Pacific

Journal of Mathematics

SOFIC GROUPS: GRAPH PRODUCTS
 AND GRAPHS OF GROUPS

Laura Ciobanu, Derek F. Holt and Sarah Rees

SOFIC GROUPS: GRAPH PRODUCTS AND GRAPHS OF GROUPS

Laura Ciobanu, Derek F. Holt and Sarah Rees

Abstract

We prove that graph products of sofic groups are sofic, as are graphs of groups for which vertex groups are sofic and edge groups are amenable.

1. Introduction

We prove the following results.
Theorem 1.1. A graph product of sofic groups is sofic.
Theorem 1.2. The fundamental group of a graph of groups is sofic if each vertex group is sofic and each edge group is amenable.

Theorem 1.1 generalizes Theorem 1 of [Elek and Szabó 2006], and our proof is based on ideas used in the proof of that theorem. Theorem 1.2 is an extension of the result that free products of sofic groups amalgamated over amenable subgroups are sofic, proved independently in [Elek and Szabó 2011, Theorem 1] and [Păunescu 2011, Corollary 2.3]; most of the argument needed to extend the result is already found in [Collins and Dykema 2011, Corollary 3.6].

The term "sofic groups" is attributed to Weiss [2000] and applied to a definition due to Gromov [1999]; this is a class of groups which, together with the related class of hyperlinear groups, has inspired much recent study through its connections to a variety of different mathematical areas. A very useful introduction to sofic groups is provided by [Pestov 2008]. There are many open questions, including the question of whether all groups are sofic.

A number of quite distinct, but equivalent, definitions exist for sofic groups and are proved equivalent in [Pestov 2008]. The definition in [Weiss 2000] for finitely generated groups involves finite subsets of the Cayley graph of the group and is essentially the same as the definition in [Gromov 1999] of the Cayley graph being initially subamenable. An alternative and equivalent definition of [Pestov 2008] defines a group to be sofic if it embeds as a subgroup in an ultraproduct of symmetric groups. Another (equivalent) definition, found in [Elek and Szabó 2006], is phrased in terms of quasi-actions. We shall work with a variation of that

[^0]definition, given below as Definition 1.4 ; we phrase it in terms of (what we call) special quasi-actions. That this is equivalent to the definition of [Elek and Szabó 2006] (and hence to the others) follows from Lemma 2.1 of the same paper.

For a finite set A, let $\mathcal{S}(A)$ be the group of all permutations of A. For $\epsilon>0$, we say that two elements f_{1}, f_{2} of $\mathcal{S}(A)$ are ϵ-similar if the number of elements $a \in A$ for which $f_{1}(a) \neq f_{2}(a)$ is at most $\epsilon|A|$. Note that for $\epsilon \geq 1$ this condition is always satisfied.

Definition 1.3. Suppose that G is a group, $\epsilon>0$ is a real number and $F \subseteq G$ is a finite subset of G. A special (F, ϵ)-quasi-action of G on a finite set A is a function $\phi: G \rightarrow \mathcal{S}(A)$ with the following properties:
(a) $\phi(1)=1$.
(b) $\phi(g)^{-1}=\phi\left(g^{-1}\right)$ for all $g \in G$.
(c) For $g \in F \backslash\{1\}, \phi(g)$ has no fixed points.
(d) For $g_{1}, g_{2} \in F$ the map $\phi\left(g_{1} g_{2}\right)$ is ϵ-similar to $\phi\left(g_{1}\right) \phi\left(g_{2}\right)$.

For $a \in A, g \in G$, we write $a^{\phi(g)}$ for the image of a under $\phi(g)$.
Definition 1.4. A group G is sofic if, for each number $\epsilon \in(0,1)$ and any finite subset $F \subseteq G, G$ admits a special (F, ϵ)-quasi-action.

It is immediate from the definition that a group is sofic precisely if every one of its finitely generated subgroups is sofic. We note at this stage also the following elementary result, which will be useful to us later.

Lemma 1.5. Let ϕ_{i} be special (F, ϵ)-quasi-actions of G on A_{i} for $1 \leq i \leq n$, let $A=$ $A_{1} \times \cdots \times A_{n}$, and define $\phi: G \rightarrow \mathcal{S}(A)$ by $\left(a_{1}, \ldots, a_{n}\right)^{\phi(g)}=\left(a_{1}^{\phi_{1}(g)}, \ldots, a_{n}^{\phi_{n}(g)}\right)$. Then ϕ is a special $(F, n \epsilon)$-quasi-action.

Proof. The conditions (a), (b) and (c) of the definition are straightforward to check for ϕ. The equality $\left(a_{1}, \ldots, a_{n}\right)^{\phi\left(g_{1}\right) \phi\left(g_{2}\right)}=\left(a_{1}, \ldots, a_{n}\right)^{\phi\left(g_{1} g_{2}\right)}$ holds whenever $a_{i}^{\phi_{i}\left(g_{1}\right) \phi_{i}\left(g_{2}\right)}=a_{i}^{\phi_{i}\left(g_{1} g_{2}\right)}$ for each a_{i}, which is the case for at least $(1-\epsilon)^{n}|A|$ elements $\left(a_{1}, \ldots, a_{n}\right) \in A$. The result now follows since $(1-\epsilon)^{n} \geq 1-n \epsilon$ for all $n \geq 1$. \square

This article contains two additional sections; Section 2 contains the proof of Theorem 1.1 and Section 3 the proof of Theorem 1.2.

2. Proof of the graph product theorem

Let Γ be a simple graph and, for each vertex v of Γ, let G_{v} be a group. The graph product of the groups G_{v} with respect to Γ is defined to be the quotient of their free product by the normal closure of the relators $\left[g_{v}, g_{w}\right.$] for all $g_{v} \in G_{v}, g_{w} \in G_{w}$ for which $\{v, w\}$ is an edge of Γ. Graph products were introduced by Green [1990] in her Ph.D. thesis, and their basic properties are established there. For a graph product
of vertex groups G_{1}, \ldots, G_{n} with respect to a finite graph Γ with vertices $1, \ldots, n$, and for $J \subseteq\{1, \ldots, n\}$, we define $G_{J}:=\left\langle G_{j} \mid j \in J\right\rangle$. By [loc. cit., Proposition 3.31], G_{J} is isomorphic to the graph product of the groups $G_{j}(j \in J)$ on the full subgraph of Γ with vertex set J. Note that G_{\varnothing} is the trivial group.

Green only considered graph products of finitely many vertex groups, but the definition applies equally well to graphs with infinite vertex sets I. Since any relation in a group is a consequence of finitely many defining relations, the property that, for any $J \subseteq I$, the group G_{J} is isomorphic to the graph product of $G_{j}(j \in J)$ on the full subgraph of Γ with vertex set J, extends to graph products with infinitely many vertex groups. Hence, since a group is sofic if and only if all of its finitely generated subgroups are sofic, it suffices to prove Theorem 1.1 for graph products of finitely many groups, so we shall assume from now on that the graph Γ is finite.

Any nonidentity element in a graph product can be written as a product $g_{1} \cdots g_{l}$ for some $l>1$, where each g_{i} is a nontrivial element of a vertex group $G_{j_{i}}$. By [Green 1990, Theorem 3.9], we can get from any such expression of minimal length to any other by swapping the order in the expression of elements g_{i}, g_{i+1} from commuting vertex groups. Hence every minimal length expression for an element g has the same length l, which we call the syllable length of g, and involves the same set $\left\{g_{1}, g_{2}, \ldots, g_{l}\right\}$ of vertex group elements with the same multiplicities, the syllables of g. Whenever $g_{1} \cdots g_{l}$ is a minimal length expression for g, we call each product $g_{1} \cdots g_{i}$ a left divisor of g and each product $g_{i+1} \cdots g_{n}$ a right divisor of g for $0 \leq i \leq n$.

We also note that, for any finite subset of a graph product of groups G_{i}, there is a bound N on the syllable lengths of its elements, and there are finite subsets F_{i} of the vertex groups G_{i} that contain all the syllables of those elements. Hence Theorem 1.1 follows from the following proposition.
Proposition 2.1. There is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ with the following property. Let G_{1}, \ldots, G_{n} be sofic groups and G be their graph product with respect to a finite graph Γ. Let $\epsilon>0$ be given, and for each $i=1, \ldots n$, let F_{i} be a finite subset of G_{i}, let A_{i} be a finite set, and suppose that $\psi_{i}: G_{i} \rightarrow \mathcal{S}\left(A_{i}\right)$ is a special $\left(F_{i}, \epsilon\right)$-quasiaction of G_{i} on A_{i}.

Then, for any $N \in \mathbb{N}, G$ has a special $(F, f(n) \epsilon)$-quasi-action ϕ on a finite set C, where F is the set of elements of G of syllable length at most N for which each syllable is in some F_{i}, such that the following additional properties hold:
(1) whenever x, y are in distinct vertex groups, $\phi(x y)=\phi(x) \phi(y)$;
(2) C admits equivalence relations $\sim_{1}, \ldots, \sim_{n}$ such that, for each $c \in C, g \in F$ and $J \subseteq\{1, \ldots, n\}$,

$$
c^{\phi(g)} \sim_{J} c \Longleftrightarrow g \in G_{J}
$$

(where \sim_{J} is the join of those equivalence relations \sim_{j} for which $j \in J$).

Note, by definition, $a \sim_{J} b$ if and only if there is a sequence $a=c_{1}, \ldots, c_{m}=b$ of elements with $c_{i} \sim_{j_{i}} c_{i+1}$ for some $j_{i} \in J$. In particular, $x \sim_{\varnothing} y \Longleftrightarrow x=y$.

Note that the conditions (1) and (2) imposed on the special quasi-action ϕ are necessary for the inductive proof of the proposition, rather than to deduce the theorem. Condition (1) ensures in particular that $\phi(x) \phi(y)=\phi(y) \phi(x)$ whenever x, y are from commuting vertex groups.

Proof. The proof is by induction on n. Suppose first that $n=1$. Then $G=G_{1}$ and $F=F_{1}$ (for any value of $N \in \mathbb{N}$). We put $F:=F_{1}$ and $C:=A_{1}$, and define the equivalence relation \sim_{1} by $c \sim_{1} d$ for all $c, d \in C$. Then ϕ is a special $(F, \epsilon)-$ quasi-action on C, and the additional property (1) holds vacuously. To see that the additional property (2) also holds, note that there are only two possibilities for J : $J=\{1\}$ and $J=\varnothing$. If $J=\{1\}$, then $G=G_{J}$, so the left- and right-hand sides of the equivalence in (2) are true for all $g \in G$. If $J=\varnothing$ then, by the definition of a special (F, ϵ)-quasi-action, both the left and right hand sides of the equivalence are true if and only if $g=1$. So the property (2) holds, and the statement of the proposition is true with $f(n)=1$.

Now we proceed to prove the inductive step. We shall prove that the result holds with $f(n)=n(n f(n-1)+1)$.

Write $I=\{1,2, \ldots, n\}$, and for each $k \in I$, let $I_{k}=I \backslash\{k\}$. For each $k \in I$, let $H_{k}:=G_{I_{k}}$ be the subgroup of G that is the graph product of the groups G_{i} for $i \neq k$ with respect to the appropriate subgraph of Γ. By the induction hypothesis, we may assume that, for $\epsilon^{\prime}:=f(n-1) \epsilon$ and $F_{H_{k}}:=F \cap H_{k}$, the subgroup H_{k} has a special $\left(F_{H_{k}}, \epsilon^{\prime}\right)$-quasi-action θ_{k} on a set D_{k} admitting equivalence relations \simeq_{i}^{k} for each $i \neq k$, such that
(1) $\theta_{k}(x y)=\theta_{k}(x) \theta_{k}(y)$ for x, y in distinct vertex groups of H_{k}; and
(2) for $d \in D_{k}, h \in F_{H_{k}}$, and $J \subseteq I_{k}$, we have $d^{\theta_{k}(h)} \simeq_{J}^{k} d \Longleftrightarrow h \in G_{J}$.

For each $k \in I$, we shall build a set C_{k} related to D_{k}, admitting equivalence relations \sim_{i}^{k} for each $i \in I$, and then construct a special quasi-action ϕ_{k} of G on C_{k} that satisfies (1) and more. We shall then construct ϕ and the equivalence relations $\sim_{1}, \ldots, \sim_{n}$ on the set $C:=C_{1} \times C_{2} \times \cdots \times C_{n}$ in terms of the special quasi-actions ϕ_{k} and the equivalence relations \sim_{i}^{k} using Lemma 1.5.

For $k \in I$, let $L_{k} \subseteq I_{k}$ be the set of vertices joined in Γ to k. Let $\simeq_{L_{k}}$ be the join of the equivalence relations \simeq_{i}^{k} for $i \in L_{k}$, and let π_{k} be the projection from D_{k} to its set of equivalence classes under $\simeq_{L_{k}}$ (for which the image of $d \in D_{k}$ is its equivalence class).

Now, using ideas from [Elek and Szabó 2006, Theorem 1], we choose a finite group V_{k}, with generating set $\pi_{k}\left(D_{k}\right) \times A_{k}$, for which all relators among the generators have length greater than N, and we let the $C_{k}:=D_{k} \times A_{k} \times V_{k}$.

We define equivalence relations \sim_{i}^{k} on C_{k} for $i \neq k$ by the rules

$$
(d, a, v) \sim_{i}^{k}\left(d^{\prime}, a^{\prime}, v^{\prime}\right) \Longleftrightarrow d \simeq_{i}^{k} d^{\prime}, a=a^{\prime}, v=v^{\prime} .
$$

Then we define \sim_{k}^{k} on C_{k} by specifying its equivalence classes: for $d \in D_{k}, v \in V_{k}$, the class $\alpha_{k}(d, v)$ is the subset $\left\{\left(d, a, v \circ\left(\pi_{k}(d), a\right)\right): a \in A_{k}\right\}$ of C_{k}. Multiplication ○ within the third component is the group multiplication of V_{k}.

We define a special quasi-action ϕ_{k} of G on C_{k} as a composite of natural extensions to C_{k} of the special quasi-actions θ_{k}, ψ_{k} of H_{k} and G_{k} on D_{k}, A_{k}.

For $h \in H_{k}$, we define

$$
(d, a, v)^{\phi_{k}(h)}=\left(d^{\theta_{k}(h)}, a, v\right) .
$$

Then, for $g \in G_{k}$, we define

$$
(d, a, v)^{\phi_{k}(g)}=\left(d, a^{\psi_{k}(g)}, v \circ\left(\pi_{k}(d), a\right)^{-1} \circ\left(\pi_{k}(d), a^{\psi_{k}(g)}\right)\right) .
$$

Now it follows, essentially from [Green 1990, Lemma 3.20], that each element $g \in G$ has a unique expression as a product $g=x_{1} y_{1} \cdots x_{m} y_{m}$, with each $x_{i} \in H_{k}$, each $y_{i} \in G_{k}, x_{i}$ nontrivial for $i>1, y_{i}$ nontrivial for $i<m$, and such that, for $i>1, x_{i}$ has no nontrivial left divisor in the subgroup $G_{L_{k}}$; we call this expression the normal form for g (with respect to k). We note that the y_{i} are syllables, the x_{i} are products of syllables and the number of terms is at most the syllable length of g. We use that expression for g to extend to G the definitions of ϕ_{k} on H_{k} and G_{k}; that is, $\phi_{k}(g):=\phi_{k}\left(x_{1}\right) \phi_{k}\left(y_{1}\right) \cdots \phi_{k}\left(x_{m}\right) \phi_{k}\left(y_{m}\right)$ for $g \in G$.

We need now the following lemma, whose proof we defer.
Lemma 2.2. Let $\epsilon^{\prime \prime}:=(n f(n-1)+1) \epsilon$. Then, for each k, the map ϕ_{k} is a special ($F, \epsilon^{\prime \prime}$)-quasi-action of G on C_{k}, such that
(1) whenever x, y are in distinct vertex groups, $\phi_{k}(x y)=\phi_{k}(x) \phi_{k}(y)$;
(2') for each $c \in C_{k}, g \in F$, we have $g \in G_{J} \Rightarrow c^{\phi_{k}(g)} \sim_{J}^{k} c$ for all $J \subseteq I$, and $c^{\phi_{k}(g)} \sim_{J}^{k} c \Rightarrow g \in G_{J}$ for all $J \subseteq I_{k}$.
Let $C:=C_{1} \times \cdots \times C_{n}$. Now we define a map $\phi: G \rightarrow \mathcal{S}(C)$ by $\left(c_{1}, \ldots, c_{n}\right)^{\phi(g)}=$ $\left(c_{1}^{\phi_{1}(g)}, \ldots, c_{n}^{\phi_{n}(g)}\right)$. It follows from Lemma 1.5 that this is a $(F, f(n) \epsilon)$-quasi-action with $f(n)=n(n f(n-1)+1)$. Condition (1) of the proposition is inherited from the maps ϕ_{k}.

We define equivalence relations $\sim_{1}, \ldots, \sim_{n}$ on C by $\left(c_{1}, \ldots, c_{n}\right) \sim_{j}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)$ if and only if $c_{k} \sim_{j}^{k} c_{k}^{\prime}$ for $1 \leq k \leq n$. We need now to verify condition (2).

Let $J \subseteq I$. The fact that $g \in G_{J}$ implies that $c^{\phi(g)} \sim_{J} c$ for all $c \in C$ is inherited from the maps ϕ_{k}. If $J=I$, then $G=G_{J}$ and the converse statement is immediate. Otherwise we have $J \subseteq I_{k}$ for some k with $1 \leq k \leq n$. If $g \notin G_{J}$ and $c=\left(c_{1}, \ldots, c_{n}\right) \in C$, then $c_{k}^{\phi_{k}(g)} \chi_{J}^{k} c_{k}$ and hence $c^{\phi(g)} \not{ }_{J} c$.

So the proof of the proposition will be complete once we prove Lemma 2.2.

Proof of Lemma 2.2: Note that since θ_{k} is a special $\left(F_{H_{k}}, \epsilon^{\prime}\right)$-quasi-action for H_{k}, it is clear that the restriction of ϕ_{k} to H_{k} is as well. Certainly that restriction preserves each of the \sim_{i}^{k} equivalence classes with $i \neq k$. Since ψ_{k} is a special ($F \cap G_{k}, \epsilon$)-quasi-action for G_{k}, it is clear that the restriction of ϕ_{k} to G_{k} is as well. That restriction preserves the \sim_{k}^{k} equivalence classes, since both (d, a, v) and $(d, a, v)^{\phi_{k}(g)}$ are in $\alpha_{k}\left(d, v \circ\left(\pi_{k}(d), a\right)^{-1}\right)$.

The equation $(d, a, v)^{\phi_{k}\left(1_{G}\right)}=(d, a, v)$ follows immediately from $(d, a, v)^{\phi_{k}(h)}=$ ($\left.d^{\theta_{k}(h)}, a, v\right)$ for $h \in H_{k}$, and hence condition (a) of Definition 1.3 is verified for ϕ_{k}.

We shall verify the remaining conditions in the order (c), (1), (b), (d), (2').
First we introduce some notation. We need to consider $\phi_{k}(g)$ for a general element g in the graph product, written in normal form as $x_{1} y_{1} \cdots x_{m} y_{m}$. For $0 \leq i \leq m$, we write $\Theta_{k}(x, i)$ for the product $\theta_{k}\left(x_{1}\right) \cdots \theta_{k}\left(x_{i}\right)$ and $\Psi_{k}(y, i)$ for the product $\psi_{k}\left(y_{1}\right) \cdots \psi_{k}\left(y_{i}\right)$, where $\Theta_{k}(x, 0)=\Psi_{k}(y, 0)=1$.

We see then that

$$
(d, a, v)^{\phi_{k}(g)}=(d, a, v)^{\phi_{k}\left(x_{1}\right) \phi_{k}\left(y_{1}\right) \cdots \phi_{k}\left(x_{m}\right) \phi_{k}\left(y_{m}\right)}=\left(d^{\Theta_{k}(x, m)}, a^{\Psi_{k}(y, m)}, v \circ u\right)
$$

where

$$
u=\prod_{i=1}^{m}\left(\pi_{k}\left(d^{\Theta_{k}(x, i)}\right), a^{\Psi_{k}(y, i-1)}\right)^{-1} \circ\left(\pi_{k}\left(d^{\Theta_{k}(x, i)}\right), a^{\Psi_{k}(y, i)}\right)
$$

unless y_{m} is the identity, in which case the product for u is from $i=1$ to $m-1$.
Our next step is to establish condition (c) of Definition 1.3 for ϕ_{k}. Let g be a nontrivial element of F with normal form $x_{1} y_{1} \cdots x_{m} y_{m}$. Then $2 m \leq N$, and $x_{i} \in F_{H_{k}}$ and $y_{i} \in F_{k}$ for $1 \leq i \leq m$.

Suppose first that u, in the above expression, is not the empty word. Since ψ_{k} is a special quasi-action, condition (c) for ψ_{k} implies that $a^{\Psi_{k}(y, i-1)} \neq a^{\Psi_{k}(y, i)}$ for each i. Since $x_{i+1} \notin G_{L_{k}}$, it follows from the induction hypothesis that $\theta_{k}\left(x_{i+1}\right)$ cannot map any element of D_{k} to an element in the same $\simeq_{L_{k}}$ equivalence class, and hence $\pi_{k}\left(d^{\Theta_{k}(x, i)}\right) \neq \pi_{k}\left(d^{\Theta_{k}(x, i+1)}\right)$. Thus no generator in the word of length $2 m$ representing u can freely cancel with the generator either before it or after it. The fact that V admits no short relators now ensures that u is nontrivial. In that case certainly $(d, a, v)^{\phi_{k}(g)} \neq(d, a, v)$.

Now suppose that u is empty. Then $m=1, y_{1}$ is trivial and $g=x_{1}$. Since $1 \neq g$, we have $d^{\theta_{k}\left(x_{1}\right)} \neq d$ and again we have $(d, a, v)^{\phi_{k}(g)}=\left(d^{\theta_{k}\left(x_{1}\right)}, a, v\right) \neq(d, a, v)$.

Hence we have shown that the map ϕ_{k} from G to $\mathcal{S}\left(C_{k}\right)$ allows no nonidentity element of length less than N in F to fix any element of C_{k}, and so condition (c) is verified for ϕ_{k}.

In order to establish condition (1) of the lemma for ϕ_{k}, we suppose first that $x \in G_{L_{k}}$ and $y \in G_{k}$. By definition, $\phi_{k}(x y)=\phi_{k}(x) \phi_{k}(y)$, and

$$
(d, a, v)^{\phi_{k}(x) \phi_{k}(y)}=\left(d^{\theta_{k}(x)}, a^{\psi_{k}(y)}, v \circ\left(\pi_{k}\left(d^{\theta_{k}(x)}\right), a\right)^{-1} \circ\left(\pi_{k}\left(d^{\theta_{k}(x)}\right), a^{\psi_{k}(y)}\right)\right)
$$

while

$$
\begin{aligned}
(d, a, v)^{\phi_{k}(y) \phi_{k}(x)} & \left.=\left(d, a^{\psi_{k}(y)}, v \circ\left(\pi_{k}(d), a\right)^{-1}\right) \circ\left(\pi_{k}(d), a^{\psi_{k}(y)}\right)\right)^{\phi_{k}(x)} \\
& =\left(d^{\theta_{k}(x)}, a^{\psi_{k}(y)}, v \circ\left(\pi_{k}(d), a\right)^{-1} \circ\left(\pi_{k}(d), a^{\psi_{k}(y)}\right)\right)
\end{aligned}
$$

Then since $d \simeq_{L_{k}} d^{\theta_{k}(x)}$, we have $\pi_{k}(d)=\pi_{k}\left(d^{\theta_{k}(x)}\right)$, and so

$$
(d, a, v)^{\phi_{k}(x) \phi_{k}(y)}=(d, a, v)^{\phi_{k}(y) \phi_{k}(x)}
$$

that is, for $x \in G_{L_{k}}, y \in G_{k}$, we have $\phi_{k}(x y)=\phi_{k}(x) \phi_{k}(y)=\phi_{k}(y) \phi_{k}(x)$.
Now suppose that x, y are in distinct vertex groups G_{i}, G_{j}. If $i, j \neq k$ then condition (1) follows immediately by induction applied to G_{k}. If $j=k$, or if $i=k$ and G_{i}, G_{j} do not commute, then $x y$ is in normal form, and condition (1) follows from the definition of ϕ_{k}. Finally if $i=k$ and G_{i}, G_{j} commute, then $x \in G_{k}$, $y \in G_{L_{k}}$, and we can deduce condition (1) for ϕ_{k} from the result above.

Next suppose that $g=x_{1} y_{1} \cdots x_{m} y_{m} \in G$, where the expression is in normal form. We compare $\phi_{k}(g)^{-1}$ and $\phi_{k}\left(g^{-1}\right)$. We have $g^{-1}=y_{m}^{-1} x_{m}^{-1} \cdots y_{1}^{-1} x_{1}^{-1}$. The expression for g^{-1} need not be in normal form because some of the x_{i}^{-1} could have left divisors in $G_{L_{k}}$, but we can put it into normal form by splitting any such x_{i}^{-1} into syllables and then applying commuting relations to move left divisors of x_{i}^{-1} in $G_{L_{k}}$ past y_{i}^{-1}. By the results of the preceding two paragraphs, if we apply the corresponding transformations to $\phi_{k}\left(y_{m}^{-1}\right) \phi_{k}\left(x_{m}^{-1}\right) \cdots \phi_{k}\left(y_{1}^{-1}\right) \phi_{k}\left(x_{1}^{-1}\right)$, then we do not change the resulting permutation. Hence $\phi_{k}\left(g^{-1}\right)=\phi_{k}\left(y_{m}^{-1}\right) \phi_{k}\left(x_{m}^{-1}\right) \cdots \phi_{k}\left(y_{1}^{-1}\right) \phi_{k}\left(x_{1}^{-1}\right)$. It follows from condition (b) of Definition 1.3 that $\phi_{k}\left(y_{i}^{-1}\right)$ is inverse to $\phi_{k}\left(y_{i}\right)$ and from the induction hypothesis on H_{k} that $\phi_{k}\left(x_{i}^{-1}\right)$ is inverse to $\phi_{k}\left(x_{i}\right)$. Hence $\phi_{k}\left(g^{-1}\right)=\phi_{k}(g)^{-1}$, which verifies condition (b) for ϕ_{k}.

We proceed now to verify condition (d) of Definition 1.3 for ϕ_{k}, that is, to show that $\phi_{k}\left(g_{1} g_{2}\right)$ is $\epsilon^{\prime \prime}$-similar to $\phi_{k}\left(g_{1}\right) \phi_{k}\left(g_{2}\right)$ for all $g_{1}, g_{2} \in F$. Let $g_{1}=$ $x_{1} y_{1} \cdots x_{m} y_{m}, g_{2}=x_{1}^{\prime} y_{1}^{\prime} \cdots x_{p}^{\prime} y_{p}^{\prime}$ be the normal forms of $g_{1}, g_{2} \in F$. In the following discussion, we refer to an element of H_{k} or of G_{k} as a block, and to a product of blocks as an expression. The normal form for $g_{1} g_{2}$ is derived from the concatenation $x_{1} y_{1} \cdots x_{m} y_{m} x_{1}^{\prime} y_{1}^{\prime} \cdots x_{p}^{\prime} y_{p}^{\prime}$ by a sequence of moves, each of which is one of four types:
(a) deletion of a block that is equal to the identity;
(b) cancellation (that is, merger of two adjacent mutually inverse blocks that are either both in H_{k} or both in G_{k});
(c) expression of a block in H_{k} as a product of a left divisor in $G_{L_{k}}$ and a right divisor, and moving the left divisor to the left, past a block in G_{k};
(d) merger of two adjacent blocks that are either both in H_{k} or both in G_{k}, and whose product is not the identity, to give a new block from that same subgroup.

Note that in (c) the left and right divisors of a block in H_{k} are simply subblocks whose concatenation is a permutation of the original block; that is, the (multi)set of syllables of the block in H_{k} is the union of the (multi)sets of syllables of those left and right divisors. By contrast, a move of type (d) will normally change the (multi)set of syllables in an expression. Starting with the permutation

$$
\phi_{k}\left(x_{1}\right) \phi_{k}\left(y_{1}\right) \cdots \phi_{k}\left(x_{m}\right) \phi_{k}\left(y_{m}\right) \phi_{k}\left(x_{1}^{\prime}\right) \phi_{k}\left(y_{1}^{\prime}\right) \cdots \phi_{k}\left(x_{p}^{\prime}\right) \phi_{k}\left(y_{p}^{\prime}\right)
$$

we study the sequence of composites of permutations of C_{k} defined by the various expressions that arise when we apply the corresponding operations to this expression of images during this rewrite process and keep track of the proportion of elements of C_{k} on which they differ. We note that, as a consequence of what we have proved so far, two expressions that differ only on moves of types (a), (b) and (c) correspond to composites of permutations that have the same effect on all points of C_{k}. Hence we only need to concern ourselves with moves of type (d).

Suppose that a move converts an expression w to an expression w^{\prime}. Let σ, σ^{\prime} be the permutations corresponding to the two expressions. If the move merges two blocks from G_{k}, then the permutations σ and σ^{\prime} differ on the same proportion of elements of C_{k} as do permutations for the quasi-action of G_{k} on the set A_{k}, that is, on at most $\epsilon\left|C_{k}\right|$ of the elements, by the hypothesis.

If the move merges two blocks from H_{k}, then the permutations σ and σ^{\prime} differ on the same proportion of elements of C_{k} as do permutations for the quasi-action of H_{k} on the set D_{k}, that is, on at most $f(n-1) \epsilon\left|C_{k}\right|$ of the elements by the induction hypothesis. Notice however that if the two blocks z_{1}, z_{2} being merged are left and right divisors of $z_{1} z_{2}$ (or, equivalently, if the syllable length of $z_{1} z_{2}$ is the sum of the syllable lengths of z_{1} and z_{2}), then our induction hypothesis on H_{k} ensures that $\phi_{k}\left(z_{1} z_{2}\right)=\phi_{k}\left(z_{1}\right) \phi_{k}\left(z_{2}\right)$. We shall call such mergers nonreducing, and other mergers, for which this equality is not guaranteed to hold, reducing. Condition (d) of Definition 1.3 can now be now established by applying the following lemma.

Lemma 2.3. During the rewrite process, we perform at most n reducing mergers of blocks of H_{k} and at most one reducing merger of blocks of G_{k}.

Proof. We may assume that $m, p>0$ (since otherwise one of g_{1}, g_{2} is the identity) and split the proof into three cases (1) $1 \neq y_{m}$ and $x_{1}^{\prime} \notin G_{L_{k}}$; (2) $y_{m}=1$; and (3) $1 \neq y_{m}$ and $x_{1}^{\prime} \notin G_{L_{k}}$.

We deal with Case 1 first, proving by induction on m that in this case the product can be rewritten using at most $\left|L_{k}\right|$ mergers, all of which are within H_{k}. Using that result we deal with the remaining two cases together, also using induction on m.

Case 1: $1 \neq y_{m}$ and $x_{1}^{\prime} \notin G_{L_{k}}$. Let $x_{1}^{\prime}=z_{1} z_{2}$, where z_{1} is the longest left divisor of x_{1}^{\prime} in $G_{L_{k}}$. Suppose that $z_{1} \in G_{L^{\prime}}$ for some $L^{\prime} \subseteq L_{k}$. We prove by induction
on m that this product can be rewritten using at most $\left|L^{\prime}\right|\left(\leq\left|L_{k}\right|\right) H_{k}$-mergers and no G_{k}-mergers.

If $m=1$ then there can be at most one H_{k}-merger $x_{1} z_{1}$, so the result is clear. So suppose that $m>1$; then $y_{m-1} \neq 1$, and x_{m} is nontrivial with no left divisor in G_{L}. If z_{1} commutes with x_{m}, then the claim follows by induction applied to the product $\left(x_{1} y_{1} \cdots x_{m-1} y_{m-1}\right)\left(z_{1} x_{m} y_{m} z_{2} y_{1}^{\prime} \cdots x_{p}^{\prime} y_{p}^{\prime}\right)$. Otherwise, we can write $z_{1}=z_{11} z_{12}$, where z_{11} (which may be trivial) is the longest left divisor of z_{1} that commutes with x_{m}. So $z_{11} \in G_{L^{\prime \prime}}$ with $\left|L^{\prime \prime}\right|<\left|L^{\prime}\right|$. We can then perform the rewriting by performing an H_{k}-merger $x_{m} z_{12}$ (if necessary) and, by induction, at most $\left|L^{\prime \prime}\right|$ further H_{k}-mergers resulting from moving z_{11} further to the left. This completes the proof of the claim and of the lemma in Case 1.

So now we may assume that $m, p>0$, and that we are in Case 2 or 3 .
Case 2: $y_{m}=1$. If $m=1$, then there is at most one H_{k}-merger $x_{1} x_{1}^{\prime}$, and the result holds. So suppose that $m>1$ and hence that $y_{m-1} \neq 1$, and x_{m} is nontrivial with no left divisor in $G_{L_{k}}$.

If $x_{m} x_{1}^{\prime} \notin G_{L_{k}}$, then we perform an H_{k}-merger (if necessary) on $x_{m} x_{1}^{\prime}$, and now observe that the product $\left(x_{1} y_{1} \cdots x_{m-1} y_{m-1}\right)\left(x_{m} x_{1}^{\prime} y_{1}^{\prime} \cdots x_{p}^{\prime} y_{p}^{\prime}\right)$ satisfies the conditions of Case 1 and thus can be rewritten using at most $\left|L_{k}\right|$ further H_{k}-mergers and no G_{k}-mergers. So in this case too, the lemma is proved.

If $x_{m} x_{1}^{\prime} \in G_{L_{k}}$ then, since x_{m} has no left divisor in $G_{L_{k}}$, the product $x_{m} x_{1}^{\prime}$ can be evaluated by writing x_{m} and x_{1}^{\prime} as products of syllables and then performing commuting and cancellation moves only so we can rewrite $x_{m} x_{1}^{\prime}$ as $z \in G_{L_{k}}$, without performing any mergers, to arrive at the product

$$
\left(x_{1} y_{1} \cdots x_{m-1} y_{m-1}\right)\left(z y_{1}^{\prime} \cdots x_{p}^{\prime} y_{p}^{\prime}\right)
$$

which satisfies the conditions of Case 3 for $m-1$. The lemma now follows by induction applied to that product.
Case 3: $1 \neq y_{m}$ and $x_{1}^{\prime} \in G_{L_{k}}$. If $y_{m} y_{1}^{\prime} \neq 1$, we perform the G_{k}-merger $y_{m} y_{1}^{\prime}$ and the H_{k}-merger $x_{m} x_{1}^{\prime}$ (which cannot be in $G_{L_{k}}$ since $x_{m} \notin G_{L_{k}}, x_{1}^{\prime} \in G_{L_{k}}$). Then we apply the result of Case 1 to the product $\left(x_{1} y_{1} \cdots x_{m-1} y_{m-1}\right)\left(x_{m} x_{1}^{\prime} y_{m} y_{1}^{\prime} \cdots x_{p}^{\prime} y_{p}^{\prime}\right)$, and the proof is complete.

If $y_{m} y_{1}^{\prime}=1$ then the result is clear if $p=1$ and otherwise, since x_{2}^{\prime} has no left divisor in $G_{L_{k}}$, the merger $x_{1}^{\prime} x_{2}^{\prime}$ is nonreducing, so the result follows by applying Case 2 to the product $\left(x_{1} y_{1} \cdots x_{m-1} y_{m-1} x_{m}\right)\left(x_{1}^{\prime} x_{2}^{\prime} y_{2}^{\prime} \cdots x_{p}^{\prime} y_{p}^{\prime}\right)$.

This completes the proof of condition (d), and hence we see that ϕ_{k} is a special $\left(F, \epsilon^{\prime \prime}\right)$-quasi-action, with $\epsilon^{\prime \prime}=(n f(n-1)+1) \epsilon$.

It remains to verify condition (2^{\prime}). We have shown already that, for each $i \in I$, the action of $\phi_{k}\left(G_{i}\right)$ on C preserves each of the \sim_{i}^{k}-equivalence classes, from which it follows immediately that $g \in G_{J}$ with $J \subseteq I$ implies $c^{\phi_{k}(g)} \sim_{J}^{k} c$.

Now suppose that $J \subseteq I_{k}, c=(d, a, v) \in C_{k}, g \in F$, and that $c^{\phi_{k}(g)} \sim_{J}^{k} c$. Since $k \notin J$, it is immediate from the definition of \sim_{j}^{k} for $j \in J$ that

$$
(d, a, v) \sim_{J}^{k}\left(d^{\prime}, a^{\prime}, v^{\prime}\right) \Longleftrightarrow d \simeq_{J}^{k} d^{\prime}, a=a^{\prime}, v=v^{\prime}
$$

Now, arguing as in our earlier proof of condition (c) of Definition 1.3 for ϕ_{k} that $(d, a, v)^{\phi_{k}(g)} \neq(d, a, v)$ for $1 \neq g \in F$, we find that, for $g \in F$, we have $(d, a, v)^{\phi_{k}(g)} \sim_{J}^{k}(d, a, v)$ if and only if $g \in H_{k}$ and $d^{\theta_{k}(g)} \simeq_{J}^{k} d$. By our inductive hypothesis, this is true if and only if $g \in G_{J}$. Hence condition (2') holds.

3. Graphs of groups

In this section we prove Theorem 1.2. We start by recalling the definition of a graph of groups, which arises from the work of Bass and Serre (see [Serre 1977]).

Definition 3.1. A graph of groups \mathcal{G} consists of
(1) a connected graph Γ (in which loops are allowed, but no multiple edges), with vertex set V, edge set E,
(2) a collection of vertex groups $G_{v}: v \in V$ and edge groups $G_{e}: e \in E$,
(3) monomorphisms $\theta_{e}^{1}: G_{e} \rightarrow G_{v_{1}}$ and $\theta_{e}^{2}: G_{e} \rightarrow G_{v_{2}}$ for each edge $e=\left\{v_{1}, v_{2}\right\}$.

The fundamental group $\pi_{1}(\mathcal{G})$ of a graph of groups \mathcal{G} can defined in various different (but equivalent) ways. The following definition is essentially [Dicks and Dunwoody 1989, Definition I.3.4]. The definition is given in terms of a selected spanning tree T of Γ, but (up to isomorphism) the resulting group is independent of this choice. The associated fundamental group $\pi_{1}(\mathcal{G}, T)$ is then the group generated by the groups $G_{v}: v \in V$ together with generators t_{e}, one for each (oriented) edge in E), given the following relations:
(1) all the relations of the groups G_{v},
(2) $t_{e}^{-1} \theta_{e}^{1}(g) t_{e}=\theta_{e}^{2}(g)$ for each $e \in E, g \in G_{e}$,
(3) $t_{e}=1$ for each edge e of T.

From this description it is not hard to see that $\pi_{1}(\mathcal{G}, T)$ is isomorphic to a multiple HNN extension, with stable letters t_{e} for $e \notin E(T)$, of the amalgamated product of the groups G_{v} in which $\theta_{e}^{1}(g)$ and $\theta_{e}^{2}(g)$ are identified for all $e \in E(T), g \in G_{e}$. Independent results of Elek and Szabó [2011, Theorem 1] and Păunescu [2011, Corollary 2.3] already prove that the amalgamated product of two sofic groups over an amenable subgroup is sofic. Hence Theorem 1.2 follows immediately by combining that result with the following proposition.
Proposition 3.2. An HNN extension of a sofic group H over an amenable subgroup K is sofic.

We deduce Proposition 3.2 as a corollary of the amalgamated product result. We note that the argument to do this was already provided by Collins and Dykema [2011] in order to deduce Corollary 3.6 from their Theorem 3.4, that is to deduce the same result as above in the situation where the associated subgroups (in both amalgamated products and HNN extensions) are monotileably amenable. This argument goes through without any modification, when monotileability of the associated subgroup is dropped, to deduce the proposition from the results of [Elek and Szabó 2011; Păunescu 2011], but we include the argument here for completeness.

Proof. Let G be an HNN extension of H over K, as in the proposition, and let L be the subgroup $t^{-1} K t$. Define $H_{i}=t^{-i} H t^{i}, K_{i}=t^{-i} K t^{i}, L_{i}=t^{-i} L t^{i}$ for each $i \in \mathbb{Z}$, and define $S:=\left\langle H_{i} \mid i \in \mathbb{Z}\right\rangle$. Then G can be expressed as an extension of S by \mathbb{Z}. Since \mathbb{Z} is amenable, and by [Elek and Szabó 2006, Theorem 1(3)] an extension of a sofic group by an amenable group is sofic, in order to prove G is sofic it is enough to prove S is sofic.

Now S can be expressed as an iterated amalgamated product of the (countably many) H_{i} with amalgamation over subgroups isomorphic to K. More precisely, S is the fundamental group of the graph of groups \mathcal{H} associated with the graph of the integers, where H_{i} is the vertex group of the vertex i, each edge group is isomorphic to K, and the copy of K associated with edge $\{i, i+1\}$ maps to the subgroup L_{i} of H_{i} and the subgroup K_{i+1} of H_{i+1}. Here is a diagram of \mathcal{H} :

$$
\cdots H_{i-1} \stackrel{L_{i-1} \hookleftarrow \hookrightarrow K_{i}}{l} H_{i} \xrightarrow{L_{i} \hookleftarrow \hookrightarrow K_{i+1}} H_{i+1} \xrightarrow{L_{i+1} \hookleftarrow \hookrightarrow K_{i+2}} H_{i+2} \ldots
$$

To prove S is sofic we now need to verify soficity for each of its finitely generated subgroups. So let M be such a subgroup. Then, for some k, l, all the generators of M are within vertex subgroups H_{i} for $k \leq i \leq l$; that is, M is a subgroup of the amalgamated product $H_{j} *_{L_{j}=K_{j+1}} H_{j+1} *_{L_{j+1}=K_{j+2}} * \cdots *_{L_{l-1}=K_{l}} H_{l}$. Since this is sofic, by [Elek and Szabó 2011; Păunescu 2011], so is M.

Acknowledgments

The authors would like to thank the referee for their careful reading of the paper and for pointing out some significant technical errors in the original version. All three authors were partially supported by the Marie Curie Reintegration Grant 230889. Ciobanu was also supported by the Swiss National Science Foundation grants Ambizione PZ00P-136897/1 and Professorship FN PP00P2-144681/1.

References

[Collins and Dykema 2011] B. Collins and K. J. Dykema, "Free products of sofic groups with amalgamation over monotileably amenable groups", Münster J. Math. 4 (2011), 101-117. MR 2869256 Zbl 1242.43003
[Dicks and Dunwoody 1989] W. Dicks and M. J. Dunwoody, Groups acting on graphs, Cambridge Studies in Advanced Mathematics 17, Cambridge University Press, 1989. MR 91b:20001 Zbl 0665.20001
[Elek and Szabó 2006] G. Elek and E. Szabó, "On sofic groups", J. Group Theory 9:2 (2006), 161-171. MR 2007a:20037 Zbl 1153.20040
[Elek and Szabó 2011] G. Elek and E. Szabó, "Sofic representations of amenable groups", Proc. Amer. Math. Soc. 139:12 (2011), 4285-4291. MR 2012j:20127 Zbl 1263.43001
[Green 1990] E. R. Green, Graph products of groups, thesis, University of Leeds, 1990, Available at http://etheses.whiterose.ac.uk/236.
[Gromov 1999] M. Gromov, "Endomorphisms of symbolic algebraic varieties", J. Eur. Math. Soc. (JEMS) 1:2 (1999), 109-197. MR 2000f:14003 Zbl 0998.14001
[Păunescu 2011] L. Păunescu, "On sofic actions and equivalence relations", J. Funct. Anal. 261:9 (2011), 2461-2485. MR 2012j:46089 Zbl 1271.46051 arXiv 1002.0605
[Pestov 2008] V. G. Pestov, "Hyperlinear and sofic groups: a brief guide", Bull. Symbolic Logic 14:4 (2008), 449-480. MR 2009k:20103 Zbl 1206.20048
[Serre 1977] J.-P. Serre, Arbres, amalgames, SL 2 , Astérisque 46, Société Mathématique de France, Paris, 1977. Translated as Trees, Springer, Berlin, 2003. MR 57 \#16426 Zbl 0369.20013
[Weiss 2000] B. Weiss, "Sofic groups and dynamical systems", Sankhyā Ser. A 62:3 (2000), 350-359. MR 2001j:37022 Zbl 1148.37302

Received December 12, 2012. Revised November 14, 2013.
Laura Ciobanu
Mathematics Department
University of Neuchâtel
Rue Emile-Argand 11
CH-2000 NEUCHÂTEL
SWITZERLAND
laura.ciobanu@unine.ch

Derek F. Holt
Mathematics Institute
University of Warwick
Coventry
CV4 7AL
United Kingdom
D.F.Holt@warwick.ac.uk

Sarah Rees

School of Mathematics and Statistics
University of Newcastle
Newcastle
NE1 7RU
United Kingdom
Sarah.Rees@newcastle.ac.uk

PACIFIC JOURNAL OF MATHEMATICS
 msp.org/pjm

Founded in 1951 by E. F. Beckenbach (1906-1982) and F. Wolf (1904-1989)

Paul Balmer
Department of Mathematics University of California Los Angeles, CA 90095-1555
balmer@math.ucla.edu
Robert Finn
Department of Mathematics
Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu
Sorin Popa
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
popa@math.ucla.edu

EDITORS

Don Blasius (Managing Editor)
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
blasius@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics
University of California
Riverside, CA 92521-0135
chari@math.ucr.edu
Kefeng Liu
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
liu@math.ucla.edu
Jie Qing
Department of Mathematics
University of California
Santa Cruz, CA 95064
qing@cats.ucsc.edu

Daryl Cooper

Department of Mathematics University of California
Santa Barbara, CA 93106-3080 cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics
The University of Hong Kong
Pokfulam Rd., Hong Kong jhlu@maths.hku.hk

Paul Yang
Department of Mathematics
Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

PRODUCTION

Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI
CALIFORNIA INST. OF TECHNOLOGY
INST. DE MATEMÁTICA PURA E APLICADA KEIO UNIVERSITY
MATH. SCIENCES RESEARCH INSTITUTE
NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY
UNIV. OF BRITISH COLUMBIA
UNIV. OF CALIFORNIA, BERKELEY
UNIV. OF CALIFORNIA, DAVIS
UNIV. OF CALIFORNIA, LOS ANGELES
UNIV. OF CALIFORNIA, RIVERSIDE
UNIV. OF CALIFORNIA, SAN DIEGO
UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ UNIV. OF MONTANA
UNIV. OF OREGON
UNIV. OF SOUTHERN CALIFORNIA UNIV. OF UTAH
UNIV. OF WASHINGTON
WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.
The subscription price for 2014 is US $\$ 410 /$ year for the electronic version, and $\$ 535 /$ year for print and electronic.
Subscriptions, requests for back issues and changes of subscribers address should be sent to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall \#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW ${ }^{\circledR}$ from Mathematical Sciences Publishers.

PUBLISHED BY

E. mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/
© 2014 Mathematical Sciences Publishers

PACIFIC JOURNAL OF MATHEMATICS

Volume 271 No. $1 \quad$ September 2014
Proper holomorphic maps between bounded symmetric domains revisited 1
Gautam Bharali and Jaikrishnan Janardhanan
An explicit Majorana representation of the group $3^{2}: 2$ of $3 C$-pure type 25
Hsian-Yang Chen and Ching Hung Lam
Sofic groups: graph products and graphs of groups 53
Laura Ciobanu, Derek F. Holt and Sarah Rees
Perturbations of a critical fractional equation 65
Eduardo Colorado, Arturo de Pablo and Urko Sánchez
A density theorem in parametrized differential Galois theory 87
Thomas Dreyfus
On the classification of complete area-stationary and stable surfaces in 143
the subriemannian Sol manifold
Matteo Galli
Periodic orbits of Hamiltonian systems linear and hyperbolic at infinity 159
BAŞAK Z. GÜREL
Nonsplittability of the rational homology cobordism group of 183
3-manifolds
Se-Goo Kim and Charles Livingston
Biharmonic surfaces of constant mean curvature 213Eric Loubeau and Cezar Oniciuc
Foliations of a smooth metric measure space by hypersurfaces with 231constant f-mean curvature
Juncheol PyoOn the existence of large degree Galois representations for fields of small 243discriminant
Jeremy Rouse and Frank Thorne

[^0]: MSC2010: 20F65, 37B05.
 Keywords: sofic, graph products, free and direct products, groups of graphs.

