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We consider Hamiltonian diffeomorphisms of symplectic Euclidean spaces,
generated by compactly supported time-dependent perturbations of hyper-
bolic quadratic forms. We prove that, under some natural assumptions,
such a diffeomorphism must have simple periodic orbits of arbitrarily large
period when it has fixed points which are not necessary from a homological
perspective.
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1. Introduction and main results

Introduction. In this paper we consider time-dependent Hamiltonians H on R2n

which, outside a compact set, are autonomous and coincide with a hyperbolic
quadratic form (i.e., a nondegenerate quadratic form whose Hamiltonian vector
field has no purely imaginary eigenvalues). We prove that, under some additional
conditions, the Hamiltonian diffeomorphism 'H must have simple (i.e., uniterated)
periodic orbits of arbitrarily large (prime) period when it has certain “homologically
unnecessary” fixed points. In particular, 'H then has infinitely many periodic orbits.
To be more precise, this result holds provided that 'H has at least one nondegenerate
(or even homologically nontrivial) fixed point with nonzero mean index, and the
quadratic form (i.e., the corresponding linear Hamiltonian vector field) has only
real eigenvalues. (See Remark 3.3 for the case of complex eigenvalues.)

Our main motivation for studying this question comes from a variant of the
Conley conjecture applicable to manifolds for which the standard Conley conjecture
fails. Recall in this connection that the latter asserts the existence of infinitely
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many periodic orbits for every Hamiltonian diffeomorphism of a closed symplectic
manifold. This is the case for manifolds with spherically vanishing first Chern class
(of the tangent bundle) and also for negative monotone manifolds; see [Chance
et al. 2013; Ginzburg and Gürel 2009a; Hein 2012] and also [Franks and Handel
2003; Ginzburg 2010; Ginzburg and Gürel 2012; Hingston 2009; Le Calvez 2006;
Salamon and Zehnder 1992]. However the Conley conjecture, as stated, fails for
some simple manifolds, such as S2: an irrational rotation of S2 about the z-axis
has only two periodic orbits, which are also the fixed points; these are the poles. In
fact, any manifold that admits a Hamiltonian torus action with isolated fixed points
also admits a Hamiltonian diffeomorphism with finitely many periodic orbits. In
particular, CPn, the Grassmannians and, more generally, most of the coadjoint orbits
of compact Lie groups as well as symplectic toric manifolds all admit Hamiltonian
diffeomorphisms with finitely many periodic orbits.

A viable alternative to the Conley conjecture for such manifolds is the conjecture
that a Hamiltonian diffeomorphism with more fixed points than necessarily required
by the (weak) Arnold conjecture has infinitely many periodic orbits. (It is possible
that in this conjecture one might need to impose some kind of nondegeneracy
condition (e.g., homological nontriviality) on the fixed points, as is the case for the
version considered in this paper.) For CPn, the expected threshold is nC 1. This
conjecture is inspired by a celebrated theorem of Franks [1992; 1996] stating that a
Hamiltonian diffeomorphism (or even an area preserving homeomorphism) of S2

with at least three fixed points must have infinitely many periodic orbits; see also
[Franks and Handel 2003; Le Calvez 2006] for further refinements and [Bramham
and Hofer 2012; Collier et al. 2012; Kerman 2012] for symplectic topological
proofs. We will refer to this analogue of the Conley conjecture as the HZ conjecture
since, to the best of our knowledge, the first written account of the assertion is in
[Hofer and Zehnder 1994, p. 263].

We find it useful to view the HZ conjecture in a broader context. Namely it
appears that the presence of a fixed point that is unnecessary from a homological or
geometrical perspective is already sufficient to force the existence of infinitely many
periodic orbits. For instance, a theorem from [Ginzburg and Gürel 2014] asserts that
for a certain class of closed monotone symplectic manifolds including CPn, any
Hamiltonian diffeomorphism with a hyperbolic fixed point must necessarily have
infinitely many periodic orbits. (Note that the original HZ conjecture, at least for non-
degenerate Hamiltonian diffeomorphisms of CPn, would follow if one could replace
a hyperbolic fixed point with a nonelliptic one in this theorem.) Furthermore there
are obvious analogues of the HZ conjecture for symplectomorphisms or noncon-
tractible periodic orbits of Hamiltonian diffeomorphisms. These analogues are also
of interest and in some instances more accessible than the original HZ conjecture;
see, for example, [Batoreo 2013; Ginzburg and Gürel 2009b; 2014; Gürel 2013].



PERIODIC ORBITS OF HAMILTONIAN SYSTEMS AT INFINITY 161

The generalized HZ conjecture is also the central theme of this paper, although
here we focus on a different aspect of the problem. Our main result, Theorem 1.1,
can be viewed as a “local version” of this conjecture, and it holds in all dimensions.
Namely we prove a variant of the HZ conjecture for Hamiltonians on R2n which are
compactly supported perturbations of certain quadratic forms. Working with R2n

allows us to circumvent a number of symplectic topological obstacles to proving
the HZ conjecture and concentrate on what we interpret as the dynamical part of
the problem, which is still quite nontrivial. This is a key difference, technical and
conceptual, between the present work and the approach taken in [Ginzburg and
Gürel 2014], where the symplectic topology of the ambient manifold plays a central
role. We use Floer-theoretical techniques in the proofs. Deferring a more detailed
discussion of our method to Section 1, we merely mention at this point that for
technical reasons the quadratic form needs to be hyperbolic. Finally it should also be
noted that Hamiltonian systems on R2n with a controlled (e.g., asymptotically linear)
behavior at infinity have been extensively studied in the context of Hamiltonian
mechanics by classical variational methods; see, for example, [Abbondandolo 2001;
Amann and Zehnder 1980; Antonacci 1997; Cornea 2001; Mawhin and Willem
1989; Rabinowitz 1980; Zhang and Liu 2011; Zou 2001] and references therein.
However, to the best of our knowledge, there is no overlap between that approach
and the present work, including the results.

Main results. To state the main results of the paper, recall that the mean index
�H .x/ 2 R of a periodic orbit x of the Hamiltonian flow of H measures, roughly
speaking, the total angle swept out by certain eigenvalues with absolute value one
of the linearized flow d't

H
along x; see [Long 2002; Salamon and Zehnder 1992]

and also [Entov and Polterovich 2009, Section 3.3] and references therein for a
more detailed discussion. For instance, the mean index is zero when d't

H
has

no eigenvalues on the unit circle for any t ¤ 0, and hence the orbit is hyperbolic.
Finally denote by Fix.'H / the collection of fixed points of 'H .

Theorem 1.1. Let H W S1 � R2n ! R be a Hamiltonian which is equal to a
hyperbolic quadratic form Q at infinity (i.e., outside a compact set) such that Q

has only real eigenvalues. Assume that 'H has a nondegenerate fixed point with
nonzero mean index and Fix.'H / is finite. Then 'H has simple, that is, uniterated,
periodic orbits of arbitrarily large period.

As a consequence, 'H has infinitely many simple periodic orbits regardless of
whether Fix.'H / is finite or not. In fact, the nondegeneracy condition in Theorem 1.1
can be relaxed and replaced by a much weaker, albeit more technical, condition that
the point is isolated and homologically nontrivial, that is, its local Floer homology
is nonzero. This is Theorem 4.1.

Remark 1.2. Theorems 1.1 and 1.4 (below), and their generalizations discussed
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in Section 4, also hold when the quadratic form Q has complex eigenvalues � ,
provided that jRe � j> jIm � j; see Remark 3.3.

Remark 1.3. From the perspective of the generalized HZ-conjecture, observe that
the nondegenerate (or homologically nontrivial) fixed point with nonzero mean
index in Theorem 1.1 is the “unnecessary” point. Moreover the presence of one
such point x implies the existence of at least two other (homologically nontrivial)
orbits. Indeed the Floer homology for all iterations of H is concentrated in degree
zero (see Section 3), and once k is so large that the index of the iterated orbit xk is
outside the range Œ�n; n�, another orbit must take over generating the homology.
Furthermore there should be at least one more periodic orbit to cancel out the
contribution of xk to the homology in higher degrees.

Hypothetically results similar to Theorem 1.1 and other theorems discussed in
this section hold when a hyperbolic quadratic form is replaced by any (autonomous)
quadratic form Q without nontrivial periodic orbits. For instance in this case, one
can expect to have infinitely many periodic orbits whenever 'H has a nondegenerate
fixed point with mean index different from�Q.0/ or has at least two nondegenerate
fixed points; cf. Remark 4.6. (The latter conjecture, which was the starting point of
this work, is due to Alberto Abbondandolo.)

As has been pointed out above, the proof of Theorem 1.1 is based on Floer
theory. However for a general quadratic form Q, even when the Floer homology
exists, continuation maps fail to have the desired properties and the homology is
not invariant under iterations. This is the case, for instance, for positive or negative
definite Q (see Remark 3.6) and the main reason why we restrict our attention to
hyperbolic quadratic forms. Even for such forms some foundational aspects of
Floer theory have to be reexamined. We do this in Section 3, using, as one could
expect, a version of the maximum principle.

The condition that the fixed point is nondegenerate (and that it has nonzero
mean index) is essential in Theorem 1.1. For instance, starting with the flow of
Q.x;y/D xy on R2, it is easy to introduce degenerate (homologically trivial) fixed
points by slightly perturbing the flow away from the saddle. This way one can
create an arbitrarily large number of fixed points without generating infinitely many
periodic orbits. In fact, we expect some form of nondegeneracy (e.g., homological
nontriviality) to be essential in the HZ conjecture beyond the case of S2.

In low dimensions, Theorem 1.1 combined with simple index analysis implies
the HZ conjecture in its original form for Hamiltonians in question. To state the
result, recall first that 'H is said to be strongly nondegenerate if all iterations of
'H are nondegenerate.

Theorem 1.4. Let H W S1 �R2n! R, with 2nD 2 or 4, be a Hamiltonian which
is equal to a hyperbolic quadratic form Q at infinity such that Q has only real
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eigenvalues. Assume that 'H is strongly nondegenerate and has at least two fixed
points, and Fix.'H / is finite. Then 'H has simple periodic orbits of arbitrarily
large period.

Note that strong nondegeneracy is a C1-generic condition in the class of Hamil-
tonians under consideration. Let us also point out that, in contrast with many closed
manifolds (see, e.g., [Ginzburg and Gürel 2009b]), the existence of infinitely many
periodic orbits is obviously not a C1- or even C 2-generic property of Hamiltonians
in Theorem 1.4: one has to have an extra periodic orbit which serves as a seed
eventually “spawning an infinitude of offspring”.

In dimension two, the strong nondegeneracy requirement can be relaxed. It suf-
fices to just assume that 'H has at least two isolated homologically nontrivial fixed
points; see Theorem 4.5. (Also note that in this case the eigenvalues of a hyperbolic
quadratic form are automatically real.) However in dimension four, nondegeneracy
enters the proof in a crucial way. Finally note that the two-dimensional case of
Theorem 1.4 is intimately related to Franks’s theorem; see Remarks 4.6 and 4.7.

Remark 1.5. A more general version of Theorem 1.4 for 2nD 2 was proved in
[Abbondandolo 2001, Theorem 5.1.9].

Organization of the paper. In Section 2, we set conventions and notation, and
briefly recall some of the tools used in the paper and provide relevant references.
We establish a version of the maximum principle and show that the Floer homology,
as well as the relevant continuation maps, are defined for the class of Hamiltonians
in question in Section 3. Finally in Section 4, we prove Theorems 1.1 and 1.4.

2. Conventions and notation

Throughout the paper, we will be working with the symplectic manifold .R2n; !/,
where ! is the standard symplectic form. All Hamiltonians H considered here
are assumed to be one-periodic in time, that is, H W S1 �R2n ! R, and we set
HtDH.t; � / for t 2S1DR=Z. The Hamiltonian vector field XH of H is defined by
iXH

!D�dH . The (time-dependent) flow of XH is denoted by 't
H

and its time-one
map by 'H . Such time-one maps are referred to as Hamiltonian diffeomorphisms.
The action of a one-periodic Hamiltonian H on a loop  W S1! R2n is defined by

AH . /D�

Z
z

!C

Z
S1

Ht . .t// dt;

where z WD2!M is such that z jS1D  . The least action principle asserts that the
critical points of AH on the space of all smooth maps  W S1! R2n are exactly
the one-periodic orbits of 't

H
.
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Let K and H be two one-periodic Hamiltonians. The composition K \H is
defined by the formula

(2-1) .K \H /t DKt CHt ı .'
t
K /
�1;

and the flow of K \H is 't
K
ı't

H
. We set H \k DH \ � � � \H (k times). Abusing

terminology, we will refer to H \k as the k-th iteration of H . Clearly H \k D kH

when H is autonomous. (Note that the flow 't
H \k D .'

t
H
/k , t 2 Œ0; 1�, is homotopic

with fixed end-points to the flow 't
H

, t 2 Œ0; k�. Also, in general, H \k is not
one-periodic, even when H is.) Furthermore, setting

(2-2) kFkB D

Z
S1

sup
B

jF j dt

for a bounded set B � R2n, we have kH \kkB D kkHkB when H is autonomous.
Note that kFkB is a variant of the Hofer norm. (When F is compactly supported
on R2n, we will also use the notation kFkR2n with the obvious meaning.)

The k-th iteration of a one-periodic orbit  of H will be denoted by  k . More
specifically,  k.t/D 't

H \k . .0//, where t 2 Œ0; 1�. We can think of  k as the k-
periodic orbit  .t/, t 2 Œ0; k�, of H . Hence there is an action-preserving one-to-one
correspondence between one-periodic orbits of H \k and k-periodic orbits of H .

The action spectrum S.H / of H is the set of critical values of AH . This is a zero
measure, closed (hence nowhere dense) set; see, for example, [Hofer and Zehnder
1994]. Clearly the action functional is homogeneous with respect to iteration:

AH \k . k/D kAH . /:

A periodic orbit  of H is said to be nondegenerate if the linearized return map
d'H W T.0/M ! T.0/M has no eigenvalues equal to one. A Hamiltonian is
called nondegenerate if all its one-periodic orbits are nondegenerate and strongly
nondegenerate if all k-periodic orbits (for all k) are nondegenerate.

Let  be a nondegenerate periodic orbit. The Conley–Zehnder index, denoted
by �CZ.H;  / 2 Z, is defined, up to a sign, as in [Salamon 1999; Salamon and
Zehnder 1992]. (When H is clear from the context we use the notation �CZ. /.)
More specifically, in this paper, the Conley–Zehnder index is the negative of that
in [Salamon 1999]. In other words, we normalize �CZ so that �CZ. /D n when 
is a nondegenerate maximum of an autonomous Hamiltonian with small Hessian.
Furthermore recall that the mean index �H . / is defined regardless of whether 
is degenerate or not, and �H . / depends continuously on H and  in the obvious
sense. When  is nondegenerate, we have

0� j�H . /��CZ.H;  /j< n:
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Furthermore the mean index is also homogeneous with respect to iteration:

�H \k . k/D k�H . /:

3. Maximum principle and Floer homology

Our goal in this section is to show that the Floer homology is defined and has
the standard properties for the class of Hamiltonians in question. In our setting,
essentially the only issue to deal with is the compactness of moduli spaces of Floer
trajectories, which we establish by proving a version of the maximum principle.

Floer homology. Let Q be a hyperbolic quadratic form on R2n, that is, Q is
nondegenerate and has no eigenvalues on iR. (Recall that throughout the paper
by eigenvalues of Q we mean the eigenvalues of the linear Hamiltonian vector
field XQ.) Assume further that all eigenvalues of Q are real. (See Remark 3.3
for a variant of the maximum principle when Q has complex eigenvalues.) De-
note by HQ the set of one-periodic Hamiltonians H W S1 �R2n ! R which are
compactly supported time-dependent perturbations of Q. Let J D Jt be a time-
dependent almost complex structure compatible with !. We are interested in
solutions u W R�S1! R2n of the Floer equation

(3-1) @suCJ.u/@tuD�rHt .u/;

where uD u.s; t/ with coordinates .s; t/ on R�S1 and the gradient is taken with
respect to the one-periodic in time metric h � ; � i D !. � ;J � / on R2n.

In this setting we have:

Theorem 3.1. Let Q be a hyperbolic quadratic form on .R2n; !/ with only real
eigenvalues. Then there exists a linear complex structure JQ compatible with !
such that whenever J � JQ and H � Q outside an open ball B with respect to
the metric h � ; � iQ WD !. � ;JQ � /, any solution of (3-1) for the pair .H;J / that is
asymptotic to periodic orbits of H in B is necessarily contained in B.

More generally, consider now solutions u W�!R2n of (3-1), where��R�S1

is an open connected subset. Theorem 3.1 is an immediate consequence of the
following proposition:

Proposition 3.2 (maximum principle). Let Q be a hyperbolic quadratic form on
.R2n; !/ with only real eigenvalues. Then there exists a linear complex structure
JQ compatible with ! such that for any solution u (with domain � � R�S1) of
the Floer equation (3-1) for .Q;JQ/, the function �D kuk2=2, where the norm is
induced by the metric h � ; � i D !. � ;JQ � /, cannot attain a maximum at an interior
point of � unless � is constant.
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Proof of Proposition 3.2. Below we first introduce JQ and then prove that � is
subharmonic on �, that is, �� � 0, where the Laplacian is taken with respect to
metric !. � ;JQ� /.

Since we will be changing the basis and the inner product on the ambient space
throughout the proof, it is more convenient to work with a hyperbolic quadratic
form Q on a finite-dimensional symplectic vector space .V 2n; !/. Equip V with a
symplectic basis

.@p; @q/D .@p1
; : : : ; @pn

; @q1
; : : : ; @qn

/

such that in the corresponding coordinates .p; q/ on R2n, the quadratic form Q is
expressed as

(3-2) Q.p; q/D hAp; qi:

Here A is a nondegenerate lower triangular n� n matrix, and h � ; � i is the standard
inner product on Rn. Indeed, since Q is nondegenerate with only real eigenvalues, it
can be expressed in some symplectic basis .@p; @q/ as the direct sum of the normal
forms

�

mX
iD1

piqi �

m�1X
iD1

piqiC1;

where � ranges over the positive eigenvalues of Q and m is the multiplicity of � ; see
[Arnold 1978; Williamson 1936]. We emphasize that p’s and q’s are treated here
as vectors in Rn using the bases .@p/ and .@q/, respectively. (It is clear from this
formula that A is indeed lower triangular.) Note that with this choice all diagonal
entries of A, that is, the eigenvalues of A, are positive.

Let ADDCE, where D is the diagonal part of A and E is the strictly lower
triangular part. By rescaling the basis vectors .@p; @q/, while still keeping the basis
symplectic and keeping (3-2), we can make E arbitrarily small. (We will specify
shortly how small E has to be. Here we merely note that the rescaling does not
affect D and that, in fact, E is required to be small compared to D.) We keep the
notation .@p; @q/ for the new basis and .p; q/ for the resulting linear coordinates.

The complex structure JQ is defined by the requirement JQ@p D �@q . This
structure is compatible with !, and we denote by h � ; � iQ the resulting inner product
!. � ;JQ� / on V , that is, h � ; � iQ WD !. � ;JQ� /. From now on we identify .V; !/
with the standard symplectic R2n using the basis .@p; @q/. Under this identification,
JQ becomes the standard complex structure on R2n D Cn, and h � ; � iQ turns into
the standard inner product. Note also that the restriction of h � ; � iQ to the subspaces
generated by @p and @q , respectively, is the inner product h � ; � i on Rn. Finally we
emphasize that all these structures, except for !, depend on the choice of the basis
.@p; @q/ which is to be finalized below (after we state how small E needs to be).
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In what follows, we calculate the Laplacian with respect to the metric h � ; � iQ,
where we set u.s; t/D .p; q/ and use the Floer equation (3-1):

��D �ssC �t t(3-3)

D kusk
2
Ckutk

2
� hu; @srQ.u/iQChu;JQ@trQ.u/iQ

D kusk
2
Ckutk

2
ChA2p;piC hA2q; qi

C hp; .A�AT /qsi � hq; .A�AT /psi

D kusk
2
Ckutk

2
CkDpk2CkDqk2ChE2p;piC hE2q; qi

C h.DECED/p;piC h.DECED/ q; qi

C hp; .E �ET /qsi � hq; .E �ET /psi:

Next we specify the requirements on E. To this end, let � WDmin�i > 0, where
the �i are the eigenvalues of A (or D). Then we have

(3-4) kDxk2 � �2
kxk2 for any x 2 Rn:

Now E is required to be so small that:

(i) jhE2x;xij � �2kxk2=10 for any x 2 Rn,

(ii) jhDE x;xij � �2kxk2=20 and jhED x;xij � �2kxk2=20 for any x 2 Rn,

(iii) jhx; .E �ET /yij � �kxkkyk=8 for any x and y 2 Rn.

Using (3-4), and (i) and (ii) for x D p and x D q, and (iii) for .x; y/ D .p; qs/

and .x; y/D .q; ps/ in (3-3), it is straightforward to show that

�� �
3�2

10
kuk2Ckusk

2
C
�2

2
kuk2�

�

4
kukkusk(3-5)

�
3�2

10
kuk2C

�
kusk�

�
p

2
kuk

�2

�
3�2

10
kuk2 � 0: �

Remark 3.3. It is not hard to see that Proposition 3.2 still holds when the quadratic
form Q has complex eigenvalues � , provided that jRe � j> jIm � j or, equivalently,
Re �2> 0 for all eigenvalues. However in general without this assumption (or when
Q is elliptic but not positive definite), there seems to be no reason to expect the
maximum principle to hold. There are also several other variants of the maximum
principle which hold for solutions of the Floer equation for Q. For instance, it
holds for the functions kpk2 and kqk2 separately.

As a consequence of Theorem 3.1, the total and filtered Floer homology groups
of H 2HQ, denoted by HF.H / and HF.a;b/.H /, respectively, are defined and have
properties similar to those for closed symplectically aspherical manifolds; see, for
example, [Hofer and Zehnder 1994; McDuff and Salamon 2004]. (For the sake
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of simplicity all homology groups are taken over Z2.) Likewise the local Floer
homology HF.H;  / of H at an isolated periodic orbit  is also defined and has the
usual properties; see, for example, [Floer 1989a; 1989b; Ginzburg 2010; Ginzburg
and Gürel 2010]. (Here J is an !-compatible almost complex structure which
is generic within the class of almost complex structures equal outside a compact
set to some JQ , as in Theorem 3.1. We will discuss the dependence of the Floer
homology on J shortly.)

Our next goal is to define the continuation maps induced by homotopies of
Hamiltonians in HQ. To this end, we say that a homotopy Fs DQCfs in HQ from
H0 to H1 is compactly supported if

S
s suppfs is bounded. (Observe that this is

not automatically the case.) Then we have a continuation map

(3-6) ‰ W HF.a;b/.H0/! HF.a;b/CC .H1/

for any H0 and H1 in HQ, induced by a homotopy Fs in HQ. Here .a; b/CC

stands for .aCC; bCC /, and

(3-7) C �

Z 1
�1

Z
S1

supR2n @sFs dt ds D

Z 1
�1

Z
S1

supR2n @sfs dt ds;

with @sFs � 0 when jsj is large; see [Ginzburg 2007, Section 3.2.2]. Note that the
suprema in (3-7) exist since the homotopy is compactly supported.

We now have HF.H /D HF.Q/Š Z2, concentrated in degree �CZ.Q; 0/D 0. It
is clear that the filtered Floer homology HF.a;b/.H / is independent of the almost
complex structure J as long as JQ is fixed. However it is not obvious at all whether
this homology is independent of the choice of JQ . In what follows, we will always
have JQ fixed and suppress this hypothetical dependence in the notation.

Continuation maps beyond HQ. The class HQ is not closed under iteration. For
instance, H \2 2H2Q when H 2HQ. To incorporate iteration into the picture, we
consider a broader class yHQ which is the union of the classes HkQ for all real k > 0.
Clearly this class is now closed under iteration. Moreover one can see from the
proof of Proposition 3.2 that there exists a common almost complex structure, JQ ,
for which Theorem 3.1 holds for all Hamiltonians in yHQ or, to be more precise,
any JQ can also be taken as JkQ. (The reason is that JQ is determined by the
requirement that the off-diagonal part E of A is small compared to D, rather than
just small. Thus if conditions (i), (ii) and (iii) are satisfied for Q, they are also
automatically satisfied in the same basis for kQ for any k > 0.) From now on we
fix JQ .

As above, we say that a homotopy Fs D k.s/Q C fs in yHQ is compactly
supported if

S
s suppfs is bounded and call the closure of this union the support
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of the homotopy. A homotopy is called slow if it is compactly supported and, say,

(3-8)
jk 0.s/j

.k.s//2
�

3�2

20
inf

x2R2nnf0g

kxk2

jQ.x/j
;

where �Dmin�i is as in Section 3; cf. [Cieliebak et al. 1995]. Clearly the right-
hand side in (3-8) is positive. (In fact, the infimum in (3-8) is equal to 1=�max,
where �max is the largest of the absolute values of the eigenvalues of Q with respect
to kxk2. This follows from the Courant–Fischer minimax theorem; see, for example,
[Demmel 1997, Chapter 5].) Recall also that a homotopy Fs from H0 to H1 is
called linear if Fs D .1� g.s//H0C g.s/H1, where g W R! R is an increasing
smooth function equal to zero for s� 0 and one for s� 1.

Theorem 3.4. Let Fs be a slow homotopy in yHQ from H0 to H1, supported in a
ball B with respect to the metric h � ; � iQ D !. � ;JQ � /. The continuation map ‰ as
in (3-6) is defined, where C satisfies

(3-9) C �

Z 1
�1

Z
S1

supB @sFs dt ds:

This map is independent of the slow homotopy. Furthermore, for a linear slow
homotopy, we can take C D kH1�H0kB WD

R
S1 supB jH1�H0j dt .

It is not hard to see that any compactly supported homotopy in yHQ can be
reparametrized to make it slow without changing the right-hand side in (3-9). Note
also that although the notion of a slow homotopy is independent of the size of the
support, the lower bound in (3-9) does depend in general on the ball B containing
the support and increases with the size of B. However one can show that the
continuation map ‰ is independent of the ball B in the following sense: whenever
for a fixed homotopy and two different balls C satisfies (3-9) for both of the balls,
the resulting continuation map is independent of the ball. (In what follows, we will
not use this fact.)

The continuation maps ‰ have properties similar to their counterparts in the
ordinary Floer homology. For instance, the continuation map induced by a concate-
nation of homotopies is equal to the composition of the continuation maps, and
continuation maps commute with the maps in the long exact sequence in filtered
Floer homology. (See [Ginzburg 2007] for a detailed account on the so-called
C -bounded homotopies in filtered Floer homology.) Note however that here, as in
(3-6), the almost complex structure Js is independent of s outside B.

Remark 3.5. We emphasize that the continuation map ‰ is not necessarily defined
when the homotopy is not slow.
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Proof of Theorem 3.4. To prove that ‰ is well-defined, it suffices to show that the
maximum principle, Proposition 3.2, extends to solutions of the Floer equation
for slow homotopies Qs D k.s/Q connecting Q0 D k0Q and Q1 D k1Q, where
k0 D k.0/ and k1 D k.1/. To this end, note that Qs D k.s/hAp; qi and recall that,
as was noted above, we can take JkQ to be JQ . Calculating the Laplacian with
respect to the metric h � ; � iQ D !. � ;JQ � / in this setting, we obtain

��D kusk
2
Ckutk

2
C k.s/

�
hp; .A�AT /qsi � hq; .A�AT /psi

�
C .k.s//2.hA2p;piC hA2q; qi/� 2k 0.s/hAp; qi

D kusk
2
Ckutk

2
C .k.s//2.kDpk2CkDqk2ChE2p;piC hE2q; qi/

C .k.s//2
�
h.DECED/p;piC h.DECED/ q; qi

�
C k.s/

�
hp; .E �ET /qsi � hq; .E �ET /psi

�
� 2k 0.s/hAp; qi

�
3�2

10
.k.s//2kuk2C

�
kusk�

�jk.s/j
p

2
kuk

�2

� 2jk 0.s/j � jQ.u/j:

Hence �� � 0 by (3-8).
That we can take C satisfying (3-9) for a general slow homotopy and that

C D kH1 �H0kB satisfies (3-9) for a linear slow homotopy is established by a
standard calculation (see, e.g., [Ginzburg 2007; Schwarz 2000]) combined with the
observation that homotopy trajectories (i.e., solutions of (3-1) for the pair .Fs;Js/)
are confined to B due to the maximum principle. �

Remark 3.6. The maximum principle is also known to hold for positive definite
quadratic Hamiltonians; see [McDuff 1991; Viterbo 1999] and also [Seidel 2008].
This fact underlies the definition of symplectic homology, and in fact, it was the
motivation of our approach in this paper. However it is worth pointing out that in
this case the continuation map between a Hamiltonian equal to kQ at infinity and
the one equal to .kC 1/Q at infinity is defined only in one direction and this map,
depending on Q, may be zero. This is the main reason why our approach to the
proof of Theorem 1.1 does not carry over to positive definite quadratic Hamiltonians.

4. Proofs and generalizations

Proof of Theorem 1.1. As has been mentioned in the introduction, we establish a
more general result. To state it, recall again that an isolated periodic orbit x is said
to be homologically nontrivial if the local Floer homology of H at x is nonzero. For
instance, a nondegenerate fixed point is homologically nontrivial. More generally, an
isolated fixed point with nonvanishing topological index is homologically nontrivial,
for this index is equal, up to a sign, to the Euler characteristic of the local Floer
homology. The notion of homological nontriviality seems to be particularly well
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suited for use in the context of HZ and Conley conjectures; see, for example,
Remark 1.3. Theorem 1.1 is an immediate consequence of the following result.

Theorem 4.1. Let H W S1 � R2n ! R be a Hamiltonian which is equal to a
hyperbolic quadratic form Q at infinity (i.e., outside a compact set) such that Q has
only real eigenvalues. Assume that 'H has an isolated homologically nontrivial
fixed point x with nonzero mean index and Fix.'H / is finite. Then 'H has simple
periodic orbits of arbitrarily large period.

Proof. In what follows, for the sake of brevity, we suppress the t -dependence when
taking a supremum or specifying the support of a function. For instance, when we
say that a function is supported in Y � R2n, we mean that the support is in S1�Y .
Likewise two functions being equal on Y means that they are equal on S1�Y , etc.
Finally the supremum, without a set specified, will stand for the supremum over R2n.

Let H DQCf as in the statement of the theorem. Pick a polyball P DBn�Bn

containing suppf and a ball V � P . Throughout the proof, as in Section 3, we
assume that the off-diagonal part E of A is small enough when compared to the
diagonal part D. In particular, every integral curve of the flow of Q intersects P

along a connected set. Before we actually turn to the proof of the theorem, we need
to first modify H , without essentially changing its dynamics, to control the energy
shift resulting from the homotopy between different iterations of H .

Lemma 4.2. There exist constants C1 > 0 and C2 > 0, depending only on the
quadratic form Q and the ball V , such that for every � 2 .0; 1�, there exists an
autonomous Hamiltonian zQ with the following properties:

(i) zQDQ on V .

(ii) zQD �Q outside a ball V� � V of radius RD C1=
p
�.

(iii) supV�
j zQj D C2.

(iv) The Hamiltonian flow of zQ has no periodic orbits other than the origin, and
every integral curve of its flow intersects P along a connected set.

The essential point here is that the constants C1 and C2 are independent of � while
RD C1=

p
� (but not, say, of order 1=�). We will prove this lemma by giving an

explicit construction of zQ after the proof of Theorem 4.1. One can think of zQ as
a family of Hamiltonians smoothly parametrized by � with zQDQ for � D 1.

Consider now the Hamiltonian

zH D zQCf D �QC . zQ� �Q/Cf D �QC h;

where hD . zQ� �Q/C f is supported in V� . Observe that zH 2 yHQ. Furthermore
zH DH in V , the ball where the Hamiltonians have nontrivial dynamics. Moreover

for every period, zH and H have exactly the same periodic orbits by Lemma 4.2(iv),
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and the orbits have the same actions and indices. In fact, one might expect these
Hamiltonians to have exactly the same filtered Floer homology with isomorphism in-
duced by a slow linear homotopy. However we have not been able to prove this fact.

The next lemma concerns the iterations zH \k and an estimate, independent of k, of
the difference zH \.kC`/� zH \k , which will be essential for the proof of Theorem 4.1.

Lemma 4.3. The Hamiltonian zH \k satisfies the following conditions:

(i) zH \k 2 yHQ and is equal to k�Q outside the ball Bk of radius k'�.k�1/
Q

kR

centered at the origin, where '�.k�1/
Q

is viewed as a linear operator.

(ii) Assume that k, ` and � are such that k'�.kC`�1/
Q

k � 2. Then

(4-1) k zH \.kC`/
� zH \k

kBkC`
� C3`;

where C3 is independent of k, ` and �, and the norm is as defined in (2-2).

Proof of Lemma 4.3. Denote by B1 the ball V� from Lemma 4.2, that is, B1 is the
ball of radius RD C1=

p
� centered at the origin. Consider the nested sets

Yk D

[
t2Œ0;1�

'
.k�1/t
�Q

.B1/ for k 2 N:

Let Bk D B.Rk/ be the ball of radius Rk D k'
.k�1/
�Q

kR. Clearly Bk � Yk .

Recall that zH D �QCh, where hD . zQ� �Q/Cf is supported in B1. Observe
that zH \k can be expressed as

zH \k
D k�QC

k�1X
jD0

h ı .'t
zH
/�j
C �

k�1X
jD0

�
Q ı .'t

zH
/�j
�Q

�
D k�QC hk :

We now show that supp hk � Yk , which settles (i). Since supp h� B1, a point x

can be in supp.h ı .'t
zH
/�j / only if .'�

�Q
/�j .x/ 2 B1 for some � 2 Œ0; t �. This

implies that

x 2 ..'��Q/
�j /�1.B1/D '

j�
�Q
.B1/�

[
t2Œ0;1�

'
jt
�Q
.B1/D YjC1:

Hence the first term in hk is supported in Yk . Dealing with the second term in hk ,
we first note that

�
�
Q ı .'t

zH
/�j
�Q

�
D �

�
Q ı .'t

zH
/�j
�Q ı .'t

�Q/
�j
�

since Q is autonomous. Now it is clear that .'t
zH
/�j .x/¤ .'t

�Q
/�j .x/ only when

the integral curve of �Q through x for Œ�j t; 0� enters B1, that is, .'�
�Q
/�j .x/2B1

for some � 2 Œ0; t �. Hence, similarly to the first term, the second term in hk is also
supported in Yk , and we have supp hk � Yk .
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To establish (ii), denote by B.1/ the unit ball and observe that

supBkC`

ˇ̌
h ı .'t

zH
/�j

ˇ̌
D supB1

j zQ� �QCf j

� supB1
j zQjC � supB1

jQjC sup jf j

� C2C �
C 2

1

�
supB.1/ jQjC sup jf j

D C2CC 2
1 supB.1/ jQjC sup jf j

for any j D k; : : : ; kC`�1. Furthermore, by the energy conservation law, we have

supBkC`

ˇ̌
Q ı .'t

zH
/�j
�Q

ˇ̌
D supBkC`

ˇ̌
Q ı .'t

zH
/�j
�Q ı .'t

�Q/
�j
ˇ̌

D supB1

ˇ̌
Q ı .'t

zH
/�j
�Q ı .'t

�Q/
�j
ˇ̌

� 2 supB1
jQj � 2

C 2
1

�
supB.1/ jQj:

Now recall that k, ` and � are such that k'�.kC`�1/
Q

k � 2. Thus BkC` � 2B1.
Setting M D supB.1/ jQj and using the above estimates, we have

supBkC`
j zH \.kC`/

� zH \k
j

D supBkC`

ˇ̌̌̌
`�QC

kC`�1X
jDk

h ı .'t
zH
/�j
C �

kC`�1X
jDk

�
Q ı .'t

zH
/�j
�Q

�ˇ̌̌̌
� `� sup2B1

jQj

C

kC`�1X
jDk

supBkC`
jh ı .'t

zH
/�j
jC �

kC`�1X
jDk

supBkC`

ˇ̌�
Q ı .'t

zH
/�j
�Q

�ˇ̌
�4`�

C 2
1

�
MC`.C2CC 2

1 MCsup jf j/C2`�
C 2

1

�
M � .7C 2

1 MCC2Csup jf j/`:

Setting C3 WD 7C 2
1

M CC2C sup jf j, we then have

(4-2) k zH \.kC`/
� zH \k

kBkC`
D

Z
S1

supBkC`
j zH \.kC`/

� zH \k
j dt � C3`;

with C3 independent of k, ` and �, as required. �

From now on we will work with the Hamiltonians zH , and at this stage we prefer
not to specify the parameter � yet. These Hamiltonians have the same periodic
orbits with the same actions and indices, and up to the point when the homotopy
between the iterated Hamiltonians is considered, the argument applies to any of
the Hamiltonians zH .
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It is worth mentioning again that the Hamiltonians zH \k are not one-periodic
in time even though zH is. This issue however is quite standard and can be dealt
with in a straightforward way. Namely consider a Hamiltonian G DKCg, where
gD gt is time-dependent for t 2 Œ0; 1� and K is any autonomous Hamiltonian. The
Hamiltonian diffeomorphism 'G can be generated by a one-periodic Hamiltonian

xG DKC�0.t/g�.t/ ı'
�.t/�t

K
;

where � W Œ0; 1�! Œ0; 1� is an increasing function equal to zero for t � 0 and one for
t � 1. We apply this procedure to zH \k with KD k�Q and gD hk . The actions, the
Conley–Zehnder indices and the mean indices of the periodic orbits do not change.
The change of the set Bk can be made arbitrarily small, of the order k1��0.t/kL1 .
As a consequence, the upper bound (4-1) can also be adjusted by an arbitrarily small
amount independent of k. In what follows, we will treat the Hamiltonians zH \k as
one-periodic in time, allowing for these straightforward modifications.

Now we are in a position to proceed with the proof of Theorem 4.1. It suffices
to show that there exist arbitrarily large primes which occur as periods of simple
periodic orbits. Arguing by contradiction, assume that only finitely many prime
numbers are attained as the periods. From now on, we always denote by p or pi

a prime number greater than the largest period. Let zH D zQC f , where zQ is any
Hamiltonian from Lemma 4.2. Then for any such prime p, all p-periodic orbits of
' zH are iterations of fixed points of 'H , and hence S. zH \p/Dp S.H /. Recall in this
connection that 'H is assumed to have finitely many fixed points. Next let us note
that all sufficiently large prime numbers are admissible in the sense of [Ginzburg
and Gürel 2010]. Thus under such iterations of zH , the orbit x stays isolated, and

HF. zH \p;xp/D HF.H \p;x/D HF.H;x/

up to, in the second equality, a shift of degree determined by the order of itera-
tion p; see [Ginzburg and Gürel 2010, Theorem 1.1]. In particular, in our case,
HF. zH \p;xp/¤ 0 since HF.H;x/¤ 0.

As has been mentioned above, � zH .x/ D �H .x/, and let us assume that
�H .x/ > 0, for the argument is similar if �H .x/ < 0. Moreover let us assume for
the sake of simplicity that AH .x/D 0 and hence A zH .x/D 0. (The general case
can be dealt with in a similar fashion and requires only notational modifications.)
Consequently A zH \p .x

p/D0 for all iterations p. Let a>0 be outside S. zH /DS.H /

such that 0 is the only point in .�a; a/\S.H / and therefore in .�ap; ap/\S. zH \p/.
Then we have

(4-3) HF.�ap;ap/
� . zH \p/D HF�.H \p;xp/˚ � � � ;

where the dots represent the local Floer homology contributions from the fixed
points with zero action other than x. Furthermore we henceforth focus on degrees �
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such that j�j> n. This guarantees that the fixed points with zero mean index do not
contribute to HF.�ap;ap/

� . zH \p/, for their local Floer homology groups are supported
in Œ�n; n�, where the support is by definition the set of degrees for which the local
Floer homology groups are nonzero. Thus all terms on the right-hand side of (4-3)
come from fixed points with nonzero mean index. Moreover we can further restrict �
so that only the fixed points  having the same mean index as x contribute to the
right-hand side of (4-3). This is possible since the supports of local Floer homology
groups coming from fixed points with other nonzero mean indices are separated from
supp HF�.H \p;xp/� Œp�H .x/�n; p�H .x/Cn�whenever p is sufficiently large.

From now on, we work with primes p > 2 which are as large as is needed above.
Let us order these prime numbers as p1 < p2 < � � � . In what follows, pi always
denotes a prime from this sequence.

Next recall that �H .x/ > 0 and let m 2 N be such that m > n=�H .x/. Then
using the fact that piCm � pi � 2m, we see that the supports of HF.H \pi ; pi /

and HF.H \piCm ; piCm/ are disjoint for all i and for all fixed points  of 'H with
AH . /D 0 and �H . /D�H .x/. This is because

Œpi�H .x/� n; pi�H .x/C n�\ ŒpiCm�H .x/� n; piCm�H .x/C n�D∅;

where the first interval contains supp HF.H \pi ; pi / and the second one contains
supp HF.H \piCm ; piCm/. Moreover for any pi , there exists an integer si such
that HFsi

.H \pi ;xpi / ¤ 0, as is mentioned earlier and proved in [Ginzburg and
Gürel 2010]. Thus we see that

(4-4) HFsi
.H \pi ;xpi /¤ 0 and HFsi

.H \piCm ; piCm/D 0

for all fixed points  as above since si is outside supp HF.H \piCm ; piCm/ for all
such  .

Choose pi so large that pia > 6C3.piCm � pi/, where C3 is introduced in
Lemma 4.3. That one can do so is guaranteed by the equality piC1�pi D o.pi/I

see [Baker et al. 2001]. (Obviously one can write piCm � pi as a telescoping
sum of the differences of two consecutive primes, and hence by a simple inductive
argument, piCm�pi D o.pi/.) Now pick ˛ > 0, depending on m and i , such that

�pia< �˛ < �˛C 2C3.piCm�pi/ < 0< ˛ < ˛C 2C3.piCm�pi/ < pia:

For instance, ˛ satisfying pia� 4C3.piCm � pi/ < ˛ < pia� 2C3.piCm � pi/

would work. As a consequence, we also have

�piCma< �˛CC3.piCm�pi/ < 0< ˛CC3.piCm�pi/ < piCma:

Finally let us specify zQ, and in turn zH . To this end, we choose � > 0 so small
that k'�.piCm�1/

Q
k � 2 and hence (4-1) is satisfied with k D pi and kC l D piCm
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in the second assertion of Lemma 4.3. Set ı WD C3.piCm�pi/. Then for a linear
homotopy, which we may assume to be slow in the sense of Section 3, from zH \pi

to zH \piCm , we have the induced map

HF.�˛; ˛/. zH \pi /! HF.�˛; ˛/Cı. zH \piCm/:

Here the fact that ı is the correct action shift follows from Theorem 3.4 and
Lemma 4.3. Likewise the linear-homotopy map from zH \piCm to zH \pi results in
another action shift in ı. Consider now the following commutative diagram:

HF.�˛; ˛/Cısi
. zH \piCm/D 0

))

0¤ HF.�˛; ˛/si
. zH \pi /

Š //

44

HF.�˛; ˛/C2ı
si

. zH \pi /

Here the top group is zero due to our choice of the degree si . On the other hand,

HF.�˛; ˛/si
. zH \pi /D HFsi

.H \pi ;xpi /˚ � � � ¤ 0;

and the horizontal arrow is induced by the natural quotient-inclusion map; see, for
example, [Ginzburg 2007]. This is indeed an isomorphism by the stability of filtered
Floer homology (see, e.g., [Ginzburg and Gürel 2010]) because 0 is the only action
value in the intervals .�˛; ˛/ and .�˛; ˛/C 2ı. To summarize, a nonzero isomor-
phism factors through a zero group in the diagram. This contradiction completes
the proof of Theorem 4.1, modulo a proof of Lemma 4.2, which is given below. �
Remark 4.4. Notice that we have actually established the existence of a simple
periodic orbit of either H \pi or H \piCm . In particular, starting with a sufficiently
large prime number, among every m consecutive primes, there exists at least one
prime which is the period of a simple periodic orbit of 'H .

Furthermore for an infinite sequence of simple pl -periodic orbits xl of 'H found
this way, where pl!1, we have �H \pl .xl/=pl!�H .x/. Hence in some sense,
the mean index �H .x/ is an accumulation point in the union of normalized index
spectra for H and its all iterations. (Of course, �H .x/ could possibly be isolated,
but then �H \pl .xl/=pl D�H .x/.) A similar fact also holds for the action.

Finally note that the condition that the eigenvalues � of Q are real can be relaxed
and replaced by the requirement that jRe � j> jIm � j; cf. Remark 3.3.

Proof of Lemma 4.2. We construct the function zQ in three steps and then show
that zQ has the required properties.

Step 1. Set c D supV jQj. Let � W R! R be an odd smooth function that equals
the identity in Œ�c; c� and satisfies �0 � �=2 everywhere and

�.x/D �x when jxj � c0 D 2c=�:
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It is easy to see that such a function exists. Note that to have a monotone function
� such that �.x/D x when jxj � c and �.x/D �x when jxj � c0, we must have
c0 > c=�. This is the main reason why the radius R in the statement of the lemma
must be of order 1=

p
�. To start off the construction of zQ, we replace Q by � ıQ.

Step 2. In the second step, we appropriately cut off � ı Q and define a new
Hamiltonian yQ which is a linear transition from � ıQ to �Q in the q-direction.
Namely let r > 0 be the radius of the ball V and set a0D r=

p
� and a1D 2a0. (So

r < a0 < a1.) The modification of � ıQ takes place on the domain a0 � kqk � a1.
To this end, choose a smooth monotone increasing function � W Œ0;1/! R such
that �.x/D 0 when x � a0, �.x/D 1 when x � a1, and j�0j � 2=ja1�a0j D 2=a0.
We then set

yQD �.kqk/�QC
�
1��.kqk/

�
� ıQ:

Step 3. In the third step, we suitably cut off yQ and finally define the desired
Hamiltonian zQ. To this end, let b0 Dmaxfr; 32c=�r

p
� g and b1 D 2b0. Here, as

in Section 3, �Dmin�i > 0, where �i’s are the eigenvalues of A. (The reason for
this choice of b0 will be clear at the end of the proof.) Choose a smooth monotone
increasing function  W Œ0;1/!R such that  .x/D 0 when x � b0 and  .x/D 1

when x � b1. Define

zQD  .kpk/�QC
�
1� .kpk/

�
yQ:

Checking conditions (i)–(iv). Since � ıQ D Q on V by the definition of c, and
a0 � r and b0 � r , we clearly have zQDQ on the ball V . Furthermore zQD �Q
outside the ball of radius RD

p
a2

1
C b2

1
. Let V� be this ball. It is clear from our

choice of a1 and b1 that R has the form C1=
p
�, where C1 is independent of �.

This proves (i) and (ii).
To establish (iii), observe first that

(4-5) sup j�.x/� �xj D supŒ0; c0� j�.x/� �xj � �.c
0/C �c0

D 2�c0 D 4�c=� D 4c:

Thus

supV�
j zQj � supV�

j�QjC supV�
j yQj � 2 supV�

j�QjC supV�
j� ıQj

� 3 supV�
j�QjC supV�

j� ıQ� �Qj

� 3�
C 2

1

�
supB.1/ jQjC 4c D 3C 2

1 supB.1/ jQjC 4c DW C2;

with C2 independent of �. This is where replacing Q by �ıQ in Step 1 is essential.
To verify condition (iv), note that without loss of generality we may assume that

the off-diagonal part of A is so small that



178 BAŞAK Z. GÜREL

£XQ
kpk2 � ��kpk2 and £XQ

kqk2 � ��kqk2:

(Here we dropped the factor of 2 on the right-hand side of the inequalities to
account for the off-diagonal terms.) In particular, every integral curve of Q enters
the polyball P through the “side” part, kpkD const, of the boundary @P and leaves
it through the “top”, kqk D const, of @P .

We will show that

(a) the flow of zQ is equal to the flow of Q on P and on the disk q D 0, kpk � b0,

(b) £X zQ
kqk2 � 0 when kpk � b0, with strict inequality when q ¤ 0,

(c) £X zQ
kpk2 < 0 when kpk � b0.

It is not hard to see that (iv) readily follows from these assertions.
Assertion (a) is obvious since zQDQ in the region where jQj � c and kqk � a0

and kpk � b0, containing V � P and the disk q D 0, kpk � b0. It remains to
check (b) and (c), that is, that the function kqk2 increases along the flow of zQ when
kpk � b0, and the function kpk2 decreases along the flow of zQ when kpk � b0,
unless q D 0.

To prove (b), first note that zQD yQ in the region where kpk � b0. Also recall
that �0 � �=2, and hence

��.kqk/C
�
1��.kqk/

�
.�0 ıQ/� �=2:

Therefore since �.kqk/ is independent of p, we have

£X zQ
kqk2 D £X yQ

kqk2 D ��.kpk/£XQ
kqk2C

�
1��.kpk/

�
.�0 ıQ/£XQ

kqk2

�
��

2
kqk2 � 0:

Let us now establish (c), which is somewhat more involved than (b) due to the
q-dependence of �. Writing  for  .kpk/ and � for �.kqk/ and �0 for �0.kqk/,
we have

£X zQ
kpk2 D � £XQ

kpk2C .1� /£X yQ
kpk2

D � £XQ
kpk2C .1� /

�
��£XQ

kpk2C .1��/.�0 ıQ/£XQ
kpk2

�
C .1� /.�Q� � ıQ/�0£Xkqkkpk

2

D
�
� C .1� /

�
��C .1��/.�0 ıQ/

��
£XQ
kpk2

C .1� /.�Q� � ıQ/�0£Xkqkkpk
2:

To bound from above the first term in this expression, note that the coefficient of
£XQ
kpk2 is positive and satisfies

� C .1� /
�
��C .1��/.�0 ıQ/

�
� � C

�

2
.1� /D

�

2
.1C /�

�

2
:
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Therefore�
� C .1� /

�
��C .1��/.�0 ıQ/

��
£XQ
kpk2 � ��

�

2
kpk2:

Bounding from above the second term, our choices of a0 D r=
p
� and a1 D 2a0

and also the requirement that j�0j � 2=ja1� a0j D 2=a0 enter the picture. Then by
(4-5), we have

2j�Q� � ıQj j�0j kpk � 8c
2

ja1� a0j
kpk D

16c

a0

kpk �
16c
p
�

r
kpk:

Thus in the region where kpk> b0 D 32c=�r
p
�, we have

£X zQ
kpk2 < ��

�

2
kpk2C

16c
p
�

r
kpk< 0;

completing the proof of (c). (Note that b0 is chosen exactly to make (c) hold.) �

Proof of Theorem 1.4. As pointed out in the introduction, we have a more general
result in dimension two:

Theorem 4.5. Let H WS1�R2!R be a Hamiltonian which is equal to a hyperbolic
quadratic form at infinity. Assume that 'H has at least two isolated homologically
nontrivial fixed points and Fix.'H / is finite. Then 'H has simple periodic orbits of
arbitrarily large period.

Remark 4.6. A similar two-dimensional result holds when H is elliptic quadratic at
infinity. (In fact, the requirement that the fixed points be homologically nontrivial is
not needed in this case.) Indeed since the Hamiltonian is elliptic outside a compact
set, a sufficiently large sublevel will be invariant under the flow. Then Franks’s
theorem [1992] stating that an area-preserving map of the two-disk has either one
or infinitely many periodic points implies the result.

Remark 4.7. Using Theorem 4.5, we can also prove a weaker version of Franks’s
theorem on S2, asserting that a Hamiltonian diffeomorphism of S2 with a hyperbolic
fixed point must necessarily have infinitely many periodic orbits. However the
argument is somewhat involved, and we omit it since this result also follows from
the main theorem of [Ginzburg and Gürel 2014], and as has been mentioned in the
introduction, at least two other symplectic proofs of Franks’s theorem are available;
see [Bramham and Hofer 2012; Collier et al. 2012; Kerman 2012].

Proof of Theorem 4.5. Observe that if 'H has a homologically nontrivial fixed
point with nonzero mean index, then the theorem follows from Theorem 4.1. So
let us assume that there are at least two isolated homologically nontrivial fixed
points with zero mean index. Notice that all of these points cannot have nonzero
local Floer homology concentrated in degree zero: HF�.H /D 0 when � ¤ 0 and
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HF0.H /D Z2. Thus 'H must have at least one fixed point with zero mean index
and nonzero local Floer homology in degree ˙1. Such an orbit is a symplectically
degenerate maximum, and its presence implies that 'H has simple periodic orbits
of arbitrarily large prime period; see [Ginzburg and Gürel 2009a; 2010] and also
[Ginzburg 2010; Hein 2012; Hingston 2009]. (Strictly speaking, the latter fact has
been established only for (a broad class of) closed symplectic manifolds. However
since the Hamiltonian in our case is a compactly supported perturbation of a
hyperbolic quadratic form on R2n, having periodic orbits only within the support
of the perturbation, the proof in the case of closed manifolds, for instance, the one
in [Ginzburg and Gürel 2009a], goes through word for word.) �
Proof of Theorem 1.4 in dimension four. Recall that the homology is concentrated
in degree zero and HF0.H /D Z2. Hence one of the fixed points of 'H must have
nonzero Conley–Zehnder index. By a straightforward index analysis, it is easy to
see that in dimension four such an orbit must necessarily have nonzero mean index.
(Indeed observe that in dimension four the mean index of a nondegenerate fixed
point is zero if and only if the linearization is hyperbolic or its eigenvalues comprise
two pairs “conjugate” to each other. It is clear that in both cases the Conley–Zehnder
index is zero.) Finally applying Theorem 4.1, we obtain the existence of simple
periodic orbits with arbitrarily large prime period. �
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