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We study parametrized linear differential equations with coefficients de-
pending meromorphically upon the parameters. As a main result, anal-
ogously to the unparametrized density theorem of Ramis, we show that
the parametrized monodromy, the parametrized exponential torus and the
parametrized Stokes operators are topological generators in the Kolchin
topology for the parametrized differential Galois group introduced by Cas-
sidy and Singer. We prove an analogous result for the global parametrized
differential Galois group, which generalizes a result by Mitschi and Singer.
These authors give also a necessary condition on a group for being a global
parametrized differential Galois group; as a corollary of the density the-
orem, we prove that their condition is also sufficient. As an application,
we give a characterization of completely integrable equations, and we give
a partial answer to a question of Sibuya about the transcendence proper-
ties of a given Stokes matrix. Moreover, using a parametrized Hukuhara–
Turrittin theorem, we show that the Galois group descends to a smaller field,
whose field of constants is not differentially closed.
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Introduction

Let us consider a linear differential system of the form

∂zY (z)= A(z)Y (z),

where ∂z = d/dz, and A(z) is an m×m matrix whose entries are germs of mero-
morphic functions in a neighborhood of a point, say 0 to fix ideas. The differential
Galois group, which measures the algebraic dependencies among the solutions, can
be viewed as an algebraic subgroup of GLm(C) via the injective group morphism

ρU : Gal→ GLm(C),

σ 7→U (z)−1σ(U (z)),

where U (z) is some arbitrary fundamental solution, i.e., an invertible solution matrix.
Let U (z) be a fundamental solution contained in a Picard–Vessiot extension

of the equation ∂zY (z)= A(z)Y (z). The linear differential equation is said to be
regular singular at 0 if there exists an invertible matrix P(z) whose entries are
germs of meromorphic functions such that W (z)= P(z)U (z) satisfies

∂zW (z)=
A0

z
W (z),

where A0 is a matrix with constant complex entries. In this case, W (z) usually
involves multivalued functions. Analytic continuation of W (z) along any simple
loop γ around 0 yields another fundamental solution W (z)Mγ . The matrix Mγ ,
which is a monodromy matrix, has complex entries and depends only on the
homotopy class of γ . The Schlesinger theorem says that the Zariski closure of
the group generated by the monodromy matrix is the Galois group. In the general
case, i.e., in the presence of an irregular singularity, the monodromy is no longer
sufficient to provide a complete collection of topological generators. Ramis has
shown that the group generated by the monodromy, the exponential torus and the
Stokes operators, which is defined in a transcendental way as a subgroup of the
differential Galois group, is dense in the latter in the Zariski topology.
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More recently, a Galois theory for parametrized linear differential equations of
the form

(∗) ∂zY (z, t)= A(z, t)Y (z, t),

where t = (t1, . . . , tn) are parameters and A is a matrix whose entries lie in a
certain field (specified explicitly throughout), has been developed in [Cassidy and
Singer 2007] (henceforth abbreviated [CS]); see also [Hardouin and Singer 2008;
Landesman 2008; Robinson 1959; Umemura 1996]. Namely, the Galois group,
which measures the (∂t1, . . . , ∂tn )-differential and algebraic dependencies among
the solutions, can be seen as a differential group in the sense of Kolchin, that is,
a group of matrices whose entries lie in a differential field and satisfy a set of
polynomial differential equations in the variables t1, . . . , tn; see [Cassidy 1972;
1989; Kolchin 1973; 1985; Minchenko and Ovchinnikov 2011]. The theory from
[CS] requires the field of constants with respect to ∂z to be of characteristic 0 and
differentially closed (see Section 2A). The drawback of this latter assumption is
that a differentially closed field is a very big field, and cannot be interpreted as a
field of functions.

There is a link between the parametrized differential Galois theory and isomon-
odromy for equations with only regular singular poles (see [Cassidy and Singer
2007; Mitschi and Singer 2012; 2013]. Let

D(t0, r)= {(z1, . . . , zn) ∈ Cn
| |zi − t0,i |< r for all i ≤ n}

be an open polydisc in Cn , let D be an open subset of C, and let A(z, t) be a
matrix whose entries are analytic on D×D(t0, r). We consider open disks D j

that cover D, and solutions U j (z, t) of (∗) that are analytic on D j × D(t0, r).
If Di ∩ D j 6= ∅, we define the connection matrices Ci, j (t) = Ui (z, t)−1U j (z, t).
Following Definition 5.2 in [CS] (see also [Bolibruch 1997; Malgrange 1983]),
the parametrized linear differential equation (∗) is said to be isomonodromic if
there is a choice of (Di ) covering D and of the solutions Ui (z, t) of (∗), analytic on
Di ×D(t0, r), such that the connection matrices are independent of t . In this case,
the matrix of the monodromy is constant on the polydisc D(t0, r). When A(z, t) is
of the form

∑s
i=1 Ai (t)/(z− ui ) such that all the Ai (t) have analytic entries on U

and ui ∈ D, the following statements are equivalent (see [CS], Propositions 5.3
and 5.4):

• The Galois group is conjugate over a differentially closed field (Definition 2.2)
to a group of constant matrices.

• The parametrized linear differential equation is isomonodromic in the above
sense.
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• The parametrized linear differential equation is completely integrable (see
Definition 3.1).

We are interested in the case where the parametrized linear differential equation
may have irregular singularities, in a sense we are going to explain. The main
result of this paper is a parametrized analogue of the density theorem of Ramis:
we give topological generators for the Galois group in the Kolchin topology (in
which closed sets are zero sets of differential algebraic polynomials). As an appli-
cation of our main result, we improve Proposition 3.9 in [CS] (see Remark 3.4):
a parametrized linear differential equation is completely integrable if and only if
the topological generators for the Galois group just mentioned are conjugate to
constant matrices over a field of meromorphic functions. Notice that the latter is
not differentially closed.

The article is organized as follows. In the first section we study parametrized
linear differential systems from an analytic point of view. The parameters will vary
in U , a nonempty polydisc in Cn . Let t = (t1, . . . , tn)∈U denote the multiparameter.
Let MU be the field of meromorphic functions on U and let K̂U =MU [[z]][z−1

]. The
Hukuhara–Turrittin theorem in this case gives the following result (see Remark 1.6
for a discussion of a similar result present in [Schäfke 2001]):

Proposition 1.3. Consider the equation ∂zY (z, t)= A(z, t)Y (z, t), with A(z, t) ∈
Mm(K̂U ) (that is, an m×m matrix with entries in K̂U ). Then there exist a nonempty
polydisc U ′ ⊂U and ν ∈ N∗ such that we have a fundamental solution F(z, t) of
the form

F(z, t)= Ĥ(z, t)zL(t)eQ(z,t),

where:

• Ĥ(z, t) ∈ GLm(K̂U ′[z1/ν
]).

• L(t) ∈Mm(MU ′).

• eQ(z,t)
= Diag(eqi (z,t)), with qi (z, t) ∈ z−1/νMU ′[z−1/ν

].

• Moreover, we have zL(t)eQ(z,t)
= eQ(z,t)zL(t).

See Remark 1.4 for a discussion about the uniqueness of a fundamental solution
of (∗) written in this way.

In Section 1C, we briefly review the Stokes phenomenon in the unparametrized
case. We have solutions that are analytic in some sector and Gevrey asymptotic to
the formal part of the solution in the Hukuhara–Turrittin canonical form. The fact
that various asymptotic solutions do not glue to a single solution on the Riemann
surface of the logarithm is called the Stokes phenomenon.

Let U be a nonempty polydisc in Cn and let f (z, t)=
∑

fi (t)zi
∈ K̂U . We say

that f (z, t) belongs to OU ({z}) if for all t ∈ U , z 7→
∑

fi (t)zi is the germ of a
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meromorphic function at 0. Remark that if

f (z, t) ∈ OU ({z})⊂MU [[z]][z−1
] = K̂U ,

then the z-coefficients fi (t) of f (z, t) are analytic on U .
In Section 1D, we study the Stokes phenomenon for equations of the form (∗)

with A(z, t) ∈Mm(OU ({z})). In particular, we prove that the asymptotic solutions
depend analytically (under mild conditions) upon the parameters.

In the second section, we use the parametrized Hukuhara–Turrittin theorem to
deduce some Galois-theoretic properties of parametrized linear differential equations
in coefficients in OU ({z}). We first recall some facts from [CS] about parametrized
differential Galois theory. The problem is that the theory in this reference cannot
be applied here, since MU , our field of constants with respect to ∂z , is a field of
functions that are meromorphic in t1, . . . , tn , and this field is not differentially closed
(see Section 2A). In the papers [Gillet et al. 2013; Wibmer 2012], the authors prove
the existence of parametrized Picard–Vessiot extensions under weaker assumptions
than in [CS]. See also [Chatzidakis et al. 2008; Peón Nieto 2011]. We do not use
these latter results because we need a parametrized Hukuhara–Turrittin theorem
(which proves directly that a parametrized Picard–Vessiot extension exists, not
necessarily unique) in order to study the parametrized Stokes phenomenon. This
allow us to define a group that we will call, by abuse of language, the parametrized
differential Galois group; see Remark 2.8. In Section 2D we consider the local case
of (∗), with A(z, t) ∈Mm(OU ({z})). We state and show the main result:

Theorem 2.20 (parametrized analogue of the density theorem of Ramis). The group
generated by the parametrized monodromy, the parametrized exponential torus and
the parametrized Stokes operators is dense in the parametrized differential Galois
group for the Kolchin topology.

Then, we turn to the global case. We consider equations with coefficients
in MU (z) and study their global Galois group. We prove a density theorem in this
global setting; see Theorem 2.24. The proof in the unparametrized case can be
found in [Mitschi 1996]. In Section 2F, we give various examples of calculations.

In the third section, we give three applications. First, we prove a criterion for
the integrability of differential systems (see Definition 3.1):

Proposition 3.2. Let A(z, t) ∈Mm(MU (z)). Then the linear differential equation
∂zY (z, t) = A(z, t)Y (z, t) is completely integrable if and only if there exists a
fundamental solution such that the matrices of the parametrized monodromy, the
parametrized exponential torus and the parametrized Stokes operators for all the
singularities are constant, i.e., do not depend on z.

As a second application, we give a partial answer to a question of Sibuya
[1975] regarding the differential transcendence properties of a Stokes matrix of the
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parametrized linear differential equation(
∂zY (z, t)
∂2

z Y (z, t)

)
=

(
0 1

z3
+ t 0

)(
Y (z, t)
∂zY (z, t)

)
.

Sibuya was asking whether an entry of a given Stokes matrix at infinity is ∂t -
differentially transcendental, i.e., satisfies no differential polynomial equation. We
prove that it is at least not ∂t -finite, i.e., that it satisfies no linear differential equation.

As a last application, we deal with the inverse problem. We prove that if G is the
global parametrized differential Galois group of some equation having coefficients in
k(z) (see Section 3C), then G contains a finitely generated Kolchin-dense subgroup.
The converse of this latter assertion has been proved in Corollary 5.2 of [Mitschi
and Singer 2012], and we obtain a result on the inverse problem:

Theorem 3.11. G is the global parametrized differential Galois group of some
equation having coefficients in k(z) if and only if G contains a finitely generated
Kolchin-dense subgroup.

In the Appendix, we prove the following result:

Theorem A.1. Consider the equation ∂zY (z, t) = A(z, t)Y (z, t), with A(z, t) ∈
Mm(K̂U ). Then there exists a nonempty polydisc U ′ ⊂ U such that we have a
fundamental solution F(z, t) of the form

F(z, t)= P̂(z, t)zC(t)eQ(z,t),

where:

• P̂(z, t) ∈ GLm(K̂U ′),

• C(t) ∈Mm(MU ′),

• eQ(z,t)
= Diag(eqi (z,t)), with qi (z, t) ∈ z−1/νMU ′[z−1/ν

], for some ν ∈ N∗.

Remark that contrary to Proposition 1.3, the entries of the formal part are not
ramified. On the other hand, zC(t) and eQ(z,t) do not commute anymore. This
theorem is not necessary for the proof of the main result of the paper; this is the
reason why we give the proof in the Appendix. However, this result is important
since it permits one to determine the equivalence classes (see [van der Put and
Singer 2003, p. 7]) of parametrized linear differential systems in coefficients in K̂U .

1. Local analytic linear differential systems depending upon parameters

In Section 1A, we define the field to which the entries of the fundamental solution,
in the Hukuhara–Turrittin canonical form, will belong. In Section 1B, we prove a
parametrized version of the Hukuhara–Turrittin theorem. In Section 1C, we briefly
review the Stokes phenomenon in the unparametrized case. In Section 1D, we study
the Stokes phenomenon in the parametrized case.



A DENSITY THEOREM IN PARAMETRIZED DIFFERENTIAL GALOIS THEORY 93

1A. Definition of the fields. Let us consider a linear differential system of the
form ∂zY (z)= A(z)Y (z), where A(z) is an m×m matrix whose entries belongs to
C[[z]][z−1

]. We know we can find a formal fundamental solution in the Hukuhara–
Turrittin canonical form Ĥ(z)zLeQ(z), where:

• Ĥ(z) is a matrix of formal power series in z1/ν for some ν ∈ N∗.

• L ∈Mm(C).

• Q(z)= Diag(qi (z)), with qi (z) ∈ z−1/νC[z−1/ν
].

• Moreover, we have zLeQ(z)
= eQ(z)zL .

Notice that this formulation is trivially equivalent to Theorem 3.1 in [van der Put
and Singer 2003]. Let U be a nonempty polydisc of Cn , and define K̂U and MU as
on page 90. We want to construct a field containing a fundamental set of solutions
of (∗), where A(z, t) ∈Mm(K̂U ). Let 1t = {∂t1, . . . , ∂tn } and let

EU =
⋃
ν∈N∗

z−1/νMU [z−1/ν
].

We define formally the (∂z,1t)-ring, i.e., a ring equipped with n+ 1 derivations
∂z, ∂t1, . . . , ∂tn , a priori not required to commute with each other, to be

RU := K̂U
[
log, (za(t))a(t)∈MU , l(e(q(z, t)))q(z,t)∈EU

]
,

with the following rules:

(1) The symbols log, (za(t))a(t)∈MU and (e(q(z, t)))q(z,t)∈EU only satisfy the fol-
lowing relations:

za(t)+b(t)
= za(t)zb(t), za

= za
∈ K̂U for a ∈ Z,

e(q1(z, t)+ q2(z, t))= e(q1(z, t))e(q2(z, t)), e(0)= 1.

(2) The following rules of differentiation:

∂z log= z−1, ∂ti log= 0, ∂zza(t)
=

a(t)
z

za(t), ∂ti z
a(t)
= ∂ti (a(t)) log za(t),

∂ze(q(z, t))= ∂z(q(z, t))e(q(z, t)), ∂ti e(q(z, t))= ∂ti (q(z, t))e(q(z, t)),

equip the ring with a (∂z,1t)-differential structure, since these rules descend
to the quotient, as can be readily checked.

The intuitive interpretations of these symbols are: log= log(z), za(t)
= ea(t) log(z)

and e(q(z, t))= eq(z,t). Let f (z, t) be one these latter functions. Then f (z, t) has
a natural interpretation as an analytic function on C̃×U ′, where C̃ is the Riemann
surface of the logarithm and U ′ is some nonempty polydisc contained in U . We will
use the analytic function instead of the symbol when we will consider asymptotic
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solutions (see Section 1C and Section 1D). For the time being, however, we see
them only as symbols.

Let MU be the algebraic closure of MU . In the same way as for RU , we construct
the (∂z,1t)-ring

RU :=MU [[z]][z−1
]
[
log, (za(t))a(t)∈MU

, (e(q(z, t)))q(z,t)∈EU

]
,

where
EU =

⋃
ν∈N∗

z−1/νMU [z−1/ν
].

and its field of fractions has field of constants with respect to ∂z equal to MU .
Since RU ⊂ RU , RU is also an integral domain. Therefore, we may consider the
(∂z,1t)-fields

KF,U =MU (log, (za(t))a(t)∈MU ),

K̂F,U = K̂U (log, (za(t))a(t)∈MU ),

and
(KU )

∧
= K̂U

(
log, (za(t))a(t)∈MU , (e(q(z, t)))q(z,t)∈EU

)
.

In the definition of the fields KF,U and K̂F,U , the subscript F stands for Fuchsian.
Since (KU )

∧ is contained in the field of fractions of RU , its field of constants with
respect to ∂z is equal to MU ∩ (KU )

∧
=MU .

We have defined (∂z,1t)-fields where all the derivations commute with each
other. We have the following inclusions of (∂z,1t)-fields:

KF,U

↗ ↘

MU → K̂U → K̂F,U → (KU )
∧.

Remark 1.1. Any algebraic function over MU can be seen as an element of MU ′

for some nonempty U ′ ⊂U . Therefore, a finite extension of MU can be embedded
in MU ′ for a convenient choice of U ′ ⊂ U . We will use this fact in the rest of
the paper.

Lemma 1.2. Let U ⊆ Cn be a nonempty polydisc, and let L(t) ∈ Mm(MU ),
where MU is the algebraic closure of MU . There exist a nonempty polydisc U ′ ⊂U
and zL(t)

∈ GLm(KF,U ′) satisfying

∂zzL(t)
=

L(t)
z

zL(t)
= zL(t) L(t)

z
.

Proof. Let
L(t)= P(t)(D(t)+ N (t))P−1(t)
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be the Jordan decomposition of L(t), where D(t)= Diag(di (t)) with di (t) ∈MU ,
N (t) is nilpotent, D(t)N (t)= N (t)D(t) and P(t) ∈ GLm(MU ).

Due to Remark 1.1, there exists a nonempty polydisc U ′⊂U such that di (t)∈MU ′

and P(t) ∈ GLm(MU ′). We may restrict U ′ and assume that N (t) does not depend
upon t in U ′. Let us write N := N (t). Then the matrix

zL(t)
= P(t)Diag(zdi (t))eN log P−1(t)

belongs to GLm(KF,U ′), and zL(t) satisfies

∂zzL(t)
=

L(t)
z

zL(t)
= zL(t) L(t)

z
. �

Let a(t) ∈MU and let (a(t)) ∈M1(MU ) be the corresponding matrix. Then we
have za(t)

= z(a(t)).

1B. The Hukuhara–Turrittin theorem in the parametrized case. The goal of this
subsection is to give the parametrized version of the Hukuhara–Turrittin theorem.
In the Appendix, we prove a slightly different result, which is not needed in the
paper; see Theorem A.1.

Proposition 1.3. Let U be a nonempty polydisc in Cn and consider the equation

∂zY (z, t)= A(z, t)Y (z, t),

with A(z, t) ∈Mm(K̂U ). There exists a nonempty polydisc U ′ ⊂ U such that we
have a fundamental solution F(z, t) ∈ GLm((KU ′)

∧) of the form

F(z, t)= Ĥ(z, t)zL(t)e(Q(z, t)),

where:

• Ĥ(z, t) ∈ GLm(K̂U ′[z1/ν
]), for some ν ∈ N∗.

• L(t) ∈Mm(MU ′).

• e(Q(z, t))= Diag(e(qi (z, t))), with qi (z, t) ∈ EU ′ .

• Moreover, we have e(Q(z, t))zL(t)
= zL(t)e(Q(z, t)).

Furthermore, if A(z, t) ∈Mm(OU ({z})), there exists a nonempty polydisc U ′′ ⊂U ′

such that we may assume that the z-coefficients of Ĥ(z, t) are all analytic on U ′′.

Remark 1.4. Remark that we have no uniqueness of the fundamental solution
written in this way, since zκ Ĥ(z, t)zL(t)−κeQ(z,t) is also a fundamental solution
for all κ ∈ Z. However, by the construction of (KU ′)

∧, if Ĥi (z, t)zL i (t)e(Qi (z, t))
are fundamental solutions of (∗) written in this way for i = 1, 2, then, up to a
permutation, Q1 and Q2 have the same entries.
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Example 1.5 [Schäfke 2001, Introduction]. If we consider

z2∂zY (z, t)=
(

t 1
z 0

)
Y (z, t),

we get the solution

(1-1)
((

1 1
0 −t

)
+ O(z)

)(
z1/t e−t/z 0

0 z−1/t

)
for t 6= 0, and the solution(

1 1
z1/2
−z1/2

)((
1 0
0 1

)
+ O(z1/2)

)(
z1/4e−z−1/2

0
0 z1/4ez−1/2

)
for t = 0. The latter is not the specialization of (1-1) at t = 0. The problem is
that the level of the unparametrized system (see Section 1C for the definition) at
t = 0 is 1 and the level of the unparametrized system for t 6= 0 is 1

2 . This example
shows that we cannot get a solution in the parametrized Hukuhara–Turrittin form
that remains valid for all values of the parameter t . This is the reason why we have
to restrict the subset of the parameter space.

Remark 1.6. Similar results to Proposition 1.3 have been proved in Theorem 4.2 of
[Schäfke 2001]. We now explain the result of Schäfke. Let U be an open connected
subset of Cn that contains 0, and let A(z, t) =

∑
∞

l=s Al(t), with s ∈ Z and Al(t)
analytic in U . In particular, A(z, t) ∈Mm(K̂ U ). Assume that, for all t ∈U , there
exists a solution Ĥt(z)zL t e(Q(z, t)) to (∗) given in the classical Hukuhara–Turrittin
canonical form, i.e., such that:

• The z-coefficients of the qi (z, t) are analytic functions in t ∈U .

• The degree in z−1 of qi (z, t)− q j (z, t) is independent of t in U .

• If qi (z, t) 6≡ q j (z, t), then qi (z, 0) 6= q0(z, 0).

Under these assumptions, Schäfke concludes that there exists an open neighborhood
U ′ ⊂U of 0 in the t-plane such that there exists a solution

Ĥ(z, t)zL(t)e(Q(z, t)) ∈ GLm((KU ′)
∧)

with Ĥ(z, t) =
∑
∞

l=0 Ĥl(t) and such that the maps t 7→ Ĥl(t), L(t) are analytic.
Notice that Schäfke gives a necessary and sufficient condition, that can be algo-
rithmically checked, for well-behaved exponential part. See [ibid., Theorem 5.2].
Using Schäfke’s theorem, we can deduce Proposition 1.3 only in the particular case
where A(z, t) has entries with z-coefficients analytic in U . Note that [ibid.] does
not allow us to deduce the general case. See also [Babbitt and Varadarajan 1985,
§10, Theorem 1] for another result of this nature.
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Proof of Proposition 1.3. Let K = C[[z]][z−1
], where C is an algebraically closed

field of characteristic 0, equipped with a derivation ∂z that acts trivially on C and
with ∂z(z)= 1. The Hukuhara–Turrittin theorem (see Theorem 3.1 in [van der Put
and Singer 2003]) is valid for linear differential system with entries in K . We apply
it with C =MU , the algebraic closure of MU .

Let us consider the matrices L(t) ∈ Mm(MU ) and Q(z, t) = Diag(qi (z, t)),
with qi (z, t) ∈ z−1/νMU [z−1/ν

] for some ν ∈ N. Because of Remark 1.1 and
Lemma 1.2, there exists a nonempty polydisc U ′ ⊂ U such that we may define
zL(t)
∈ GLm(KF,U ′) satisfying

∂zzL(t)
=

L(t)
z

zL(t)
= zL(t) L(t)

z
,

L(t) ∈Mm(MU ′) and qi (z, t) ∈ EU ′ . Hence, the Hukuhara–Turrittin theorem gives
a fundamental solution

F ′(z, t)= Ĥ ′(z, t)zL(t)e(Q(z, t))

on U ′, where:

• Ĥ ′(z, t) ∈ GLm(MU ′[[z1/ν
]][z−1/ν

]), for some ν ∈ N.

• L(t) ∈Mm(MU ′).

• e(Q(z, t))= Diag(e(qi (z, t))), with qi (z, t) ∈ EU ′ .

• Moreover, we have e(Q(z, t))zL(t)
= zL(t)e(Q(z, t)).

Let us prove now that we may find Ĥ(z, t) ∈ GLm(K̂U ′[z1/ν
]) such that

F(z, t)= Ĥ(z, t)zL(t)e(Q(z, t))

is a fundamental solution. The matrix

F ′(z, t)= Ĥ ′(z, t)zL(t)e(Q(z, t))

satisfies the parametrized linear differential equation

∂z F ′(z, t)= A(z, t)F ′(z, t),

and the matrix zL(t)e(Q(z, t)) satisfies the parametrized linear differential equation

∂zzL(t)e(Q(z, t))=
(
z−1L(t)+ ∂z Q(z, t)

)
zL(t)e(Q(z, t))

= zL(t)e(Q(z, t))
(
z−1L(t)+ ∂z Q(z, t)

)
.

Hence

∂z Ĥ ′(z, t)= A(z, t)Ĥ ′(z, t)− Ĥ ′(z, t)
(
z−1L(t)+ ∂z Q(z, t)

)
.

We write Ĥ ′(z, t) as a column vector H̃ ′(z, t) of size m2. Let

C(z, t) ∈Mm2(K̂U ′[z1/ν
]),
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with ν ∈N∗ such that H̃ ′(z, t) satisfies the parametrized linear differential system

∂z H̃ ′(z, t)= C(z, t)H̃ ′(z, t).

Let us write

H̃ ′(z, t)=
∑
i≥N

H̃ ′i (t)z
i/ν and C(z, t)=

∑
i≥M

Ci (t)zi/ν,

where M, N ∈ Z. Then, by identifying the coefficients of the zi/ν-terms of the
power series in the equation ∂z H̃ ′(z, t)= C(z, t)H̃ ′(z, t), we find that

( i
ν
+ 1

)
H̃ ′i+ν(t)=

i−M∑
l=N

Ci−l(t)H̃ ′l (t).

By the definition of K̂U ′[z1/ν
], every Ci (t) belongs to Mm(MU ′). The fact that there

exists a fundamental solution Ĥ(z, t)zL(t)e(Q(z, t))with Ĥ(z, t)∈GLm(K̂U ′[z1/ν
])

is now clear.
Assume now that A(z, t) ∈Mm(OU ({z})). Let U ′′ be a nonempty polydisc with

U ′′ ⊂U ′ such that for z 6= 0 fixed, the entries of the z-coefficients of

z−1L(t)+ ∂z Q(z, t)

are analytic on U ′′. Then the entries of the z-coefficients of C(z, t) are all analytic
on U ′′. Hence, we may assume that the entries of the z-coefficients of Ĥ(z, t) are
all analytic on U ′′. �

Remark 1.7. If we take a smaller nonempty polydisc U , we may assume that if we
consider the equation (∗) with A(z, t)∈Mm(OU ({z})), then the fundamental solution
of Proposition 1.3 belongs to GLm((KU )

∧), and the entries of the z-coefficients
of Ĥ(z, t) are all analytic on U .

1C. Review of the Stokes phenomenon in the unparametrized case. In this sub-
section we will briefly review the Stokes phenomenon in the unparametrized case.
See [Cano and Ramis 1995; Écalle 1981; Loday-Richaud 1990; 1994; 1995; Loday-
Richaud and Remy 2011; Malgrange 1991; 1995; Malgrange and Ramis 1992;
Ramis 1980; 1985; Rasoamanana 2010; Remy 2012; Ramis and Sibuya 1989;
Singer 2009; Wasow 1965], and in particular Chapter 8 of [van der Put and Singer
2003] for more details. We will generalize some results concerning the summation
of divergent series in the parametrized case in Section 1D. First we treat the example
of the Euler equation

z2∂zY (z)+ Y (z)= z,
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which admits as a solution the formal series f̂ (z)=
∑
∞

n=0(−1)nn!zn+1. Classical
methods of differential equations give another solution:

f (z)=
∫ z

0
e1/ze−1/t dt

t
=

∫
∞

0

1
1+u

e−u/z du,

where 1/t − 1/z = u/z. The solution f̂ (z) is divergent and the solution f (z) can
be extended to an analytic function on the sector V = 6(−3π/2, 3π/2), where,
here and throughout, we use the notation

6(α, β) := {z ∈ C̃ | arg(z) ∈ ]α, β[}

to represent sectors in C̃. On this sector, f (z) is 1-Gevrey asymptotic to f̂ (z): for
every closed subsector W of V , there exist AW ∈ R and ε > 0 such that for all N
and all z ∈W with |z|< ε,∣∣∣∣ f (z)−

N−1∑
n=0

(−1)nn!zn+1
∣∣∣∣≤ (AW )

N+1(N + 1)!|z|N+1.

We can also consider f (e2iπ z), which is an asymptotic solution on the sector

V ′ =6(π/2, 7π/2).

The two asymptotic solutions do not glue to a single asymptotic solution on V ∪V ′.
In fact, the residue theorem implies that the difference in V∩V ′ of the two asymptotic
solutions is

2iπe1/z.

The fact that various asymptotic solutions do not glue to a single analytic solution
is called the Stokes phenomenon.

More generally, let us consider a linear differential equation ∂zY (z)= A(z)Y (z)
such that the entries of A(z) are germs of meromorphic functions in a neighborhood
of 0. Let Ĥ(z)zLe(Q(z)) be a fundamental solution in the Hukuhara–Turrittin
canonical form, with Q(z)= Diag(qi (z)). Since

Ĥ(z)zLe(Q(z))= Ĥ(z)Diag(zk)zL−k Ide(Q(z))

for all k ∈ N, we may assume that Ĥ(z) has no pole at z = 0. The levels of
∂zY (z) = A(z)Y (z) are the degrees in z−1 of the qi (z) − q j (z) (the levels are
positive rational numbers and are well-defined because of Remark 1.4). Consider

q(z)= qkz−k/ν
+ · · ·+ q1z−1/ν

∈ z−1/νC[z−1/ν
]

with ν ∈ N. The real number d is called singular for q(z) if qke−idk/ν is a positive
real number. These correspond to the arguments d such that r 7→ eq(reid ) increases
fastest as r tends to 0+. The singular directions of ∂zY (z) = A(z)Y (z) (we will
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write singular directions when no confusion is likely to arise) are the real numbers
that are singular for one of the qi (z) − q j (z), with i 6= j . Notice that the set
of singular directions is finite modulo 2πν for some ν ∈ N. Let k1 < · · · < kr

be the levels of the linear differential equation. There exists a decomposition
Ĥ(z)= Ĥk1(z)+ · · ·+ Ĥkr (z) such that for d not a singular direction, there exists
an unique r -tuple of matrices (H d

k1
(z), . . . , H d

kr
(z)) such that H d

ki
(z) is analytic on

the sector

Vd =6(d −π/2ki , d +π/2ki ),

and is ki -Gevrey asymptotic to Ĥki (z) =
∑

n∈N Ĥn,ki z
n on Vd : for every closed

subsector W of Vd , there exist AW ∈ R and ε > 0 such that for all N and all z ∈W
with |z|< ε, ∣∣∣∣H d

ki
(z)−

N−1∑
n=0

Ĥn,ki z
n
∣∣∣∣≤ (AW )

N0
(

1+ N
ki

)
|z|N ,

where 0 denotes the gamma function. Until the end of the paper, we will denote a
fixed branch of the complex logarithm by log(z). Furthermore, the matrix

(1-2) (H d
k1
(z)+ · · ·+ H d

kr
(z))eL log(z)eQ(z)

= H d(z)eL log(z)eQ(z),

which is analytic on the sector 6(d −π/2kr , d +π/2kr ), is a solution of ∂zY (z)=
A(z)Y (z). As a matter of fact, H d

ki
(z) is ki -Gevrey asymptotic to Ĥki (z) on the

larger sector

6(dl −π/2ki , dl+1+π/2ki ),

where dl, dl+1 are two singular directions such that ]dl, dl+1[ contains no singu-
lar directions. Therefore, we can construct an analytic solution on the sector
6(dl −π/2kr , dl+1+π/2kr ). Let d ∈ R, and choose d± such that

d − π

2kr
< d− < d < d+ < d + π

2kr

and such that there are no singular directions in [d−, d[ ∪ ]d, d+]. We get two
matrices, H d+(z)eL log(z)eQ(z) and H d−(z)eL log(z)eQ(z), which are germs of analytic
solutions on the sectors

6(d−−π/2kr , d +π/2kr ) and 6(d −π/2kr , d++π/2kr ),

respectively. The two matrices are, in particular, germs of solutions of ∂zY (z)=
A(z)Y (z) on the sector

6(d −π/2kr , d +π/2kr ).
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A computation shows that there exists a matrix Std ∈ GLm(C), which we call the
Stokes matrix in the direction d , such that

H d+(z)eL log(z)eQ(z)
= H d−(z)eL log(z)eQ(z) Std .

Proposition 1.8. The following statements are equivalent:

(1) The entries of Ĥ(z) converge.

(2) Std = Id for all d ∈ R.

(3) Std = Id for all singular directions.

Proof. From what is preceding, we deduce that if d is not a singular direction,
then Std = Id. Therefore, the statements (2) and (3) are equivalent. If the entries
of Ĥ(z) converge, then, since Ĥ(z) is Gevrey asymptotic to itself on every sector
of C̃, H d(z)= Ĥ(z) for all d ∈ R, and (2) holds. Assume now that Std = Id for all
singular directions. From the proof of [van der Put and Singer 2003, Theorem 8.10],
we obtain that the entries of Ĥ(z) converge. �

We can compute the asymptotic solutions using the Laplace and the Borel
transformations. See Chapters 2 and 3 of [Balser 1994] for more details.

Definition 1.9. (1) Let k ∈ Q. The formal Borel transform B̂k is the map that
transforms the formal power series

∑
anzn into the formal power series

B̂k

(∑
anzn

)
=

∑ an

0(1+ n/k)
zn.

(2) Let d ∈R, k ∈Q, ε > 0 and let f be analytic on the sector 6(d − ε, d + ε). We
assume that there exist A, B > 0 such that

| f (z)| ≤ AeB|z|k

for arg(z)= d. Then the following integral is the germ of an analytic function on
6(d −π/2k, d +π/2k) (see [ibid., p. 13], for a proof), and is called the Laplace
transform of order k in the direction d of f :

Lk,d( f )(z)=
∫
∞eid

0
f (u)e−(u/z)

k
d
((u

z

)k)
.

For a proof of the following proposition, see Section 7.2 of [ibid.].

Proposition 1.10. Let k1 < · · · < kr be the levels of ∂zY (z) = A(z)Y (z) and set
kr+1=+∞. Suppose that d ∈R is not a singular direction, and let ĥ(z) be an entry
of Ĥ(z). Define (κ1, . . . , κr ) by

κ−1
i = k−1

i − k−1
i+1.



102 THOMAS DREYFUS

The series B̂κr ◦ · · · ◦ B̂κ1(ĥ) converges, and there exist ε1, A1, B1 > 0 such that it
has an analytic continuation h1 on the sector 6(d − ε1, d + ε1), and

|h1(z)| ≤ A1eB1|z|κ1

in this sector. Moreover, for j = 2, . . . , r there exist ε j , A j , B j > 0 such that the
function h j+1 = Lκ j ,d(h j ) is analytic on the sector 6(d − ε j , d + ε j ), and

|h j (z)| ≤ A j eB j |z|
κ j

on this sector. Therefore, we may apply Lκr ,d ◦ · · · ◦Lκ1,d ◦ B̂κr ◦ · · · ◦ B̂κ1 to every
entry of Ĥ(z). We have the following equality:

H d(z)= Lκr ,d ◦ · · · ◦Lκ1,d ◦ B̂κr ◦ · · · ◦ B̂κ1(Ĥ).

1D. Stokes phenomenon in the parametrized case. Consider the equation (∗),
with A(z, t) ∈Mm(OU ({z})) (see page 90), where U is a nonempty polydisc in Cn ,
and consider F(z, t) = Ĥ(z, t)zL(t)e(Q(z, t)), with Q(z, t) = Diag(qi (z, t)), the
fundamental solution of Proposition 1.3. Since for all k ∈ N, F(z, t) is equal to
Ĥ(z, t)Diag(zk)zL(t)−k Ide(Q(z, t)), we may assume that Ĥ(z, t) has no pole at
z = 0. We define the levels of the system (∗) as the levels of the specialized system.
The levels may depend upon t , but they are invariant on the complement of a closed
set with empty interior. We want to extend the definition of the singular directions
to the parametrized case. Consider q(z, t) = qk(t)z−k/ν

+ · · · + q1(t)z−1/ν
∈ EU .

A continuous function d :U → R is called singular for q(z, t) if

qk(t)e−id(t)k/ν
∈ R≥0 for all t ∈U.

In general, the positive number qk(t)e−id(t)k/ν depends on t if d(t) is a singular
direction for q(z, t). The singular directions of (∗) (we will just write singular
directions when no confusion is likely to arise) are the directions that are singular
for one of the qi (z, t)− q j (z, t), with i 6= j .

Remark 1.11. (1) It may happen that for some t0 ∈ U , the singular directions
of (∗) evaluated at t0 are not equal to the singular directions of the specialized
system ∂zY (z, t0)= A(z, t0)Y (z, t0). Take for example n = 1, U = C, t0 = 0 and
A(z, t)= Diag(−2t z−3

− z−2, 2t z−3
+ z−2). The two exponentials are

e(q1(z, t))= e(t z−2
+ z−1) and e(q2(z, t))= e(−t z−2

− z−1).

However, there exists V ⊂ U , a closed set with empty interior, such that for all
t0 in U \ V , the singular directions of (∗) evaluated at t0 are equal to the singular
directions of the specialized system ∂zY (z, t0)= A(z, t0)Y (z, t0).

(2) Unfortunately, two different singular directions may be equal on a subset of U .
For example, for n = 1, U = C∗, and A(z, t) = Diag(z−2, t z−2,−t z−2), we find
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three exponentials: e−1/z, et/z and e−t/z . For t ∈ R>0, the singular directions
of (2t)z−1 are the same as the singular directions of (t + 1)z−1.

Let (di (t))i∈N be the singular directions, and

D= {t ∈U | there exist j, j ′ ∈ N such that d j 6≡ d j ′ and d j (t)= d j ′(t)}.

Lemma 1.12. D is a closed subset of U with empty interior.

Proof. Assume that there exist a nonempty polydisc D ⊂ D and two singular
directions d j (t), d j ′(t) such that d j (t)= d j ′(t) on D. Then there exist a nonempty
polydisc D′⊂ D and q(t), q ′(t)∈MD′ that do not vanish on D′ such that q(t)/q ′(t)
has constant argument on D′. An analytic function with constant argument on a
polydisc is constant. Hence, we deduce that d j (t) = d j ′(t) on a polydisc, which
implies that d j (t) = d j ′(t) on U . Since the set of singular directions is finite
modulo 2πν with ν ∈ N∗, D has empty interior. �

Thus, if we take a smaller nonempty polydisc U , we may assume the following:

• D=∅.

• The levels of (∗) are independent of t

• For all t0 ∈ U , the singular directions of (∗) evaluated at t0 are equal to the
singular directions of the specialized system ∂zY (z, t0)= A(z, t0)Y (z, t0).

Let Ĥ(z, t)zL(t)e(Q(z, t)) ∈ GLm((KU )
∧) be a fundamental solution to the param-

etrized linear differential system (∗) in the same form as in Proposition 1.3, where
we consider A(z, t) ∈ Mm(OU ({z})). Let d(t) be a singular direction, and let
k1 < · · ·< kr be the levels of (∗). For t belonging to U , we define the parametrized
Stokes matrix Std(t) (we will just call it the Stokes matrix when no confusion is
likely to arise) as t 7→ Std(t), where Std(t) is the Stokes matrix of the specialized
system defined just before Proposition 1.8.

Proposition 1.13. Let d(t) be continuous in t such that for all t0 in U , d(t0) is not
a singular direction of the unparametrized linear differential equation ∂zY (z, t0)=
A(z, t0)Y (z, t0). We define t 7→ H d(t)(z, t)eL(t) log(z)eQ(z,t) as the solution (1-2) of
the specialized system. Let d1(t), d2(t) be two singular directions such that for all
t ∈U , d1(t) < d(t) < d2(t) and ]d1(t), d2(t)[ contains no singular directions. Then,
there exists a map U → R>0, t 7→ ε(t), which is not necessarily continuous, such
that H d(t)(z, t)eL(t) log(z)eQ(z,t) is meromorphic in (z, t) for

z ∈6(d1(t)−π/2kr , d2(t)+π/2kr ) with 0< |z|< ε(t) and t ∈U.

Notice that the facts that D=∅ and that the singular directions are continuous
in t implies the existence of a continuous function d(t) such that, for all t0 in U ,
d(t0) is not a singular direction of the unparametrized linear differential equation
∂zY (z, t0)= A(z, t0)Y (z, t0).
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Proof. We recall that we have assumed that for all t0 ∈U , the singular directions
of (∗) evaluated at t0 are equal to the singular directions of the specialized system
∂zY (z, t0) = A(z, t0)Y (z, t0). We have seen in Section 1C that, for t fixed, the
asymptotic solution is a germ of meromorphic function on the sector

6(d1(t)−π/2kr , d2(t)+π/2kr ).

We may replace d(t) by any function, possibly discontinuous, such that for all t ∈U ,
d1(t) < d(t) < d2(t). Since the singular directions are continuous in t , we may
assume that d(t) is locally constant. Since for z 6= 0, t 7→ eL(t) log(z)eQ(z,t)

∈MU ,
this is now a consequence of Proposition 1.10 and Lemma 1.14 below. �

Lemma 1.14. We keep the same notation as in Definition 1.9 and Proposition 1.10.
Let ĥ(z, t) be one of the entries of Ĥ(z, t). Let V ⊂U be a nonempty polydisc, and
let d ∈R such that for all t ∈ V , d is not an unparametrized singular direction of (∗).
Then there exists a map U → R>0, t 7→ ε(t), which is not necessarily continuous,
such that

Lκr ,d ◦ · · · ◦Lκ1,d ◦ B̂κr ◦ · · · ◦ B̂κ1(ĥ)

is meromorphic in (z, t) for

z ∈6(d −π/2kr , d +π/2kr ) with 0< |z|< ε(t) and t ∈ V .

Moreover, for all j ≤ n,

Lκr ,d ◦· · ·◦Lκ1,d ◦B̂κr ◦· · ·◦B̂κ1(∂t j ĥ)= ∂t j (Lκr ,d ◦· · ·◦Lκ1,d ◦B̂κr ◦· · ·◦B̂κ1(ĥ)).

Proof. We will proceed in two steps.

Step 1: We recall that ĥ(z, t) ∈ K̂U [z1/ν
] (where ν ∈ N∗ has been defined in

Proposition 1.3) and (see Remark 1.7) all the z-coefficients are analytic on U .
Because of Proposition 1.10, for t fixed, B̂κr ◦ · · · ◦ B̂κ1(ĥ) is a germ of a mero-
morphic function. Therefore, it belongs to OU ({z})[z1/ν

]. Let h1 be the analytic
continuation defined in Proposition 1.10. In particular, for all z ∈ C̃ with arg(z)= d ,
t 7→ h1(z, t) ∈ MV . The fact that we have a meromorphic function allows us to
differentiate termwise, and for all j ≤n, ∂t j h1 is equal to the analytic continuation of

B̂κr ◦ · · · ◦ B̂κ1(∂t j ĥ).

Step 2: Let h2, . . . , hr be the successive Laplace transforms that were defined in
Proposition 1.10. Let t0 ∈ V , let Wt0 be a compact neighborhood of t0 in V , let i ≤ r ,
and assume that for z ∈ C̃ with arg(z)= d , t 7→ hi (z, t) is meromorphic on Wt0 . It
is sufficient to prove that, for all z ∈ C̃ with arg(z) ∈ ]d −π/2κi , d +π/2κi [ and
|z| sufficiently small, t 7→ hi+1(z, t) is meromorphic on Wt0 , and for all j ≤ n,

Lκi ,d(∂t j hi )= ∂t j (Lκi ,d(hi ))= ∂t j hi+1.
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The function Lκi ,d(hi ) is an integral of a meromorphic function depending analyti-
cally upon parameters, and we just have to prove that it is possible to find a function f
such that, for all t ∈Wt0 , |hi (u, t)|< | f (u)| and for arg(z)∈ ]d−π/2κi , d+π/2κi [,
|z| sufficiently small, Lκi ,d(| f |)(z) <∞. From Proposition 1.10, we obtain the
existence of A(t), B(t) > 0 such that for arg(u) = d, |hi (u, t)| ≤ A(t)eB(t)|u|κi .
Since hi (u, t) is meromorphic, we may assume that A(t) and B(t) are continuous
on Wt0 . The functions A(t) and B(t) admit a maximum A and B on the compact
set Wt0 . Finally, for arg(z) ∈ ]d −π/2κi , d +π/2κi [ and |z| sufficiently small,

|Lκi ,dhi | =

∣∣∣∣∫ ∞eid

0
hi (u, t)e−(u/z)

κi d
((u

z

)κi
)∣∣∣∣

≤

∫
∞

0
AeB|u|κi

|e−(u/z)
κi
|d
((u

z

)κi
)
<∞. �

2. Parametrized differential Galois theory

In this section we are interested in parametrized differential Galois theory: this is
a generalization of differential Galois theory for parametrized linear differential
equations. In Section 2A, we review the parametrized differential Galois theory de-
veloped in [CS]. In Section 2B, we prove that some of the results of Section 2A stay
valid without the assumption that the field of constants is differentially closed. This
will help us in Section 2C to prove that the local analytic parametrized differential
Galois group descends to a smaller field, whose field of constants is not differentially
closed. In Section 2D, we explain the main result of the paper: we show an analogue
of the density theorem of Ramis in the parametrized case. In Section 2E, we give
a similar result for the global parametrized differential Galois group. We end by
giving various examples of computation of parametrized differential Galois groups
using the parametrized density theorem.

2A. Basic facts. We recall some facts from [CS] about Galois theory of parametr-
ized linear differential equations. Classical Galois theory of unparametrized linear
differential equation is presented in some books, such as [van der Put and Singer
2003; Magid 1994].

Let K be a differential field of characteristic 0 with n+1 commuting derivations
∂0, . . . , ∂n . We want to study differential equations of the form ∂0Y = AY , with
A ∈ Mm(K ). Let CK be the field of constants with respect to ∂0. Since all the
derivations commute with ∂0, (CK , ∂1, . . . , ∂n) is a differential field. By abuse of
notation, we will sometimes start from a (∂1, . . . , ∂n)-differential field CK and build
a (∂0, . . . , ∂n)-differential field extension K of CK , such that CK is the field of
constants with respect to ∂0.

Example 2.1. If K = K̂U , then ∂0 = ∂z , {∂1, . . . , ∂n} =1t , and CK =MU .
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A parametrized Picard–Vessiot extension for the parametrized linear differential
equation ∂0Y = AY on K is a (∂0, . . . , ∂n)-differential field extension K̃ |K with
the following properties:

• There exists a fundamental solution for ∂0Y = AY in K̃ , i.e., an invertible
matrix U = (ui, j ), with entries in K̃ , such that ∂0U = AU .

• K̃ = K 〈ui, j 〉∂0,...,∂n , i.e., K̃ is the (∂0, . . . , ∂n)-differential field generated by
K and the ui, j .

• The field of constants of K̃ with respect to ∂0 is CK .

Let L be a (∂1, . . . , ∂n)-field of characteristic 0 with commuting derivations. The
(∂1, . . . , ∂n)-differential ring L{y1, . . . , yk}∂1,...,∂n of differential polynomials in k
indeterminates over L is the usual polynomial ring in the infinite set of variables{

∂
ν1
1 . . . ∂νn

n y j
}νi∈N

j≤k ,

and with derivations extending those in {∂1, . . . , ∂n} on L , defined by

∂i (∂
ν1
1 . . . ∂νn

n y j )= ∂
ν1
1 . . . ∂

νi+1
i . . . ∂νn

n y j .

Definition 2.2 [Cassidy and Singer 2007, Definition 3.2]. We say that the field
(CK , ∂1, . . . , ∂n) is differentially closed if it has the following property: for any
k, l ∈ N and for all P1, . . . , Pk ∈ CK {y1, . . . , yl}∂1,...,∂n , the system

P1(α1, . . . , αl)= 0
...

Pk−1(α1, . . . , αl)= 0

Pk(α1, . . . , αl) 6= 0,

has a solution in CK as soon as it has a solution in a (∂1, . . . , ∂n)-differential field
containing CK .

For simplicity of notation, we will say that CK is differentially closed rather than
that (CK , ∂1, . . . , ∂n) is differentially closed. Note that there exists a differentially
closed extension of CK ; see [CS, Section 9.1]. By definition, a differentially closed
field is algebraically closed.

Proposition 2.3 [CS, Theorem 9.5]. Assume that CK is differentially closed. Then
the parametrized Picard–Vessiot extension for ∂0Y = AY exists and is unique up to
(∂0, . . . , ∂n)-differential isomorphism.

Until the end of the Section 2A, we assume that CK is differentially closed.
Consider ∂0Y = AY with A ∈Mm(K ), and let K̃ |K be a parametrized Picard–

Vessiot extension. The parametrized differential Galois group Gal∂1,...,∂n
∂0

(K̃ |K ) is
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the group of field automorphisms of K̃ which induce the identity on K and commute
with all the derivations. This latter is independent of the choice of the parametrized
Picard–Vessiot extension, since all the parametrized Picard–Vessiot extensions are
(∂0, . . . , ∂n)-differentially isomorphic. In the unparametrized case, the differential
Galois group is an algebraic subgroup of GLm(CK ). In the parametrized case, we
find a linear differential algebraic subgroup:

Definition 2.4. Let us consider m2 indeterminates (X i, j )i, j≤m . We say that a
subgroup G of GLm(CK ) is a linear differential algebraic group if there exist
P1, . . . , Pk ∈ CK {X i, j }∂1,...,∂n such that for A = (ai, j ) ∈ GLm(CK ),

A ∈ G⇐⇒ P1(ai, j )= · · · = Pk(ai, j )= 0.

Let U be a fundamental solution of ∂0Y = AY . One proves directly that the map

ρU : Gal∂1,...,∂n
∂0

(K̃ |K )−→ GLm(CK )

ϕ 7−→U−1ϕ(U ),

is an injective group morphism. A fundamental fact is that

Im ρU = {U−1ϕ(U ) | ϕ ∈ Gal∂1,...,∂n
∂0

(K̃ |K )}

is a linear differential algebraic subgroup of GLm(CK ) (see Theorem 9.5 in [CS]).
If we take a different fundamental solution in K̃ , we obtain a conjugate linear
differential algebraic subgroup of GLm(CK ). We will identify Gal∂1,...,∂n

∂0
(K̃ |K )

with a linear differential algebraic subgroup of GLm(CK ) for a chosen fundamental
solution. We put a topology on GLm(CK ), called the Kolchin topology, for which
the closed sets are defined as the zero loci of finite sets of differential polynomials
with coefficients in CK .

Example 2.5 [CS, Example 3.1]. Let n=1, let (CK , ∂t) be a differentially closed ∂t -
field that contains (C(t), ∂t), and let us consider K =CK (z), the (∂z, ∂t)-differential
field of rational functions in the indeterminate z with coefficients in CK , where z
is a ∂t -constant with ∂zz = 1, CK is the field of constants with respect to ∂z , and
∂z commutes with ∂t . Let us consider the parametrized differential equation

∂zY (z, t)= t
z

Y (z, t).

The fundamental solution is (zt), and K (zt , log) is a parametrized Picard–Vessiot
extension (see Section 1A for the notation). Here we have added log because we
want the extension to be closed under the derivations ∂z and ∂t . Using the fact that
the Galois group commutes with ∂z and ∂t , we find that the Galois group is given by

{ f ∈ CK | f 6= 0 and f ∂2
t f − (∂t f )2 = 0}.
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We can see that if we take CK =C(t) or CK =MC (see page 90), which are not dif-
ferentially closed, then we find two different groups of differential automorphisms:

{ f ∈ C(t) | f 6= 0 and f ∂2
t f − (∂t f )2 = 0} = C∗

and

{ f ∈MC | f 6= 0 and f ∂2
t f − (∂t f )2 = 0} = {cebt

| b ∈ C, c ∈ C∗},

which shows the importance of considering a Galois group defined over a differen-
tially closed field. See Example 2.26 for the resolution of this ambiguity using the
parametrized density theorem.

There is a Galois correspondence theorem for parametrized differential Galois
theory; see Theorem 9.5 in [CS]. For a subgroup G of Gal∂1,...,∂n

∂0
(K̃ |K ), let

K̃ G
= {a ∈ K̃ | σ(a)= a for all σ ∈ G}.

Then the theorem says that the Kolchin-closed subgroups of Gal∂1,...,∂n
∂0

(K̃ |K ) are
in bijection with the (∂0, . . . , ∂n)-differential subfields of K̃ containing K via the
map

G 7→ K̃ G .

The inverse map is given by

M 7→ Gal∂1,...,∂n
∂0

(K̃ |M),

where Gal∂1,...,∂n
∂0

(K̃ |M) denotes the set of elements of Gal∂1,...,∂n
∂0

(K̃ |K ) inducing
the identity map on M . In particular, we have the following corollary:

Corollary 2.6. Let G be an arbitrary subgroup of Gal∂1,...,∂n
∂0

(K̃ |K ). Then K̃ G
= K

if and only if G is dense for the Kolchin topology in Gal∂1,...,∂n
∂0

(K̃ |K ).

Let L|M |K be (∂1, . . . , ∂n)-differential field extensions. Notice that we do not
exclude L = M = K . All the definitions that we give before the next proposition
come from [Hardouin and Singer 2008, §6.2.3].

We remark that P(a1, . . . , an) is well-defined for P ∈M{X1, . . . , Xk}∂1,...,∂n and
a1, . . . , ak ∈ L . Then we may define the (∂1, . . . , ∂n)-differential transcendence
degree of L over M as the maximum number of elements a1, . . . , ak of L such that

P(a1, . . . , ak) 6= 0,

for all nonzero (∂1, . . . , ∂n)-differential polynomials P with coefficients in M . The
(∂1, . . . , ∂n)-differential transcendence degree of an integral domain over another
integral domain is defined to be the (∂1, . . . , ∂n)-differential transcendence degree
of the fraction field of the first one over the fraction field of the second one.
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Let us consider m2 indeterminates (X i, j )i, j≤m . Let (p) be a prime (∂1, . . . , ∂n)-
differential ideal of CK {X i, j }∂1,...,∂n , i.e., a prime ideal stable under the deriva-
tions ∂1, . . . , ∂n . The (∂1, . . . , ∂n)-dimension of (p) over CK is defined to be the
(∂1, . . . , ∂n)-differential transcendence degree of the quotient ring

CK {X i, j }∂1,...,∂n/(p)

over CK .
Let (r) be a radical (∂1, . . . , ∂n)-differential ideal of CK {X i, j }∂1,...,∂n , i.e., a

radical ideal stable under the derivations ∂1, . . . , ∂n . Let (p1), . . . , (pν) with ν ∈
N∗ be the prime (∂1, . . . , ∂n)-differential ideals such that (r) =

⋂
k≤ν(pk). The

(∂1, . . . , ∂n)-dimension of (r) over CK is defined to be the maximum in k of the
(∂1, . . . , ∂n)-dimension of (pk) over CK .

Assume that M ⊂ K̃ . Let (q) be the radical (∂1, . . . , ∂n)-differential ideal of
CK {X i, j }∂1,...,∂n that defines Gal∂1,...,∂n

∂0
(K̃ |M) (see the proof of Proposition 9.10

in [CS]). We define the (∂1, . . . , ∂n)-differential dimension of Gal∂1,...,∂n
∂0

(K̃ |M)
over CK as the (∂1, . . . , ∂n)-dimension of (q) over CK .

Proposition 2.7 [Hardouin and Singer 2008, Proposition 6.26]. The (∂1, . . . , ∂n)-
differential transcendence degree of K̃ over M is equal to the (∂1, . . . , ∂n)-differen-
tial dimension of Gal∂1,...,∂n

∂0
(K̃ |M) over CK .

Example 2.5 revisited. Let us keep the same notation as in Example 2.5. The
parametrized Picard–Vessiot extension is K (zt , log) and the Galois group is

{ f ∈ CK | f 6= 0 and f ∂2
t f − (∂t f )2 = 0}.

We may directly check that the ∂t -differential dimension of the Galois group is 0,
and therefore zt satisfies a ∂t -differential polynomial equation with coefficients
in CK .

2B. Parametrized differential Galois theory for a nondifferentially closed field
of constants. Let K be a differential field of characteristic 0 with n+1 commuting
derivations ∂0, . . . , ∂n . Let CK be the field of constants with respect to ∂0. Note
that we do not assume CK to be differentially closed. Consider ∂0Y = AY , with
A ∈ Mm(K ), and assume the existence of K̃ |K , a parametrized Picard–Vessiot
extension for ∂0Y = AY (see Section 2A). This means in particular that the field
of constants of K̃ with respect to ∂0 is CK . Let F = (Fi, j ) ∈ GLm(K̃ ) be a
fundamental solution such that K̃ = K 〈Fi, j 〉∂0,...,∂n (see Section 2A for the notation).
Let Aut∂1,...,∂n

∂0
(K̃ |K ) be the group of (∂0, . . . , ∂n)-differential field automorphisms

of K̃ keeping K invariant.

Remark 2.8. We avoid here the notation Gal∂1,...,∂n
∂0

(K̃ |K ), because we have no
theorem that guarantees the uniqueness of the parametrized Picard–Vessiot extension
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K̃ |K , since CK is not differentially closed. However, we will call it the parametrized
differential Galois group, or Galois group, if no confusion is likely to arise.

We extend Definition 2.4 for the field CK . Let us consider m2 indetermi-
nates (X i, j )i, j≤m . We say that a subgroup G of GLm(CK ) is a linear differ-
ential algebraic group if there exist P1, . . . , Pk ∈ CK {X i, j }∂1,...,∂n such that for
A = (ai, j ) ∈ GLm(CK ),

A ∈ G⇐⇒ P1(ai, j )= · · · = Pk(ai, j )= 0.

The goal of the subsection is to prove:

Proposition 2.9. (1) Let us consider the injective group morphism

ρF : Aut∂1,...,∂n
∂0

(K̃ |K )−→ GLm(CK )

ϕ 7−→ F−1ϕ(F).
Then

Im ρF = {F−1ϕ(F) | ϕ ∈ Aut∂1,...,∂n
∂0

(K̃ |K )}

is a linear differential algebraic subgroup of GLm(CK ). We will identify
Aut∂1,...,∂n

∂0
(K̃ |K ) with a linear differential algebraic subgroup of GLm(CK ) for

a chosen fundamental solution. The image is independent of this choice, up to
conjugacy by an element of GLm(CK ).

(2) Let G be a subgroup of Aut∂1,...,∂n
∂0

(K̃ |K ). If K̃ G
= K , then G is dense in

Aut∂1,...,∂n
∂0

(K̃ |K ) for the Kolchin topology.

Remark that, contrary to Corollary 2.6, the converse of (2) is false when CK is not
differentially closed. See [CS, Example 3.1]. Before showing the proposition, we
point out two facts we will use in the proof. Let L|K be a (∂0, . . . , ∂n)-differential
field extension and a1, . . . , ak ∈ L .

• As in the case where CK is differentially closed (see Section 2A), P(a1, . . . , ak)

is well-defined for P ∈ K {X1, . . . , Xk}∂1,...,∂n .

• The set {P(a1, . . . , ak) | P ∈ K {X1, . . . , Xk}∂1,...,∂n } is a (∂0, . . . , ∂n)-differen-
tial field extension we will denote by L{a1, . . . , ak}∂1,...,∂n |L .

Proof of Proposition 2.9.

Part (1): We follow here the proof of Proposition 9.10 in [CS]. We consider the
differential polynomial ring

R = K {X i, j , 1/ det(X i, j )}∂1,...,∂n ,

and endow it with the ∂0-differential structure defined by ∂0(X i, j )= A(X i, j ). Let
us consider

S = K {Fi, j , 1/ det(Fi, j )}∂0,...,∂n ,
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the (∂0, . . . , ∂n)-differential subring of K̃ generated by the Fi, j and 1/ det(Fi, j )

over K . It is an integral domain. Let q be the obvious prime (∂0, . . . , ∂n)-differential
ideal such that R/q ' S. Let Zi, j be the image of X i, j in S ⊂ K̃ , so that (Zi, j ) is a
fundamental solution for ∂0Y = AY in S. Consider the following rings:

K̃ {X i, j , 1/ det(X i, j )}∂1,...,∂n = K̃ {Yi, j , 1/ det(Yi, j )}∂1,...,∂n

∪ ∪

K {X i, j , 1/ det(X i, j )}∂1,...,∂n CK {Yi, j , 1/ det(Yi, j )}∂1,...,∂n ,

where the indeterminates Yi, j are defined by (X i, j )= (Zi, j )(Yi, j ). We remark that
∂0(Yi, j )=0. Since we consider fields that are of characteristic 0, the differential ideal

q K̃ {Yi, j , 1/ det(Yi, j )}∂1,...,∂n ⊂ K̃ {X i, j , 1/ det(X i, j )}∂1,...,∂n

= K̃ {Yi, j , 1/ det(Yi, j )}∂1,...,∂n

is a radical (∂0, . . . , ∂n)-differential ideal (see Corollary A.17 in [van der Put and
Singer 2003]). The next lemma is an adaptation of Lemma 9.8 in [CS] without the
assumption that the field of constants is differentially closed.

Lemma 2.10. The (∂0, . . . , ∂n)-ideal q K̃ {Yi, j , 1/ det(Yi, j )}∂1,...,∂n is generated by

I = q K̃ {Yi, j , 1/ det(Yi, j )}∂1,...,∂n ∩CK {Yi, j , 1/ det(Yi, j )}∂1,...,∂n .

Proof. Let (ei )i∈B be a basis of CK {Yi, j , 1/ det(Yi, j )}∂1,...,∂n over CK . Let

f =
n∑

i=1

mi ei ∈ q K̃ {Yi, j , 1/ det(Yi, j )}∂1,...,∂n ,

with mi ∈ K̃ . By induction on n we will show that f ∈ I . If n = 0 or 1 there is
nothing to prove. We assume that n > 1. We can suppose that m1 = 1 and m2 /∈CK .
Then, since the field of constants of K̃ with respect to ∂z is CK ,

∂0( f )=
n∑

i=2

∂0(mi )ei 6= 0 and f ∈ q K̃ {Yi, j , 1/ det(Yi, j )}∂1,...,∂n .

Then, by induction, ∂0( f ) ∈ I . By the same argument,

∂0(m−1
2 f ) ∈ I.

Then ∂0(m−1
2 ) f = ∂0(m−1

2 f )−m−1
2 ∂0 f ∈ I . Since ∂0(m−1

2 ) 6= 0, we obtain that
f ∈ I . �

By Lemma 2.10, q K̃ {X i, j , 1/ det(X i, j )}∂1,...,∂n is generated by

I = q K̃ {X i, j , 1/ det(X i, j )}∂1,...,∂n ∩CK {Yi, j , 1/ det(Yi, j )}∂1,...,∂n .
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Clearly, I is a (∂1, . . . , ∂n)-radical ideal of CK {Yi, j , 1/ det(Yi, j )}∂1,...,∂n . Let C =
(Ci, j ) ∈ GLm(CK ). The following statements are equivalent:

(1) (Ci, j ) ∈ Aut∂1,...,∂n
∂0

(K̃ |K ).

(2) The map K {X i, j , 1/ det(X i, j )}∂1,...,∂n → K {X i, j , 1/ det(X i, j )}∂1,...,∂n defined
by (X i, j ) 7→ (X i, j )(Ci, j ) := (

∑m
k=1 X i,kCk, j ) leaves q invariant.

(3) The map K {X i, j , 1/ det(X i, j )}∂1,...,∂n → K̃ defined by (X i, j ) 7→ (Zi, j )(Ci, j )

sends q to 0.

(4) The map K̃ {X i, j , 1/ det(X i, j )}∂1,...,∂n → K̃ defined by (X i, j ) 7→ (Zi, j )(Ci, j )

sends q K̃ {X i, j , 1/ det(X i, j )}∂1,...,∂n = q K̃ {Yi, j , 1/ det(Yi, j )}∂1,...,∂n to 0.

(5) The map K̃ {Yi, j , 1/ det(Yi, j )}∂1,...,∂n → K̃ defined by (Yi, j ) 7→ (Ci, j ) sends
q K̃ {Yi, j , 1/ det(Yi, j )}∂1,...,∂n to 0.

The theorem is now a consequence of the fact that q K̃ {Yi, j , 1/ det(Yi, j )}∂1,...,∂n is
generated by I , a (∂1, . . . , ∂n)-radical ideal of CK {Yi, j , 1/ det(Yi, j )}∂1,...,∂n .

Part (2): We follow the proof of Proposition 9.10 in [CS], and use the same notation
as before. By construction, the ideal I of Lemma 2.10 above is the differential
ideal that defines the Galois group. Assume that the Kolchin closure of G is not the
whole Galois group. Then there exists P ∈ CK {Yi, j , 1/ det(Yi, j )}∂1,...,∂n such that
P /∈ I and P(g)= 0 for all g ∈ G. Lemma 2.10 implies that

P /∈ J = q K̃ {Yi, j , 1/ det(Yi, j )}∂1,...,∂n .

Let T consist of all Q ∈ K̃ {X i, j , 1/ det(X i, j )}∂1,...,∂n such that Q /∈ J and

Q((Zi, j )(gi, j ))= 0 for all g = (gi, j ) ∈ G.

Since P ∈ T , T 6= {0}. An element Q ∈ T can be written as

Q = f1 Q1+ · · ·+ fνQν,

where fi ∈ K̃ and Qi ∈K {X i, j , 1/ det(X i, j )}∂1,...,∂n . Let Q= f1 Q1+· · ·+ fνQν ∈T
such that:

• f1 = 1,

• all the fi are nonzero,

• ν is minimal.

For all g ∈ G, let Qg
= f g

1 Q1 + · · · + f g
ν Qν ∈ T . Let g ∈ G. Since Q − Qg is

shorter than Q, and satisfies (Q− Qg)((Zi, j )(gi, j ))= 0, we have Q− Qg
∈ J . If

Q− Qg
6= 0, there exists l ∈ K̃ such that Q− l(Q− Qg) is shorter than Q. Since

Q− l(Q− Qg) ∈ T , this is not possible unless Q− Qg
= 0. Therefore, Q = Qg,

for all g ∈ G, and so Q ∈ K {X i, j , 1/ det(X i, j )}∂1,...,∂n . Since Q(Zi, j )= 0, we have
Q ∈ J . This completes the proof of Proposition 2.9. �
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2C. A result of descent for the local analytic parametrized differential Galois
group. We keep the notations of Section 1. Consider the equation (∗) with A(z, t)∈
Mm(OU ({z})), where U is a nonempty polydisc in Cn , and OU ({z}) has been defined
on page 90.

Remark 2.11. Note that OU ({z}) is a ring but not a field in general. For example, if
n= 1, (z− t)−1 /∈ OU ({z}). However, we have (z− t)−1

∈ OC∗({z}). More generally
let α(z, t) ∈ OU ({z}). For t ∈ U , let be R(t) minimal such that |α(z, t)| 6= 0 for
0 < |z| < R(t). There exist a nonempty polydisc U ′ and ε > 0 with R(t) > ε on
U ′. In particular, we have α(z, t)−1

∈ OU ′({z}).

Since OU ({z})⊂ K̂U , which is a field, OU ({z}) is an integral domain, and we can
define KU as the fraction field of OU ({z}). We have

{a ∈ KU | ∂za = 0} = {a ∈ K̂U | ∂za = 0} =MU .

Let

F(z, t)= (Fi, j )= Ĥ(z, t)zL(t)e(Q(z, t)) ∈ GLm((KU )
∧) (see Section 1A)

be the fundamental solution given in Proposition 1.3. Let us denote

KU 〈Fi, j 〉∂z,1t = (KU )
∼,

which is a (∂z,1t)-differential subfield of (KU )
∧. We have seen in Section 1A

that (KU )
∧ has field of constants with respect to ∂z equal to MU . Then we deduce

that (KU )
∼
|KU is a parametrized Picard–Vessiot extension. Therefore, the results

of Section 2B may be applied here; and we can define a parametrized differential
Galois group Aut1t

∂z
((KU )

∼
|KU ), which will be identified with a linear differential

algebraic subgroup of GLm(MU ). We want to prove now that it is the “same” as
the one of Section 2A.

Let C be a (1t )-differentially closed field that contains MU . Let us define
C[[z]][z−1

], the (∂z,1t)-differential field, where z is a (1t)-constant with ∂zz = 1,
C is the field of constants with respect to ∂z , and ∂z commutes with all the derivations.
We define the ring KU ⊗MU C with the differential structure given by

∂(a⊗MU c)= ∂a⊗MU c+ a⊗MU ∂c for all a ∈ KU , c ∈ C, ∂ ∈ {∂z,1t }.

This (∂z,1t)-differential ring can be naturally embedded into C[[z]][z−1
], which

implies that it is an integral domain. Therefore we may define KC,U , the field of
fractions of KU ⊗MU C . We see now KC,U (resp. KU ⊗MU C) as a subfield (resp.
subring) of C[[z]][z−1

].

Proposition 2.12. Let us keep the same notation. Consider the equation ∂zY (z, t)=
A(z, t)Y (z, t) with A(z, t) ∈Mm(OU ({z})). The extension field

KC,U 〈Fi, j 〉∂z,1t |KC,U = (KC,U )
∼
|KC,U
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is a parametrized Picard–Vessiot extension for ∂zY (z, t)= A(z, t)Y (z, t). Moreover,
there exist P1, . . . , Pk ∈MU {X i, j }1t such that the image of the representation of
Gal1t

∂z
((KC,U )

∼
|KC,U ) (resp. Aut1t

∂z
((KU )

∼
|KU )) associated to F(z, t) is the set

of C-rational points (resp. MU -rational points) of the linear differential algebraic
subgroup of GLm(C) (resp. GLm(MU )) defined by P1, . . . , Pk . More explicitly,

{F−1ϕ(F) | ϕ ∈ Gal1t
∂z
((KC,U )

∼
|KC,U )}

= {A = (ai, j ) ∈ GLm(C) | P1(ai, j )= · · · = Pk(ai, j )= 0}

and

{F−1ϕ(F) | ϕ ∈ Aut1t
∂z
((KU )

∼
|KU )}

= {A = (ai, j ) ∈ GLm(MU ) | P1(ai, j )= · · · = Pk(ai, j )= 0}.

Proof. We follow the proof of [Mitschi and Singer 2012, Proposition 3.3]. Let (dk)

be an MU -basis of C . Let us prove that the dk are linearly independent over (KU )
∼.

Write
∑

k≤κ dk Pk = 0 with 0 6= Pk ∈ (KU )
∼, κ ≥ 2 minimal and Pκ = 1. We

have
∑

k≤κ−1 dk∂z Pk = 0. If κ = 2, then ∂z P1 = 0. If κ > 2, the minimality of κ
implies that ∂z Pk = 0 for all k. Since (KU )

∼
|KU is a parametrized Picard–Vessiot

extension, Pk ∈MU for all k, and the dk are linearly independent over (KU )
∼.

Now, we prove that KC,U 〈Fi, j 〉∂z,1t |KC,U is a parametrized Picard–Vessiot ex-
tension for ∂zY (z, t) = A(z, t)Y (z, t). Let α ∈ KC,U 〈Fi, j 〉∂z,1t with ∂zα = 0. We
may assume that α =

∑
dk Pk , where Pk ∈ (KU )

∼. We have ∂zα =
∑

dk∂z Pk = 0.
Since the dk are linearly independent over (KU )

∼, we find ∂z Pk = 0. Hence,
Pk ∈MU , because (KU )

∼
|KU is a parametrized Picard–Vessiot extension. Therefore,

α ∈ C and KC,U 〈Fi, j 〉∂z,1t |KC,U is a parametrized Picard–Vessiot extension for
∂zY (z, t)= A(z, t)Y (z, t).

Let Yi, j be a set of m2 indeterminates and let I0, I1 be (∂z,1t)-differential ideals
such that

R0 = KU {Fi, j }∂z,1t = KU {Yi, j }∂z,1t/I0,

R1 = KC,U {Fi, j }∂z,1t = KC,U {Yi, j }∂z,1t/I1.

The group Aut1t
∂z
((KU )

∼
|KU ) (resp. Gal1t

∂z
((KC,U )

∼
|KC,U )) is the set of B ∈

GLm(MU ) (resp. B ∈ GLm(C)) such that (Fi, j )B is again a zero of I0 (resp. I1).
We just have to prove that I1 = C I0. The inclusion C I0 ⊂ I1 is clear. Let us prove
the other inclusion. Let P ∈ I1. Without loss of generality, we may assume that
P ∈ (KU ⊗MU C)[Yi, j ]. Let us write P =

∑
dk Pk , where Pk ∈ KU [Yi, j ]. One

finds that

P(Fi, j )=
∑

dk Pk(Fi, j )= 0.
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Since the dk are linearly independent over (KU )
∼, one finds that Pk(Fi, j )= 0, and

therefore I1 = C I0. �

2D. An analogue of the density theorem in the parametrized case. Let us con-
sider the equation (∗), with A(z, t) ∈Mm(OU ({z})), where U is a nonempty poly-
disc in Cn . We want to find topological generators for Aut1t

∂z
((KU )

∼
|KU ) for the

Kolchin topology.
We now define the parametrized monodromy. The notion of monodromy in the

unparametrized case is well explained in [van der Put and Singer 2003]. For more
details about parametrized monodromy, see [Cassidy and Singer 2007; Mitschi and
Singer 2012; 2013; Sibuya 1990].

Definition 2.13. The notations are introduced in Section 1A. We define m̂, the
formal parametrized monodromy, as follows:

• m̂(Ĥ(z, t))= Ĥ(z, t) for all Ĥ(z, t) ∈ K̂U .

• m̂(za(t))= e2iπa(t)za(t) for all a(t) ∈MU .

• m̂(log)= 2iπ + log.

• For all q(z, t)=
∑

anz−n
∈ EU =

⋃
ν∈Q>0 z−1/νMU [z−1/ν

], we define

m̂(e(q(z, t)))= e
(∑

ane−2iπnz−n
)
.

From the construction of K̂U [log, (za(t))a(t)∈MU (e(q(z, t)))q(z,t)∈EU ], it is easy
to check that m̂ induces a well defined (∂z,1t)-differential ring automorphism
of K̂U [log, (za(t))a(t)∈MU (e(q(z, t)))q(z,t)∈EU ], and then it can be extended as a
(∂z,1t)-differential field automorphism of (KU )

∧ keeping KU invariant. Since
(KU )

∼
⊂ (KU )

∧, and since (KU )
∼ is stable under m̂, m̂ induces an element of

Aut1t
∂z
((KU )

∼
|KU ).

Remark 2.14. In the regular singular case with one singularity at 0, the definition
of formal parametrized monodromy restricts to the definition given in [Mitschi and
Singer 2012].

We now introduce the parametrized exponential torus, which is a subgroup of
Aut1t

∂z
((KU )

∼
|KU ) consisting of elements that act on the e(q(z, t))with q(z, t)∈EU .

Definition 2.15. Let α be a character of EU . We define τα as follows:

• τα is the identity on K̂F,U .

• τα(e(q(z, t)))= α(q(z, t))e(q(z, t)) for all q(z, t) ∈ EU .

From the construction of K̂U [log, (za(t))a(t)∈MU (e(q(z, t)))q(z,t)∈EU ], it is easy to
check that τα induces a well defined (∂z,1t)-differential ring automorphism of
K̂U [log, (za(t))a(t)∈MU (e(q(z, t)))q(z,t)∈EU ], and then it can be extended to a (∂z,1t)-
differential field automorphism of (KU )

∧ keeping KU invariant. Since (KU )
∼
⊂
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(KU )
∧, and since (KU )

∼ is stable under τα, the map τα induces an element of
Aut1t

∂z
((KU )

∼
|KU ).

The parametrized exponential torus (or simply, the exponential torus) is the
subgroup of Aut1t

∂z
((KU )

∼
|KU ) consisting of the τα , where α is a character of EU .

Notice that the matrices of the exponential torus belongs to GLm(C), while the
coefficients of the matrix of m̂ depend upon t .

Example 2.16. Let t = (t1, t2) and let us consider

∂z

(
Y1(z, t)
Y2(z, t)

)
=

(
−t1z−2 0

0 −t2z−2

)(
Y1(z, t)
Y2(z, t)

)
,

which admits
( et1/z

0
0

et2/z

)
as fundamental solution. The parametrized exponential

torus and the parametrized differential Galois group are both equal to{(
α 0
0 β

) ∣∣∣α, β ∈ C∗
}
.

Remark that the unparametrized exponential torus (see p. 80 of [van der Put and
Singer 2003]) and the unparametrized differential Galois group are isomorphic to
(C∗)2 if and only if t1 and t2 are linearly independent over Q. In particular, the
matrices of the parametrized exponential torus evaluated at a specialized value
(u, v) of the parameter are not always equal to the matrices of the unparametrized
exponential torus of the system

∂z

(
Y1(z, u, v)
Y2(z, u, v)

)
=

(
−uz−2 0

0 −vz−2

)(
Y1(z, u, v)
Y2(z, u, v)

)
.

This is a difference between the exponential torus and the two other generators of
the parametrized differential Galois group: the monodromy and the Stokes operators
(see Definition 2.18 below).

Lemma 2.17. Let d(t) be a singular direction of (∗) (see Section 1D). The Stokes
matrix Std(t) induces an element of Aut1t

∂z
((KU )

∼
|KU ).

Proof. Let us recall the construction of the Stokes matrices. Let d(t) be a singular
direction and let kr be the biggest level of (∗). The assumption we have made on D

(see Section 1D) tells us that there exists t 7→ d±(t), continuous in t , such that

d(t)− π

2kr
< d−(t) < d(t) < d+(t) < d(t)+ π

2kr
,

with no singular directions in [d−(t), d(t)[ ∪ ]d(t), d+(t)]. From the construction
of Std(t), and Section 1C, we know that

H d+(t)(z, t)eL(t) log(z)eQ(z,t)
= H d−(t)(z)eL(t) log(z)eQ(z,t) Std(t) .
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By construction, the Stokes matrix induces the identity on KU . To prove that
the Stokes matrices are elements of Aut1t

∂z
((KU )

∼
|KU ), we have to prove that

the maps i± that send Ĥ(z, t)zL(t)e(Q(z, t)) to H d±(t)(z, t)eL(t) log(z)eQ(z,t) induce
(∂z,1t)-field isomorphisms. From the unparametrized case (see Theorem 2, §6.4
of [Balser 1994]), and the relations satisfied by the symbols log, (za(t))a(t)∈MU and
(e(q(z, t)))q(z,t)∈EU (see Section 1A), i± induce ∂z-field isomorphisms.

We want now to prove that if Ĥ(z, t) admits H d±(t)(z, t) as asymptotic sum in
the direction d±(t), then ∂ti Ĥ(z, t) admits ∂ti H d±(t)(z, t) as asymptotic sum in the
direction d±(t) for all i ≤ n. This is a consequence of Lemma 1.14 and the fact that
we may assume that the d±(t) are locally constant. Hence i± commute with ∂ti ,
and i± induce (∂z,1t)-field isomorphisms. �

Definition 2.18. Let d(t) be a singular direction of (∗). Then the element of
Aut1t

∂z
((KU )

∼
|KU ) induced by the Stokes matrix in the direction d(t) is the Stokes

operator in the direction d(t). For simplicity of notation, we write Std(t) for both
the Stokes operator and the Stokes matrix in the direction d(t).

Proposition 2.19. If g(z, t) ∈ (KU )
∼ is fixed by all the Stokes operators Std(t), the

monodromy and the exponential torus, then g(z, t) ∈ KU .

Proof. Let MU be the algebraic closure of MU . Proposition 3.25 of [van der
Put and Singer 2003] implies that if g(z, t) ∈ (KU )

∧ is fixed by the monodromy
and the exponential torus, then g(z, t) ∈ (KU )

∧
∩ MU [[z]][z−1

] = K̂U . Since
(KU )

∼
⊂ (KU )

∧, we have to prove that if g(z, t) ∈ (KU )
∼
∩ K̂U is fixed by all the

Stokes operators, then g(z, t) ∈ KU . Let g(z, t) ∈ (KU )
∼
∩ K̂U be fixed by all the

Stokes operators. Let F(z, t)= Ĥ(z, t)zL(t)e(Q(z, t)) be the fundamental solution
defined in Proposition 1.3, and let (Ĥi, j ) be the entries of the matrix Ĥ(z, t). There
exists P ∈ KU 〈X i, j 〉∂z,1t such that P(Ĥ i, j ) = g(z, t). Let d(t) satisfy the same
properties as in Proposition 1.13. Because of Proposition 1.13, there exists a map
U → R>0, t 7→ ε(t) (which is not necessarily continuous) such that P(H d(t)

i, j ) is
meromorphic in (z, t) for

z ∈6(d1(t)−π/2kr , d2(t)+π/2kr ) with 0< |z|< ε(t) and t ∈U,

where d1(t), d2(t) are two singular directions. Since P(Ĥi, j ) is fixed by all
the Stokes operators, P(H d(t)

i, j ) is meromorphic in (z, t) for 0 < |z| < ε(t) and
(z, t) ∈ C̃×U . Moreover, P(H d(t)

i, j )(z, t) = P(H d(t)
i, j )(e

2iπ z, t) on its domain of
definition, which means that P(H d(t)

i, j ) is meromorphic in (z, t) for 0< |z|< ε(t)
and (z, t) ∈ C×U . We recall that KU consists of elements f (z, t) ∈ K̂U such that
for 0< |z|< ε(t), the function t 7→ f (z, t) lies in MU . We have P(H d(t)

i, j ) ∈ KU .
We have seen in Lemma 2.17 that the map that sends Ĥ(z, t)zL(t)e(Q(z, t)) to
H d(t)(z, t)eL(t) log(z)eQ(z,t) induces a (∂z,1t)-field isomorphism. Since this map
leaves KU invariant, this implies that P(Ĥi, j )= g(z, t) ∈ KU . �
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We can now prove the main theorem of this paper. We recall some notation. Let
Consider the equation (∗) with A(z, t) ∈Mm(OU ({z})) (see page 90), let KU be the
fraction field of OU ({z}), and let (KU )

∼
|KU be the parametrized Picard–Vessiot

extension defined in the beginning of Section 2D. Let Aut1t
∂z
((KU )

∼
|KU ) be the

field automorphisms of (KU )
∼ which commute with all the derivations and leave

KU invariant.

Theorem 2.20 (parametrized analogue of the density theorem of Ramis). The group
generated by the monodromy, the exponential torus and the Stokes operators is
dense for the Kolchin topology in Aut1t

∂z
((KU )

∼
|KU ).

Proof. First of all, we have already pointed out that the monodromy, the expo-
nential torus and the Stokes operators are elements of Aut1t

∂z
((KU )

∼
|KU ). Using

Proposition 2.9, we just have to prove that if α(z, t) ∈ (KU )
∼ is fixed by the

monodromy, the exponential torus and the Stokes operators, then it belongs to KU .
This is exactly Proposition 2.19. �

Remark 2.21. (1) Let C(t){z} be the subset of OU ({z}) consisting of elements of the
form

∑
i>N ai (t)zi , with ai (t) ∈ C(t) and N ∈ Z. Let us consider the equation (∗)

with A(z, t)∈Mm(C(t){z})p. Even if we were able to define a parametrized Picard–
Vessiot extension over C(t){z}, we would not have a parametrized analogue of the
density theorem of Ramis, because the monodromy is not defined in this case. In
general, we have

m̂(zα(t))= e2iπα(t)zα(t) /∈ C(t){z}(zα(t)).

This is why we take a larger field of constants with respect to ∂z .

(2) Similarly, we can prove that the group generated by the monodromy and the
exponential torus is dense for the Kolchin topology in Aut1t

∂z
((KU )

∼
|K̂U ∩ (KU )

∼).

Corollary 2.22. Aut1t
∂z
((KU )

∼
|KU ) contains a finitely generated Kolchin-dense

subgroup.

Proof. Let q1(z, t), . . . , qβ(z, t) ∈ EU be Q-linearly independent such that

(KU )
∼
⊂ K̂F,U (e(q1(z, t)), . . . , e(qβ(z, t))).

Let τi be an element of the exponential torus that fixes the e(q j (z, t)) for j 6= i ,
and that sends e(qi (z, t)) to ae(qi (z, t)), with a not a root of unity.

By definition of the singular directions (see Section 1D), there exists ν ∈N∗ such
that there are finitely many singular directions modulo 2νπ . Let d1(t), . . . , dk(t)
be continuous singular directions such that, if d(t) is a singular direction, then
d(t) is equal to one of the di (t) modulo 2νπ . Let g(z, t) ∈ (KU )

∼ be fixed by
the monodromy, τ1, . . . , τβ , and Std1(t), . . . ,Stdk(t). Using Proposition 2.9(2), it is
sufficient to prove that g(z, t) ∈ KU .
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We can write g(z, t) as an element of

K̂F,U (e(q1(z, t)), . . . , e(qβ−1(z, t)))(e(qβ(z, t))).

Since the qi (z, t) ∈ EU are Q-linearly independent, we know by construction that
the e(Nqβ(z, t)), with N ∈ Z, are C-linearly independent over

K̂F,U (e(q1(z, t)), . . . , e(qβ−1(z, t))).

If we add the fact that g(z, t) is fixed by τβ , we obtain

g(z, t) ∈ K̂F,U (e(q1(z, t)), . . . , e(qβ−1(z, t))).

We apply the same argument β times to conclude that g(z, t) ∈ K̂F,U ∩ (KU )
∼.

By the construction of the Stokes operators, we have that Std(t) = Id if and only
if St2νπ+d(t) = Id, where ν ∈ N∗ has been defined in the proof. Proposition 2.19
allows us to conclude that g(z, t) ∈ KU . �

2E. The density theorem for the global parametrized differential Galois group.
In this subsection, we consider parametrized linear differential equations of the
form (∗), with A(z, t) ∈Mm(MU (z)). We want to prove a density theorem for the
global parametrized differential Galois group. The result in the unparametrized
case is due to Ramis, and a proof can be found for instance in [Mitschi 1996,
Proposition 1.3]. The parametrized singularities of (∗) (that is, the poles of A(z, t)
as a rational function in z, possibly including∞) belong to the algebraic closure
of MU . Because of Remark 1.1, after taking a smaller nonempty polydisc U , we
may assume that the set of parametrized singularities belongs to MU . We will write
“singularity” instead of “parametrized singularity” when no confusion is likely to
arise. Let S = {α1(t), . . . , αk(t)} ⊂ P1(MU ) be the set of the singularities of (∗).
For any singularity α(t) of this equation, we may define its levels and its set of
singular directions by considering

∂zY (z−α(t), t)= A(z−α(t), t)Y (z−α(t), t) if ∞ 6≡ α(t) ∈ S

and
∂zY (z−1, t)= A(z−1, t)Y (z−1, t) if ∞≡ α(t) ∈ S.

Let (di, j (t)) be the singular directions of αi (t). As in Section 1D, we define

Dαi (t) = {t ∈U | there exist j, j ′ ∈ N such that di, j 6≡ di, j ′ and di, j (t)= di, j ′(t)}.

From Lemma 1.12, all the Dαi (t) are closed sets with empty interior. After taking a
smaller nonempty polydisc U , we may assume that:

• There exists ε > 0 such that for all t ∈U and for all i 6= j ,

|αi (t)−α j (t)|> ε.
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• Dαi (t) =∅ for all i ≤ k.

• For all singularities of (∗), the levels are independent of t .

• For all t0 ∈ U and all singularities∞ 6≡ α(t) ∈ S, the singular directions of
the equation ∂zY (z−α(t), t)= A(z−α(t), t)Y (z−α(t), t) evaluated at t0 are
equal to the singular directions of the specialized system ∂zY (z−α(t), t0)=
A(z−α(t), t0)Y (z−α(t), t0).

• Similarly, for all t0 ∈U , the singular directions of the equation ∂zY (z−1, t0)=
A(z−1, t0)Y (z−1, t0) evaluated at t0 are equal to the singular directions of the
specialized system ∂zY (z−1, t0)= A(z−1, t0)Y (z−1, t0).

• Every entry of every z-coefficient of A(z, t) is analytic on U .

Let x0(t) ∈MU and let ε > 0 such that

|x0(t)−α j (t)|> ε and |αi (t)−α j (t)|> ε for all t ∈U, i < j ≤ k.

For all i ≤ k and all t ∈ U , we define Uαi (t), the polydisc in the z-plane with
center αi (t) and with radius ε. Let dαi (t) be a continuous ray from αi (t) in Uαi (t),
let bαi (t) be the continuous point of dαi (t) with |bαi (t)−αi (t)| = ε, and let γαi (t) be
a continuous path in P1(MU ) from x0(t) to bαi (t) such that |γαi (t)−α j (t)|> ε/2
for all t ∈U and all j ≤ k. Analytic continuation of F(z, t)= (Fi, j ), that is, a germ
of solution at x0(t) with the path γαi (t) and dαi (t), provides a fundamental solution
Fdαi (t)(z, t) on a germ of open sector with vertex αi (t) bisected by dαi (t).

Let (MU (z))∼=MU (X)〈Fi, j 〉∂z,1t . From the assumptions we have made on x0(t),
we deduce that this field has a field of constants with respect to ∂z equal to MU .
Therefore, we deduce that (MU (z))∼|MU (z) is a parametrized Picard–Vessiot ex-
tension. The results of Section 2B may be applied here and we can define a
parametrized differential Galois group Aut1t

∂z
((MU (z))∼|MU (z)), which will be

identified with a linear differential algebraic subgroup of GLm(MU ). We will make
the same abuse of language as in the local case (see Remark 2.8) and call it the
parametrized linear differential Galois group, or Galois group, if no confusion is
likely to arise. As in Proposition 2.12, we want to prove now that it is the “same”
as the one of Section 2A.

Let C be a (1t )-differentially closed field that contains MU , and let C(z) denote
the (∂z,1t)-differential field of rational functions in the indeterminate z with
coefficients in C , where z is a (1t)-constant with ∂zz= 1, C is the field of constants
with respect to ∂z , and ∂z commutes with all the derivations. The next proposition
is the analogue in the global case of Proposition 2.12.

Proposition 2.23. Let us keep the same notation. Consider the equation ∂zY (z, t)=
A(z, t)Y (z, t), with A(z, t) ∈Mm(MU (z)). The extension field

C(z)〈Fi, j 〉∂z,1t |C(z) := (C(z))
∼
|C(z)
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is a parametrized Picard–Vessiot extension for ∂zY (z, t)= A(z, t)Y (z, t). Moreover,
there exist P1, . . . , Pk ∈MU {X i, j }1t such that the image of the representation of
Gal1t

∂z
((C(z))∼|C(z)) (resp. Aut1t

∂z
((MU (z))∼|MU (z))) associated to F(z, t) is the

set of C-rational points (resp. MU -rational points) of the linear differential algebraic
subgroup of GLm(C) (resp. GLm(MU )) defined by P1, . . . , Pk . More explicitly:

{F−1ϕ(F) | ϕ ∈ Gal1t
∂z
((C(z))∼|C(z))}

= {A = (ai, j ) ∈ GLm(C) | P1(ai, j )= · · · = Pk(ai, j )= 0},

{F−1ϕ(F) | ϕ ∈ Aut1t
∂z
((MU (z))∼|MU (z))}

= {A = (ai, j ) ∈ GLm(MU ) | P1(ai, j )= · · · = Pk(ai, j )= 0}.

Proof. This is exactly the same reasoning as in Proposition 2.12. �

We want to find topological generators for Aut1t
∂z
((MU (z))∼|MU (z)) for the

Kolchin topology.
For α(t) ∈MU , let

KU,α(t) = { f (z−α(t), t) | f (z, t) ∈ KU }

and let
KU,∞ = { f (z−1, t) | f (z, t) ∈ KU }.

Let α(t) ∈ S and let Aut1t
∂z
((MU (z))∼|KU,α(t) ∩ (MU (z))∼) be the local Galois

group for the fundamental solution Fdα(t)(z, t) described above. If we conjugate
Aut1t

∂z
((MU (z))∼|KU,α(t) ∩ (MU (z))∼) by the differential isomorphism defined by

analytic continuation of F(z, t) described above, we get an injective morphism of
linear differential algebraic groups

Aut1t
∂z
((MU (z))∼|KU,α(t) ∩ (MU (z))∼) ↪→ Aut1t

∂z
((MU (z))∼|MU (z)).

Using the maps i± defined in the proof of Lemma 2.17 and the injection above, we
can define the monodromy, the exponential torus and the Stokes operators for any
singularities in S as elements of

Aut1t
∂z
((MU (z))∼|MU (z)).

Theorem 2.24 (global parametrized analogue of the density theorem of Ramis).
Consider the equation ∂zY (z, t)= A(z, t)Y (z, t), where A(z, t)∈Mm(MU (z)). For
α(t) ∈ S, let Gα(t) be the subgroup of

Aut1t
∂z
((MU (z))∼|KU,α(t) ∩ (MU (z))∼)

generated by the monodromy, the exponential torus and the Stokes operators. Let G
be the subgroup of Aut1t

∂z
((MU (z))∼|MU (z)) generated by the Gα(t) with α(t) ∈ S.
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Then G in dense for the Kolchin topology in

Aut1t
∂z
((MU (z))∼|MU (z)).

Proof. We use (2) of Proposition 2.9. We have to prove that the subfield of (MU (z))∼

fixed by G is MU (z). Let f (z, t) ∈ (MU (z))∼ be fixed by G. Then, by the same
reasoning as in Proposition 2.19, it follows that f (z, t) belongs to KU,α(t) for
α(t) ∈ S. Therefore, we deduce that f (z, t) is meromorphic in (z, t) on P1(C)×U
and has a finite number of poles in the z-plane for t fixed. Hence f (z, t) ∈MU (z).

�

In particular, this generalizes Theorem 4.2 in [Mitschi and Singer 2012], which
says that if the equation has only regular singular poles, then the group gen-
erated by the monodromy at each pole is dense for the Kolchin topology in
Aut1t

∂z
((MU (z))∼|MU (z)).

Corollary 2.25. Aut1t
∂z
((MU (z))∼|MU (z)) contains a finitely generated Kolchin-

dense subgroup.

Proof. In the proof of Theorem 2.24, we see that the global parametrized differential
Galois group is generated by all local parametrized differential Galois groups. Since
there is a finite number of singularities, this is a consequence of Corollary 2.22. �

2F. Examples. In all the examples, we will compute the global parametrized dif-
ferential Galois group. This means that the base field is MU (z).

Example 2.26. Let us consider the equation ∂zY (z, t)= (t/z)Y (z, t). This example
was considered by direct computations in Example 2.5, but we will compute here
Aut1t

∂z
((MU (z))∼|MU (z)) using the parametrized density theorem. The fundamen-

tal solution is (zt) and the parametrized Picard–Vessiot extension over MU (z) is
MU (z, zt , log) (we want the extension to be closed under the derivations ∂z and ∂t ).
The exponential torus and the Stokes matrices are trivial. The monodromy sends zt

to e2iπ t zt . The element e2iπ t satisfies the differential equation

∂t

(
∂t e2iπ t

e2iπ t

)
= 0.

Therefore, the Kolchin closure of the monodromy is contained in{
a ∈MU

∣∣∣ ∂t

(
∂t a
a

)}
= {cebt

| b ∈ C, c ∈ C∗}.

Conversely, the map zt
7→ cebt zt is an element of Aut1t

∂z
((MU (z))∼|MU (z)). Finally,
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viewed as a linear differential algebraic subgroup of GL1(MU ),

Aut1t
∂z
((MU (z))∼|MU (z))'

{
a ∈MU

∣∣∣ ∂t

(
∂t a
a

)
= 0

}
= {a ∈MU | a 6= 0 and a∂2

t a− (∂t a)2 = 0}

⊆ GL1(MU ).

Example 2.27 (parametrized Euler equation). Let f (t) be an analytic function
different from 0, and let us consider the equation

∂2
z Y (z, t)+

(1
z
−

1
f (t)z2

)
∂zY (z, t)+

1
f (t)z3 Y (z, t)= 0,

which can be seen as a system:

∂z

(
Y (z, t)
∂zY (z, t)

)
=

(
0 1
−1

f (t)z3
1

f (t)z2 −
1
z

)(
Y (z, t)
∂zY (z, t)

)
.

If f ≡ 1, we recognize the Euler equation. A fundamental solution is(
1 F̂(z, t)
1

f (t)z2 ∂z F̂(z, t)

)(
e
(
−1

f (t)z

)
0

0 1

)
,

where F̂(z, t)=−
∑

n≥0 n!( f (t)z)n+1. The only singularity is 0. The monodromy
is trivial. Let τ be an element of the exponential torus. Then the image of the
fundamental solution under τ is(

1 F̂(z, t)
1

f (t)z2 ∂z F̂(z, t)

)(
αe
(
−1

f (t)z

)
0

0 1

)
,

with α ∈ C∗. Therefore, the matrices of the elements of the exponential torus are
of the form Diag(α, 1), with α ∈ C∗. The only level of the system is 1 and the
singular directions are the arg( f (t)−1)+ 2kπ , with k ∈ Z. As we have seen in
Proposition 1.10, we can compute the Stokes matrix with the Laplace and the Borel
transforms. It follows from the definition of the formal Borel transform that

B̂1(F̂(z, t))≡ log(1− f (t)z).

Let 0< ε < π/2 be such that there are no singular directions in[
arg( f (t)−1)− ε, arg( f (t)−1)

[
∪
]
arg( f (t)−1), arg( f (t)−1)+ ε

]
.

Then the following matrices are fundamental solutions:(
1 L1,arg( f (t)−1)+ε(log(1− f (t)z))
1

f (t)z2 ∂zL1,arg( f (t)−1)+ε(log(1− f (t)z))

)(
e
−1

f (t)z 0
0 1

)
,
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1 L1,arg( f (t)−1)−ε(log(1− f (t)z))
1

f (t)z2 ∂zL1,arg( f (t)−1)−ε(log(1− f (t)z))

)(
e
−1

f (t)z 0
0 1

)
.

To compute the Stokes matrix in the direction arg( f (t)−1), we have to compute

L1,arg( f (t)−1)+ε(log(1− f (t)z))−L1,arg( f (t)−1)−ε(log(1− f (t)z)).

We have

L1,arg( f (t)−1)+ε(log(1− f (t)z))−L1,arg( f (t)−1)−ε(log(1− f (t)z))

= z−1
∫
∞i(arg( f (t)−1)+ε)

0
log(1− f (t)u)e−u/zd(u)

−z−1
∫
∞i(arg( f (t)−1)−ε)

0
log(1− f (t)u)e−u/zd(u).

Integration by parts and the residue theorem imply that

L1,arg( f (t)−1)+ε(log(1− f (t)z))−L1,arg( f (t)−1)−ε(log(1− f (t)z))= 2iπ f (t)e
−

1
f (t)z .

Therefore, the Stokes matrix in this direction is
( 1

0
2iπ f (t)

1

)
. Finally, we obtain

Aut1t
∂z
((MU (z))∼|MU (z))'

{(
α b f
0 1

) ∣∣∣α ∈ C∗ and b ∈ C

}
'

{(
α β

0 1

) ∣∣∣ ∂tα = 0, α 6= 0 and ∂t

(
β

f

)
= 0

}
.

Example 2.28 (Bessel equation). We are interested in the parametrized linear
differential equation

∂z

(
Y (z, t)
∂zY (z, t)

)
=

(
0 1

t2
−z2

z2
−1
z

)(
Y (z, t)
∂zY (z, t)

)
.

This equation has two singularities: 0 and∞. Let U be a nonempty disc such that
U ∩ (1/2+Z)=∅. First we will compute the local group at 0,

Aut1t
∂z
((MU (z))∼|KU,0 ∩ (MU (z))∼).

If t + 1/2 /∈ Z, the two solutions

Jt(z)=
( z

2

)t ∞∑
k=0

(−1)kz2k

k!0(t + k+ 1)2k ,

J−t(z)=
( z

2

)−t ∞∑
k=0

(−1)kz2k

k!0(−t + k+ 1)2k ,
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are linearly independent (see [Watson 1944, p. 43]) and we have a fundamental
solution of the specialized system. The equation is regular singular at z = 0, and
therefore the group generated by the monodromy m̂ is dense for the Kolchin topology
in the parametrized differential Galois group Aut1t

∂z
((MU (z))∼|KU,0 ∩ (MU (z))∼).

By the same reasoning as in Example 2.26,

Aut1t
∂z
((MU (z))∼|KU,0 ∩ (MU (z))∼)'

{(
α 0
0 α−1

) ∣∣∣α 6= 0, α∂2
t α− (∂tα)

2
= 0

}
.

We now turn to the singularity at infinity. We have

∂z

(
Y (z−1, t)
∂zY (z−1, t)

)
=

(
0 1

t2

z2 −
1
z4
−1
z

)(
Y (z−1, t)
∂zY (z−1, t)

)
.

In order to compute the matrices of the monodromy, the elements of the exponential
torus and the Stokes operators, we make use of another basis of solutions:

H (1)
t (z−1)=

J−t(z−1)− e−i tπ Jt(z−1)

i sin(tπ)
,

H (2)
t (z−1)=

J−t(z−1)− ei tπ Jt(z−1)

−i sin(tπ)
.

In [Watson 1944, p. 198], we find that on the sector ]−π, 2π [, H (1)
t (z−1) is asymp-

totic to

H̃ (1)
t (z−1)=

(2z
π

)1/2
ei(z−1

−tπ/2−π/4)
∞∑

k=0

(−1)k0(t + k+ 1/2)zk

(2i)kk!0(t − k+ 1/2)
.

Similarly, on the sector ]−2π, π[, H (2)
t (z−1) is asymptotic to

H̃ (2)
t (z−1)=

(2z
π

)1/2
e−i(z−1

−tπ/2−π/4)
∞∑

k=0

0(t + k+ 1/2)zk

(2i)kk!0(t − k+ 1/2)
.

It follows that in the basis (H (1)
t (z−1), H (2)

t (z−1)), the matrix of the monodromy is(
−1 0
0 −1

)
and the matrices of the elements of the exponential torus are of the form(

α 0
0 α−1

)
, where α ∈ C∗.

The only level is 1, and due to the expression of H̃ 1
t (z
−1) and H̃ 2

t (z
−1), the singular

directions are the directions π/2+ kπ , with k ∈ Z. By definition, the Stokes matrix
in the direction π/2+ kπ is the matrix that sends the asymptotic representation
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defined on the sector ](k− 1)π, (k+ 1)π [ to the asymptotic representation defined
on the sector ]kπ, (k + 2)π [. In [Ramis and Martinet 1990, §3.4.12] (see also
[Bertrand 1992]), we find that in the basis (H 1

t (z
−1), H 2

t (z
−1)) the Stokes matrix

in the direction π/2+ 2kπ is (
1 0

2e2iπ t cos(π t) 1

)
,

and the Stokes matrix in the direction −π/2+ 2kπ is(
1 −2e−2iπ t cos(π t)
0 1

)
.

An application of the local and global density theorems (Theorems 2.24 and 2.20)
gives that

Aut1t
∂z
((MU (z))∼|KU,∞ ∩ (MU (z))∼) and Aut1t

∂z
((MU (z))∼|MU (z))

are linear differential algebraic subgroups of SL2(MU ), because all the matrices we
have computed are in SL2(MU ), which is closed in the Kolchin topology.

Let C be a differentially closed field that contains MU , and consider the parametr-
ized differential Galois group Gal1t

∂z
((C(z))∼|C(z)) defined in Proposition 2.23.

First, we are going to compute the Zariski closure G of Gal1t
∂z
((C(z))∼|C(z)). Let

C∗ = C \ {0}. From the classification of linear algebraic subgroups of SL2(C) (see
[van der Put and Singer 2003, Theorem 4.29]), there are four possibilities:

(1) G is conjugate to a subgroup of B =
{(a

0
b

a−1

)
| a ∈ C∗, b ∈ C

}
.

(2) G is conjugate to a subgroup of D∞=
{(a

0
0

a−1

)
| a ∈C∗

}
∪
{( 0
−b

b−1

0

)
| b ∈C∗

}
.

(3) G is finite.

(4) G = SL2(C).

From Proposition 2.23, every matrix that belongs to Aut1t
∂z
((MU (z))∼|MU (z)) be-

longs also to Gal1t
∂z
((C(z))∼|C(z)). Since G must contain(

1 0
2e2iπ t cos(π t) 1

)
and

(
1 −2e−2iπ t cos(π t)
0 1

)
,

we find that the only possibility is that Gal1t
∂z
((C(z))∼|C(z)) is Zariski-dense in

SL2(C). Cassidy [1972, Proposition 42] classified the Zariski-dense differential
algebraic subgroups of SL2(C). Finally, we have two possibilities:

• Gal1t
∂z
((C(z))∼|C(z)) is conjugate to SL2(C0) over SL2(C), where

C0 = {a ∈ C(z) | ∂za = ∂t a = 0}.

• Gal1t
∂z
((C(z))∼|C(z))= SL2(C).
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If Gal1t
∂z
((C(z))∼|C(z)) is conjugate to SL2(C0) over SL2(C), the matrix of the

monodromy of the singularity 0 is conjugate to a matrix M ∈ SL2(C0) over SL2(C).
Similar matrices have the same eigenvalues, so the eigenvalues of M are e2iπ t and
e−2iπ t , which is not possible if M belongs to SL2(C0). Because of Proposition 2.23,
we find that

Aut1t
∂z
((MU (z))∼|MU (z))= SL2(MU ).

3. Applications

We now give three applications of parametrized differential Galois theory. In
Section 3A, we deal with linear differential equations that are completely integrable
(see Definition 3.1). It was proved in [CS] that an equation is completely integrable if
and only if its parametrized differential Galois group is conjugate over a differentially
closed field to a group of constant matrices. We use the global density theorem
(Theorem 2.24) to prove that the equation is completely integrable if and only
if there exists a fundamental solution such that the matrices of the topological
generators for the Galois group appearing in the global density theorem are constant
matrices. As a corollary, we deduce that the equation is completely integrable if and
only if the matrices of the topological generators for the Galois group given in the
parametrized density theorem are conjugate over GLm(MU ) to constant matrices.
In Section 3B, we study an entry of a Stokes operator at the singularity at infinity
of the equation

∂2
z Y (z, t)= (z3

+ t)Y (z, t).

In particular, we prove that it is not ∂t -finite: it satisfies no parametrized linear
differential equation. This partially answers a question by Sibuya. In Section 3C, we
deal with the inverse problem in parametrized differential Galois theory. Let k be a
so-called universal (1t)-field (see Section 3B). We give a necessary condition for a
linear differential algebraic subgroup of GLm(k) to be the global parametrized differ-
ential Galois group for some equation having coefficients in k(z). The corresponding
sufficient condition was proved in [Mitschi and Singer 2012, Corollary 5.2].

3A. Completely integrable equations. In this subsection, we study completely
integrable equations. See also [Gorchinskiy and Ovchinnikov 2013] for an approach
from the point of view of differential Tannakian categories.

Definition 3.1. Let A0 ∈Mm(MU (z)). We say that the linear differential equation
∂0Y = A0Y is completely integrable if there exist A1, . . . , An ∈Mm(MU (z)) such
that, for all 0≤ i, j ≤ n,

∂ti A j − ∂t j Ai = Ai A j − A j Ai ,

with ∂t0 = ∂z .
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Sibuya [1990, Theorem A.5.2.3] has shown that if the parametrized linear dif-
ferential equation (∗) is regular singular, then it is isomonodromic (see page 89
for the definition) if and only if it is completely integrable. This result is not true
in the irregular case. The main reason is the fact that there are more topological
generators in the parametrized differential Galois group.

Proposition 3.2. Let A0(z, t)∈Mm(MU (z)) and let (MU (z))∼|MU (z) be the param-
etrized Picard–Vessiot extension for ∂zY (z, t)= A0(z, t)Y (z, t) defined in Section 2E.
The linear differential equation ∂zY (z, t)= A0(z, t)Y (z, t) is completely integrable
if and only if there is a fundamental solution F(z, t) in (MU (z))∼ such that the im-
ages of the topological generators of Aut1t

∂z
((MU (z))∼|MU (z)) (see Theorem 2.24)

with respect to the representation associated to F(z, t) belong to GLm(C).

Proof. Let C be a differentially closed field that contains MU and let us consider C(z)
as in Section 2E. Let (C(z))∼|C(z) be the parametrized Picard–Vessiot extension
for ∂zY (z, t)= A0(z, t)Y (z, t), and let Gal1t

∂z
((C(z))∼|C(z)) be the parametrized

differential Galois group defined in Section 2A. We recall that if we take a differ-
ent fundamental solution in (MU (z))∼ to compute the Galois group, we obtain a
conjugate linear differential algebraic subgroup of GLm(MU ).

Using the global density theorem (Theorem 2.24), we find that there exists a
fundamental solution such that the matrices of the topological generators for the
Galois group appearing in the global density theorem are constant if and only if
Aut1t

∂z
((MU (z))∼|MU (z)) is conjugate over GLm(MU ) to a subgroup of GLm(C).

Using Proposition 2.23, we find that Aut1t
∂z
((MU (z))∼|MU (z)) is conjugate over

GLm(MU ) to a subgroup of GLm(C) if and only if Gal1t
∂z
((C(z))∼|C(z)) is conjugate

over GLm(C) to a subgroup of GLm(C0), where

C0 = {a ∈ C(z) | ∂za = ∂t1a = · · · = ∂tn a = 0}.

Proposition 3.9 of [CS] says that this occurs if and only if there exist A1, . . . , An ∈

Mm(C(z)) such that, for all 0≤ i, j ≤ n,

∂ti A j − ∂t j Ai = Ai A j − A j Ai ,

with ∂t0 = ∂z . To finish, we follow the proof of Proposition 1.24 in [Di Vizio and
Hardouin 2012]. Let 0< i ≤ n and let us consider

∂z Ai − ∂ti A0 = A0 Ai − Ai A0.

By clearing the denominators, we obtain that every entry of every z-coefficient
of Ai satisfies a finite set of polynomial equations with coefficients in MU . Since
the polynomial equations have a solution in C , they must have a solution in the
algebraic closure of MU . Using Remark 1.1, we find a nonempty polydisc U ′ ⊂U
such that all the Ai belong to Mm(MU ′(z)). This concludes the proof. �
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In the proof of Proposition 3.2, we have proved:

Corollary 3.3. Let A(z, t)∈Mm(MU (z)). The equation (∗) is completely integrable
if and only if the matrices of the topological generators for the Galois group
appearing in Theorem 2.24 are conjugate over GLm(MU ) to constant matrices.

Remark 3.4. This corollary improves Proposition 3.9 in [CS]. The conjugation
occurs in a field that is not differentially closed. Furthermore, we do not need the
entire parametrized differential Galois group to be conjugate to a group of constant
matrices in order to deduce that the equation (∗) is completely integrable.

Gorchinskiy and Ovchinnikov [2013] studied completely integrable parametrized
linear differential equations using differential Tannakian categories. In particular,
they proved that the notion of integrability with respect to all the parameters is
equivalent to the notion of integrability with respect to each parameter separately,
which generalizes [Dreyfus 2013, Proposition 9]. Furthermore, they improve
Proposition 3.9 in [CS] by avoiding the assumption that the field of constants is
differentially closed.

3B. On the hypertranscendence of a Stokes matrix. In this subsection, we will
study the parametrized linear differential equation

(3-1) ∂2
z Y (z, t)= (z3

+ t)Y (z, t).

Sibuya [1975, Chapter 2] showed that there exists a formal solution y0(z, t) which
admits an asymptotic representation ỹ0(z, t) on the sector

6(−3π/5, 3π/5)

(see [ibid., Theorem 6.1]). We easily check that, for k ∈ Z,

yk(z, t)= y0(e−2kiπ/5z, e−6kiπ/5t)

is a solution of (3-1) which has the asymptotic representation

ỹk(z, t)= ỹ0(e−2kiπ/5z, e−6kiπ/5t)

on the sector Sk−1 ∪ S̄k ∪ Sk+1, where

Sk =6((2k− 1)π/5, (2k+ 1)π/5)

and S̄k is its closure.
The asymptotic representation ỹk(z, t) is bounded uniformly on each compact

set in the t-plane as |z| tends to infinity on the sector Sk , and tends to infinity
uniformly on each compact set in the t-plane as |z| tends to infinity on the sectors
Sk−1 and Sk+1. As we see in [ibid., p. 83], yk+1(z, t) and yk+2(z, t) are linearly



130 THOMAS DREYFUS

Figure 1. Left: the sectors Sk . Middle: the singular directions.
Right: the sectors Sk and the singular directions.

independent, and we can write yk(z, t) as an MC-linear combination of yk+1(z, t)
and yk+2(z, t):

(3-2) yk(z, t)= Ck(t)yk+1(z, t)+ C̃k(t)yk+2(z, t) for all k ∈ N, z, t ∈ C,

where C̃k(t),Ck(t) ∈MC. By Theorem 21.1 in [ibid.], we obtain that

C̃k(t)=−e2iπ/5 and Ck(t)= C0(e−6kiπ/5t).

Sibuya [1975] asked if C0(t) is differentially transcendental, i.e., satisfies no
differential polynomial equations. We will use Galois theory to prove that for
every nonempty polydisc U , C0(t) is not ∂t -finite over MU , i.e., satisfies no linear
differential equations in coefficients in MU .

The singularity of the system is at infinity. Let W (z, t)= zY (z−1, t). We obtain
the parametrized linear differential equation

z7∂2
z W (z, t)= (1+ t z3)W (z, t),(3-3)

which can be written in the form

∂z

(
W (z, t)
∂zW (z, t)

)
=

(
0 1

1+t z3

z7 0

)(
W (z, t)
∂zW (z, t)

)
.

Let k be a so-called universal (1t)-field of characteristic 0: for any (1t)-field
k0 ⊂ k, (1t)-finitely generated over Q, and any (1t)-finitely generated extension
k1 of k0, there is a (1t)-differential k0-isomorphism of k1 into k. See Chapter 3, §7
of [Kolchin 1973] for more details. In particular, k is (1t)-differentially closed.
Let k(z) denote the (∂z,1t)-differential field of rational functions in the indetermi-
nate z with coefficients in k, where z is a (1t)-constant with ∂zz = 1, k is the field
of constants with respect to ∂z , and ∂z commutes with all the derivations.

Let

A(z, t)=

(
0 1

1+t z3

z7 0

)
.
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The two solutions zy1(z−1, t), zy2(z−1, t) admit asymptotic representations and the
only singularity is 0. Therefore,

MU (z)〈y1(z−1, t), y2(z−1, t)〉∂z,∂t |MU (z)= (MU (z))∼|MU (z)

is a parametrized Picard–Vessiot extension for ∂zW (z, t) = A(z, t)W (z, t). By
Proposition 2.23,

(k(z))∼|k(z)= k(z)〈y1(z−1, t), y2(z−1, t)〉∂z,∂t |k(z)

is a parametrized Picard–Vessiot extension.

Lemma 3.5. Gal1t
∂z
((k(z))∼|k(z))= SL2(k).

Notice that the differential equation is of the form ∂2
z W (z, t)= r(z, t)W (z, t),

where r(z, t) ∈ k(z). In this case, we can compute the Galois group using a
parametrized version of Kovacic’s algorithm; see [Arreche 2012; Dreyfus 2013].
See also [Acosta-Humanez 2009; Acosta-Humánez et al. 2011]. In order to have a
self contained proof, we will perform the calculations explicitly.

Proof. If we apply Kovacic’s algorithm [1986], we find that the unparametrized
differential Galois group Gal∂z ((k(z))

∼
|k(z)) is equal to SL2(k). We apply Propo-

sition 6.26 in [Hardouin and Singer 2008], to deduce that Gal1t
∂z
((k(z))∼|k(z)) is

Zariski-dense in SL2(k). By Proposition 42 in [Cassidy 1972], we deduce that there
are two possibilities:

• Gal1t
∂z
((k(z))∼|k(z))= SL2(k)

• Gal1t
∂z
((k(z))∼|k(z)) is conjugate to SL2(k0) over SL2(k), where

k0 = {a ∈ k(z) | ∂za = ∂t a = 0}.

We see in [Dreyfus 2013, Remark 4.4] that the last case occurs if and only if the
following parametrized differential equation has a solution in MU (z), for some
nonempty polydisc U in Cn:

∂3
z y(z, t)= ∂z y(z, t)

4+ 4t z3

z7 + y(z, t)∂z
4+ 4t z3

z7 − ∂t
4+ 4t z3

z7 .

With the algorithm presented in [van der Put and Singer 2003, p. 100], we find that
this does not happen, so

Gal1t
∂z
((k(z))∼|k(z))= SL2(k). �

Lemma 3.6. The singular directions of (3-3) are

{2kπ/5 | k ∈ Z}.
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Proof. Let k ∈ Z. The matrix(
zyk(z−1, t) zyk+1(z−1, t)
∂zzyk(z−1, t) ∂zzyk+1(z−1, t)

)
is a fundamental solution for the equation

∂z

(
W (z, t)
∂zW (z, t)

)
=

(
0 1

1+t z3

z7 0

)(
W (z, t)
∂zW (z, t)

)
.

The fundamental solution admits an asymptotic representation on the sectors

6((2k− 1)π/5, (2k+ 3)π/5).

The only level is 5
2 . From Proposition 1.13 and the construction of the singular

directions, we find that the singular directions are {2kπ/5 | k ∈ Z}. �

Example 3.7. We want to compute the Stokes matrix in the direction 8π/5 for the
fundamental solution (

zy1(z−1, t) zy2(z−1, t)
∂zzy1(z−1, t) ∂zzy2(z−1, t)

)
.

We recall the construction of the Stokes matrices. See Section 1C for the notation.
Let Ĥ(z, t)zL(t)e(Q(z, t)) be a fundamental solution in parametrized Hukuhara–
Turrittin canonical form. Let H−(z, t) and H+(z, t)) be the matrices such that

H−(z, t)eL(t) log(z)eQ(z,t) and H+(z, t)eL(t) log(z)eQ(z,t)

are the germs of asymptotic solutions on the sectors

6(π, 9π/5) and 6(7π/5, 11π/5),

respectively. The Stokes matrix in the direction 8π/5 is the matrix that sends

H−(z, t)eL(t) log(z)eQ(z,t) to H+(z, t)eL(t) log(z)eQ(z,t).

With the domain of definition of the asymptotic representation of z ỹ1(z−1, t), we
deduce from the definition of the Stokes operators that

(3-4) St8π/5(zy1(z−1, t))= zy1(z−1, t).

We first write St8π/5(zy2(z−1, t)) in the basis

(zy0(z−1, t), zy1(z−1, t)).

There exist a(t) and b(t) ∈MU such that

St8π/5(zy2(z−1, t))= a(t)zy0(z−1, t)+ b(t)zy1(z−1, t).
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By the construction of the asymptotic solutions with Laplace and Borel transforms
(see Proposition 1.10), the asymptotic representation of St8π/5(zy2(z−1, t)) has to
be bounded in some sector of ]7π/5, 11π/5[, which means that there exist

7π
5
< α < β <

11π
5

and ε > 0

such that St8π/5(zy2(z−1, t)) is uniformly bounded for arg(z) ∈ ]α, β[ and z < |ε|.
Therefore, a(t)= 0 or b(t)= 0. Since the Stokes operators are automorphisms, we
get b(t) = 0. Lemma 3.5 says that the parametrized differential Galois group is
SL2(k). Therefore, because of Proposition 2.23 and Lemma 2.17, the determinant
of the matrix has to be 1. Thus by (3-2), we get that the Stokes matrix in direction
8π/5 is

St8π/5 =
(

1 −C0(t)e3iπ/5

0 1

)
.

Lemma 3.8. Let C0(t) be defined as above. Assume that C0(t) is ∂t -finite over k.
Then the ∂t -differential transcendence degree (see Section 2A for definition) of
(k(z))∼ over k(z) is at most 2.

Proof. The extension (k(z))∼ is generated over k(z) by y1(z−1, t) and y2(z−1, t).
By the parametrized differential Galois correspondence (see Theorem 9.5 in [CS]),
the Kolchin closure of the group generated by St8π/5 is equal to

Gal1t
∂z
((k(z))∼|F),

where F is the subfield of (k(z))∼ fixed by St8π/5. Using (3-4), we deduce that F
contains

k(z)〈y1(z−1, t)〉∂z,∂t .

Because C0(t) satisfies a linear differential equation with coefficients in k, there
exists a linear differential polynomial P such that this group is of the form{(

1 α

0 1

) ∣∣∣ P(α)= 0= P(C0(t))
}
,

and has ∂t -differential dimension over k equal to 0. Therefore by Proposition 2.7 the
∂t -differential transcendence degree of (k(z))∼ over F is equal to 0. Since F con-
tains k(z)〈y1(z−1, t)〉∂z,∂t , there exists a differential polynomial Q with coefficients
in k(z) such that

Q(y1(z−1, t), y2(z−1, t))= 0= Q(∂z(y1(z−1, t)), ∂z(y2(z−1, t))).

Therefore, the ∂t -differential transcendence degree of (k(z))∼ over k(z) is at most 2,
because (k(z))∼ is generated as a ∂t -differential field over k(z) by

{y1(z−1, t), y2(z−1, t), ∂z(y1(z−1, t)), ∂z(y2(z−1, t))}. �
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Theorem 3.9. The function C0(t) is not ∂t -finite over k.

Proof. As we see from Lemma 3.5,

Gal1t
∂z
((k(z))∼|k(z))= SL2(k).

Therefore, by Proposition 2.7, the ∂t -differential transcendence degree of (k(z))∼

over k(z) is 3. If C0(t)was ∂t -finite over k, because of Lemma 3.8, the ∂t -differential
transcendence degree of (k(z))∼ over k(z) would be smaller than 3. Therefore,
C0(t) is not ∂t -finite over k. �

3C. Which linear differential algebraic groups are parametrized differential Ga-
lois groups? As in Section 3B, let k be a universal (1t)-field of characteristic 0.
Let us consider the equation (∗) with A(z, t) ∈Mm(k(z)), let (k(z))∼|k(z) be the
parametrized Picard–Vessiot extension, and let

G = Gal1t
∂z
((k(z))∼|k(z))⊂ GLm(k)

be the parametrized differential Galois group defined in Section 2A. The following
theorem of Seidenberg, applied with K0 =Q and K1 the (1t)-field generated by Q

and the z-coefficients of A(z, t), tells us that there exists a nonempty polydisc U
such that A(z, t) may be seen as an element of Mm(MU (z)).

Theorem 3.10 [Seidenberg 1958; 1969]. Let Q ⊂ K0 ⊂ K1 be finitely generated
(1t)-differential extensions of Q, and assume that K0 consists of meromorphic
functions on some domain U of Cn . Then K1 is isomorphic to the field K ∗1 of
meromorphic functions on a nonempty polydisc U ′ ⊂ U such that K0|U ′ ⊂ K ∗1 ,
and the derivations in 1t can be identified with the derivations with respect to the
coordinates on U ′.

Let (MU (z))∼|MU (z) be the parametrized Picard–Vessiot extension defined in
Section 2E and let Aut1t

∂z
((MU (z))∼|MU (z)) be the parametrized differential Galois

group. Using Corollary 2.25, we find that Aut1t
∂z
((MU (z))∼|MU (z)) contains a

finitely generated subgroup that is Kolchin-dense in Aut1t
∂z
((MU (z))∼|MU (z)). With

Proposition 2.23, we find that G contains a finitely generated subgroup that is
Kolchin-dense in G. Combined with Corollary 5.2 in [Mitschi and Singer 2012],
which gives the sufficiency of the condition, this yields the following result:

Theorem 3.11 (inverse problem). Let G be a linear differential algebraic subgroup
of GLm(k). Then G is the global parametrized differential Galois group of some
equation having coefficients in k(z) if and only if G contains a finitely generated
subgroup that is Kolchin-dense in G.
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In the unparametrized case, any linear algebraic group defined over C is a Galois
group of a Picard–Vessiot extension (see [Tretkoff and Tretkoff 1979]). In fact,
every linear algebraic group defined over C contains a finitely generated subgroup
that is Zariski-dense, which means that Theorem 3.11 is a generalization of the
result in the previous reference.

The situation is more complicated in the parametrized case. For example, the
additive group {(

1 α

0 1

) ∣∣∣α ∈ k
}

is not the global parametrized differential Galois group of any equation having
coefficients in k(z) (see Section 7 of [CS]). In the parametrized case with only
regular singular poles, the problem was solved in [Mitschi and Singer 2012, Corol-
lary 5.2]: they obtain the same necessary and sufficient condition on the group
as in Theorem 3.11. Singer [2013] characterized the linear algebraic subgroups
of GLm(k) that appear as the global parametrized differential Galois groups of
some equation having coefficients in k(z): they are the groups such that the identity
component has no quotient isomorphic to the additive group (k,+) or multiplicative
group (k∗,×) of k.

Appendix

Let us keep the same notation as in Section 1A and Section 1B. The goal of the
appendix is to prove the following theorem. Notice that our proof closely follows the
unparametrized case; see [Balser et al. 1980; Loday-Richaud 2001]. See Remark 1.6
for a discussion of another similar result.

Theorem A.1. Consider the equation ∂zY (z, t) = A(z, t)Y (z, t) with A(z, t) ∈
Mm(K̂U ). There exists a nonempty polydisc U ′⊂U such that we have a fundamental
solution of the form

P̂(z, t)zC(t)e(Q(z, t)) ∈ GLm((KU ′)
∧),

with:

• P̂(z, t) ∈ GLm(K̂U ′),

• C(t) ∈Mm(MU ′),

• e(Q(z, t))= Diag(e(qi (z, t))), with qi (z, t) ∈ EU ′ .

Moreover, we may choose the same nonempty polydisc U ′ as in Proposition 1.3.
Combined with Remark 1.6, if A(z, t) ∈Mm(OU ({z})), this gives a sufficient condi-
tion on t0∈U to have a fundamental solution P̂(z, t)zC(t)e(Q(z, t))∈GLm((KU ′)

∧)

in the same form as above with t0 ∈U ′.
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Remark that, contrary to Proposition 1.3, Ĥ(z, t) ∈ GLm(K̂U ′). On the other
hand, we lose the commutation between zC(t) and e(Q(z, t)). Before giving the
proof of the theorem, we state and prove two lemmas.

Lemma A.2. Let U ′ ⊂ U be a nonempty polydisc. Let a(t) ∈ MU ′ and α(z, t) ∈
K̂F,U ′ such that m̂(α(z, t)) = a(t)α(z, t). Then there exist ĥ(z, t) ∈ K̂U ′ and
b(t) ∈MU ′ such that α(z, t)= ĥ(z, t)zb(t).

Proof. Let α(z, t) ∈ K̂F,U ′ such that m̂(α(z, t))= a(t)α(z, t). The element α(z, t)
belongs to the fraction field of a free polynomial ring

P = K̂U ′[log, zb1(t), . . . , zbk(t)].

Write α(z, t) = α1(z, t)/α2(z, t), where α1 and α2 have gcd 1 in P . Using the
relations in K̂F,U ′ , and applying m̂ to α1(z, t)/α2(z, t), we find that α(z, t) contains
no terms in log. One can normalize α2(z, t) such that it contains a term of the form
zn1b1(t)+···+nkbk(t) with coefficient 1 and ni ∈ Z. Using

m̂(α1(z, t)/α2(z, t))= a(t)α1(z, t)/α2(z, t),

we find that
m̂(α2(z, t))= e2iπ(n1b1(t)+···+nkbk(t))α2(z, t)

and
m̂(α1(z, t))= a(t)e2iπ(n1b1(t)+···+n1b1(t))α1(z, t),

which is impossible unless

e2iπ(n1b1(t)+···+nkbk(t)) = 1.

This means that α2(z, t) ∈ K̂U ′ and we may assume α2(z, t) = 1. Applying m̂
to α1(z, t), one finds that α1(z, t) contains at most one term, that is, α(z, t) =
ĥ(z, t)zb(t), with ĥ(z, t) ∈ K̂U ′ and b(t) ∈MU ′ satisfying e2iπb(t)

= a(t). �

Lemma A.3. Let U ′ ⊂ U be a nonempty polydisc. Let A(z, t) ∈ Mm(K̂U ′). Let
F1(z, t)e(Q1(z, t)) and F2(z, t)e(Q2(z, t)) be two fundamental solutions of the
equation (∗) such that, for i = 1, 2, we have

Fi (z, t) ∈ GLm(K̂F,U ′) and Qi (z, t)= Diag[qi, j (z, t)],

where the qi, j (z, t) belong to EU ′ . Then F1(z, t)−1 F2(z, t) ∈ GLm(MU ′).

Proof. A straightforward computation shows that

∂zg((F1(z, t)e(Q1(z, t)))−1 F2(z, t)e(Q2(z, t))g)= 0.

By Proposition 2.19,

(F1(z, t)e(Q1(z, t)))−1 F2(z, t)e(Q2(z, t))= C(t) ∈ GLm(MU ′).
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Hence, we have the equality

e(Q1(z, t))C(t)e(−Q2(z, t))= F1(z, t)−1 F2(z, t).

The entries of e(Q1(z, t))C(t)e(−Q2(z, t)) are of the form

Ci, j (t)e(q1, j (z, t)− q2, j (z, t)),

with Ci, j (t) ∈MU ′ , and the matrix F1(z, t)−1 F2(z, t) belongs to GLm(K̂F,U ′). By
construction, K̂F,U ′ ∩MU ′((e(q(z, t)))q(z,t)∈EU ′

)=MU ′ , and we obtain

F1(z, t)−1 F2(z, t) ∈ GLm(MU ′). �

Proof of Theorem A.1. By Proposition 1.3, we know that we have a fundamental
solution of the parametrized linear differential equation (∗) of the form

Ĥ(z, t)zL(t)e(Q(z, t)),

with Ĥ(z, t)∈GLm(K̂U ′[z1/ν
]) and ν∈N∗. From Definition 2.13, m̂ commutes with

the derivation ∂z , and therefore m̂(Ĥ(z, t)zL(t)e(Q(z, t))) is another fundamental so-
lution. From the construction of m̂, we deduce that m̂(Ĥ(z, t)zL(t)) ∈GLm(K̂F,U ′),
and we can apply Lemma A.3 to deduce the existence of M̂(t)∈GLm(MU ′) such that

(A-1) m̂(Ĥ(z, t)zL(t))= Ĥ(z, t)zL(t)M̂(t).

Let us consider M̂(t) = D(t)U (t), with D(t) diagonalizable and U (t) unipotent
such that D(t)U (t) = U (t)D(t) is the multiplicative analogue of the Jordan de-
composition of M̂(t). If a(t) is an eigenvalue of D(t) (and therefore an eigenvalue
of M̂(t)), then there exists 0 6= α(z, t) ∈ K̂F,U ′ such that m̂(α(z, t))= a(t)α(z, t),
because of the relation (A-1). By Lemma A.2, α(z, t) is equal to ĥ(z, t)zb(t), with
b(t) ∈MU ′ satisfying e2iπb(t)

= a(t) and ĥ(z, t) ∈ K̂U ′ . This implies that a(t) and
all the eigenvalues of D(t) are of the form eβ(t), with β(t) ∈ MU ′ . So we have
proved the existence of C(t) ∈Mm(MU ′) such that e2iπC(t)

= M̂(t). Let

P̂(z, t)= Ĥ(z, t)zL(t)z−C(t).

A computation shows that the monodromy of zC(t) is

m̂(zC(t))= e2iπC(t)zC(t)
= zC(t)e2iπC(t).

The matrix P̂(z, t) is fixed by the monodromy and therefore belongs to GLm(K̂U ′),
by Proposition 2.19. Finally,

P̂(z, t)zC(t)e(Q(z, t))

is a fundamental solution of the parametrized linear differential equation (∗) that
has the required property. �
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