{e^{i',j'}} = g^i h^i g^{-i} h^{-i} g^j h^j \tau_{e^{i',j'}} g^{-j} h^{-j'} = g^i h^i g^j h^j \tau_{e^{i',j'}} g^{-j} h^{-j'} = g^{i-i'} h^{j-j'}.
\]

By Lemma 2.9(3) and (4), we know that

\[(5-1) \quad e^{-i-i'} - j-j' = g^{i-i'} h^{j-j'} (e^{i,j}) = e^{i,j} + e^{i',j'} - 32e^{i,j} \cdot e^{i',j'} \]

if \((i, j) \neq (i', j') \). Therefore, \(e^{-i-i'} - j-j' \in \mathcal{G} \{e^{i,j}, e^{i',j'}\} \), the Griess subalgebra generated by \(\{e^{i,j}, e^{i',j'}\} \). Hence,

\[
e^{2,0} = e^{0,0} + e^{1,0} - 32e^{0,0} \cdot e^{1,0}, e^{0,2} = e^{0,0} + e^{0,1} - 32e^{0,0} \cdot e^{0,1}, \]

and \(e^{2,2} = e^{1,0} + e^{0,1} - 32e^{1,0} \cdot e^{0,1} \) are in \(\mathcal{G} \).

Similarly, we also have \(e^{1,1} \in \mathcal{G} \{e^{0,0}, e^{2,2}\} < \mathcal{G} \), \(e^{1,2} \in \mathcal{G} \{e^{0,2}, e^{2,2}\} < \mathcal{G} \), and \(e^{2,1} \in \mathcal{G} \{e^{2,0}, e^{2,2}\} < \mathcal{G} \). Thus, all \(e^{i,j}, 0 \leq i, j \leq 2 \), are in \(\mathcal{G} \). In addition, by (5-1), we have

\[
e^{i,j} \cdot e^{i',j'} = \begin{cases}
\frac{1}{31}(e^{i,j} + e^{i',j'} - e^{i'',j''}) & \text{if } (i, j) \neq (i', j'), \\
2e^{i,j} & \text{if } (i, j) = (i', j'),
\end{cases}
\]

where \(i + i' + i'' = j + j' + j'' = 0 \mod 3 \). Therefore, \(\text{span}\{e^{i,j} | 0 \leq i, j \leq 2\} \) is closed under the Griess algebra product and \(\mathcal{G} = \text{span}\{e^{i,j} | 0 \leq i, j \leq 2\} \). By our assumption, we have the Gram matrix

\[
(\langle e^{i,j}, e^{i',j'} \rangle)_{0 \leq i,j,i',j' \leq 2} = \begin{pmatrix}
\frac{1}{31} & \frac{1}{31} & \cdots & \frac{1}{31} \\
\frac{1}{31} & \frac{1}{31} & \cdots & \frac{1}{31} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{1}{31} & \frac{1}{31} & \cdots & \frac{1}{31}
\end{pmatrix}.
\]

It has rank 9 and hence \(\{e^{i,j} | 0 \leq i, j \leq 2\} \) is a linearly independent set and \(\dim \mathcal{G} = 9 \). □

Next, we shall give some information about the VOA \(W \) generated by \(\{e^{i,j}\} \).

Lemma 5.5. Let

\[
\omega := \frac{8}{9} \sum_{0 \leq i,j \leq 2} e^{i,j}.
\]

Then \(\omega \) is a Virasoro vector of central charge 4. Moreover, \(\omega \cdot e^{i,j} = e^{i,j} \cdot \omega = 2e^{i,j} \) for any \(0 \leq i, j \leq 2 \). In other words, \(\omega/2 \) is the identity element in \(\mathcal{G} \).

Proof. This follows from a straightforward calculation using Lemma 2.9. □
Lemma 5.6. Let
\[b^1 = \frac{8}{9} \sum_{0 \leq i, j \leq 2} e^{i,j} - \frac{32}{33} (e^{0,0} + e^{0,1} + e^{0,2}). \]

Then \(b^1 \) is a Virasoro vector of central charge \(\frac{28}{11} \). Moreover, \(e^{0,0}, a^1, \) and \(b^1 \) are mutually orthogonal and \(\omega = e^{0,0} + a^1 + b^1 \). Therefore, \(W \) has a full subVOA isomorphic to the tensor product of Virasoro VOA
\[L\left(\frac{1}{2}, 0\right) \otimes L\left(\frac{21}{22}, 0\right) \otimes L\left(\frac{28}{11}, 0\right). \]

Proof. It follows from (4) and (5) of Lemma 2.9 and Lemma 5.5. \(\square \)

Remark 5.7. Because of Lemma 4.10 and Theorem 4.12, we conjecture that the subVOA \(\text{VOA}(e, e', e'') \) generated by \(\{e, e', e''\} \) is isomorphic to
\[\tilde{\mathcal{W}} = \bigoplus_{i,j=0,\pm 1} K_{\mathfrak{sl}(\mathbb{C}),9}(0, 3(i\alpha_1 + j\alpha_2)). \]

Recall from [Lam 2014] that the parafermion VOA \(K_{\mathfrak{sl}(\mathbb{C}),9}(0, 0) \) contains a full subVOA \(W_9(1, 1) \otimes W_9(2, 1) \), where \(W_9(1, 1) \) has central charge \(\frac{32}{11} \) and \(W_9(2, 1) \) has central charge \(\frac{28}{11} \). Therefore, we believe that the subVOA \(\text{VOA}(e, e', e'') \) also contains a full subVOA isomorphic to \(L\left(\frac{1}{2}, 0\right) \otimes L\left(\frac{21}{22}, 0\right) \otimes W_9(2, 1) \), which is expected to be rational. However, we are not aware of any uniqueness results of the parafermion VOA \(K_{\mathfrak{sl}(\mathbb{C}),9}(0, 0) \) nor the \(W \)-algebra \(W_9(2, 1) \) in terms of generators and relations. Therefore, it is unclear if \(\text{VOA}(e, e', e'') \) contains \(K_{\mathfrak{sl}(\mathbb{C}),9}(0, 0) \) or \(L\left(\frac{1}{2}, 0\right) \otimes L\left(\frac{21}{22}, 0\right) \otimes W_9(2, 1) \) as a full subVOA.

Finally, we describe explicitly several highest weight vectors of the subVOA \(\text{vir}(e^{0,0}) \otimes \text{vir}(a^1) \otimes \text{vir}(b^1) \).

Lemma 5.8. With respect to the subVOA \(\text{vir}(e^{0,0}) \otimes \text{vir}(a^1) \otimes \text{vir}(b^1) \), we have the following highest weight vectors.

1. The vectors \(a^i - a^j, i, j \in \{2, 3, 4\}, i \neq j \), are highest weight vectors of weight \((0, \frac{1}{11}, \frac{21}{11}) \), where
\[
\begin{align*}
a^1 &= \frac{32}{33} (e^{0,0} + e^{0,1} + e^{0,2}) - e^{0,0}, \\
a^2 &= \frac{32}{33} (e^{0,0} + e^{1,0} + e^{2,0}) - e^{0,0}, \\
a^3 &= \frac{32}{33} (e^{0,0} + e^{1,1} + e^{2,2}) - e^{0,0}, \\
a^4 &= \frac{32}{33} (e^{0,0} + e^{1,2} + e^{2,1}) - e^{0,0}.
\end{align*}
\]

2. The vector \(e^{0,1} - e^{0,2} \) is a highest weight vector of weight \((\frac{1}{16}, \frac{31}{16}, 0) \).

3. The vector \((e^{1,0} + e^{1,1} + e^{1,2}) - (e^{2,0} + e^{2,1} + e^{2,2}) \) is a highest weight vector of weight \((\frac{1}{16}, \frac{21}{176}, \frac{20}{17}) \).

4. The vectors \((e^{1,1} - e^{2,2}) - (e^{1,2} - e^{2,1}) \) and \((e^{1,0} - e^{2,0}) - (e^{1,1} - e^{2,2}) \) are highest weight vectors of weight \((\frac{1}{16}, \frac{5}{176}, \frac{21}{11}) \).
Proof. (1) By Lemma 2.9, it is straightforward to show that

\[a^i \cdot a^j = \frac{1}{32}(2a^i + 2a^j - a^k - a^\ell), \]

for any \(i \neq j \) and \(\{i, j, k, \ell\} = \{1, 2, 3, 4\} \). Thus,

\[a_1^i(a^i - a^j) = \frac{1}{32}[(2a^i + 2a^j - a^k - a^\ell) - (2a^i + 2a^j - a^k - a^\ell)] = \frac{1}{16}(a^i - a^j), \]

where \(\{i, j, k\} = \{2, 3, 4\} \).

Since \(e_{1,0}^0, a^i = 0 \) and \(\omega_1 a^i = 2a^i \) for all \(i \), \(a^i - a^j \) is a highest weight vector of weight \((0, \frac{1}{11}, \frac{24}{11})\) with respect to \(\text{vir}(e_{0,0}^0) \otimes \text{vir}(a^1) \otimes \text{vir}(b^1) \).

(2) By direct calculations, we have

\[e_{1,0}^0(e_{0,1}^0 - e_{0,2}^0) = \frac{1}{32}[(e_{0,0}^0 + e_{0,1}^0 - e_{0,2}^0) - (e_{0,0}^0 + e_{0,2}^0 - e_{0,1}^0)] = \frac{1}{16}(e_{0,1}^0 - e_{0,2}^0) \]

and

\[\frac{32}{33}(e_{0,0}^0 + e_{0,1}^0 + e_{0,2}^0)(e_{0,1}^0 - e_{0,2}^0) = 2(e_{0,1}^0 - e_{0,2}^0). \]

Since \(a^1 = \frac{32}{33}(e_{0,0}^0 + e_{0,1}^0 + e_{0,2}^0) - e_{0,0}^0 \) and \(b^1 = \omega - \frac{32}{33}(e_{0,0}^0 + e_{0,1}^0 + e_{0,2}^0) \), we have

\[a_1^1(e_{0,1}^0 - e_{0,2}^0) = \frac{31}{16}(e_{0,1}^0 - e_{0,2}^0) \quad \text{and} \quad b_1^1(e_{0,1}^0 - e_{0,2}^0) = 0. \]

(3), (4) By the same calculations as in (2), \((e_{1,0}^1 - e_{2,0}^1), (e_{1,1}^1 - e_{2,2}^1), \) and \((e_{1,2}^1 - e_{2,1}^1)\) are \(\frac{1}{16} \)-eigenvectors of \(e_{1,0}^0 \). By Lemma 2.9, we also have

\[\frac{32}{33}(e_{0,0}^0 + e_{0,1}^0 + e_{0,2}^0)(e_{1,1}^1 - e_{2,2}^1) = \frac{1}{33}(4(e_{1,1}^1 - e_{2,2}^1) + (e_{1,0}^0 - e_{2,0}^0) + (e_{1,2}^1 - e_{2,1}^1)). \]

Let \(v = (e_{1,0}^1 + e_{1,1}^1 + e_{1,2}^1) - (e_{2,0}^1 + e_{2,1}^1 + e_{2,2}^1) \). Then

\[\frac{32}{33}(e_{0,0}^0 + e_{0,1}^0 + e_{0,2}^0)v = \frac{1}{33}(4 + 1 + 1)v = \frac{2}{11}v. \]

Thus, \(a_1^1v = (\frac{2}{11} - \frac{1}{16})v = \frac{21}{176}v \) and \(b_1^1v = (2 - \frac{2}{11})v = \frac{20}{11}v \).

Moreover,

\[\frac{32}{33}(e_{0,0}^0 + e_{0,1}^0 + e_{0,2}^0)((e_{1,1}^1 - e_{2,2}^1) - (e_{1,2}^1 - e_{2,1}^1)) = \frac{1}{11}(4 - 1)((e_{1,1}^1 - e_{2,2}^1) - (e_{1,2}^1 - e_{2,1}^1)) = \frac{1}{11}((e_{1,1}^1 - e_{2,2}^1) - (e_{1,2}^1 - e_{2,1}^1)). \]

Thus, we have

\[a_1^1((e_{1,1}^1 - e_{2,2}^1) - (e_{1,2}^1 - e_{2,1}^1)) = \frac{5}{176}((e_{1,1}^1 - e_{2,2}^1) - (e_{1,2}^1 - e_{2,1}^1)) \]

and

\[b_1^1((e_{1,1}^1 - e_{2,2}^1) - (e_{1,2}^1 - e_{2,1}^1))v = \frac{21}{11}((e_{1,1}^1 - e_{2,2}^1) - (e_{1,2}^1 - e_{2,1}^1)). \]

The remaining cases can be proved similarly. \(\square \)
Appendix: Dimensions of \(K_{\mathfrak{sl}_3(\mathbb{C}),g}(0, 3(i\alpha_1 + j\alpha_2))\)

In this appendix, we shall compute the dimension of \(K_{\mathfrak{sl}_3(\mathbb{C}),g}(0, 3(i\alpha_1 + j\alpha_2))\) for all \(0 \leq i, j \leq 2\). First we recall a result from [Frenkel et al. 1988, Chapter 8].

Let \(\alpha, \beta\) have norm 4 in a lattice \(L\). Then

\[
\varepsilon^{\alpha, \beta} e^\alpha = \begin{cases}
\frac{1}{2} \alpha(-1)^2 \cdot 1 & \text{if } \beta = -\alpha, \\
\varepsilon(\alpha, \beta)e^{\alpha+\beta} & \text{if } \langle \beta, \alpha \rangle = -2, \\
0 & \text{otherwise.}
\end{cases}
\]

\(\varepsilon(\alpha, \beta)\) is given by

\[
\varepsilon(\alpha, \beta) = \begin{cases}
1 & \text{if } \langle \delta, \beta \rangle = 0, \\
\frac{1}{2} \alpha(-1)^2 \cdot 1 & \text{if } \langle \delta, \beta \rangle = -2, \\
0 & \text{otherwise.}
\end{cases}
\]

\[
\varepsilon(\alpha, \beta) = \begin{cases}
\frac{1}{2} \alpha(-1)^2 \cdot 1 & \text{if } \langle \delta, \beta \rangle = 0, \\
\frac{1}{2} \alpha(-1)^2 \cdot 1 & \text{if } \langle \delta, \beta \rangle = -2, \\
0 & \text{otherwise.}
\end{cases}
\]

Lemma A.1. For any \(k, \ell = 0, \pm 1\), we have \(\dim(K_{\mathfrak{sl}_3(\mathbb{C}),g}(0, 3(k\alpha_1 + \ell\alpha_2))) = 1\) if \((k, \ell) = (0, \pm 1), (\pm 1, 0)\) or \((\pm 1, \pm 1)\) and \(\dim(K_{\mathfrak{sl}_3(\mathbb{C}),g}(0, 3(k\alpha_1 + \ell\alpha_2))) = 0\) if \((k, \ell) = (\pm 1, \mp 1)\).

Proof. Recall that

\[
K_{\mathfrak{sl}_3(\mathbb{C}),g}(0, -3(k\alpha_1 + \ell\alpha_2)) \cong \text{Com}_{\mathfrak{sl}_3(\mathbb{C}),g}(L_{\mathfrak{g}_0}(\mathbb{C}, (3, 0))) < V_{M+N}.
\]

Moreover, by Lemma 3.3, the conformal vector \(\Omega\) of \(L_{\mathfrak{g}_0}(\mathbb{C}, (3, 0))\) is given by

\[
\Omega = \omega_E + \frac{3}{4} \omega_{M+N} - \frac{1}{12} \sum_{\alpha \in A_8(2)} e^{\eta(\alpha) - \eta_j(\alpha)}.
\]

Thus, for any \(X \in (V_{M+N})_2\), \(\Omega_1 X = 0\) if and only if

\[
\sum_{\alpha \in A_8(2)} e^{\eta(\alpha) - \eta_j(\alpha)} = 18 X.
\]

Let \(\Psi = \{\gamma \in (kv_1 + \ell v_2)(\delta) + A^3_8 \mid \langle \gamma, \gamma \rangle = 4\}\). Then

\[
(V_{(kv_1+\ell v_2)(\delta)+A^3_8})_2 = \text{span}[e^\gamma \mid \gamma \in \Psi].
\]

Moreover, \(\Psi = \{(kv_1 + \ell v_2)(\delta + \beta) \mid \beta \in A_8(2), \langle \beta, \delta \rangle = -1\}\) if \((k, \ell) = (0, \pm 1), (\pm 1, 0)\) or \((\pm 1, \pm 1)\) and \(\Psi = \emptyset\) if \((k, \ell) = (\pm 1, \mp 1)\).

Suppose \(X = \sum_{\gamma \in \Psi} a_\gamma e^{\gamma}\) be an element in \(K_{\mathfrak{sl}_3(\mathbb{C}),g}(0, -3(k\alpha_1 + \ell\alpha_2))\). Then by (A-1) and (A-2), we must have \(a_\gamma = a_{\gamma'}\) for all \(\gamma, \gamma' \in \Psi\). Note that there are exactly 18 roots in \(A_8\) such that \(\langle \delta, \beta \rangle = -1\) and \(\tilde{W}\) is fixed pointwise by the Weyl group of \(K \cong A_8\).

Hence, \(K_{\mathfrak{sl}_3(\mathbb{C}),g}(0, -3(k\alpha_1 + \ell\alpha_2))\) is spanned by \(\sum_{\gamma \in \Psi} e^\gamma\) if \((k, \ell) = (0, \pm 1), (\pm 1, 0)\) or \((\pm 1, \pm 1)\) and is zero if \((k, \ell) = (\pm 1, \mp 1)\).

Next we consider the Griess algebra \(K_{\mathfrak{sl}_3(\mathbb{C}),g}(0, 0)\). The next lemma follows immediately from (A-1) and the choice of the 2-cocycle \(\varepsilon_0(,)\).
Lemma A.2. Let \(\beta \) be a root of \(A_8 \) and \(1 \leq k, \ell \leq 3 \). Then
\[
\left(\sum_{\alpha \in A_8(2) \atop i \neq j} e^{(\eta_i - \eta_j)(\alpha)} \right)_{1} e^{(\eta_k - \eta_\ell)(\beta)} = \sum_{\alpha \in A_8(2) \atop \langle \alpha, \beta \rangle = -1} e^{(\eta_k - \eta_\ell)(\alpha + \beta)} + \frac{1}{2} (\eta_k(\beta) - \eta_\ell(\beta))(-1)^2 \cdot 1 - \sum_{i \neq k} e^{(\eta_i - \eta_\ell)(\beta)} - \sum_{j \neq \ell} e^{(\eta_k - \eta_j)(\beta)}.
\]

The next lemma can also be proved easily by the definition of vertex operators [Frenkel et al. 1988].

Lemma A.3. Let \(\beta \in A_8 \). Then
\[
\left(\sum_{\alpha \in A_8(2) \atop i \neq j} e^{(\eta_i - \eta_j)(\alpha)} \right)_{1} (\eta_k - \eta_\ell)(\beta))(-1)^2 \cdot 1 = \sum_{\alpha \in A_8(2) \atop i \neq j} \langle (\eta_i - \eta_j)(\alpha), (\eta_k - \eta_\ell)(\beta) \rangle (-1)^2 e^{(\eta_i - \eta_j)(\alpha)}.
\]

Lemma A.4. The Griess algebra \(K_{\mathfrak{sl}_3(\mathbb{C}), g(0, 0)_2} \) has dimension 3 and is spanned by \(\{ \omega_{\alpha_1}, \omega_{\alpha_2}, \omega_{\alpha_1 + \alpha_2} \} \).

Proof. Let
\[
X = \sum_{1 \leq i < j \leq 3, \alpha \in A_8(2)} (a_{i, j, \alpha}(\eta_i(\alpha) - \eta_j(\alpha))(-2) \cdot 1 + b_{i, j, \alpha}(\eta_i(\alpha) - \eta_j(\alpha))(-1)^2 \cdot 1 + c_{i, j, \alpha} e^{\eta_i(\alpha) - \eta_j(\alpha)})
\]
be an element in \(K_{\mathfrak{sl}_3(\mathbb{C}), g(0, 0)_2} \).

Since \(X \) is fixed by the Weyl group of \(A_8 \), we have \(a_{i, j, \alpha} = a_{i, j, \beta}, b_{i, j, \alpha} = b_{i, j, \beta}, \) and \(c_{i, j, \alpha} = c_{i, j, \beta} \) for any roots \(\alpha, \beta \in A_8 \). Set \(a_{i, j} = a_{i, j, \alpha}, b_{i, j} = b_{i, j, \alpha}, \) and \(c_{i, j} = c_{i, j, \alpha} \) for any root \(\alpha \in A_8 \). Then, for any \(1 \leq i < j \leq 3, \)
\[
\sum_{\alpha \in A_8(2)} a_{i, j, \alpha}(\eta_i(\alpha) - \eta_j(\alpha))(-2) = a_{i, j} \sum_{\alpha \in A_8(2)} (\eta_i(\alpha) - \eta_j(\alpha))(-2) = 0
\]
and
\[
X = \sum_{1 \leq i < j \leq 3} \left(b_{i, j} \sum_{\alpha \in A_8(2)} (\eta_i(\alpha) - \eta_j(\alpha))(-1)^2 \cdot 1 + c_{i, j} \sum_{\alpha \in A_8(2)} e^{\eta_i(\alpha) - \eta_j(\alpha)} \right).
\]
Moreover, \(\left(\sum_{\alpha \in A_8(2) \atop 1 \leq i, j \leq 3, i \neq j} e^{\eta_i(\alpha) - \eta_j(\alpha)} \right)_{1} X = 18X \) since \(X \in K_{\mathfrak{sl}_3(\mathbb{C}), g(0, 0)_2} \).
By Lemmas A.2 and A.3, it is straightforward to show $X \in \text{span}\{\omega_{\alpha_1}, \omega_{\alpha_2}, \omega_{\alpha_1+\alpha_2}\}$ and $\dim(K_{s_{l3}(C),9}(0,0)_2) = 3$. □

References

Received May 13, 2013. Revised January 27, 2014.

HSIAN-YANG CHEN
INSTITUTE OF MATHEMATICS
ACADEMIA SINICA
TAIPEI 10617
TAIWAN
hychen@math.sinica.edu.tw

CHING HUNG LAM
INSTITUTE OF MATHEMATICS
ACADEMIA SINICA
TAIPEI 10617
TAIWAN
and
NATIONAL CENTER FOR THEORETICAL SCIENCES
NATIONAL CHENG KUNG UNIVERSITY
TAIWAN 701
TAIWAN
chlam@math.sinica.edu.tw
Proper holomorphic maps between bounded symmetric domains revisited
GAUTAM BHARALI and JAIKRISHNAN JANARDHANAN

An explicit Majorana representation of the group $3^2:2$ of $3C$-pure type
HSIAN-YANG CHEN and CHING HUNG LAM

Sofic groups: graph products and graphs of groups
LAURA CIOBANU, DEREK F. HOLT and SARAH REES

Perturbations of a critical fractional equation
EDUARDO COLORADO, ARTURO DE PABLO and URKO SÁNCHEZ

A density theorem in parametrized differential Galois theory
THOMAS DREYFUS

On the classification of complete area-stationary and stable surfaces in
the subriemannian Sol manifold
MATTEO GALLI

Periodic orbits of Hamiltonian systems linear and hyperbolic at infinity
BAŞAK Z. GÜREL

Nonsplittability of the rational homology cobordism group of
3-manifolds
SE-GOO KIM and CHARLES LIVINGSTON

Biharmonic surfaces of constant mean curvature
ERIC LOUBEAU and CEZAR ONICIUC

Foliations of a smooth metric measure space by hypersurfaces with
constant f-mean curvature
JUNCHEOL PYO

On the existence of large degree Galois representations for fields of small
discriminant
JEREMY ROUSE and FRANK THORNE