
Pacific
Journal of
Mathematics

SOFIC GROUPS: GRAPH PRODUCTS
AND GRAPHS OF GROUPS

LAURA CIOBANU, DEREK F. HOLT AND SARAH REES

Volume 271 No. 1 September 2014



PACIFIC JOURNAL OF MATHEMATICS
Vol. 271, No. 1, 2014

dx.doi.org/10.2140/pjm.2014.271.53

SOFIC GROUPS: GRAPH PRODUCTS
AND GRAPHS OF GROUPS

LAURA CIOBANU, DEREK F. HOLT AND SARAH REES

We prove that graph products of sofic groups are sofic, as are graphs of
groups for which vertex groups are sofic and edge groups are amenable.

1. Introduction

We prove the following results.

Theorem 1.1. A graph product of sofic groups is sofic.

Theorem 1.2. The fundamental group of a graph of groups is sofic if each vertex
group is sofic and each edge group is amenable.

Theorem 1.1 generalizes Theorem 1 of [Elek and Szabó 2006], and our proof is
based on ideas used in the proof of that theorem. Theorem 1.2 is an extension of the
result that free products of sofic groups amalgamated over amenable subgroups are
sofic, proved independently in [Elek and Szabó 2011, Theorem 1] and [Păunescu
2011, Corollary 2.3]; most of the argument needed to extend the result is already
found in [Collins and Dykema 2011, Corollary 3.6].

The term “sofic groups” is attributed to Weiss [2000] and applied to a definition
due to Gromov [1999]; this is a class of groups which, together with the related
class of hyperlinear groups, has inspired much recent study through its connections
to a variety of different mathematical areas. A very useful introduction to sofic
groups is provided by [Pestov 2008]. There are many open questions, including the
question of whether all groups are sofic.

A number of quite distinct, but equivalent, definitions exist for sofic groups
and are proved equivalent in [Pestov 2008]. The definition in [Weiss 2000] for
finitely generated groups involves finite subsets of the Cayley graph of the group
and is essentially the same as the definition in [Gromov 1999] of the Cayley graph
being initially subamenable. An alternative and equivalent definition of [Pestov
2008] defines a group to be sofic if it embeds as a subgroup in an ultraproduct
of symmetric groups. Another (equivalent) definition, found in [Elek and Szabó
2006], is phrased in terms of quasi-actions. We shall work with a variation of that
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definition, given below as Definition 1.4; we phrase it in terms of (what we call)
special quasi-actions. That this is equivalent to the definition of [Elek and Szabó
2006] (and hence to the others) follows from Lemma 2.1 of the same paper.

For a finite set A, let S(A) be the group of all permutations of A. For ε > 0,
we say that two elements f1, f2 of S(A) are ε-similar if the number of elements
a ∈ A for which f1(a) 6= f2(a) is at most ε|A|. Note that for ε ≥ 1 this condition
is always satisfied.

Definition 1.3. Suppose that G is a group, ε > 0 is a real number and F ⊆ G is a
finite subset of G. A special (F, ε)-quasi-action of G on a finite set A is a function
φ : G→ S(A) with the following properties:

(a) φ(1)= 1.

(b) φ(g)−1
= φ(g−1) for all g ∈ G.

(c) For g ∈ F \ {1}, φ(g) has no fixed points.

(d) For g1, g2 ∈ F the map φ(g1g2) is ε-similar to φ(g1)φ(g2).

For a ∈ A, g ∈ G, we write aφ(g) for the image of a under φ(g).

Definition 1.4. A group G is sofic if, for each number ε ∈ (0, 1) and any finite
subset F ⊆ G, G admits a special (F, ε)-quasi-action.

It is immediate from the definition that a group is sofic precisely if every one of
its finitely generated subgroups is sofic. We note at this stage also the following
elementary result, which will be useful to us later.

Lemma 1.5. Let φi be special (F, ε)-quasi-actions of G on Ai for 1≤ i ≤n, let A=
A1×· · ·× An , and define φ : G→ S(A) by (a1, . . . , an)

φ(g)
= (aφ1(g)

1 , . . . , aφn(g)
n ).

Then φ is a special (F, nε)-quasi-action.

Proof. The conditions (a), (b) and (c) of the definition are straightforward to check
for φ. The equality (a1, . . . , an)

φ(g1)φ(g2) = (a1, . . . , an)
φ(g1g2) holds whenever

aφi (g1)φi (g2)
i = aφi (g1g2)

i for each ai , which is the case for at least (1−ε)n|A| elements
(a1, . . . , an) ∈ A. The result now follows since (1− ε)n ≥ 1− nε for all n ≥ 1. �

This article contains two additional sections; Section 2 contains the proof of
Theorem 1.1 and Section 3 the proof of Theorem 1.2.

2. Proof of the graph product theorem

Let 0 be a simple graph and, for each vertex v of 0, let Gv be a group. The graph
product of the groups Gv with respect to 0 is defined to be the quotient of their free
product by the normal closure of the relators [gv, gw] for all gv ∈ Gv , gw ∈ Gw for
which {v,w} is an edge of 0. Graph products were introduced by Green [1990] in
her Ph.D. thesis, and their basic properties are established there. For a graph product
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of vertex groups G1, . . . ,Gn with respect to a finite graph 0 with vertices 1, . . . , n,
and for J ⊆ {1, . . . , n}, we define GJ := 〈G j | j ∈ J 〉. By [loc. cit., Proposition
3.31], GJ is isomorphic to the graph product of the groups G j ( j ∈ J ) on the full
subgraph of 0 with vertex set J . Note that G∅ is the trivial group.

Green only considered graph products of finitely many vertex groups, but the
definition applies equally well to graphs with infinite vertex sets I . Since any
relation in a group is a consequence of finitely many defining relations, the property
that, for any J ⊆ I , the group GJ is isomorphic to the graph product of G j ( j ∈ J )
on the full subgraph of 0 with vertex set J , extends to graph products with infinitely
many vertex groups. Hence, since a group is sofic if and only if all of its finitely
generated subgroups are sofic, it suffices to prove Theorem 1.1 for graph products
of finitely many groups, so we shall assume from now on that the graph 0 is finite.

Any nonidentity element in a graph product can be written as a product g1 · · · gl

for some l > 1, where each gi is a nontrivial element of a vertex group G ji . By
[Green 1990, Theorem 3.9], we can get from any such expression of minimal length
to any other by swapping the order in the expression of elements gi , gi+1 from
commuting vertex groups. Hence every minimal length expression for an element g
has the same length l, which we call the syllable length of g, and involves the
same set {g1, g2, . . . , gl} of vertex group elements with the same multiplicities, the
syllables of g. Whenever g1 · · · gl is a minimal length expression for g, we call
each product g1 · · · gi a left divisor of g and each product gi+1 · · · gn a right divisor
of g for 0≤ i ≤ n.

We also note that, for any finite subset of a graph product of groups Gi , there
is a bound N on the syllable lengths of its elements, and there are finite subsets
Fi of the vertex groups Gi that contain all the syllables of those elements. Hence
Theorem 1.1 follows from the following proposition.

Proposition 2.1. There is a function f : N→ N with the following property. Let
G1, . . . ,Gn be sofic groups and G be their graph product with respect to a finite
graph 0. Let ε > 0 be given, and for each i = 1, . . . n, let Fi be a finite subset of Gi ,
let Ai be a finite set, and suppose that ψi : Gi → S(Ai ) is a special (Fi , ε)-quasi-
action of Gi on Ai .

Then, for any N ∈N, G has a special (F, f (n)ε)-quasi-action φ on a finite set C ,
where F is the set of elements of G of syllable length at most N for which each
syllable is in some Fi , such that the following additional properties hold:

(1) whenever x, y are in distinct vertex groups, φ(xy)= φ(x)φ(y);

(2) C admits equivalence relations ∼1, . . . ,∼n such that, for each c ∈ C , g ∈ F
and J ⊆ {1, . . . , n},

cφ(g) ∼J c ⇐⇒ g ∈ GJ

(where ∼J is the join of those equivalence relations ∼ j for which j ∈ J ).
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Note, by definition, a ∼J b if and only if there is a sequence a = c1, . . . , cm = b
of elements with ci ∼ ji ci+1 for some ji ∈ J . In particular, x ∼∅ y⇐⇒ x = y.

Note that the conditions (1) and (2) imposed on the special quasi-action φ are
necessary for the inductive proof of the proposition, rather than to deduce the
theorem. Condition (1) ensures in particular that φ(x)φ(y)= φ(y)φ(x) whenever
x, y are from commuting vertex groups.

Proof. The proof is by induction on n. Suppose first that n = 1. Then G = G1

and F = F1 (for any value of N ∈ N). We put F := F1 and C := A1, and define
the equivalence relation ∼1 by c ∼1 d for all c, d ∈ C . Then φ is a special (F, ε)-
quasi-action on C , and the additional property (1) holds vacuously. To see that the
additional property (2) also holds, note that there are only two possibilities for J :
J = {1} and J =∅. If J = {1}, then G = GJ , so the left- and right-hand sides of
the equivalence in (2) are true for all g ∈ G. If J =∅ then, by the definition of a
special (F, ε)-quasi-action, both the left and right hand sides of the equivalence
are true if and only if g = 1. So the property (2) holds, and the statement of the
proposition is true with f (n)= 1.

Now we proceed to prove the inductive step. We shall prove that the result holds
with f (n)= n(n f (n− 1)+ 1).

Write I = {1, 2, . . . , n}, and for each k ∈ I , let Ik = I \ {k}. For each k ∈ I , let
Hk := G Ik be the subgroup of G that is the graph product of the groups Gi for
i 6= k with respect to the appropriate subgraph of 0. By the induction hypothesis,
we may assume that, for ε′ := f (n− 1)ε and FHk := F ∩ Hk , the subgroup Hk has
a special (FHk , ε

′)-quasi-action θk on a set Dk admitting equivalence relations 'k
i

for each i 6= k, such that

(1) θk(xy)= θk(x)θk(y) for x, y in distinct vertex groups of Hk ; and

(2) for d ∈ Dk , h ∈ FHk , and J ⊆ Ik , we have dθk(h) 'k
J d⇐⇒ h ∈ GJ .

For each k ∈ I , we shall build a set Ck related to Dk , admitting equivalence
relations ∼k

i for each i ∈ I , and then construct a special quasi-action φk of G
on Ck that satisfies (1) and more. We shall then construct φ and the equivalence
relations ∼1, . . . ,∼n on the set C := C1×C2× · · · ×Cn in terms of the special
quasi-actions φk and the equivalence relations ∼k

i using Lemma 1.5.
For k ∈ I , let Lk ⊆ Ik be the set of vertices joined in 0 to k. Let 'Lk be the join

of the equivalence relations 'k
i for i ∈ Lk , and let πk be the projection from Dk

to its set of equivalence classes under 'Lk (for which the image of d ∈ Dk is its
equivalence class).

Now, using ideas from [Elek and Szabó 2006, Theorem 1], we choose a finite
group Vk , with generating set πk(Dk) × Ak , for which all relators among the
generators have length greater than N , and we let the Ck := Dk × Ak × Vk .
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We define equivalence relations ∼k
i on Ck for i 6= k by the rules

(d, a, v)∼k
i (d
′, a′, v′) ⇐⇒ d 'k

i d ′, a = a′, v = v′.

Then we define ∼k
k on Ck by specifying its equivalence classes: for d ∈ Dk, v ∈ Vk ,

the class αk(d, v) is the subset {(d, a, v◦(πk(d), a)) :a∈ Ak} of Ck . Multiplication ◦
within the third component is the group multiplication of Vk .

We define a special quasi-action φk of G on Ck as a composite of natural
extensions to Ck of the special quasi-actions θk, ψk of Hk and Gk on Dk , Ak .

For h ∈ Hk , we define

(d, a, v)φk(h) = (dθk(h), a, v).

Then, for g ∈ Gk , we define

(d, a, v)φk(g) = (d, aψk(g), v ◦ (πk(d), a)−1
◦ (πk(d), aψk(g))).

Now it follows, essentially from [Green 1990, Lemma 3.20], that each element
g ∈ G has a unique expression as a product g = x1 y1 · · · xm ym , with each xi ∈ Hk ,
each yi ∈ Gk , xi nontrivial for i > 1, yi nontrivial for i < m, and such that, for
i > 1, xi has no nontrivial left divisor in the subgroup GLk ; we call this expression
the normal form for g (with respect to k). We note that the yi are syllables, the xi

are products of syllables and the number of terms is at most the syllable length of g.
We use that expression for g to extend to G the definitions of φk on Hk and Gk ;
that is, φk(g) := φk(x1)φk(y1) · · ·φk(xm)φk(ym) for g ∈ G.

We need now the following lemma, whose proof we defer.

Lemma 2.2. Let ε′′ := (n f (n− 1)+ 1)ε. Then, for each k, the map φk is a special
(F, ε′′)-quasi-action of G on Ck , such that

(1) whenever x, y are in distinct vertex groups, φk(xy)= φk(x)φk(y);

(2′) for each c ∈ Ck , g ∈ F , we have g ∈ GJ ⇒ cφk(g) ∼k
J c for all J ⊆ I , and

cφk(g) ∼k
J c⇒ g ∈ GJ for all J ⊆ Ik .

Let C :=C1×· · ·×Cn . Now we define a map φ :G→S(C) by (c1, . . . , cn)
φ(g)
=

(cφ1(g)
1 , . . . , cφn(g)

n ). It follows from Lemma 1.5 that this is a (F, f (n)ε)-quasi-action
with f (n)= n(n f (n− 1)+ 1). Condition (1) of the proposition is inherited from
the maps φk .

We define equivalence relations∼1, . . . ,∼n on C by (c1, . . . , cn)∼ j (c′1, . . . , c′n)
if and only if ck ∼

k
j c′k for 1≤ k ≤ n. We need now to verify condition (2).

Let J ⊆ I . The fact that g ∈ GJ implies that cφ(g) ∼J c for all c ∈ C is
inherited from the maps φk . If J = I , then G = GJ and the converse statement is
immediate. Otherwise we have J ⊆ Ik for some k with 1≤ k ≤ n. If g 6∈ GJ and
c = (c1, . . . , cn) ∈ C , then cφk(g)

k 6∼
k
J ck and hence cφ(g) 6∼J c.

So the proof of the proposition will be complete once we prove Lemma 2.2. �
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Proof of Lemma 2.2: Note that since θk is a special (FHk , ε
′)-quasi-action for Hk ,

it is clear that the restriction of φk to Hk is as well. Certainly that restriction
preserves each of the ∼k

i equivalence classes with i 6= k. Since ψk is a special
(F ∩ Gk, ε)-quasi-action for Gk , it is clear that the restriction of φk to Gk is as
well. That restriction preserves the ∼k

k equivalence classes, since both (d, a, v) and
(d, a, v)φk(g) are in αk(d, v ◦ (πk(d), a)−1).

The equation (d,a, v)φk(1G)= (d,a, v) follows immediately from (d,a, v)φk(h)=

(dθk(h),a, v) for h ∈ Hk , and hence condition (a) of Definition 1.3 is verified for φk .
We shall verify the remaining conditions in the order (c), (1), (b), (d), (2′).
First we introduce some notation. We need to consider φk(g) for a general

element g in the graph product, written in normal form as x1 y1 · · · xm ym . For
0≤ i ≤ m, we write 2k(x, i) for the product θk(x1) · · · θk(xi ) and 9k(y, i) for the
product ψk(y1) · · ·ψk(yi ), where 2k(x, 0)=9k(y, 0)= 1.

We see then that

(d, a, v)φk(g) = (d, a, v)φk(x1)φk(y1)···φk(xm)φk(ym) = (d2k(x,m), a9k(y,m), v ◦ u),

where

u =
m∏

i=1

(πk(d2k(x,i)), a9k(y,i−1))−1
◦ (πk(d2k(x,i)), a9k(y,i)),

unless ym is the identity, in which case the product for u is from i = 1 to m− 1.
Our next step is to establish condition (c) of Definition 1.3 for φk . Let g be

a nontrivial element of F with normal form x1 y1 · · · xm ym . Then 2m ≤ N , and
xi ∈ FHk and yi ∈ Fk for 1≤ i ≤ m.

Suppose first that u, in the above expression, is not the empty word. Since ψk

is a special quasi-action, condition (c) for ψk implies that a9k(y,i−1)
6= a9k(y,i) for

each i . Since xi+1 6∈ GLk , it follows from the induction hypothesis that θk(xi+1)

cannot map any element of Dk to an element in the same 'Lk equivalence class,
and hence πk(d2k(x,i)) 6= πk(d2k(x,i+1)). Thus no generator in the word of length
2m representing u can freely cancel with the generator either before it or after it.
The fact that V admits no short relators now ensures that u is nontrivial. In that
case certainly (d, a, v)φk(g) 6= (d, a, v).

Now suppose that u is empty. Then m = 1, y1 is trivial and g = x1. Since 1 6= g,
we have dθk(x1) 6= d and again we have (d, a, v)φk(g) = (dθk(x1), a, v) 6= (d, a, v).

Hence we have shown that the map φk from G to S(Ck) allows no nonidentity
element of length less than N in F to fix any element of Ck , and so condition (c) is
verified for φk .

In order to establish condition (1) of the lemma for φk , we suppose first that
x ∈ GLk and y ∈ Gk . By definition, φk(xy)= φk(x)φk(y), and

(d, a, v)φk(x)φk(y) = (dθk(x), aψk(y), v ◦ (πk(dθk(x)), a)−1
◦ (πk(dθk(x)), aψk(y))),
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while

(d, a, v)φk(y)φk(x) = (d, aψk(y), v ◦ (πk(d), a)−1) ◦ (πk(d), aψk(y)))φk(x)

= (dθk(x), aψk(y), v ◦ (πk(d), a)−1
◦ (πk(d), aψk(y))).

Then since d 'Lk dθk(x), we have πk(d)= πk(dθk(x)), and so

(d, a, v)φk(x)φk(y) = (d, a, v)φk(y)φk(x);

that is, for x ∈ GLk , y ∈ Gk , we have φk(xy)= φk(x)φk(y)= φk(y)φk(x).
Now suppose that x, y are in distinct vertex groups Gi ,G j . If i, j 6= k then

condition (1) follows immediately by induction applied to Gk . If j = k, or if i = k
and Gi ,G j do not commute, then xy is in normal form, and condition (1) follows
from the definition of φk . Finally if i = k and Gi ,G j commute, then x ∈ Gk ,
y ∈ GLk , and we can deduce condition (1) for φk from the result above.

Next suppose that g = x1 y1 · · · xm ym ∈ G, where the expression is in normal
form. We compare φk(g)−1 and φk(g−1). We have g−1

= y−1
m x−1

m · · · y
−1
1 x−1

1 . The
expression for g−1 need not be in normal form because some of the x−1

i could have
left divisors in GLk , but we can put it into normal form by splitting any such x−1

i into
syllables and then applying commuting relations to move left divisors of x−1

i in GLk

past y−1
i . By the results of the preceding two paragraphs, if we apply the correspond-

ing transformations to φk(y−1
m )φk(x−1

m ) · · ·φk(y−1
1 )φk(x−1

1 ), then we do not change
the resulting permutation. Hence φk(g−1) = φk(y−1

m )φk(x−1
m ) · · ·φk(y−1

1 )φk(x−1
1 ).

It follows from condition (b) of Definition 1.3 that φk(y−1
i ) is inverse to φk(yi )

and from the induction hypothesis on Hk that φk(x−1
i ) is inverse to φk(xi ). Hence

φk(g−1)= φk(g)−1, which verifies condition (b) for φk .
We proceed now to verify condition (d) of Definition 1.3 for φk , that is, to

show that φk(g1g2) is ε′′-similar to φk(g1)φk(g2) for all g1, g2 ∈ F . Let g1 =

x1 y1 · · · xm ym , g2 = x ′1 y′1 · · · x
′
p y′p be the normal forms of g1, g2 ∈ F . In the

following discussion, we refer to an element of Hk or of Gk as a block, and to a
product of blocks as an expression. The normal form for g1g2 is derived from the
concatenation x1 y1 · · · xm ym x ′1 y′1 · · · x

′
p y′p by a sequence of moves, each of which

is one of four types:

(a) deletion of a block that is equal to the identity;

(b) cancellation (that is, merger of two adjacent mutually inverse blocks that are
either both in Hk or both in Gk);

(c) expression of a block in Hk as a product of a left divisor in GLk and a right
divisor, and moving the left divisor to the left, past a block in Gk ;

(d) merger of two adjacent blocks that are either both in Hk or both in Gk , and
whose product is not the identity, to give a new block from that same subgroup.
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Note that in (c) the left and right divisors of a block in Hk are simply subblocks
whose concatenation is a permutation of the original block; that is, the (multi)set
of syllables of the block in Hk is the union of the (multi)sets of syllables of those
left and right divisors. By contrast, a move of type (d) will normally change the
(multi)set of syllables in an expression. Starting with the permutation

φk(x1)φk(y1) · · ·φk(xm)φk(ym)φk(x ′1)φk(y′1) · · ·φk(x ′p)φk(y′p),

we study the sequence of composites of permutations of Ck defined by the various
expressions that arise when we apply the corresponding operations to this expression
of images during this rewrite process and keep track of the proportion of elements
of Ck on which they differ. We note that, as a consequence of what we have proved
so far, two expressions that differ only on moves of types (a), (b) and (c) correspond
to composites of permutations that have the same effect on all points of Ck . Hence
we only need to concern ourselves with moves of type (d).

Suppose that a move converts an expression w to an expression w′. Let σ, σ ′ be
the permutations corresponding to the two expressions. If the move merges two
blocks from Gk , then the permutations σ and σ ′ differ on the same proportion of
elements of Ck as do permutations for the quasi-action of Gk on the set Ak , that is,
on at most ε|Ck | of the elements, by the hypothesis.

If the move merges two blocks from Hk , then the permutations σ and σ ′ differ
on the same proportion of elements of Ck as do permutations for the quasi-action of
Hk on the set Dk , that is, on at most f (n−1)ε|Ck | of the elements by the induction
hypothesis. Notice however that if the two blocks z1, z2 being merged are left and
right divisors of z1z2 (or, equivalently, if the syllable length of z1z2 is the sum of
the syllable lengths of z1 and z2), then our induction hypothesis on Hk ensures
that φk(z1z2)= φk(z1)φk(z2). We shall call such mergers nonreducing, and other
mergers, for which this equality is not guaranteed to hold, reducing. Condition (d)
of Definition 1.3 can now be now established by applying the following lemma.

Lemma 2.3. During the rewrite process, we perform at most n reducing mergers
of blocks of Hk and at most one reducing merger of blocks of Gk .

Proof. We may assume that m, p > 0 (since otherwise one of g1, g2 is the identity)
and split the proof into three cases (1) 1 6= ym and x ′1 6∈ GLk ; (2) ym = 1; and (3)
1 6= ym and x ′1 6∈ GLk .

We deal with Case 1 first, proving by induction on m that in this case the product
can be rewritten using at most |Lk | mergers, all of which are within Hk . Using that
result we deal with the remaining two cases together, also using induction on m.

Case 1: 1 6= ym and x ′1 6∈ GLk . Let x ′1 = z1z2, where z1 is the longest left divisor
of x ′1 in GLk . Suppose that z1 ∈ GL ′ for some L ′ ⊆ Lk . We prove by induction
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on m that this product can be rewritten using at most |L ′| (≤ |Lk |) Hk-mergers and
no Gk-mergers.

If m = 1 then there can be at most one Hk-merger x1z1, so the result is clear.
So suppose that m > 1; then ym−1 6= 1, and xm is nontrivial with no left divisor
in GL . If z1 commutes with xm , then the claim follows by induction applied to
the product (x1 y1 · · · xm−1 ym−1)(z1xm ymz2 y′1 · · · x

′
p y′p). Otherwise, we can write

z1 = z11z12, where z11 (which may be trivial) is the longest left divisor of z1 that
commutes with xm . So z11 ∈ GL ′′ with |L ′′| < |L ′|. We can then perform the
rewriting by performing an Hk-merger xmz12 (if necessary) and, by induction, at
most |L ′′| further Hk-mergers resulting from moving z11 further to the left. This
completes the proof of the claim and of the lemma in Case 1.

So now we may assume that m, p > 0, and that we are in Case 2 or 3.

Case 2: ym = 1. If m = 1, then there is at most one Hk-merger x1x ′1, and the
result holds. So suppose that m > 1 and hence that ym−1 6= 1, and xm is nontrivial
with no left divisor in GLk .

If xm x ′1 6∈ GLk , then we perform an Hk-merger (if necessary) on xm x ′1, and
now observe that the product (x1 y1 · · · xm−1 ym−1)(xm x ′1 y′1 · · · x

′
p y′p) satisfies the

conditions of Case 1 and thus can be rewritten using at most |Lk | further Hk-mergers
and no Gk-mergers. So in this case too, the lemma is proved.

If xm x ′1 ∈ GLk then, since xm has no left divisor in GLk , the product xm x ′1 can
be evaluated by writing xm and x ′1 as products of syllables and then performing
commuting and cancellation moves only so we can rewrite xm x ′1 as z ∈GLk , without
performing any mergers, to arrive at the product

(x1 y1 · · · xm−1 ym−1)(zy′1 · · · x
′

p y′p),

which satisfies the conditions of Case 3 for m − 1. The lemma now follows by
induction applied to that product.

Case 3: 1 6= ym and x ′1 ∈ GLk . If ym y′1 6= 1, we perform the Gk-merger ym y′1 and
the Hk-merger xm x ′1 (which cannot be in GLk since xm 6∈ GLk , x ′1 ∈ GLk ). Then we
apply the result of Case 1 to the product (x1 y1 · · · xm−1 ym−1)(xm x ′1 ym y′1 · · · x

′
p y′p),

and the proof is complete.
If ym y′1 = 1 then the result is clear if p = 1 and otherwise, since x ′2 has no left

divisor in GLk , the merger x ′1x ′2 is nonreducing, so the result follows by applying
Case 2 to the product (x1 y1 · · · xm−1 ym−1xm)(x ′1x ′2 y′2 · · · x

′
p y′p). �

This completes the proof of condition (d), and hence we see that φk is a special
(F, ε′′)-quasi-action, with ε′′ = (n f (n− 1)+ 1)ε.

It remains to verify condition (2′). We have shown already that, for each i ∈ I ,
the action of φk(Gi ) on C preserves each of the∼k

i -equivalence classes, from which
it follows immediately that g ∈ GJ with J ⊆ I implies cφk(g) ∼k

J c.
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Now suppose that J ⊆ Ik , c = (d, a, v) ∈ Ck , g ∈ F , and that cφk(g) ∼k
J c. Since

k 6∈ J , it is immediate from the definition of ∼k
j for j ∈ J that

(d, a, v)∼k
J (d

′, a′, v′) ⇐⇒ d 'k
J d ′, a = a′, v = v′.

Now, arguing as in our earlier proof of condition (c) of Definition 1.3 for φk

that (d, a, v)φk(g) 6= (d, a, v) for 1 6= g ∈ F , we find that, for g ∈ F , we have
(d, a, v)φk(g) ∼k

J (d, a, v) if and only if g ∈ Hk and dθk(g) 'k
J d. By our inductive

hypothesis, this is true if and only if g ∈ GJ . Hence condition (2′) holds. �

3. Graphs of groups

In this section we prove Theorem 1.2. We start by recalling the definition of a graph
of groups, which arises from the work of Bass and Serre (see [Serre 1977]).

Definition 3.1. A graph of groups G consists of

(1) a connected graph 0 (in which loops are allowed, but no multiple edges), with
vertex set V , edge set E ,

(2) a collection of vertex groups Gv : v ∈ V and edge groups Ge : e ∈ E ,

(3) monomorphisms θ1
e :Ge→Gv1 and θ2

e :Ge→Gv2 for each edge e= {v1, v2}.

The fundamental group π1(G) of a graph of groups G can defined in various
different (but equivalent) ways. The following definition is essentially [Dicks and
Dunwoody 1989, Definition I.3.4]. The definition is given in terms of a selected
spanning tree T of 0, but (up to isomorphism) the resulting group is independent of
this choice. The associated fundamental group π1(G, T ) is then the group generated
by the groups Gv : v ∈ V together with generators te, one for each (oriented) edge
in E), given the following relations:

(1) all the relations of the groups Gv,

(2) t−1
e θ1

e (g)te = θ
2
e (g) for each e ∈ E, g ∈ Ge,

(3) te = 1 for each edge e of T .

From this description it is not hard to see that π1(G, T ) is isomorphic to a multiple
HNN extension, with stable letters te for e 6∈ E(T ), of the amalgamated product
of the groups Gv in which θ1

e (g) and θ2
e (g) are identified for all e ∈ E(T ), g ∈ Ge.

Independent results of Elek and Szabó [2011, Theorem 1] and Păunescu [2011,
Corollary 2.3] already prove that the amalgamated product of two sofic groups
over an amenable subgroup is sofic. Hence Theorem 1.2 follows immediately by
combining that result with the following proposition.

Proposition 3.2. An HNN extension of a sofic group H over an amenable subgroup
K is sofic.
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We deduce Proposition 3.2 as a corollary of the amalgamated product result. We
note that the argument to do this was already provided by Collins and Dykema [2011]
in order to deduce Corollary 3.6 from their Theorem 3.4, that is to deduce the same
result as above in the situation where the associated subgroups (in both amalgamated
products and HNN extensions) are monotileably amenable. This argument goes
through without any modification, when monotileability of the associated subgroup
is dropped, to deduce the proposition from the results of [Elek and Szabó 2011;
Păunescu 2011], but we include the argument here for completeness.

Proof. Let G be an HNN extension of H over K , as in the proposition, and let L
be the subgroup t−1K t . Define Hi = t−i Ht i , Ki = t−i K t i , L i = t−i Lt i for each
i ∈ Z, and define S := 〈Hi | i ∈ Z〉. Then G can be expressed as an extension of
S by Z. Since Z is amenable, and by [Elek and Szabó 2006, Theorem 1(3)] an
extension of a sofic group by an amenable group is sofic, in order to prove G is
sofic it is enough to prove S is sofic.

Now S can be expressed as an iterated amalgamated product of the (countably
many) Hi with amalgamation over subgroups isomorphic to K . More precisely,
S is the fundamental group of the graph of groups H associated with the graph
of the integers, where Hi is the vertex group of the vertex i , each edge group is
isomorphic to K , and the copy of K associated with edge {i, i + 1} maps to the
subgroup L i of Hi and the subgroup Ki+1 of Hi+1. Here is a diagram of H:

· · · Hi−1
L i−1←↩ ↪→Ki

Hi
L i←↩ ↪→Ki+1

Hi+1
L i+1←↩ ↪→Ki+2

Hi+2 · · ·

To prove S is sofic we now need to verify soficity for each of its finitely generated
subgroups. So let M be such a subgroup. Then, for some k, l, all the generators
of M are within vertex subgroups Hi for k ≤ i ≤ l; that is, M is a subgroup of the
amalgamated product H j ∗L j=K j+1 H j+1 ∗L j+1=K j+2 ∗ · · · ∗Ll−1=Kl Hl . Since this is
sofic, by [Elek and Szabó 2011; Păunescu 2011], so is M . �
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