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AN EXPLICIT MAJORANA REPRESENTATION
OF THE GROUP 32:2 OF 3C-PURE TYPE

HSIAN-YANG CHEN AND CHING HUNG LAM

We study a coset vertex operator algebra (VOA) W̃ in the lattice VOA VE3
8
.

We show that the coset VOA W̃ is generated by nine Ising vectors such that
any two Ising vectors generate a 3C subVOA U3C , and the group generated
by the corresponding Miyamoto involutions has shape 32:2. This gives an
explicit example for Majorana representations of the group 32:2 of 3C-pure
type.

1. Introduction

A vertex operator algebra (VOA) V =
⊕
∞

n=0 Vn is said to be of moonshine type if
dim(V0)= 1 and V1 = 0. In this case, the weight-2 subspace V2 has a commutative
nonassociative product defined by a · b = a1b for a, b ∈ V2 and it has a symmetric
invariant bilinear form 〈 · , · 〉 given by 〈a, b〉1 = a3b for a, b ∈ V2 [Frenkel et al.
1988]. The algebra (V2, · , 〈 · , · 〉) is often called the Griess algebra of V . An
element e ∈ V2 is called an Ising vector if e ·e= 2e and the subVOA generated by e
is isomorphic to the simple Virasoro VOA L( 1

2 , 0) of central charge 1
2 . In [Miyamoto

1996], the basic properties of Ising vectors have been studied. Miyamoto also gave
a simple method to construct involutive automorphisms of a VOA V from Ising
vectors. These automorphisms are often called Miyamoto involutions. When V is
the famous Moonshine VOA V \, Miyamoto [2004] showed that there is a one-to-one
correspondence between the 2A-involutions of the Monster group and Ising vectors
in V \ (see also [Höhn 2010]). This correspondence is very useful for studying
some mysterious phenomena of the Monster group and many problems about
2A-involutions in the Monster group may also be translated into questions about
Ising vectors. For example, McKay’s observation on the affine E8-diagram was
studied in [Lam et al. 2007] using Miyamoto involutions and certain VOAs generated
by two Ising vectors were constructed. Nine VOAs were constructed, denoted by
U1A, U2A, U2B , U3A, U3C , U4A, U4B , U5A, and U6A because of their connection
to the 6-transposition property of the Monster group (see [ibid., Introduction]),
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where 1A, 2A, . . . , 6A are the labels for certain conjugacy classes of the Monster
as denoted in [Conway et al. 1985]. In [Sakuma 2007], Griess algebras generated
by two Ising vectors contained in a moonshine-type VOA over R with a positive
definite invariant form are classified. There are also nine possible cases, and they
correspond exactly to the Griess algebras GUnX of the nine VOAs UnX , for nX in
{1A, 2A, 2B, 3A, 3C, 4A, 4B, 5A, 6A}. Therefore, there is again a correspondence
between the dihedral subgroups generated by two 2A-involutions, up to conjugacy
and the Griess subalgebras generated by two Ising vectors in V \, up to isomorphism.
It is also conjectured that the subVOA generated by two Ising vectors is isomorphic
to one of the UnX , for nX ∈ {1A, 2A, 2B, 3A, 3C, 4A, 4B, 5A, 6A}. However, this
conjecture is still open except for the cases 1A, 2A, 2B, 3A, and 4B.

Motivated by [Sakuma 2007], Ivanov [2009] axiomatized the properties of Ising
vectors and introduced the notion of Majorana representations for finite groups.
Ivanov and his research group also initiated a program on classifying the Majorana
representations for various finite groups [Ivanov et al. 2010; Ivanov 2011a; 2011b;
Ivanov and Seress 2012]. In particular, the famous 196884-dimensional Monster
Griess algebra constructed by Griess [1982] is a Majorana representation of the
Monster simple group. In fact, most known examples of Majorana representations
are constructed as certain subalgebras of this Monster Griess algebra.

In this article, we construct explicitly a moonshine-type VOA W̃ in the lattice
VOA VE3

8
. We show that the VOA W̃ is generated by nine Ising vectors such that

(1) any two of them generate a 3C subVOA U3C ; and (2) the group generated by
the corresponding Miyamoto involutions has the shape 32

:2. Thus, we obtain an
example for a Majorana representation of the group 32

:2 of 3C-pure type. Recall
that the centralizer of a 3C-element in the Monster is isomorphic to 3×Th, where
Th is the Thompson simple group [Conway et al. 1985]. The Thompson group Th
has exactly three conjugacy classes of order 3 and by the character table, one can
show that the Th conjugacy classes 3A, 3B, 3C are of the classes 3A, 3B, 3B in
the Monster, respectively (see [ibid.] and [Wilson 1988, Section 4]). Therefore,
there are no 3C-pure 32 subgroups in the Monster and hence the VOA that we
constructed cannot be embedded into the Moonshine VOA.

Our method is essentially a combination of the construction of the so-called
dihedral subVOA from [Lam et al. 2007] and the construction of E E8 pairs from
[Griess and Lam 2011]. In fact, it is quite straightforward to find Ising vectors
satisfying our hypotheses. The main difficulty is to show that the subVOA generated
by these Ising vectors has zero weight-1 subspace.

The organization of this article is as follows. In Section 2, we recall some basic
definitions and notation. We also review the structure of the so-called 3C-algebra
from [Lam et al. 2005; 2007]. In Section 3, we give an explicit construction
of a coset subVOA W̃ in the lattice VE3

8
. We also construct explicitly several
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Ising vectors satisfying our main hypotheses and show that the subVOA W they
generate is of moonshine type. In Section 4, we show that the VOA W is isomor-
phic to the commutant subVOA W̃ = ComVE3

8
(L ŝl9(C)(3, 0)) using the theory of

parafermion VOA. The decomposition of W as a sum of irreducible modules of
the parafermion VOA K (sl3(C), 9) is also obtained. In Section 5, we give several
structural results about Griess algebras generated by Ising vectors. We show that
the Griess algebra generated by Ising vectors such that the subgroup generated by
the corresponding Miyamoto involutions has the shape 32

:2 and is of 3C-pure type
is uniquely determined, up to isomorphisms. We also show that the VOA generated
by these Ising vectors has central charge 4 and has a full subVOA isomorphic to
L(1

2 , 0)⊗ L( 21
22 , 0)⊗ L( 28

11 , 0). In the Appendix, we explain several results which
are used to show that dim(W̃2)= 9.

2. Preliminaries

First we will recall some definitions and review several basic facts.

Definition 2.1. Let V be a VOA. A bilinear 〈〈 · , · 〉〉 form on V is said to be invariant
(or contragredient; see [Frenkel et al. 1993]) if

(2-1) 〈〈Y (a, z)u, v〉〉 = 〈〈u, Y (ezL(1)(−z−2)L(0)a, z−1)v〉〉

for any a, u, v ∈ V .

Definition 2.2. Let V be a VOA over C. A real form of V is a subVOA VR of
V over R (with the same vacuum and Virasoro elements) such that V = VR⊗C.
A real form VR is said to be positive definite if the invariant form 〈〈 · , · 〉〉 restricted
to VR is real-valued and positive definite.

Definition 2.3. Let V be a VOA. An element v ∈ V2 is called a simple Virasoro
vector of central charge c if the subVOA Vir(v) generated by e is isomorphic to
the simple Virasoro VOA L(c, 0) of central charge c.

Definition 2.4. A simple Virasoro vector of central charge 1
2 is called an Ising

vector.

Remark 2.5. It is well known that the VOA L( 1
2 , 0) is rational and has exactly

three irreducible modules L( 1
2 , 0), L(1

2 ,
1
2), and L(1

2 ,
1

16) (see [Dong et al. 1994;
Miyamoto 1996]).

Remark 2.6. Let V be a VOA and let e ∈ V be an Ising vector. Then we have the
decomposition

V = Ve(0)⊕ Ve(
1
2)⊕ Ve(

1
16),

where Ve(h) denotes the sum of all irreducible Vir(e)-submodules of V isomorphic
to L(1

2 , h) for h ∈
{
0, 1

2 ,
1
16

}
.
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Theorem 2.7 [Miyamoto 1996]. The linear map τe : V → V defined by

(2-2) τe :=

{
1 on Ve(0)⊕ Ve(

1
2),

−1 on Ve(
1

16),

is an automorphism of V .

Remark 2.8. On the fixed point subspace V τe of τe, we have V τe = Ve(0)⊕Ve(
1
2).

The linear map σe : V τe → V τe which acts as 1 on Ve(0) and −1 on Ve(
1
2) also

defines an automorphism of V τe [ibid.]. Nevertheless, we do not need this fact in
this article.

The 3C-algebra. We recall the properties of the 3C-algebra U3C from [Lam et al.
2005, Section 3.9] (see also [Sakuma 2007]).

Lemma 2.9. Let U =U3C be the 3C-algebra. Then:

(1) U1 = 0 and U is generated by its weight-2 subspace U2 as a VOA.

(2) dim U2 = 3 and it is spanned by three Ising vectors.

(3) There exist exactly three Ising vectors in U2, say, e0, e1, e2. Moreover, we have

(ei )1(e j )= 1
32(e

i
+ e j
− ek) and 〈ei , e j

〉 =
1
28

for i 6= j and {i, j, k} = {0, 1, 2}.

(4) Let g = τe0τe1 . Then g has order 3. Moreover, e1
= ge0 and e2

= g2e0
= ge1.

(5) The Virasoro element of U is given by

32
33(e

0
+ e1
+ e2).

(6) Let a = 32
33(e

0
+ e1
+ e2)− e0. Then a is a simple Virasoro vector of central

charge 21
22 . Moreover, the subVOA generated by e0 and a is isomorphic to

L( 1
2 , 0)⊗ L(21

22 , 0).

3. Commutant subVOAs in VE8⊥E8⊥E8

In this section, we shall construct explicitly a VOA W̃ inside the lattice VOA
VE8⊥E8⊥E8 such that (1) W̃ is generated by nine Ising vectors and any two Ising vec-
tors generate a 3C subVOA U3C ; and (2) the group generated by the corresponding
Miyamoto involutions has the shape 32

:2.
Our notation for the lattice vertex operator algebra

(3-1) VL = M(1)⊗C{L}

associated with a positive definite even lattice L is standard [Frenkel et al. 1988].
In particular, h = C⊗Z L is an abelian Lie algebra and we extend the bilinear
form to h by C-linearity. Also, ĥ= h⊗C[t, t−1

]⊕Ck is the corresponding affine
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algebra and Ck is the one-dimensional center of ĥ. The subspace M(1) given by
C[αi (n) | 1≤ i ≤ d, n< 0] for a basis {α1, . . . , αd} of h, where α(n)=α⊗ tn , is the
unique irreducible ĥ-module such that α(n) · 1= 0 for all α ∈ h and n nonnegative,
and k= 1. Also, C{L}= span{eβ |β ∈ L} is the twisted group algebra of the additive
group L such that eβeα = (−1)〈α,β〉eαeβ for any α, β ∈ L . The vacuum vector 1 of
VL is 1⊗e0 and the Virasoro element ωL is 1

2

∑d
i=1 βi (−1)2 ·1 where {β1, . . . , βd}

is an orthonormal basis of h. For the explicit definition of the corresponding vertex
operators, we shall refer to [ibid.] for details.

Definition 3.1. Let A and B be integral lattices with the inner products 〈 , 〉A and
〈 , 〉B , respectively. The tensor product of the lattices A and B is defined to be the
integral lattice which is isomorphic to A⊗Z B as a Z-module and has the inner
product given by

〈α⊗β, α′⊗β ′〉 = 〈α, α′〉A · 〈β, β
′
〉B, for any α, α′ ∈ A, β, β ′ ∈ B.

We simply denote the tensor product of the lattices A and B by A⊗ B.
√

2E8-sublattices. Let L = E8 ⊥ E8 ⊥ E8 be the orthogonal sum of 3 copies of
the root lattice of type E8. Set

M = {(α,−α, 0) | α ∈ E8}< L ,

N = {(0, α,−α) | α ∈ E8}< L .
(3-2)

Then M ∼= N ∼=
√

2E8 and M + N ∼= A2⊗ E8 (see [Griess and Lam 2011]). We
also define

(3-3) E := AnnL(M + N )= {β ∈ L | 〈β, β ′〉 = 0 for all β ′ ∈ M + N }.

Note that E = {(α, α, α) | α ∈ E8}< L and there is a third
√

2E8-sublattice

Ñ = {(α, 0,−α) | α ∈ E8}< M + N .

We shall fix a (bilinear) 2-cocycle ε0 : E8× E8→ Z2 such that

ε0(α, α)≡
1
2〈α, α〉 mod 2,

ε0(α, β)− ε0(β, α)≡ 〈α, β〉 mod 2,
(3-4)

for all α, β ∈ E8. Note that such a 2-cocycle exists (see [Frenkel et al. 1988,
(6.1.27)–(6.1.29)]). Moreover, eαe−α =−e0 for any α ∈ E8 such that 〈α, α〉 = 2.

We shall extend ε0 to L by defining

ε0((α, α
′, α′′), (β, β ′, β ′′))= ε0(α, β)+ ε0(α

′, β ′)+ ε0(α
′′, β ′′).

It is easy to check by direct calculations that ε0 is trivial on M , N , or Ñ .
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Affine vertex operator algebras. We recall the notion of affine vertex operator
algebras [Frenkel and Zhu 1992; Dong and Lepowsky 1993]. Let g be a finite-
dimensional simple Lie algebra and ĝ the affine Kac–Moody Lie algebra associated
with g. Let 5= {α1, . . . , αn} be a set of simple roots and θ the highest root. Let
Q be the root lattice of g. For any positive integer k, we set

Pk
+
(g)= {3 ∈Q⊗Z Q | 〈αi ,3〉 ∈ Z≥0 for all i = 1, . . . , n and 〈θ,3〉 ≤ k},

the set of dominant integral weights for g with level k.
Let L ĝ(k,3) be the irreducible module of ĝ with highest weight 3 and level k.

Then L ĝ(k, 0) forms a simple VOA with the Virasoro element given by the Sugawara
construction

(3-5) �g,k =
1

2(k+ h∨)

∑
(ui )−1ui ,

where h∨ is the dual Coxeter number, {ui } is a basis of g and {ui
:= (ui )

∗
} is the

dual basis of {ui } with respect to the normalized Killing form (see [Frenkel and
Zhu 1992]). Moreover, the central charge of L ĝ(k, 0) is

(3-6)
k dim g

k+ h∨
.

A commutant subVOA. Consider the lattice VOA

VL ∼= VE8 ⊗ VE8 ⊗ VE8

and let a be an element of E8 such that

K := {β ∈ E8 | 〈β, a〉 ∈ 3Z} ∼= A8.

Then, we have an embedding

VK⊥K⊥K ∼= VK ⊗ VK ⊗ VK ↪→ VL .

It is also well known that VK ∼= VA8 is an irreducible level-1 representation of the
affine Lie algebra ŝl9(C) [Frenkel et al. 1988]. Moreover, the weight-1 subspace
(VK )1 is a simple Lie algebra isomorphic to sl9(C).

Let ηi : K→ K ⊥ K ⊥ K , i = 1, 2, 3, be the embedding of K into the i-th direct
summand of K ⊥ K ⊥ K , i.e.,

η1(α)= (α, 0, 0), η2(α)= (0, α, 0), η3(α)= (0, 0, α),

for any α ∈ K .

Notation 3.2. For any α ∈ K (2) := {α ∈ K | 〈α, α〉 = 2}, set

Hα = (α, α, α)(−1) ·1,

Eα = eη1(α)+ eη2(α)+ eη3(α).
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Then {Hα, Eα | α ∈ K (2)} generates a subVOA isomorphic to the affine VOA
L ŝl9(C)(3, 0) in VL (see [Frenkel and Zhu 1992; Dong and Lepowsky 1993, Propo-
sition 13.1]). Moreover, the Virasoro element of L ŝl9(C)(3, 0) is given by

�=
1

2(3+9)

[ 8∑
k=1

(hk, hk, hk)(−1)2 ·1+
∑

α∈K (2)

(Eα)−1(−E−α)
]
,

where {h1, . . . , h8
} is an orthonormal basis of K ⊗C= E8⊗C. Note that the dual

vector of Eα is −E−α.

Lemma 3.3. Let M , N and E be defined as in (3-2) and (3-3) and denote the
Virasoro element of a lattice VOA VS by ωS . Then we have

�= ωE +
3
4ωM+N −

1
12

∑
α∈K (2)

1≤i, j≤3, i 6= j

eηi (α)−η j (α).

Proof. Let {h1, . . . , h8
} be an orthonormal basis of A8⊗C= E8⊗C. Then

�=
1

2(3+9)

[ 8∑
k=1

(hk, hk, hk)(−1)2 ·1

−

∑
α∈K (2)

(
eη1(α)+ eη2(α)+ eη3(α)

)
−1

(
e−η1(α)+ e−η2(α)+ e−η3(α)

)]

=
1

24

[
6ωE+

∑
α∈K (2)

3∑
i=1

1
2(ηi (α)(−2) ·1+ηi (α)(−1)2 ·1)−2

∑
α∈K (2)
1≤i, j≤3

i 6= j

eηi (α)−η j (α)

]

=
1
4ωE +

18
24ωL −

1
12

∑
α∈K (2)

1≤i, j≤3, i 6= j

eηi (α)−η j (α).

Since ωL = ωM+N +ωE , we have

�= ωE +
3
4ωM+N −

1
12

∑
α∈K (2)

1≤i, j≤3, i 6= j

eηi (α)−η j (α)

as desired. �

Theorem 3.4. Let

W̃ = ComVL (L ŝl9(C)(3, 0))= {v ∈ VL | xnv = 0 for all x ∈ L ŝl9(C)(3, 0), n ≥ 0}

be the commutant subVOA of L ŝl9(C)(3, 0) in VL . Then the central charge of W̃ is 4.
Moreover, W̃1 = 0.

Proof. By (3-6), the central charge of L ŝl9(C)(3, 0) is 3(80)/(3+ 9)= 20. Hence,
the central charge of W̃ = ComVL (L ŝl9(C)(3, 0)) is 4 (= 24− 20).
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We now show that W̃1 = 0. Since h(−1) ·1 ∈ L ŝl9(C)(3, 0) for all h ∈ E ,

W̃ = ComVL

(
L ŝl9(C)

(3, 0)
)
⊂ VM+N .

Therefore, it suffices to show W̃ ∩ (VM+N )1 = 0.
Recall that M + N ∼= A2⊗ E8 has no roots. Thus,

(VM+N )1 = spanC{h(−1) ·1 | h ∈ (M + N )⊗C}.

However, by Lemma 3.3,

�1h(−1)·1=

(
ωE+

3
4ωM+N−

1
12

∑
α∈K (2)

1≤i, j≤3, i 6= j

eηi (α)−η j (α)

)
1

h(−1)·1= 3
4 h(−1)·1 6=0

for any 0 6= h ∈ (M + N )⊗C. Thus, W̃ ∩ (VM+N )1 = 0 and we have W̃1 = 0. �

Ising vectors. Next we shall define explicitly some Ising vectors in VL .

Definition 3.5. Let a be an element of E8 such that

K = {β ∈ E8 | 〈β, a〉 ∈ 3Z} ∼= A8.

Set ã = (a,−a, 0) and define an automorphism ρ of VL by

ρ = exp
(2π i

3
ã(0)

)
.

Then ρ has order 3 and the fixed point subspace V ρ
M
∼= V√2A8

.

Notation 3.6. Let M and N be defined as in (3-2). Set

e := eM =
1

16ωM +
1
32

∑
α∈M(4)

eα,

f := eN =
1

16ωN +
1
32

∑
α∈N (4)

eα,

eÑ :=
1

16ωÑ +
1

32

∑
α∈Ñ (4)

eα,

e′ := ρ(e).

It is shown in [Dong et al. 1998] that e, f and eÑ are Ising vectors and hence
e′ = ρ(e) is also an Ising vector (see also [Lam et al. 2005; 2007]).

The following lemma can be proved by direct calculations (see [Lam et al. 2005;
2007; Griess and Lam 2011]).
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Lemma 3.7. We have 〈e, f 〉 = 〈e, e′〉 = 〈 f, e′〉 = 1/28. Moreover, the subVOAs
VOA(e, f ), VOA(e, g), VOA( f, g) generated by {e, f }, {e, e′}, and { f, e′}, are
isomorphic to the 3C-algebra U3C . We also have eM · eN =

1
32(eM + eN − eÑ ), and

hence τe( f )= eÑ .

Notation 3.8. Let W := VOA(e, f, e′) be the subVOA generated by e, f , and e′.
We also denote h = τeτ f and g = τeτe′ . Then g and h both have order 3. Note also
that e, f, e′ ∈ VM+N and thus W < VM+N ∼= VA2⊗E8 .

Lemma 3.9. The elements g and h commute as automorphisms of W .

Proof. Recall that g= τeτe′ = ρ on VL (see [Lam et al. 2007]). Also, h(e)= f = eN

and h2(e)= eÑ .
By a direct calculation, we have

hg(e)= hgh−1h(e)= ρh(eN ),

where ρh
= hρh−1

= exp
( 2π i

3 (0, a,−a)(0)
)
.

Since 〈(0, β,−β), (0, a,−a)〉=2〈β, a〉 and 〈(0, β,−β), (a,−a, 0)〉=−〈β, a〉,
we have

gh(e)= ρ(eN )= ρ
h(eN )= hg(e).

Similarly, we have

hg(e′)= hg2(e)= (ρh)2(eN ), gh(e′)= ghg(e)= g(ρh(eN ))= (ρ
h)2(eN )

and

hg( f )= hgh(e)= (hgh2)h2(e)= ρh(eÑ ), gh( f )= g(eÑ )= ρ(eÑ ).

Hence gh = hg on W . �

Notation 3.10. For any 0≤ i, j ≤ 2, denote

ei, j
= gi h j (e).

In particular, we have

e0,0
= eM , e0,1

= eN , e0,2
= eÑ ,

e1,0
= ρeM , e1,1

= ρeN , e1,2
= ρeÑ ,

e2,0
= ρ2eM , e2,1

= ρ2eN , e2,2
= ρ2eÑ .

Remark 3.11. By the same methods as in [Lam et al. 2007; Griess and Lam 2011],
it is quite straightforward to verify that 〈ei, j , ei ′ j ′

〉 =
1
28 whenever (i, j) 6= (i ′, j ′).
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Lemma 3.12. Let G be the subgroup of Aut(W ) generated by τe, τ f and τe′ . Then
G = 〈g, h〉 : 〈τe〉, where 〈g, h〉 is elementary abelian of order 32 and τe inverts g
and h.

Proof. By Lemma 3.9, we know that the group 〈g, h〉 generated by g and h
is elementary abelian of order 32. Also, τe inverts g and h because τegτe =

τe(τeτe′)τe = τe′τe = g−1 and τehτe = τe(τeτ f )τe = τ f τe = h−1.
First, we shall prove that 〈g, h〉 is normal in G. By Lemma 3.9 we have gh = hg

and hence τ f τeτe′=τe′τeτ f . Thus τ f hτ f =τ f τeτe′τ f =τe′τeτ
2
f =τe′τe=h2

∈〈g, h〉.
Similar computation gives that 〈g, h〉 is normal in G.

Next we show that G = 〈g, h〉〈τe〉. Recall that τe, τ f and τe′ are involutions.
Thus every nonidentity element in G has the form

τa1τa2 · · · τak ,

where ai = e, f , or e′ and ai 6= ai+1 for i = 1, . . . , k− 1.
Note also that τeτe′ = g, τeτ f = h, τ f τe′ = h−1g, and g and h have order 3.

Hence, τaτa′ ∈ 〈g, h〉 for any a, a′ ∈ {e, f, e′}. Therefore, τa1τa2 · · · τak ∈ 〈g, h〉 if
k is even and τa1τa2 · · · τak = (τa1τa2 · · · τakτe)τe ∈ 〈g, h〉〈τe〉 if k is odd. Thus we
have G = 〈g, h〉〈τe〉.

Since |〈g, h〉|=32 and |〈τe〉|=2, we get 〈g, h〉∩〈τe〉=1. Hence G=〈g, h〉 : 〈τe〉

as desired. �

Lemma 3.13. Let � be the Virasoro element of L ŝl9(C)(3, 0). Then

�= ωL −
8
9

∑
0≤i, j≤2

ei, j .

Proof. By Lemma 3.3, we have

�= ωE +
3
4ωM+N −

1
12

∑
α∈K (2)

1≤i, j≤3, i 6= j

eηi (α)−η j (α).

Now let us set 1i
:= {β ∈ E8(2) | 〈a, β〉 = i mod 3Z} for i = 0, 1, 2. Note that

10
= K (2). Then we have

e0,0
= eM =

1
16ωM +

1
32

2∑
i=0

∑
α∈1i

e(α,−α,0),

e1,0
= ρeM =

1
16ωM +

1
32

2∑
i=0

∑
α∈1i

ξ 2i e(α,−α,0),

e2,0
= ρ2eM =

1
16ωM +

1
32

2∑
i=0

∑
α∈1i

ξ i e(α,−α,0).
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Hence 2∑
i=0

ei,0
=
(
1+ ρ+ ρ2)eM =

3
16ωM +

3
32

∑
α∈K (2)

e(α,−α,0).

A similar computation gives∑
0≤i, j≤2

ei, j
=

3
16(ωM +ωN +ωÑ )+

3
32

∑
α∈K (2)

1≤i, j≤3, i 6= j

eηi (α)−η j (α).

Recall that M + N ∼= A2 ⊗ E8. It contains a full rank sublattice isometric to
(
√

2A2)
8 and hence ωM+N is the sum of the conformal elements of each tensor

copy of V⊗8
√

2A2
. We also note that the conformal element of the lattice VOA V√2A2

is
given by

ω√2A2
=

1
6

(
α1(−1)2+α2(−1)2+α3(−1)2

)
·1

=
2
3

(
1
2

(
α1(−1)
√

2

)2
+

1
2

(
α2(−1)
√

2

)2
+

1
2

(
α3(−1)
√

2

)2)
·1,

where α1, α2, α3 are positive roots of a root lattice type A2 [Dong et al. 1998].
Thus ωM+N =

2
3(ωM +ωN +ωÑ ) and we get

�= ωL −
8
9

∑
0≤i, j≤2

ei, j ,

as desired. Note that ωL = ωE +ωM+N . �

Lemma 3.14. For any 0 ≤ i, j ≤ 2, we have ei, j
∈ W̃ = ComVL

(
L ŝl9(C)

(3, 0)
)
.

Hence W ⊂ W̃ and W1 = 0.

Proof. Since ei, j
∈ VM+N and E = {(α, α, α) | α ∈ E8} is orthogonal to M + N , it

is clear that (Hα)nei, j
= 0 for all n ≥ 0. It is also clear that (Eα)nei, j

= 0 for any
root α ∈ K and n ≥ 2.

Recall from [Frenkel et al. 1988] that

Y (eα, z)= exp
( ∑

n∈Z+

α(−n)
n

zn
)

exp
( ∑

n∈Z+

α(n)
−n

z−n
)

eαzα.

Now let σ = (123) be a 3-cycle. Then by direct calculation, we have

(Eα)1ei, j
= (Eα)1(ρi h j eM)

=
(
eη1(α)+ eη2(α)+ eη3(α)

)
1

×

(
1

16ωh j (M)+
1

32

∑
α∈1+(E8)

ρi(e(ησ j (1)−ησ j (2))(α)+ e−(ησ j (1)−ησ j (2))(α)
))

=
1

16〈α, α〉
2 1

8

(
eησ j (1)(α)+ eησ j (2)(α)

)
+

1
32ε(α,−α)

(
eησ j (1)(α)+ eησ j (2)(α)

)
= 0,
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and

(Eα)0ei, j
=
(
eη1(α)+ eη2(α)+ eη3(α)

)
0

×

(
1

16ωh j (M)+
1

32

∑
α∈1+(E8)

ρi(e(ησ j (1)−ησ j (2))(α)+ e−(ησ j (1)−ησ j (2))(α)
))

=
1
16

(
〈α, α〉2 1

8

(
ησ j (1)(α)(−1)eησ j (1)(α)+ ησ j (2)(α)(−1)eησ j (2)(α)

)
− 2〈α, α〉18

(
(ησ j (1)− ησ j (2))(α)(−1)eησ j (1)(α)

− (ησ j (1)− ησ j (2))(α)(−1)eησ j (2)(α)
))

+
1

32ε(α,−α)
(
ησ j (2)(α)(−1)eησ j (1)(α)+ ησ j (1)(α)(−1)eησ j (2)(α)

)
= 0

for any root α ∈ K . Therefore, (Eα)nei, j
= 0 for all n ≥ 0. Since L ŝl9(C)

(3, 0) is
generated by Eα and Hα, we have the desired conclusion. �

Remark 3.15. Note that the lattice VOA VL also contains a subVOA isomorphic
to LÊ8(3, 0), the level-3 affine VOA associated to the Kac–Moody Lie algebra of
type E (1)8 . The central charge of ComVL (L Ê8(3, 0)) is 16

11 , which is the same as U3C .
In fact, it can be shown by the similar calculation as Lemma 3.14 that eM and eN

defined in Notation 3.6 are contained in ComVL (L Ê8(3, 0)). Moreover,

U3C ∼= VOA(eM , eN )= ComVL (L Ê8(3, 0)).

4. Parafermion VOA and W

In this section, we shall show that the VOA W defined in Notation 3.8 is, in
fact, equal to the commutant subVOA W̃ = ComVL (L ŝl9(C)

(3, 0)). Recall that the
lattice VOA VA8

3
contains a full subVOA K (sl3(C), 9)⊗ L ŝl9(C)(3, 0) (see [Lam

2014]), where K (sl3(C), 9) is the parafermion VOA associated to the affine VOA
L ŝl3(C)(9, 0). Therefore, the VOA W̃ contains a full subVOA isomorphic to the
parafermion VOA K (sl3(C), 9).

Parafermion VOA. First, we recall the definition of parafermion VOA from [Dong
and Wang 2010], henceforth abbreviated [DW] (cf. [Dong et al. 2009; 2010]).

Let g be a finite-dimensional simple Lie algebra and ĝ the affine Kac–Moody
Lie algebra associated with g. The level-k affine vertex operator algebra L ĝ(k, 0)
contains a Heisenberg vertex operator algebra corresponding to a Cartan subalgebra
h of g. Let Mĥ(k, 0) be the vertex operator subalgebra of L ĝ(k, 0) generated by
h(−1) · 1 for h ∈ h. The commutant K (g, k) of Mĥ(k, 0) in L ĝ(k, 0) is called a
parafermion vertex operator algebra.
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The VOA L ĝ(k, 0) is completely reducible as an Mĥ(k, 0)-module and we have
a decomposition (see [DW]).

Lemma 4.1. For any λ ∈ h∗, let Mĥ(k, λ) be the irreducible highest weight module
for ĥ with a highest weight vector vλ such that h(0)vλ = λ(h)vλ for h ∈ h. Set

Kg,k(λ)= Kg,k(0, λ)=
{
v ∈ L ĝ(k, 0)

∣∣ h(m)v = λ(h)δm,0v for h ∈ h,m ≥ 0
}
.

Then we have
L ĝ(k, 0)=

⊕
λ∈Q

Kg,k(λ)⊗Mĥ(k, λ),

where Q is the root lattice of g.

Similarly, for any dominant integral weight 3 ∈ Pk
+
(g), we also have the decom-

position.

Lemma 4.2. Set

Kg,k(3, λ)=
{
v ∈ L ĝ(k,3)

∣∣ h(m)v = λ(h)δm,0v for h ∈ h,m ≥ 0
}
.

Then
L ĝ(k,3)=

⊕
λ∈3+Q

Kg,k(3, λ)⊗Mĥ(k, λ).

A generating set. In [DW], it is shown that the parafermion VOA K (g, k) is gener-
ated by subVOAs isomorphic to K (sl2(C), k). We first give a brief review of their
work.

Let h be a Cartan subalgebra of g and let 1+ be the set of all positive roots of g.
Then

g= h⊕
⊕
α∈1+

(Cxα ⊕Cx−α),

where x±α ∈ g±α = {u ∈ g | [h, u] = ±α(h)u for all h ∈ h}.

Notation 4.3. For any α ∈1+, let hα = [xα, x−α]. Then Sα = span{hα, xα, x−α}
is a Lie subalgebra of g isomorphic to sl2(C). Define

ωα =
1

2k(k+ 2)
(khα(−2)1− hα(−1)21+ 2kxα(−1)x−α(−1)1)

and

W 3
α = k2hα(−3)1+ 3khα(−2)hα(−1)1+ 2hα(−1)31

− 6khα(−1)xα(−1)xα(−1)1+ 3k2xα(−2)xα(−1)1− 3k2xα(−1)xα(−2)1.

We use Pα to denote the vertex operator subalgebra of K (g, k) generated by ωα
and W 3

α for α ∈1+.
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Theorem 4.4 [DW, Theorem 4.2]. The simple vertex operator algebra K (g, k) is
generated by Pα , α ∈1+ and Pα is a simple vertex operator algebra isomorphic to
the parafermion vertex operator algebra K (sl2(C), k) associated to sl2(C).

The lattice VOA VAk+1
n . Next we recall an embedding of the VOA

K (slk+1, n+ 1)⊗ L ŝln+1(C)
(k+ 1, 0)

into the lattice VOA VAk+1
n

from [Lam 2014].
We use the standard model for the root lattice of type A`. In particular,

A` =
{∑

aiεi ∈ Z`+1
∣∣∣ ai ∈ Z and

`+1∑
i=1

ai = 0
}
,

where εi is the row vector whose i-th entry is 1 and all other entries are 0. The dual
lattice

A∗` =
⋃̀
i=0

(γA`(i)+ A`),

where γA`(i)=
1
`+1

( `+1−i∑
j=1

iε j −
`+1∑

j=`+1−i+1
(`+ 1− i)ε j

)
for i = 0, . . . , `.

Notation 4.5. Let n and k be positive integers. We shall consider two injective
maps ηi : Z

n+1
→ Z(n+1)(k+1) and ιi : Zk+1

→ Z(n+1)(k+1) defined by

ηi (ε j )= ε(n+1)(i−1)+ j and ιi (ε j )= ε(n+1)( j−1)+i

for i = 1, . . . , k+ 1, j = 1, . . . , n+ 1.
Let

dk+1 =

k+1∑
j=1

η j : Z
n+1
→ Z(n+1)(k+1) and µn+1 =

n+1∑
j=1

ι j : Z
k+1
→ Z(n+1)(k+1).

Then we have

dk+1(a1, . . . , an+1)= (a1, . . . , an+1, a1, . . . , an+1, . . . , a1, . . . , an+1),

µn+1(a1, . . . , ak+1)= (a1, . . . , a1, a2, . . . , a2, . . . , ak+1, . . . , ak+1).

Set X = dk+1(An) and Y =µn+1(Ak). Then X ∼=
√

k+ 1An and Y ∼=
√

n+ 1Ak .
Moreover, we have

(4-1)

AnnA(n+1)(k+1)−1(Y )=
k+1⊕
i=1

ηi (An)∼= Ak+1
n ,

AnnA(n+1)(k+1)−1(X)=
n+1⊕
j=1

ι j (Ak)∼= An+1
k ,
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where AnnA(B)={x ∈ A | 〈x, y〉=0 for all y∈ B} is the annihilator of a sublattice B
in an integral lattice A.

By the same construction as in Notation 3.2 (see also [Dong and Lepowsky
1993, Chapter 13]), one can obtain subVOAs isomorphic to L ŝln+1(C)

(k+ 1, 0) and
L ŝlk+1(C)

(n+ 1, 0) in the lattice VOA VA(k+1)(n+1)−1 .
The next proposition is well known in the literature [Kac and Wakimoto 1988;

Nakanishi and Tsuchiya 1992; Lam 2014].

Proposition 4.6. The VOAs L ŝln+1(C)
(k+ 1, 0) and L ŝlk+1(C)

(n+ 1, 0) are mutually
commutative in the lattice VOA VA(k+1)(n+1)−1 . Moreover,

L ŝln+1(C)
(k+ 1, 0)⊗ L ŝlk+1(C)

(n+ 1, 0)

is a full subVOA of V(n+1)(k+1)−1.

Remark 4.7. It is also known that the VOA Vµn+1(Ak) is contained in the affine
VOA L ŝlk+1(C)

(n + 1, 0) and K (slk+1(C), n + 1) = ComL ŝlk+1(C)(n+1,0)(Vµn+1(Ak))

(see [Lam 2014, Lemma 4.1]). Moreover, for any 3 ∈ P+n+1(slk+1(C)), we have
the decomposition

(4-2) L ŝlk+1
(n+ 1,3)=

⊕
λ∈

1
n+1µn+1(3+Ak)

µn+1(Ak)

Kslk+1(C),n+1(3, (n+ 1)λ)⊗ Vλ+µn+1(Ak)

as a module of Vµn+1(Ak)⊗ K (slk+1(C), n+1) (λ ∈ 1
n+1 A∗k) such that µn+1(λ)= λ

(see [ibid., Lemma 4.3]).
Note that it is shown in [Dong and Lepowsky 1993, Theorem 14.20] that

Kslk+1(C),n+1(3, (n + 1)λ), for 3 ∈ Pn+1
+ (slk+1(C)), λ ∈ (µn+1(Ak))

∗, are irre-
ducible K (slk+1(C), n+ 1)-modules.

Next we consider the case n = 8, k = 2. Then (n+ 1)(k+ 1)− 1= 26. We shall
study the decomposition of W̃ = ComVE3

8
(L ŝl9(C)(3, 0)) as a K (sl3(C), 9)-module.

Set

ν1 = η1− η2, ν2 = η2− η3,

and define µ= µ3 : Z
3
→ Z27 by

µ(a1, a2, a3)= (a1, . . . , a1, a2, . . . , a2, a3, . . . a3).

Note that Y = µ(A2)∼= 3A2 and

AnnA26(Y )= {α ∈ A26 | 〈α, β〉 = 0 for any β ∈ Y } ∼= A3
8.

Next we discuss the coset decomposition Y + A3
8 in A26.
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Lemma 4.8. Let α1 = (1,−1, 0) and α2 = (0, 1,−1) be roots of A2. Then we have

A26 =
⋃

0≤i, j≤8

((
−

1
9(iµ(α1)+ jµ(α2))+ Y

)
+
(
ν1(γA8(i))+ ν2(γA8( j))+ A3

8
))
.

Proof. First we note that [A26 : Y + A3
8] =

√
(92 · 3) · 93/27 = 92. Moreover, we

have

−
1
9(iµ(α1)+ jµ(α2))+ ν1(γA8(i))+ ν2(γA8( j))=

9∑
k=10−i

ιk(α1)+

9∑
k′=10−i

ιk′(α2).

Note that
∑9

k=10−i ιk(αp) /∈ Y + A3
8 for any i 6= 0, p = 1, 2. Therefore,(

−
1
9(iµ(α1)+ jµ(α2))+ Y

)
+
(
ν1(γA8(i))+ ν2(γA8( j))+ A3

8
)
,

for i, j = 0, . . . , 8, give 92 distinct cosets in A26/(Y + A3
8). Thus, we have the

desired conclusion. �

Lemma 4.9. Let δ = γA8(3)=
1
3(1

6, (−2)3) ∈ A∗8. Then for any k, `= 0,±1, we
have

ComV(kν1+`ν2)(δ)+A3
8
(L ŝl9(C)(3, 0))=

{
v ∈ V(kν1+`ν2)(δ)+A3

8

∣∣�nv = 0 for all n ≥ 0
}

∼= Ksl3(C),9(0,−3(kα1+ `α2)).

Proof. By Lemma 4.8,

VA26 =

⊕
0≤i, j≤8

V
−

1
9 (iµ(α1)+ jµ(α2))+Y ⊗ Vν1(γA8 (i))+ν2(γA8 ( j))+A3

8
.

Moreover, by (4-2),

L ŝl3
(9, 0)= ComVA26

(L ŝl9(C)(3, 0))=
⊕

λ∈ 1
9 Y/Y

Vλ+Y ⊗ Ksl3(C),9(0, 9λ).

Take i = 3k and j = 3`. Then we have

ComV(kν1+`ν2)(δ)+A3
8
(L ŝl9(C)(3, 0))∼= Ksl3(C),9(0, 9 · −1

9(3kα1+ 3`α2))

= Ksl3(C),9(0,−3(kα1+ `α2))

as desired. �

Lemma 4.10. We have the decomposition

W̃ = ComVE3
8
(L ŝl9(C)(3, 0))=

⊕
i, j=0,±1

Ksl3(C),9(0, 3(iα1+ jα2)).

Proof. First we note that M + N ∼= A2⊗ E8 and

M + N =
⋃

0≤k,`≤2

((kν1+ `ν2)(δ)+ A2⊗ A8).
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Since A2⊗ A8 ∼= AnnA3
8
(d3(A8)) and Vd3(A8) ⊂ L ŝl9(C)(3, 0), we have

W̃ = ComVE3
8
(L ŝl9(C)(3, 0)) < VM+N .

The conclusion now follows from Lemma 4.9. �

Now let α ∈ A2 be a root. Then Zα ∼= A1 and

L(α)=
9⊕

j=1

ι j (Zα)∼= A9
1 ⊂ A26.

Let Hα and Eα be defined as in Notation 3.2. Then {Hα, Eα,−E−α} forms a
sl2-triple in the lattice VOA VA9

1
< VA26 . Moreover, it generates a subVOA Lα

isomorphic to the affine VOA L ŝl2(C)(9, 0). Let Mα(9, 0) be the subVOA generated
by Hα. Then

Kα := ComLα
(Mα(9, 0))∼= K (sl2(C), 9).

Note also that Kα = ComLα
(Mα(9, 0)) < ComL ŝl3(C)(9,0)(Vµ(A2))= K (sl3(C), 9).

Set hα = Hα , xα = Eα and x−α =−E−α . Then the elements ωα and W 3
α defined

in Notation 4.3 are contained in Kα. In fact, Kα is generated by ωα and W 3
α (see

[Dong et al. 2009]).

Theorem 4.11. The VOA W defined in Notation 3.8 contains a full subVOA isomor-
phic to K (sl3(C), 9).

Proof. Recall that W = (ei, j
| 0≤ i, j ≤ 2). We also have

M = (η1− η2)(E8), N = (η2− η3)(E8), Ñ = (η1− η3)(E8).

Let α1 = (1,−1, 0), α2 = (0, 1,−1) and α3 = α1 + α2 = (1, 0,−1) be the
positive roots of A2. Then by the same calculations as in [Lam et al. 2007], it is
straightforward to verify that

Kα1 < VOA(eM , ρeM), Kα2 < VOA(eN , ρeN ), Kα3 < VOA(eÑ , ρeÑ ),

where eM , eN , eÑ and ρ are defined as in Notation 3.6.
Now by Theorem 4.4, Kα1,Kα2 and Kα3 generate a subVOA isomorphic to

K (sl3(C), 9) in W . It is a full subVOA of W because they have the same central
charge. �

Theorem 4.12. We have W = W̃ = ComVE3
8
(L ŝl9(C)(3, 0)).

Proof. By the previous lemma, the subVOA W contains K (sl3(C), 9) as a full
subVOA.

Therefore, it suffices to show that Ksl3(C),9(0, 3(iα1+ jα2)) is contained in W
for any i, j = 0,±1.
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By [Lam et al. 2007, Proposition 2.2],

X+ν1
=

1
32

∑
γ∈ν1(δ)+ν1(A8)
〈γ,γ 〉=4

eγ and X−ν1
=

1
32

∑
γ∈−ν1(δ)+ν1(A8)
〈γ,γ 〉=4

eγ

are contained in VOA(eM , ρeM) <W . Moreover, it is straightforward to verify that

X+ν1
∈ ComVν1(δ)+A3

8
(L ŝl9(C)(3, 0))∼= Ksl3(C),9(0,−3α1)

and
X−ν1
∈ ComV−ν1(δ)+A3

8
(L ŝl9(C)(3, 0))∼= Ksl3(C),9(0, 3α1).

Therefore, W contains Ksl3(C),9(0,±3α1) as K (sl3(C), 9)-submodules. Similarly,
W also contains Ksl3(C),9(0,±3α2) and Ksl3(C),9(0,±3(α1+α2)) as K (sl3(C), 9)-
submodules.

Moreover, it is clear that 0 6= (X+ν1
)−3(X−ν2

) ∈ V(ν1−ν2)(δ)+A3
8
. Since X+ν1

and X−ν2

are contained in the commutant of L ŝl9(C)(3, 0), we have

(X+ν1
)−3(X−ν2

) ∈ ComV(ν1−ν2)(δ)+A3
8
(L ŝl9(C)(3, 0)).

Hence W contains Ksl3(C),9(0, 3(α1 − α2)). Similarly, Ksl3(C),9(0, 3(α2 − α1)) is
contained in W , also. �

Remark 4.13. Recall that ei, j
∈ VE3

8
, 0≤ i, j ≤ 2, are fixed by the diagonal action

of the Weyl group of K . Therefore, the VOA W̃ is fixed by the Weyl group of
K pointwise. Using this fact and Lemma 4.9, it is straightforward to show that
dim(Ksl3(C),9(0, 3α)2) = 1 for any root α of A8, dim(Ksl3(C),9(0, 0)2) = 3, and
dim(Ksl3(C),9(0,±3(α1−α2))2)= 0 (see the Appendix). Thus, dim(W̃2)= 9 and
W̃2 is spanned by {ei, j

| 0≤ i, j ≤ 2}.

A positive definite real form. Next we shall show that the Ising vectors ei, j , for
0≤ i, j ≤ 2, are contained in a positive definite real form of VE3

8
.

First we recall that the lattice VOA constructed in [Frenkel et al. 1988] can be
defined over R. Let VL ,R = S(ĥ−R )⊗R{L} be the real lattice VOA associated to an
even positive definite lattice, where h= R⊗Z L , ĥ− =⊕n∈Z+h⊗Rt−n . As usual,
we use x(−n) to denote x ⊗ t−n for x ∈ h and n ∈ Z+.

Notation 4.14. Let θ : VL ,R→ VL ,R be defined by

θ(x(−n1) · · · x(−nk)⊗ eα)= (−1)k x(−n1) · · · x(−nk)⊗ e−α.

Then θ is an automorphism of VL ,R, which is a lift of the (−1)-isometry of L [ibid.].
We shall denote the (±1)-eigenspaces of θ on VL ,R by V±L ,R.

The following result is well-known [Frenkel et al. 1988; Miyamoto 2004].
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Proposition 4.15 (cf. Proposition 2.7 of [Miyamoto 2004]). Let L be an even
positive definite lattice. Then the real subspace ṼL ,R = V+L ,R⊕

√
−1V−L ,R is a real

form of VL . Furthermore, the invariant form on ṼL ,R is positive definite.

Now apply the above theorem to the case L = E3
8 . We have the following result.

Proposition 4.16. Let ṼE3
8 ,R
=V+E3

8 ,R
⊕
√
−1V−E3

8 ,R
. Then ṼE3

8 ,R
is a positive definite

real form of VE3
8
.

The next lemma is clear by the definitions of eN , eN , and eÑ .

Lemma 4.17. The Ising vectors eM , eN and eÑ defined in Notation 3.6 lie in V+E3
8 ,R

.

Recall the automorphism ρ = exp
( 2π i

3 (a,−a, 0)(0)
)

defined in Definition 3.5,
where a is an element of E8 such that K = {β ∈ E8 | 〈β, a〉 ∈ 3Z} ∼= A8. Then we
have the coset decomposition

E8 = A8 ∪ (b+ A8)∪ (−b+ A8),

where b is a root of E8 such that 〈b, a〉 ≡ 1 mod 3.
Note that

M = {(α,−α, 0) | α ∈ E8} ∼=
√

2E8,

K̃ = {(α,−α, 0) | α ∈ K } ∼=
√

2A8.

Set

X0
:=

1
3(eM + ρeM + ρ

2eM),

X1
:=

1
3(eM + ξρeM + ξ

2ρ2eM),

X2
:=

1
3(eM + ξ

2ρeM + ξρ
2eM),

where ξ = exp 2π i
3 =

1
2(−1+

√
−3).

The next lemma can be proved by the same calculations as in [Lam et al. 2007].
Note that ρX0

= X0, ρX1
= ξ 2 X1 and ρX2

= ξ X2.

Lemma 4.18. The vector X0 is contained in V+M,R. Moreover,

X1
=

1
32

∑
γ∈(b,−b,0)+K̃
〈γ,γ 〉=4

eγ and X2
=

1
32

∑
γ∈−(b,−b,0)+K̃
〈γ,γ 〉=4

eγ .

Therefore, X1
+ X2

∈ V+M,R and X1
− X2

∈ V−M,R.

Lemma 4.19. The Ising vectors ei, j , 0≤ i, j ≤ 2, are all contained in ṼE3
8 ,R

.

Proof. By the discussion above, we have

ρeM = X0
−

1
2(X

1
+ X2)+ 1

2

√
−3(X1

− X2).
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Since X1
+ X2

∈ V+M,R and X1
− X2

∈ V−M,R, we have ρeM ∈ ṼE3
8 ,R

. Similarly, we
have ρ2eM , ρeN , ρ

2eN , ρeÑ , ρ
2eÑ ∈ ṼE3

8 ,R
as desired. �

5. Griess algebras generated by Ising vectors

In this section, we shall give few structural results about Griess algebras generated
by Ising vectors in a moonshine-type VOA V over R such that the invariant bilinear
form is positive definite. Our setting is as follows.

Notation 5.1. Let e, e′, e′′ be three distinct Ising vectors in V . Assume that

(I) 〈e, e′〉 = 〈e, e′〉 = 〈e′, e′′〉 = 1/28 and τeτe′ , τeτe′′ , τe′τe′′ are of order 3.

Then each of {τe, τe′}, {τe, τe′′}, and {τe′, τe′′} generates a dihedral group of order
6 and the Griess algebras generated by {e, e′}, {e, e′′}, and {e′, e′′} are isomorphic
to the Griess algebra GU3C of the 3C-algebra U3C .

Let g = τeτe′ and h = τeτe′′ . We shall assume that

(II) the subgroup H generated by g and h is elementary abelian of order 32.

For any 0 ≤ i, j ≤ 2, denote ei, j
:= gi h j e. Note that e′ = ge = e1,0 and

e′′ = he = e0,1 by Lemma 2.9(4). Furthermore, we assume that

(III) 〈e0,0, e1,1
〉 = 1/28.

Therefore, the Griess subalgebra generated by e0,0, e1,1 is also isomorphic to
GU3C .

Lemma 5.2. Let G be the subgroup generated by τe, τe′ , and τe′′ . Then G= H : 〈τe〉,
where H ∼= 32 is normal in G and τe inverts every element in H , i.e., τe yτe = y−1

for all y ∈ H.

Proof. The proof is essentially the same as Lemma 3.12 because H = 〈g, h〉 is
elementary abelian of order 32 by our assumption. �

Lemma 5.3. For any (i, j) 6= (i ′, j ′), we have 〈ei, j , ei ′, j ′
〉 = 1/28.

Proof. By definition, 〈ei, j , ei ′, j ′
〉 = 〈gi h j e, gi ′h j ′e〉 = 〈e, gi ′−i h j ′− j e〉.

By our assumption, we have

〈e, ge〉 = 〈e, g−1e〉 = 〈e, he〉 = 〈e, h−1e〉 = 1/28,

〈e, gh−1e〉 = 〈e, g−1he〉 = 〈ge, he〉 = 〈e′, e′′〉 = 1/28,

〈e, ghe〉 = 〈e, g−1h−1e〉 = 1/28.

Thus, 〈ei, j , ei ′, j ′
〉 = 1/28 if (i, j) 6= (i ′, j ′). �

Lemma 5.4. Let G be the Griess subalgebra generated by {e, e′, e′′}. Then G is
spanned by {ei, j

| 0≤ i, j ≤ 2} and dim G= 9. The algebra structure of G is unique.
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Proof. Recall that g commutes with h and for any (i, j) and (i ′, j ′), we have

τei, j τei ′, j ′ = gi h jτeg−i h− j gi ′h j ′τeg−i ′h− j ′
= gi h j gi h jτeτeg−i ′h− j ′g−i ′h− j ′

= gi ′−i h j ′− j .

By Lemma 2.9(3) and (4), we know that

(5-1) e−i−i ′,− j− j ′
= gi ′−i h j ′− j (ei, j )= ei, j

+ ei ′, j ′
− 32ei, j

· ei ′, j ′

if (i, j) 6= (i ′ j ′). Therefore, e−i−i ′,− j− j ′
∈ G{ei, j , ei ′, j ′

}, the Griess subalgebra
generated by {ei, j , ei ′, j ′

}. Hence,

e2,0
= e0,0

+ e1,0
− 32e0,0

· e1,0, e0,2
= e0,0

+ e0,1
− 32e0,0

· e0,1,

and e2,2
= e1,0

+ e0,1
− 32e1,0

· e0,1 are in G.
Similarly, we also have e1,1

∈ G{e0,0, e2,2
} < G, e1,2

∈ G{e0,2, e2,2
} < G, and

e2,1
∈ G{e2,0, e2,2

}< G. Thus, all ei, j , 0≤ i, j ≤ 2, are in G. In addition, by (5-1),
we have

ei, j
· ei ′, j ′

=

{ 1
32

(
ei, j
+ ei ′, j ′

− ei ′′, j ′′
)

if (i, j) 6= (i ′ j ′),

2ei, j if (i, j)= (i ′ j ′),

where i + i ′+ i ′′ = j + j ′+ j ′′ = 0 mod 3. Therefore, span{ei, j
| 0 ≤ i, j ≤ 2} is

closed under the Griess algebra product and G= span{ei, j
| 0≤ i, j ≤ 2}. By our

assumption, we have the Gram matrix

(
〈ei, j , ei ′, j ′

〉
)

0≤i, j,i ′, j ′≤2 =


1
4

1
28 . . . 1

28

1
28

1
4 . . . 1

28

...
...
. . .

...
1
28

1
28 . . . 1

4

.

It has rank 9 and hence {ei, j
| 0 ≤ i, j ≤ 2} is a linearly independent set and

dim G= 9. �

Next, we shall give some information about the VOA W generated by {ei, j
}.

Lemma 5.5. Let

ω := 8
9

∑
0≤i, j≤2

ei, j .

Then ω is a Virasoro vector of central charge 4. Moreover, ω · ei, j
= ei, j

·ω = 2ei, j

for any 0≤ i, j ≤ 2. In other words, ω/2 is the identity element in G.

Proof. This follows from a straightforward calculation using Lemma 2.9. �
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Lemma 5.6. Let

b1
=

8
9

∑
0≤i, j≤2

ei, j
−

32
33(e

0,0
+ e0,1

+ e0,2).

Then b1 is a Virasoro vector of central charge 28
11 . Moreover, e0,0, a1, and b1 are

mutually orthogonal and ω = e0,0
+ a1

+ b1. Therefore, W has a full subVOA
isomorphic to the tensor product of Virasoro VOA

L
( 1

2 , 0
)
⊗ L

( 21
22 , 0

)
⊗ L

( 28
11 , 0

)
.

Proof. It follows from (4) and (5) of Lemma 2.9 and Lemma 5.5. �

Remark 5.7. Because of Lemma 4.10 and Theorem 4.12, we conjecture that the
subVOA VOA(e, e′, e′′) generated by {e, e′, e′′} is isomorphic to

W̃ =
⊕

i, j=0,±1

Ksl3(C),9(0, 3(iα1+ jα2)).

Recall from [Lam 2014] that the parafermion VOA Ksl3(C),9(0, 0) contains a full
subVOA W9(1, 1)⊗W9(2, 1), where W9(1, 1) has central charge 32

11 and W9(2, 1)
has central charge 28

11 . Therefore, we believe that the subVOA VOA(e, e′, e′′) also
contains a full subVOA isomorphic to L( 1

2 , 0)⊗ L( 21
22 , 0)⊗ W9(2, 1), which is

expected to be rational. However, we are not aware of any uniqueness results of the
parafermion VOA Ksl3(C),9(0, 0) nor the W -algebra W9(2, 1) in terms of generators
and relations. Therefore, it is unclear if VOA(e, e′, e′′) contains Ksl3(C),9(0, 0) or
L(1

2 , 0)⊗ L( 21
22 , 0)⊗W9(2, 1) as a full subVOA.

Finally, we describe explicitly several highest weight vectors of the subVOA
vir(e0,0)⊗ vir(a1)⊗ vir(b1).

Lemma 5.8. With respect to the subVOA vir(e0,0)⊗ vir(a1)⊗ vir(b1), we have the
following highest weight vectors.

(1) The vectors ai
−a j , i, j ∈ {2, 3, 4}, i 6= j , are highest weight vectors of weight

(0, 1
11 ,

21
11), where

a1
=

32
33(e

0,0
+ e0,1

+ e0,2)− e0,0, a2
=

32
33(e

0,0
+ e1,0

+ e2,0)− e0,0,

a3
=

32
33(e

0,0
+ e1,1

+ e2,2)− e0,0, a4
=

32
33(e

0,0
+ e1,2

+ e2,1)− e0,0.

(2) The vector e0,1
− e0,2 is a highest weight vector of weight ( 1

16 ,
31
16 , 0).

(3) The vector (e1,0
+ e1,1

+ e1,2)− (e2,0
+ e2,1

+ e2,2) is a highest weight vector
of weight ( 1

16 ,
21
176 ,

20
11).

(4) The vectors (e1,1
− e2,2)− (e1,2

− e2,1) and (e1,0
− e2,0)− (e1,1

− e2,2) are
highest weight vectors of weight ( 1

16 ,
5

176 ,
21
11).
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Proof. (1) By Lemma 2.9, it is straightforward to show that

ai
· a j
=

1
33(2ai

+ 2a j
− ak
− a`),

for any i 6= j and {i, j, k, `} = {1, 2, 3, 4}. Thus,

a1
1
(
ai
− a j)

=
1

33

[(
2a1
+ 2ai

− a j
− ak)

−
(
2a1
+ 2a j

− ai
− ak)]

=
1
11

(
ai
− a j),

where {i, j, k} = {2, 3, 4}.
Since e0,0

1 ai
= 0 and ω1ai

= 2ai for all i , ai
− a j is a highest weight vector of

weight (0, 1
11 ,

21
11) with respect to vir(e0,0)⊗ vir(a1)⊗ vir(b1).

(2) By direct calculations, we have

e0,0
1

(
e0,1
− e0,2)

=
1
32

[(
e0,0
+ e0,1

− e0,2)
−
(
e0,0
+ e0,2

− e0,1)]
=

1
16

(
e0,1
− e0,2)

and
32
33

(
e0,0
+ e0,1

+ e0,2)
1

(
e0,1
− e0,2)

= 2
(
e0,1
− e0,2).

Since a1
=

32
33(e

0,0
+e0,1

+e0,2)−e0,0 and b1
=ω− 32

33(e
0,0
+e0,1

+e0,2), we have

a1
1
(
e0,1
− e0,2)

=
31
16

(
e0,1
− e0,2) and b1

1
(
e0,1
− e0,2)

= 0.

(3), (4) By the same calculations as in (2), (e1,0
−e2,0), (e1,1

−e2,2), and (e1,2
−e2,1)

are 1
16 -eigenvectors of e0,0

1 . By Lemma 2.9, we also have

32
33

(
e0,0
+e0,1

+e0,2)
1

(
e1,1
−e2,2)

=
1
33

(
4
(
e1,1
−e2,2)

+
(
e1,0
−e2,0)

+
(
e1,2
−e2,1)).

Let v = (e1,0
+ e1,1

+ e1,2)− (e2,0
+ e2,1

+ e2,2). Then

32
33

(
e0,0
+ e0,1

+ e0,2)
1v =

1
33(4+ 1+ 1)v = 2

11v.

Thus, a1
1v = (

2
11 −

1
16)v =

21
176v and b1

1v = (2−
2

11)v =
20
11v.

Moreover,

32
33

(
e0,0
+ e0,1

+ e0,2)
1

((
e1,1
− e2,2)

−
(
e1,2
− e2,1))

=
1
33(4− 1)

((
e1,1
− e2,2)

−
(
e1,2
− e2,1))

=
1
11

((
e1,1
− e2,2)

−
(
e1,2
− e2,1)).

Thus, we have

a1
1
((

e1,1
− e2,2)

−
(
e1,2
− e2,1))

=
5

176

((
e1,1
− e2,2)

−
(
e1,2
− e2,1))

and

b1
1
((

e1,1
− e2,2)

−
(
e1,2
− e2,1))v = 21

11

((
e1,1
− e2,2)

−
(
e1,2
− e2,1)).

The remaining cases can be proved similarly. �
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Appendix: Dimensions of Ksl3(C),9(0, 3(iα1 + jα2))2

In this appendix, we shall compute the dimension of Ksl3(C),9(0, 3(iα1+ jα2))2 for
all 0≤ i, j ≤ 2. First we recall a result from [Frenkel et al. 1988, Chapter 8].

Let α, β have norm 4 in a lattice L . Then

(A-1) eα1 eβ =


1
2α(−1)2 ·1 if β =−α,
ε(α, β)eα+β if 〈β, α〉 = −2,
0 otherwise.

Lemma A.1. For any k, `= 0,±1, we have dim(Ksl3(C),9(0, 3(kα1+ `α2))2)= 1
if (k, `)= (0,±1), (±1, 0), or (±1,±1) and dim(Ksl3(C),9(0, 3(kα1+ `α2))2)= 0
if (k, `)= (±1,∓1).

Proof. Recall that

Ksl3(C),9(0,−3(kα1+ `α2))∼= ComV(kν1+`ν2)(δ)+A3
8
(L ŝl9(C)(3, 0)) < VM+N .

Moreover, by Lemma 3.3, the conformal vector � of L ŝl9(C)(3, 0) is given by

�= ωE +
3
4ωM+N −

1
12

∑
α∈A8(2)

1≤i, j≤3, i 6= j

eηi (α)−η j (α).

Thus, for any X ∈ (VM+N )2, �1 X = 0 if and only if

(A-2)

( ∑
α∈A8(2)

1≤i, j≤3, i 6= j

eηi (α)−η j (α)

)
1

X = 18X.

Let 9 = {γ ∈ (kν1+ `ν2)(δ)+ A3
8 | 〈γ, γ 〉 = 4}. Then

(V(kν1+`ν2)(δ)+A3
8
)2 = span{eγ | γ ∈9}.

Moreover, 9 = {(kν1+ `ν2)(δ+ β) | β ∈ A8(2), 〈β, δ〉 = −1} if (k, `)= (0,±1),
(±1, 0), or (±1,±1) and 9 =∅ if (k, `)= (±1,∓1).

Suppose X =
∑

γ∈9 aγ eγ be an element in Ksl3(C),9(0,−3(kα1+ `α2))2. Then
by (A-1) and (A-2), we must have aγ = aγ ′ for all γ, γ ′ ∈9. Note that there are
exactly 18 roots in A8 such that 〈δ, β〉 = −1 and W̃ is fixed pointwise by the Weyl
group of K ∼= A8.

Hence, Ksl3(C),9(0,−3(kα1+`α2))2 is spanned by
∑

γ∈9 eγ if (k, `)= (0,±1),
(±1, 0), or (±1,±1) and is zero if (k, `)= (±1,∓1). �

Next we consider the Griess algebra Ksl3(C),9(0, 0)2. The next lemma follows
immediately from (A-1) and the choice of the 2-cocycle ε0( , ).
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Lemma A.2. Let β be a root of A8 and 1≤ k, `≤ 3. Then( ∑
α∈A8(2)

i 6= j

e(ηi−η j )(α)

)
1

e(ηk−η`)(β)

=

∑
α∈A8(2)
〈α,β〉=−1

e(ηk−η`)(α+β)+
1
2(ηk(β)−η`(β))(−1)2·1−

∑
i 6=k

e(ηi−η`)(β)−

∑
j 6=`

e(ηk−η j )(β).

The next lemma can also be proved easily by the definition of vertex operators
[Frenkel et al. 1988].

Lemma A.3. Let β ∈ A8. Then( ∑
α∈A8(2)

i 6= j

e(ηi−η j )(α)

)
1

(ηk − η`)(β))(−1)2 ·1

=

∑
α∈A8(2)

i 6= j

〈(ηi − η j )(α), (ηk − η`)(β)〉
2e(ηi−η j )(α).

Lemma A.4. The Griess algebra Ksl3(C),9(0, 0)2 has dimension 3 and is spanned
by {ωα1, ωα2, ωα1+α2}.

Proof. Let

X =
∑

1≤i< j≤3,
α∈A8(2)

(
ai, j,α(ηi (α)− η j (α))(−2) ·1

+ bi, j,α(ηi (α)− η j (α))(−1)2 ·1+ ci, j,αeηi (α)−η j (α)
)

be an element in Ksl3(C),9(0, 0)2.
Since X is fixed by the Weyl group of A8, we have ai, j,α = ai, j,β , bi, j,α = bi, j,β ,

and ci, j,α = ci, j,β for any roots α, β ∈ A8. Set ai, j = ai, j,α, bi, j = bi, j,α, and
ci, j = ci, j,α for any root α ∈ A8. Then, for any 1≤ i < j ≤ 3,∑

α∈A8(2)

ai, j,α(ηi (α)− η j (α))(−2)= ai, j

∑
α∈A8(2)

(ηi (α)− η j (α))(−2)= 0

and

X =
∑

1≤i< j≤3

(
bi, j

∑
α∈A8(2)

(ηi (α)− η j (α))(−1)2 ·1+ ci, j

∑
α∈A8(2)

eηi (α)−η j (α)

)
.

Moreover,

( ∑
α∈A8(2)

1≤i, j≤3, i 6= j

eηi (α)−η j (α)

)
1

X = 18X since X ∈ Ksl3(C),9(0, 0)2.
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By Lemmas A.2 and A.3, it is straightforward to show X ∈span{ωα1, ωα2, ωα1+α2}

and dim(Ksl3(C),9(0, 0)2)= 3. �
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