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NONSPLITTABILITY OF THE RATIONAL HOMOLOGY
COBORDISM GROUP OF 3-MANIFOLDS

SE-GOO KIM AND CHARLES LIVINGSTON

Let ZŒ1=p� denote the ring of integers with the prime p inverted. There is a
canonical homomorphism ‰ W

L
‚3

ZŒ1=p�
! ‚3

Q
, where ‚3

R
denotes the

three-dimensional smooth R-homology cobordism group of R-homology
spheres and the direct sum is over all prime integers. Gauge-theoretic meth-
ods prove the kernel is infinitely generated. Here we prove that ‰ is not
surjective, with cokernel infinitely generated. As a basic example we show
that for p and q distinct primes, there is no rational homology cobordism
from the lens space L.pq; 1/ to any Mp #Mq , where H1.Mp/ D Zp and
H1.Mq/DZq . More subtle examples include cases in which a cobordism to
such a connected sum exists topologically but not smoothly. (Conjecturally
such a splitting always exists topologically.) Further examples can be chosen
to represent 2-torsion in ‚3

Q
. Let K denote the kernel of ‚3

Q
! b‚3

Q
, whereb‚3

Q
denotes the topological homology cobordism group. Freedman proved

that‚3
Z
�K. A corollary of results here is that K=‚3

Z
is infinitely generated.

We also demonstrate the failure in dimension three of splitting theorems
that apply to higher-dimensional knot concordance groups.

1. Introduction

Furuta [1990] applied instanton gauge theory to reveal unexpectedly deep structure
in the homology cobordism group of smooth homology 3-spheres,‚3

Z. Here we will
use the added algebraic structures associated to Heegaard–Floer theory to identify
further complications in the rational cobordism group, ‚3

Q
.

As a simple example, an application of the rational homology cobordism classi-
fication of lens spaces [Lisca 2007] implies that for p and q relatively prime,
the lens space L.pq; 1/ is not Q-homology cobordant to any connected sum
L.p; a/ # L.q; b/. A simple consequence of the work here is that L.pq; 1/ is
not Q-homology cobordant to any connected sum Mp #Mq where H1.Mp/D Zp

This work was supported in part by the National Science Foundation under Grant 1007196 and by
the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST)
NRF-2011-0012893.
MSC2010: primary 57M27; secondary 57M25.
Keywords: three-manifold, connected sum, homology cobordism, knot concordance.

183

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2014.271-1
http://dx.doi.org/10.2140/pjm.2014.271.183


184 SE-GOO KIM AND CHARLES LIVINGSTON

and H1.Mq/ D Zq . We let ‚3
R denote the R-homology cobordism group of

three-dimensional R-homology spheres. Note that ‚3
ZŒ1=p�

is generated by three-
manifolds M with H1.M/ p-torsion. There is a canonical map

ˆ W
M
p2P

‚3
ZŒ1=p�!‚3

Q:

Rochlin’s theorem and Furuta’s result imply that the kernel of ˆ is infinitely
generated. To simplify notation, we abbreviate the summation by

L
‚p; our main

result is the following:

Proposition. The cokernel of ˆ, ‚3
Q
=ˆ.

L
‚p/, contains a free subgroup of in-

finite rank generated by lens spaces of the form L.pq; 1/. It also contains an
infinite subgroup generated by elements of order two: lens spaces of the form
L.4n2 C 1; 2n/. An infinite subgroup is also generated by three-manifolds that
bound Q-homology balls topologically.

We also present applications to the study of knot concordance and present
families of elements in the kernel‚3

Q
=‚3

Z!
y‚3

Q
, where y‚3

Q
denotes the topological

cobordism group. Similar examples were presented in [Hedden et al. 2012], with
the additional condition that bordisms were assumed to be spin.

An important perspective is provided by considering the torsion linking form of
three-manifolds, which yields a homomorphism ‚3

Q
!W.Q=Z/, the Witt group

of nondegenerate symmetric Q=Z-valued bilinear forms on finite abelian groups.
According to [Kawauchi and Kojima 1980] this homomorphism is surjective. Again
by Rochlin’s theorem and Furuta’s result, it has infinitely generated kernel (in
the topological category it is conjecturally an isomorphism). There is a canon-
ical isomorphism

L
p2PW.Fp/! W.Q=Z/, where W.Fp/ is the Witt group of

nondegenerate symmetry bilinear forms on Fp-vector spaces and P is the set of
prime integers. The conjecture that topological cobordism is determined by the
linking form implies that y‚3

Q
has a corresponding primary decomposition. One

thrust of our work here is to display the extent of the failure of the existence of
such a primary decomposition in the smooth setting.

The commutative diagram in Figure 1 organizes the groups of interest.
The proposition above states that‚3

Q
=Image.ˆ/ is infinitely generated containing

an infinite free subgroup and infinite two-torsion and that, furthermore, the image
of K in ‚3

Q
=Image.ˆ/ similarly contains an infinite subgroup.

Definition. A three-manifold M is said to split if it represents a class in the image
of ˆ. That is, a manifold does not split if it is nontrivial in the cokernel of ˆ.

Outline. In Sections 2, 3, and 4 we present some of the basic definitions used
throughout the paper, isolate a basic result concerning metabolizers of nondegenerate
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L
‚p

L
y‚p

L
p2P

W.Fp/

K ‚3
Q

y‚3
Q

W.Q=Z/

-

?
ˆ

-

?
ŷ

?
Š

- - -

Figure 1. Groups of interest. Hats denote the topological category
and K denotes the kernel of the canonical homomorphism from
the smooth to the topological Q-homology cobordism group. With
the exception of the inclusion of the kernel, all horizontal arrows
are surjective. Conjecturally the right square consists of isomor-
phisms.

symmetric bilinear forms, and discuss Spinc structures. Section 5 presents one of
our main results, describing an obstruction based on Heegaard–Floer d -invariants
to a class in ‚3

Q
being in the image ˆ.

L
‚p/. Following this we provide a series

of examples:

� Section 6 demonstrates that lens spaces L.pq; 1/ with p and q square-free
and relatively prime do not split, and extends this to finite connected sums of
such lens spaces, with all p and q distinct, thus proving that ‚3

Q
=ˆ.

L
‚p/

is infinite. Section 7 further extends this, demonstrating that the set of lens
spaces of the form L.pq; 1/ (with p and q now required to be prime) generate
an infinite free subgroup of infinite rank contained in ‚3

Q
=ˆ.

L
‚p/.

� Section 8 considers specific lens spaces of the form L.4n2C 1; 2n/ to pro-
vide elements of order 2 in ‚3

Q
that do not split, in particular showing that

‚3
Q
=ˆ.

L
‚p/ contains 2-torsion. Section 9 expands on this, providing an

infinite family of independent elements of order 2.

� Section 10 begins the examination of the failure of splittings among manifolds
that do split topologically; that is, we consider manifolds representing classes
in K. The main example is built from surgery on the connected sum of
the torus knot T3;5 and the untwisted Whitehead double of the trefoil knot,
Wh.T2;3/ D D. We show that S3

15.T3;5 # D/ splits topologically but not
smoothly. Section 11 generalizes that example to an infinite family, using
.p; pC 2/ torus knots, with p odd.

� Section 12 applies the results of Section 6 to demonstrate the failure of a
splitting theorem for knot concordance which, by a result of Stoltzfus [1977],
applies algebraically and in dimensions greater than 3.

� According to [Freedman 1982; Freedman and Quinn 1990], all homology
spheres bound contractible 4-manifolds topologically, so‚3

Z�K. In Section 13
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we outline the proof that the quotient K=‚3
Z contains an infinitely generated free

subgroup. This was proved in [Hedden et al. 2012] with the added constraint
that one restricts the cobordism groups by considering only manifolds that are
Z2-homology spheres or by requiring that all spaces have spin structures. We
briefly indicate how results here permit one to remove those restrictions in the
argument in the same reference.

2. Definitions

We will consider Q-homology 3-spheres: these are closed 3-manifolds M 3 with
Hn.M

3;Q/ŠHn.S
3;Q/ for all n. For each such M there is a symmetric linking

form ˇ WH1.M/�H1.M/! Q=Z which is nondegenerate in the sense that the
induced map ˇ� WH1.M/!Hom.H1.M/;Q=Z/ is an isomorphism. IfM D @X4,
where X is a compact 4-manifold and Hn.X;Q/DHn.B

4;Q/ for all n, then the
kernel M of the map H1.M/!H1.X/ is a metabolizer for ˇ (see [Casson and
Gordon 1986]). That is, M? D M, and in particular jMj2 D jH1.M/j. The Witt
group W.Q=Z/ is built from the set of all pairs .G; ˇ/ where G is a finite abelian
group and ˇ is a nondegenerate symmetric bilinear form taking values in Q=Z.
There is an equivalence relation on this set: .G; ˇ/� .G0; ˇ0/ if .G˚G0; ˇ˚�ˇ0/
has a metabolizer, and under this relation it becomes an abelian group under direct
sum, denoted W.Q=Z/. It can be proved (for instance, see [Alexander et al. 1976])
that a pair .G; ˇ/ is Witt trivial if and only if it has a metabolizer. The proof of this
fact includes the following, which we will be using.

Proposition 1. If .G1; ˇ1/˚ .G2; ˇ2/ has metabolizer M and .G2; ˇ2/ has metab-
olizer M2, then M1 D fg 2G1 j .g; h/ 2M for some h 2M2g is a metabolizer for
.G1; ˇ1/.

The Witt groups W.Q=Z; hpi/ are defined as is W.Q=Z/, considering only
p-torsion abelian groups, and the decomposition W.Q=Z/Š

L
p2PW.Q=Z; hpi/

is easily proved. The Witt group of nondegenerate symmetric forms on Fp-vector
spaces is denoted W.Fp/. The inclusion W.Fp/ ! W.Q=Z; hpi/ is an isomor-
phism. In the proof of this, the inclusion is clearly injective, and an inverse map
W.Q=Z; hpi/!W.Fp/ is explicitly constructed via “devissage” [Alexander et al.
1976; Milnor and Husemoller 1973].

Let R be a commutative ring. Two closed 3-manifolds, M1 and M2, are called
R-homology cobordant if there is a compact smooth 4-manifold X with boundary
the disjoint union M1[�M2 such that the inclusions H�.Mi ; R/!H�.X;R/ are
isomorphisms. Equivalently they areR-cobordant, writtenM1�RM2, ifM1#�M2

bounds an R-homology 4-ball. The set of R-cobordism classes of R-homology
spheres forms an abelian group with operation induced by connected sum. This
group is denoted ‚3

R.



NONSPLITTABILITY OF THE RATIONAL HOMOLOGY COBORDISM GROUP 187

The ring ZŒ1=p� is the ring of integers with p inverted, consisting of all ra-
tional numbers with denominator a power of p. A closed 3-manifold M is a
ZŒ1=p�-homology sphere if and only if H1.M/ is p-torsion. The linking form
provides well-defined homomorphisms ‚3

Q
!W.Q=Z/ and ‚3

ZŒ1=p�
!W.Fp/ for

which the following diagram commutes. As in the introduction, we abbreviate
‚3

ZŒ1=p�
by ‚p. L

‚p

L
p2P

W.Fp/

‚3
Q W.Q=Z/

-

?
ˆ

?
Š

-

If we switch to the topological category, all these maps are conjecturally isomor-
phisms.

3. Metabolizers for connected sums

3.1. Metabolizers. If a connected sum of 3-manifolds bounds a rational homology
ball, the associated metabolizer of the linking form does not necessarily split relative
to the connected sum. As a simple example, for the connected sum of lens spaces
L.p; 1/ #�L.p; 1/ with p prime, the only metabolizers for the linking form on
Zp ˚ Zp are the diagonal and skew diagonal subgroups, generated by .1;˙1/.
However the existence of the connected sum decomposition does place constraints
on the metabolizer.

Theorem 2. If p is prime, G is a finite abelian group, and a given nondegenerate
symmetric bilinear form ˇ1 ˚ ˇ2 on Zp ˚G has metabolizer M, then for some
a 2G, .1; a/ 2M.

Proof. Let Gp denote the p-torsion in G. There is a metabolizer Mp for the form
restricted to Zp˚Gp. If Mp �Gp, then it would represent a metabolizer for the
linking form restricted to Gp , implying that the order of Gp is an even power of p.
But since the form on Zp˚Gp is metabolic, the order of Gp must be an odd power
of p. It follows that there is an element .a0; a00/ 2Mp with a0 ¤ 0. Multiplying by
.a0/�1 mod p, we see that .1; a/ 2Mp �M for some a 2Gp. �

In the following corollary, for each integer k, Gk denotes a finite abelian group
of order dividing a power of k.

Corollary 3. If m is a square-free integer, Gm˚Gn is a finite abelian group with
gcd.m; n/D 1 and a given nondegenerate symmetric bilinear form ˇ1˚ˇ2˚ˇ3

on Zm˚Gm˚Gn has metabolizer M, then for some a 2Gm, .1; a; 0/ 2M.

Proof. Write ZmDZp1
˚� � �˚Zpk

with each pi prime. (Sincem is square-free, there
are no prime powers in the factorization ofm and all pi are distinct.) By Theorem 2,
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the projection of M to each Zpi
summand is surjective. Since the pi are relatively

prime, the projection to Zm is similarly surjective. �

In order to construct elements of infinite order, we will need to consider multiples
of linking forms. Without loss of generality, we will be able to assume that the
multiplicative factors are divisible by four.

Theorem 4. Suppose that p is prime and a nondegenerate symmetric bilinear form
4k.ˇ1˚ ˇ2/ on .Zp ˚G/

4k has a metabolizer M. Then M contains an element
of the form .1; 1; : : : ; 1; ˛2kC1; : : : ; ˛4k/˚ b for some set of ˛i 2 Zp and some
b 2G4k .

Proof. The Witt group W.Q=Z/ is 4-torsion [Milnor and Husemoller 1973],
and thus 4kˇ2 has a metabolizer M0. By Proposition 1, the set of elements x
such that .x; y/ 2 M for some y 2 M0 is a metabolizer, denoted N, for 4kˇ1,
and thus is 2k-dimensional. As argued in [Livingston and Naik 1999], a sim-
ple application of the Gauss–Jordan algorithm applied to a generating set for N

yields a generating set consisting of vectors of the form .1; 0; 0; 0; : : : ; 0;�;�; : : :/,
.0; 1; 0; 0; : : : ; 0;�;�; : : :/, .0; 0; 1; 0; : : : ; 0;�;�; : : :/, : : :, where each initial se-
quence of a 1 and 0s is of length 2k.

By adding these vectors together, we find that the metabolizer N contains an ele-
ment of the form .1; 1; : : : ; 1; ˛2kC1; : : : ; ˛4k/ 2 Z4k

p . Finally, since each element
in N pairs with an element in the metabolizer M0 to give an element in M, we get
the desired element b. �

4. Spinc structures

We need the following facts about Spinc.Y /, the set of Spinc structures on mani-
folds.

� The first Chern class is a map c1 W Spinc.Y /!H 2.Y /.

� There is a transitive actionH 2.Y /�Spinc.Y /!Spinc.Y / denoted .˛; s/!˛ � s.

� For Y �W a codimension-one submanifold with trivial normal bundle, such
as a boundary component of W , the restriction map r is functorial: If s 2
Spinc.W /, ˛ 2H 2.W /, then

r.˛ � s/D r.˛/ � r.s/:

� For all ˛ 2H 2.Y / and s 2 Spinc.Y /, c1.˛ � s/� c1.s/D 2˛.

� As a corollary, if jH 2.Y /j is finite and odd, then c1 W Spinc.Y /!H 2.Y / is a
bijection.

� There is a canonical bijection Spinc.Y1 #Y2/! Spinc.Y1/�Spinc.Y2/.
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For every smooth 4-manifold W , the set Spinc.W / is nonempty. (See [Gompf
and Stipsicz 1999] for a proof.) As a consequence, we have the following.

Theorem 5. LetN D@X and let s2Spinc.N / be the restriction of a Spinc structure
on X . Then the Spinc structures on N which extend to X are those of the form ˛ � s

for ˛ in the image of the restriction map r WH 2.X/!H 2.N /.

4.1. Identifying H1.N/ and H 2.N/. Let N be a rational homology 3-sphere
bounding a rational homology ballX . Then, by Poincaré duality,H1.N /ŠH

2.N /.
We have denoted the kernel of H1.N /!H1.X/ by M. Via duality, it corresponds
to the image of H 2.X/ in H 2.N /. Thus we will use M to denote this subgroup
of H 2.N /.

4.2. Spin structures. If the order jH1.M/j is odd, then there is a unique spin
structure on M that lifts to a canonical Spinc structure that we will denote s0. With
this, there is a natural identification of H 2.M/ with Spinc.M/. However we face
the complication that in assuming that M bounds a rational homology 4-ball X , we
cannot assume that X has a spin structure. The following result permits us to adapt
to this possibility. (In addition to playing a role in considering splittings of classes
in ‚3

Q
, in Section 13 we will use this result to extend a theorem from [Hedden et al.

2012] in which an added hypothesis was needed to ensure the existence of a spin
structure on X .)

Theorem 6. Suppose thatN1 #N2D @X for some smooth rational homology 4-ball
X and that the order of H1.N1/ is odd. Then the image of the restriction map
Spinc.X/! Spinc.N1/ contains the spin structure s0 2 Spinc.N1/. In particu-
lar, every element in the image of this restriction map is of the form ˛ � s0 for
˛ 2 Image.H 2.X/!H 2.N1//.

Proof. Let H D Image.H 2.X/!H 2.N1//, S D Image.Spinc.X/! Spinc.N1//.
As usual, the choice of an element s 2 S determines a bijection between H and S .
In particular, the number of elements in S is the same as in H , which is odd.
Conjugation defines an involution on S which commutes with restriction. Thus
since S is odd, conjugation has a fixed point in S . But the only fixed element under
conjugation is the spin structure, since c1.Ns/D�c1.s/. �

5. Basic obstructions from d-invariants

To each rational homology 3-sphere M and s 2 Spinc.M/ there is associated an
invariant d.M; s/ 2Q, defined in [Ozsváth and Szabó 2003]. It is additive under
connected sum: d.M #N; .s1; s2//D d.M ; s1/C d.N; s2/. A key result relating
the d -invariant and bordism is the following, taken from the same reference.

Theorem 7. If M D @X with H�.X;Q/ Š H�.B4;Q/, and t 2 Spinc.X/, then
d.M; tjM /D 0.
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5.1. Obstruction theorem. Suppose that jH1.M/j is odd and s0 is the unique spin
structure on M . For ˛ 2H 2.M/, we abbreviate d.M; ˛ � s0/ by d.M; ˛/.

Definition 8. Nd.M; ˛/D d.M; ˛/� d.M; 0/.

The following result will be sufficient to prove that ‚3
Q
=ˆ.

L
‚p/ is infinite.

Theorem 9. Suppose fMig is a set of 3-manifolds for whichH1.Mi /DZmi
˚Zni

,
where the mi and ni are square-free and odd, and the elements of the full set
fmi ; nig are pairwise relatively prime. If a finite connected sum #N

kD1˙Mik

represents a class in‚3
Q

that is in the imageˆ.
L
‚p/, then for all iD ik; 1�k�N ,

and for all .a; b/ 2 Zmi
˚Zni

,

Nd.Mi ; .a; b//D Nd.Mi ; .a; 0//C Nd.Mi ; .0; b//:

Proof. Let Y D #k˙Mik
. We consider k D 1, abbreviating Mi1

D M and
H1.M/Š Zm˚Zn. Suppose that Y is in the image of ˆ. Then Y #

L
Ypi
D @X

for some collection of ZŒp�1
i �-homology spheres Ypi

and a rational homology
ball X . Collecting summands, we can write M #Nm #Nn #N D @X , where the
prime factors of jH1.Nm/j all divide m, the prime factors of jH1.Nn/j all divide n,
and jH1.N /j is relatively prime tomn. Let .s0; s1; s2; s�/2 Image.Spinc.X//. (By
Theorem 6 we can assume that the structure s0 2 Spinc.M/ is the spin structure.)
Then, by Corollary 3, for all a 2 Zm and b 2 Zn, there are elements a0 2H1.Nm/

and b0 2H1.Nn/ such that:

� ..a; 0/ � s0; a
0 � s1; s2; s�/ 2 Image.Spinc.X//.

� ..0; b/ � s0; s1; b
0 � s2; s�/ 2 Image.Spinc.X//.

� ..a; b/ � s0; a
0 � s1; b

0 � s2; s�/ 2 Image.Spinc.X//.

Thus we have the following vanishing conditions on the d -invariants:

� d.M; s0/C d.Nm; s1/C d.Nn; s2/C d.N; s�/D 0.

� d.M; .a; 0/ � s0/C d.Nm; a
0 � s1/C d.Nn; s2/C d.N; s�/D 0.

� d.M; .0; b/ � s0/C d.Nm; s1/C d.Nn; b
0 � s2/C d.N; s�/D 0.

� d.M; .a; b/ � s0/C d.Nm; a
0 � s1/C d.Nn; b

0 � s2/C d.N; s�/D 0.

Subtracting the second and third equality from the sum of the first and fourth
yields

d.M; .a; b/ � s0/� d.M; .a; 0/ � s0/� d.M; .0; b/ � s0/C d.M; s0/D 0:

Recalling that Nd.M; ˛/ denotes d.M; ˛ � s0/� d.M; s0/, this can be rewritten as

Nd.M; .a; b//� Nd.M; .a; 0//� Nd.M; .0; b//D 0:

Repeating for each Mi completes the proof of the theorem. �
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6. Lens space examples: L.pq; 1/.

Let .pi ; qi / be pairs of relatively prime square-free odd integers such the products
piqi are pairwise relatively prime. We prove:

Theorem 10. No finite linear combination #k˙L.pik
qik
; 1/ represents an ele-

ment in the image ˆ.
L
‚p/�‚

3
Q

.

Proof. To simplify notation, we use Ln to denote L.n; 1/. Assume there is such a
finite linear combination. We consider the first term Lp1q1

and simplify notation by
writing pD p1 and qD q1. By Theorem 9 we would have for all .a; b/ 2 Zp˚Zq ,

Nd.Lpq; .a; b//D Nd.Lpq; .a; 0//C Nd.Lpq; .0; b//:

According to [Ozsváth and Szabó 2003], for some enumeration of Spinc structures
on L.m; n/, denoted si , 0� i < m, if we let D.m; n; i/D d.�L.m; n/; si /, there
is the recursive formula

D.m; n; i/D
mn� .2i C 1�m�n/2

4mn
�D.n;m0; i 0/;

where the primes denote reductions modulo n, 0 < n<m, and 0� i <m. The base
case in the recursion is by definition D.1; 0; 0/D 0. For every Spinc structure s

there is a conjugate structure Ns for which d.M; s/D d.M; Ns/ and s¤ Ns unless s is
the spin structure. We claim that for Lpq , the Spinc structure s0 does correspond to
the spin structure. Indeed, an algebraic computation shows that 4pqD.pq; 1; i/D
�4i2C 4pqi Cpq.1�pq/, and in particular, pqD.pq; 1; 0/D pq.1�pq/. The
difference,

4pqD.pq; 1; i/� 4pqD.pq; 1; 0/D 4i.pq� i/;

does not take on the value 0 for any 0 < i < pq. Since the value of D.pq; 1; 0/
is unique among the d -invariants, it must correspond to the spin structure. In
applying Theorem 9, we identify Zp˚Zq Š Zpq , so that the pair .a; b/ 2 Zp˚Zq

corresponds to aqC bp 2 Zpq . In this case, the criterion becomes

D.pq; 1; apC bq/�D.pq; 1; ap/�D.pq; 1; bq/CD.pq; 1; 0/D 0:

Certainly pCq <pq, so we can apply the formula forD with aD bD 1. However,
in this case, the sum is immediately calculated to equal �2, which is not 0. �

7. Infinite order examples

The examples of the previous section are sufficient to demonstrate that the quotient
‚3

Q
=ˆ.

L
‚p/ is infinite. We now present an argument to show it contains an

infinitely generated free subgroup. To carry out this argument we need to make
the additional assumption of primeness for the relevant p and q. Let fpi ; qig be a
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set of distinct odd prime pairs with all elements distinct. We continue to denote
L.n; 1/ by Ln. This section is devoted to the proof of the following theorem.

Theorem 11. The lens spaces Lpi qi
are linearly independent in the quotient group

‚3
Q
=ˆ.

L
‚p/.

7.1. Notation. Suppose that
P

i biLpi qi
� Image .ˆ/. We can assume that b1¤ 0.

We simplify notation, writing p and q for p1 and q1, respectively. There is no loss
of generality in assuming that for all i , bi D 4ki for some ki , and write k D k1.

Following our earlier approach, we will show that a contradiction arises from the
assumption thatN D4kLpq#Mp#Mq#M�D@X for some rational homology 4-ball
X , where the orders of H1.Mp/ and H1.Mq/ are powers of p and q, respectively,
and the order of H1.M�/ is relatively prime to pq.

According to Theorem 4, the p-primary part of the associated metabolizer, Mp ,
includes a vector AD ..1; : : : ; 1; ˛2kC1; : : : ; ˛4k/; g/ 2 .Zp/

4k ˚H1.Mp/. Sim-
ilarly the q-primary part of the associated metabolizer, Mq , includes a vector
B D ..1; : : : ; 1; ˇ2kC1; : : : ; ˇ4k/; h/ 2 .Zq/

4k˚H1.Mq/.

7.2. Constraints on the d-invariants. We let the spin structures on L.pq; 1/, Mp ,
and Mq be s0; s

0
0 and s000, respectively. Consider now the vectors 0, aA, bB , and

aAC bB 2M. Computing the d -invariant associated to each, we find that each of
the following sums is 0:

2kd.Lpq; s0/C
4kP

iD2kC1

d.Lpq; s0/C d.Mp; s
0
0/C d.Mq; s

00
0/C d.M�; t/;

2kd.Lpq; aq�s0/C
4kP

iD2kC1

d.Lpq;aq˛i �s0/Cd.Mp;ag�s
0
0/Cd.Mq;s

00
0/Cd.M�; t/;

2kd.Lpq; bp�s0/C
4kP

iD2kC1

d.Lpq; bpˇi �s0/Cd.Mp; s
0
0/Cd.Mq; bh�s

00
0/Cd.M�; t/;

2kd.Lpq; .aqC bp/ � s0/C
4kP

iD2kC1

d.Lpq; .aq˛i C bpˇi / � s0/C d.Mp; ag � s
0
0/

C d.Mq; bh � s
00
0/C d.M�; t/:

Note. We have again used that the inclusion Zp � Zpq takes ˛ to ˛q, and similarly
for Zq and ˇ. We now take the sum of the first and last equation, and subtract the
sum of the middle two. As before, we continue abbreviating d.M; a�s0/ by d.M; a/.
The result is that, for some set of ai and bi ,

2k
�
d.Lpq; aqC bp/� d.Lpq; aq/� d.Lpq; bp/C d.Lpq; 0/

�
C

4kX
iD2kC1

�
d.Lpq; aiqC bip/� d.Lpq; aiq/� d.Lpq; bip/C d.Lpq; 0/

�
D 0:



NONSPLITTABILITY OF THE RATIONAL HOMOLOGY COBORDISM GROUP 193

We now introduce further notation. Let

ı.Lpq; a; b/D d.Lpq; aqC bp/� d.Lpq; aq/� d.Lpq; bp/C d.Lpq; 0/:

With this, we have proved the following lemma.

Lemma 12. If the lens spaces Lpi qi
are linearly dependent in‚3

Q
=ˆ.

L
‚3

p/, and,
for p D p1 and q D q1, Lpq has nonzero coefficient in some linear relation, then
for all a and b there are k, ai and bi such that

2kı.Lpq; a; b/C

4kX
iD2kC1

ı.Lpq; ai ; bi /D 0:

7.3. Computation of bounds on ı.Lpq; a; b/. Note that ı.Lpq; a; b/D 0 if aD 0
or bD0. Given Lemma 12, the proof of Theorem 11 is completed with the following
result.

Lemma 13. For all a¤ 0 mod p and b ¤ 0 mod q, ı.Lpq; a; b/ < 0.

Proof. All Spinc structures are included by considering the range

�.p� 1/=2� a � .p� 1/=2 and � .q� 1/=2� b � .q� 1/=2:

By symmetry we can exclude the case a < 0. Since the formula for the d -invariant
d.Lpq; i/ assumes i � 0, there are three cases to consider.

(1) a > 0; b > 0.

(2) a > 0; �aq=p < b < 0.

(3) a > 0; b < �aq=p.

The formula for the d -invariant in the current case is

4n.d.Ln; i//D n� .2i C 1�n� 1/
2
D n�n2

C 4ni � 4i2

for 0 � i < n. We now compute 4pqı.Lpq; aqC bp/ in each of the three cases.
First note that

ı.Lpq; aqC bp/D d.Lpq; aqC bp/� d.Lpq; aq/� d.Lpq; bp/C d.Lpq; 0/:

Applying the formula for the d -invariant, taking care that i is positive in the
calculation of d.Ln; i/ we find in the first case, ı D �8abpq, which is negative.
In the second case we compute ı D�8b.a�p/pq, which is again negative (since
b < 0 and a < .p� 1/=2). In the third case, ı D�8apq.bC q/, which is negative
since b > �.q� 1/=2. This completes the proof. �
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a b D 0 1 2 3 4 5 6

2 –52 –112 –32 –72 28 8 –2
1 52 –8 –58 32 –128 18 –28
0 0 70 20 –20 80 –70 –80

–1 52 –8 72 32 2 112 –28
–2 –52 18 –32 58 28 8 128

Table 1. 65 d.L.65; 8/; 13aC 5b/.

a b D0 1 2 3 4 5 6

2 0 –2 0 0 0 2 2
1 0 –2 –2 0 –4 0 0
0 0 0 0 0 0 0 0

–1 0 –2 0 0 –2 2 0
–2 0 0 0 2 0 2 4

Table 2. d.L.65; 8/; 13aC 5b/� d.L.65; 8/; 13a/� d.L.65; 8/; 5b/.

8. An order-2 lens space that does not split

We now consider a lens space that represents 2-torsion in ‚3
Q

. Let M D L.65; 8/;
since 82 D�1 mod 65, we have M D�M and 2M D 0 2‚3

Q
. We show that M

does not split. It follows quickly from the fact that L.65; 8/ is of finite order in ‚3
Q

that, for the spin structure s�, d.L.65; 8/; s�/D 0. One can compute directly from
the formula for D given above that the value 0 is realized only by s36. Thus, in
applying Theorem 9, we identify the homology class x 2H1.L.65; 8// with the
Spinc structure s36Cx , where the index is taken modulo 65. Table 1 presents the
values of d.L.65; 8/; 13aC 5b/ (multiplied by 65 to clear denominators). Rows
correspond to the values of a and columns to b. The central row and left column
correspond to a D 0 and b D 0, respectively. Symmetry permits us to list only
the values with b � 0. In Table 2 we list the differences, d.L.65; 8/; 13aC 5b/�
d.L.65; 8/; 13a/ � d.L.65; 8/; 5b/, with the nonzero entries demonstrating the
failure of additivity.

9. Infinite 2-torsion

We now generalize the previous example to describe an infinite subgroup of ‚3
Q

consisting of 2-torsion that injects into the quotient ‚3
Q
=ˆ.

L
‚p/. Consider the

family Nn D L.4.5nC 1/
2 C 1; 2.5nC 1//; for n D �1 we have �L.65; 8/ as

in the previous section, but we simplify the computations by restricting to n > 0.
Expanding, we have Nn DL.5.20n

2C8nC1/; 2.5nC1//. If n¤ 3 mod 5, then
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20n2C8nC1 is not divisible by 5. By Appendix A we can further assume that the
number n are selected so that n is divisible by 5, and the integers 20n2C 8nC 1

are pairwise relatively prime and square-free. We enumerate the set of such n as ni

and abbreviate the corresponding lens spaces as L.5pi ; qi /DNni
. The remainder

of this section is devoted to proving the following.

Theorem 14. The set fNni
g generates an infinite subgroup consisting of elements

of order 2 in ‚3
Q
=ˆ.

L
‚p/.

To begin, we need to identify the spin structure. We use the recursion formula

D.m; n; i/D
mn� .2i C 1�m�n/2

4mn
�D.n;m0; i 0/

to compute relevant d -invariants. We are interested in the lens spacesL.4r2C1; 2r/.
One step of the recursion reduces this to L.2r; 1/, and another step reduces it to S3.
Since we need to reduce modulo 2r , for 0� i < 4r2C 1, let y be the remainder of
i modulo 2r and x the quotient so that 2rxCy D i . So we write Spinc structures
as s2rxCy for 0� y < 2r and 0� 2rxCy < 4r2C 1. Carrying out the arithmetic
yields:

Lemma 15. For any r > 0, x and y with 0� y < 2r and 0� 2rxCy < 4r2C 1:

(1) d.L.4r2C1; 2r/; s2rxCy/D
2
�
rx2C.y�r.2rC1//x�r.y2�.2r�1/y�r/

�
4r2C1

.

(2) The discriminant of the numerator, viewed as a quadratic polynomial in the
variable x, is 4.y � r/2.4r2C 1/. Moreover it is the square of an integer if
and only if y D r .

(3) d.L.4r2C 1; 2r/; s2rxCy/D 0 if and only if x D r and y D r .

(4) The spin structure on L.4r2C 1; 2r/ is s2r2Cr .

In our case r D 5nC 1 and the spin structure is s50n2C25nC3.

Proof of Theorem 14. For each n, we write NnDL.5pn; qn/ and assume that some
linear combination

P
Nni
D 0 2‚3

Q
=ˆ.

L
p2P‚

3
ZŒ1=p�

/. We write the first term
in the sum as N D L.5p; q/, where p D 20n2C 8nC 1. Since the sum splits, for
some collection of primes rj and manifolds Mrj

with H1.Mrj
/ rj -torsion, we have

N # #
i>1
Nni

# #
j
Mrj
D @X;

where X is a rational homology ball. We can collect terms as N #Mp #Mm D @X

where Mp includes all the Mrj
for which rj divides p, and Mm contains all the

other summands, including all the Nni
with i > 1.

The homology of this connected sum of three-manifolds splits into the direct sum
of three groups: .Z5˚Zp/˚Gp˚Gm, where the order of Gp is a product of prime
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factors of p, 5 does not divide the order of Gp, and the orders of Gp and Gm are
relatively prime. It follows that the 5-torsion in the metabolizer, M5, is contained
in .Z5; 0/˚ 0˚Gm. The direct sum of all primary parts of the metabolizer for
primes that divide p, Mp, is contained in Mp D .0;Zp/˚Gp˚ 0.

As in our previous arguments, M5 contains an element of the form .1; 0/˚0˚a00,
and Mp contains an element .0; 1/˚ b00˚ 0. Continuing as in the early proofs, we
find that for all a and b,

Nd.L.5p; q/; .a; b//D Nd.L.5p; q/; .a; 0//C Nd.L.5p; q/; .0; b//:

Or, writing Z5˚Zp as Z5p,

Nd.L.5p; q/; paC 5b/D Nd.L.5p; q/; pa/C Nd.L.5p; q/; 5b/:

Since L.5p; q/ is of order two, for the spin structure, the d -invariant vanishes so
the Nd -invariant is the same as the d -invariant. We let aD 1 and b D�1 and arrive
at a contradiction by showing the following equality does not hold:

d.L.5p; q/; p� 5/D d.L.5p; q/; p/C d.L.5p; q/;�5/:

To apply Lemma 15 we need to express each of

.50n2
C25nC3/Cp�5; .50n2

C25nC3/Cp and .50n2
C25nC3/�5

as 2.5nC 1/xCy. Simple algebra yields the following pairs .x; y/ for these three
respective Spinc structures:

� aD 1; b D�1 W .x; y/D .7nC 1; 9n� 3/.

� aD 1; b D 0 W .x; y/D .7nC 1; 9nC 2/.

� aD 0; b D�1 W .x; y/D .5nC 1; 5n� 4/.

Finally one uses these expressions to determine that for all n

d.L.5p; q/; p� 5/� d.L.5p; q/; p/� d.L.5p; q/;�5/D 4:

Since the difference is not zero, no splitting exists and the proof of Theorem 14 is
complete. �

10. Topologically split examples

In this section, we apply Theorem 9 to find examples of manifolds that split
topologically but not smoothly. We begin by carefully examining an example in
which the splitting exists smoothly, focusing on the computation of the d -invariants
and next illustrate the modifications which do not change its topological cobordism
class but alter it smoothly. The deepest aspect of the work is in the determination of
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the d -invariants. In brief, the manifold we look at is 15-surgery on the .3; 5/-torus
knot, T3;5, denoted by S3

15.T3;5/. This is homeomorphic to the connected sum
L.3; 5/ # �L.5; 3/: Next, letting D denote the untwisted double of the trefoil knot
(DDWh.T2;3/), which is topologically slice, we consider S3

15.T3;5 #D/ and prove
that it does not split in the cobordism group.

In this section and the next, and also in Appendix B, we develop properties of
the Heegaard–Floer complex of specific torus knots and tensor products of certain
of these complexes. More extensive computations appear in [Hancock et al. 2013].

10.1. Nd.S 3
15
.T3;5/; i //. We now determine the doubly filtered Heegaard–Floer

complex CFK1.S3; T3;5/. This complex is by definition a doubly filtered, graded
chain complex over F2. Thus a set of filtered generators can be illustrated on a grid
with the coordinates representing the filtration levels and the grading marked. There
is an action of Z on the complex, and if we let U be the generator, this makes the
complex a F2ŒU; U

�1�-module. The action of U on the complex lowers filtration
levels by 1 and gradings by 2.

We now show that CFK1.S3; T3;5/ is as illustrated in Figure 2. In order to
find this decomposition, we start by focusing on the central column (for which the
top-most generator is at filtration level j D 4 and is labeled with its grading 0).
The vertical column, i D 0, represents the subquotient complex bCFK.S3; T3;5/.
We begin by explaining why it appears as it does in the illustration. According to
[Ozsváth and Szabó 2005, Theorem 1.2], since for torus knots there is an integer
surgery that yields a lens space, bHFK.S3; T3;5; j /, the quotient of the j -filtration
level by the .j � 1/-filtration level is completely determined by the Alexander
polynomial,

�T3;5
.t/D 1� .t�1

C t /C .t�3
C t3/� .t�4

C t4/:

This explains the location of the generators of bCFK.S3; T3;5/. Similarly the same
work determines the grading of the generators. The fact the complex bCFK.S3; T3;5/

is a filtration of the complex bCF .S3/, which has homology F2 with its generator
at grading level 0, forces the vertical arrows, presenting the boundary maps, to
be as illustrated. To build the CFK1 diagram from the bCFK diagram, we first
apply the action of U to fill in the generators as well as the all the vertical arrows.
We next note that the homology groups bHFK.T3;5; i/ can be computed using the
horizontal slice j D 0 instead of the vertical slice, and this forces the existence
of the horizontal arrows as drawn. With this much of the diagram drawn and the
action of U lowering grading by 2, the gradings of all the elements in the diagram
are determined. Finally we note that the fact that the boundary map lowers gradings
by 1 rules out the possibility of any other arrows.
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Figure 2. The case s D�4 with the quotienting subgroup shaded.

According to [Ozsváth and Szabó 2004], the complex CFKC.S3
15.T3;5/; s/, for

�7� s � 7, is given by the quotient

CFK1.S3; T3;5/=CFK1.S3; T3;5/i<0;j <sŒ���;

where � is a grading shift:

�D
�.2s� 15/2C 15

60
:

Figure 2 illustrates the case s D�4 with the quotienting subgroup shaded in the
diagram. By definition, the d -invariant is the minimal grading among all classes in
the group HFKC.S3

15.T3;5/; s/, which are in the image ofU n for all n. From the dia-
gram, without shifting the gradings, we see this minimum for HFKC.S3

15.T3;5/;�4/

is �8: one generator of grading level �10 has been killed, and all such generators
are homologous. The values for all Spinc structures, sD�7;�6; : : : ; 6; 7 are given
in order as

f�14;�12;�10;�8;�8;�6;�4;�4;�2;�2;�2; 0; 0; 0; 0g:

After the grading shift, the values are all of the form ai=30, where, in order, the ai are

f�7;�3; 5; 17;�27;�7; 17;�15; 17;�7;�27; 17; 5;�3;�7g:

Finally to compute Nd , we subtract �15=30 (the value for the spin structure) from
each entry and find that the values of Nd are given by bi=30 for the following values
of bi in order:

f8; 12; 20; 32;�12; 8; 32; 0; 32; 8;�12; 32; 20; 12; 8g:

We have listed these values in Table 3, in which we write each value of s as 5aC3b
mod 15 for �1� a � 1 and �2� b � 2.
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a b D –2 –1 0 1 2

1 32 8 20 8 32
0 12 –12 0 –12 12

–1 32 8 20 8 32

Table 3. 30 Nd.S3
15.T3;5/; 5aC 3b/.

Since S3
15.T3;5/ is the connected sum of lens spaces, Theorem 9 predicts a

pattern in the chart: each element should be the sum of the entries of its projection
on the main axes. This is the case. Notice for instance that the top-right entry 32
in position .a; b/D .1; 2/ 2 Z3˚Z5 (which represents 1.5/C 2.3/D 11 2 Z15) is
the sum of the entries in positions .2; 0/ and .0; 1/, 12 and 20, respectively.

10.2. Nd.S 3
15
.T3;5#D/; s/. In order to compute the Nd -invariants that are associated

to surgery on the connected sum, we first must compute CFK1 for the connected
sum of knots. The complex CFK1.T2;3/ is illustrated in Figure 3, left, and it
follows from [Hedden 2007] that, modulo acyclic subcomplexes, the chain complex
for D is the same. (The results of the same article are focused on the hat complex
3CFK.K/ but extend to the full CFK1 complex. For more details, see [Hedden et al.
2014].)

At this point we need to analyze the tensor product

C D CFK1.T3;5/˝FŒU;U�1� CFK1.T2;3/:

This complex is fairly complicated, containing 21 generators, but it is easily seen
that it contains a subcomplex C 0 as illustrated in Figure 3, right. This subcomplex
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Figure 3. Left: the complex CFK1.T2;3/. Right: The subcom-
plex C 0 of CFK1.T3;5/˝FŒU;U�1� CFK1.T2;3/.
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a b D –2 –1 0 1 2

1 –28 8 20 8 –28
0 12 –12 0 –12 12

–1 –28 8 20 8 –28

Table 4. 30 Nd.S3
15.T3;5 #D/; 5aC 3b/.

carries the homology of the overall complex but does not contain all generators of
a given grading. However, by examining the full complex with 21 generators, we
have the following observation.

The complexCi<m;j <n contains a generator of grading 0 if and only ifC 0i<m;j <n

contains a generator of grading 0. In particular, d -invariants for C can be computed
using C 0.

Using this diagram to compute the minimal gradings of classes in

CFK1.T3;5 #D/=CFK1.T3;5 #D/i<0;j <s

for �7� s � 7, we get the following:

f�14;�12;�10;�10;�8;�6;�6;�4;�4;�2;�2;�2; 0; 0; 0g:

After shifting gradings by ��, the values are of the form ai=30, where the ai are,
in order,

f�7;�3; 5;�43;�27;�7;�43;�15;�43;�7;�27;�43; 5;�3;�7g:

To compute Nd , we add 15=30 to each term, yielding the values bi=30, where the bi

are
f8; 12; 20;�28;�12; 8;�28; 0;�28; 8;�12;�28; 20; 12; 8g:

We can arrange these in a chart as in Table 4.
Notice that the entries on the axes are unchanged, but the underlined entries

are no longer the sum of the values of the projections; that is, �28 ¤ 12C 20.
Thus, according to Theorem 9, this manifold is not Q-homology cobordant to any
manifold of the form M3 #M5 #Mq .

10.3. Second example. As a second example we consider the case of S3
35.T5;7/

and S3
35.T5;7 #D/ and illustrate the analogous charts as above (this time multiplied

by 70 to clear denominators). The first chart, Table 5, necessarily demonstrates
additivity; the second, in Table 6, upon examination does not. This becomes more
apparent by considering the third chart, in Table 7, formed as the difference of
the first two, but not multiplied by 70. The underlined entries illustrate the failure
of additivity. Considering this difference is a simplifying approach of the general
proof in the next section.
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a b D –3 –2 –1 0 1 2 3

2 –68 –108 –48 –28 –48 –108 –68
1 –12 –52 8 28 8 –52 –12
0 –40 –80 –20 0 –20 –80 –40

–1 –12 –52 8 28 8 –52 –12
–2 –68 –108 –48 –28 –48 –108 –68

Table 5. 70 Nd.S3
35.T5;7/; 7aC 5b/.

a b D –3 –2 –1 0 1 2 3

2 72 32 92 112 92 32 72
1 128 88 8 28 8 88 128
0 100 60 –20 0 –20 60 100

–1 128 88 8 28 8 88 128
–2 72 32 92 112 92 32 72

Table 6. 70 Nd.S3
35.T5;7 #D/; 7aC 5b/.

a b D –3 –2 –1 0 1 2 3

2 2 2 2 2 2 2 2
1 2 2 0 0 0 2 2
0 2 2 0 0 0 2 2

–1 2 2 0 0 0 2 2
–2 2 2 2 2 2 2 2

Table 7. Nd.S3
35.T5;7 #D/; 7aC 5b/� Nd.S3

35.T5;7/; 7aC 5b/.

11. Topologically split examples, general case

We now wish to generalize the examples of the previous section. To do so, we
begin by choosing an infinite set of integers fpig with the following properties:
(1) all the pi are odd; (2) the elements of the full set fpig[ fpi C 2g are pairwise
relatively prime; and (3) each pi and pi C 2 is square-free. The existence of such
a set is demonstrated in Appendix A, and throughout this section we assume all
p are selected from this set. In the previous example we needed to track grading
shifts. It will simplify our discussion if we avoid dealing the grading shifts as
follows. Define Qd.S3

n.K/; s/D d.S
3
n.K/; s/C �. That is, Qd is computed as is the

d -invariant, except without the grading shift, the induced grading on

CFKC.S3
N .K/; s/D CFK1.S3; K/=CFK1.S3; K/fi<0;j <sg:
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Since p is odd, we can write pD 2nC1 and let qDpC2D 2nC3. Our manifolds
of interest are S3

pq.Tp;q/ and S3
pq.Tp;q #D/. We collect here the results of a few

elementary calculations.

Theorem 16.

(1) The surgery coefficient is pq D 4n2C 8nC 3.

(2) The three-genus satisfies

g.Tp;q/D 2n.nC 1/D 2n
2
C 2n and g.Tp;q #D/D 2n2

C 2nC 1:

(3) Spinc structures are parameterized by s, with

�.2n2
C 4nC 1/� s � .2n2

C 4nC 1/:

(4) Generators of bCFK.Tp;q/ have filtration level j , where

�2n.nC 1/� j � 2n.nC 1/:

The main result of this section is the following.

Theorem 17. Nd.S3
pq.Tp;q #D/; s/ does not satisfy additivity as given in Theorem 9.

Proof. The space S3
pq.Tp;q/ satisfies the additive property as in Theorem 9. Sup-

pose that S3
pq.Tp;q #D/ also satisfies the additivity property. Then the difference

Nd.S3
pq.Tp;q/; .a; b//� Nd.S

3
pq.Tp;q #D/; .a; b// also satisfies the additivity property.

We denote this difference by Nd 0.a; b/ or Nd 0.aqC bp/. Note that it is unnecessary
to add the grading shift � to the amount we get from the diagram when computing
either of the values Nd.S3

pq.Tp;q/; .a; b// or Nd.S3
pq.Tp;q #D/; .a; b// since they

have the same grading shift. Namely

Nd 0.a; b/D Qd.S3
pq.T .p; q//; .a; b//�

Qd.S3
pq.Tp;q #D/; .a; b//

� Qd.S3
pq.Tp;q/; 0/C Qd.S

3
pq.Tp;q #D/; 0/:

From our choice of p and q, we have .nC 1/pC .�n/q D 1. Thus the additivity
property implies the equality

Nd 0.1/D Nd 0..nC 1/p/C Nd 0.�nq/;

or, equivalently,

(11-1) Qd.S3
pq.Tp;q/; 1/� Qd.S

3
pq.Tp;q #D/; 1/

D Qd.S3
pq.Tp;q/; .nC 1/p/� Qd.S

3
pq.Tp;q #D/; .nC 1/p/

C Qd.S3
pq.Tp;q/;�nq/� Qd.S

3
pq.Tp;q #D/;�nq/

� Qd.S3
pq.Tp;q/; 0/C Qd.S

3
pq.Tp;q #D/; 0/:
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Since .nC1/pD 2n2C3nC1 lies between the genus of T .p; q/ (and of Tp;q #D)
and the upper bound on the parameters for the Spinc structures,

2n2
C 2nC 1 < 2n2

C 3nC 1 < 2n2
C 4nC 1;

the values of the Qd -invariants are easily seen to be 0. On the other hand, the
number �nq is greater than the lower bound on the parameters for the Spinc

structures and less than the negative of the genus,

�.2n2
C 4nC 1/ < �.2n2

C 3n/ < �.2n2
C 2nC 1/;

and thus one sees that the Qd -invariants associated to �nq take the same value
�2s D 2.2n2C 3n/ for both Tp;q and Tp;q #D. Thus, in contradicting additivity,
it remains to show that the equality

Qd.S3
pq.Tp;q/; 1/� Qd.S

3
pq.Tp;q #D/; 1/D� Qd.S3

pq.Tp;q/; 0/C Qd.S
3
pq.Tp;q #D/; 0/

does not hold.
Now we will compute Qd of both spaces for Spinc structures 0 and 1. Observe

that within width 1 from the diagonal j D i , the complex CFK1.S3; Tp;q/ looks
like CFK1.S3; T2;3/ if n is odd or CFK1.S3; T2;5/ if n is even. This depends
on the fact that near the origin the complex CFK1.S3; Tp;q/ looks like that of
the .2; k/-torus knots. In Appendix B we prove that the Alexander polynomial
of Tp;pC2 is of the form 1C

P
i>0 ai .t

�i C t i /, where ai D˙1 for i � .p�1/=2.
As in the example of the previous section, this determines the “zig-zag” feature of
the CFK1 complex near the origin. Tensoring with the trefoil complex does not
alter this pattern.

The generators of the same grading 2l of Œx;�1; 0� if n is odd (or Œx; 0; 0� if n
is even) lies above the antidiagonal i C j D �1 (or i C j D 0). So, in order to
compute Qd.S3

pq.T .p; q//; s/ for s D 0; 1, we may assume in the computations that
the complex we are considering is one of�

CFK1.S3; T2;3/ if n is odd;
CFK1.S3; T2;5/ if n is even:

It is now easy to compute

Qd.S3
pq.Tp;q/; s/D

s n odd n even

1 2l C 2 2l

0 2l 2l

Near the diagonal j D i , the complex CFK1.S3; Tp;q #D/ looks like�
CFK1.S3; T2;5/ if n is odd;
CFK1.S3; T2;3/Œ�2� if n is even:
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The grading of Œx;�1; 0� is 2l � 2 if n is even and the grading of Œx; 0; 0� is 2l if n
is odd. Thus we have

Qd.S3
pq.Tp;q #D/; s/D

s n odd n even

1 2l 2l

0 2l 2l � 2

We see that

Qd.S3
pq.Tp;q/; s/� Qd.S

3
pq.Tp;q #D/; s/D

s n odd n even

1 2 0
0 0 2

This shows that (11-1) cannot be satisfied. We conclude that the space S3
pq.Tp;q #D/

does not satisfy the additive property of Theorem 9. �

11.1. The image of K in‚3
Q
=ˆ.

L
‚p/ is infinite. This is a consequence of the

following result.

Theorem 18. The spaces Np;q D S
3
pq.Tp;q #D/ #�S3

pq.Tp;q/ 2 K are distinct in
the quotient ‚3

Q
=ˆ.

L
‚p/.

Proof. Observe that S3
pq.Tp;q#D/#�S3

pq.Tp;q/2K since the knots are topologically
concordant. We next observe that these manifolds have the property that no linear
combination with all coefficients ˙1 is trivial in the quotient. Suppose that some
such linear combination was trivial. Then focusing on any particular pair .p; q/,
we would have that S3

pq.Tp;q #D/ #Mp #Mq #Mm D @X for a rational homology
ball X , where the order of Mp is a product of prime factors of p, the order of Mq

is a product of prime factors of q, and the order of Mm is relatively prime to pq.
(This uses the fact that S3

pq.Tp;q/ does split as a connected sum.)
The existence of this connected sum decomposition implies the additivity for

d -invariants of S3
pq.Tp;q #D/ in a way that contradicts Theorem 17. �

12. Knot concordance

We denote by C the classical smooth knot concordance group. Levine [1969]
defined the algebraic concordance group G and the rational algebraic concordance
group, GQ. He also defined a surjective homomorphism C! G, proved that the
natural map G! GQ is injective, and proved that GQ is isomorphic to an infinite
direct sum of groups isomorphic to Z, Z2 and Z4. He also proved that the image
of G in GQ is isomorphic to a similar infinite direct sum. In the same article it
is observed that GQ has a natural decomposition as a direct sum ˚GQ

p.t/
, where

the p.t/ are symmetric irreducible rational polynomials. We will not present the
details here, but note that if the Alexander polynomial of K, �K.t/, is irreducible,
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then the image of K in GQ is in the GQ
�.t/

summand. Stoltzfus [1977] observed that
the algebraic concordance group G does not have a similar splitting. Thus there
is not an immediate analog in concordance for the decompositions we have been
studying for homology cobordism. However he did prove that in some cases such
a splitting exists. The following, from Corollary 6.5 of the same work, is stated
in terms of knot concordance, but, given the isomorphism of higher-dimensional
concordance and GZ, the same splitting theorem holds in the algebraic concordance
group.

Theorem 19. If K is an n-dimensional knot for n > 1 and �K.t/ factors as
p.t/q.t/ with p.t/ and q.t/ symmetric and the resultant Res.p.t/; q.t// D 1,
then K is concordant to a connected sum K1 # K2, with �K1

.t/ D p.t/ and
�K2

.t/D q.t/.

Here we observe that this result does not hold in dimension 3.

Example. Consider the ten-crossing knot K D 105. It has Alexander polynomial

�D .1� t C t2/.1� 2t C 2t2� t3C 2t4� 2t5C t6/:

These two factors are irreducible and have resultant 1.

Theorem 20. The knot 105 is not concordant to any connected sumK1 #K2, where
�K1

D 1� t C t2 and �K2
D 1� 2t C 2t2� t3C 2t4� 2t5C t6.

Proof. The 2-fold branched cover of K is the lens space L.33; 13/. If the desired
concordance existed, thenL.33; 13/would split in rational cobordism as a connected
sum M3 #M11, with H1.M3/D Z3 and H1.M11/D Z11. In order to compute the
relevant d -invariants, one first identifies s6 as the spin structure s� by computing that
the value of d.L.33; 13/; s6/D 33, a value that is not attained by any other Spinc

structure. The values of the d -invariants, d.L.33; 13/, .a; b/�s�/�d.L.33; 13/; s�/
for .a; b/ 2 Z3˚Z11 are given in the chart in Table 8 (multiplied by 33 to clear
denominators).

The next chart, in Table 9, presents the values

ı.L.33; 13/; .a; b//D d.L.33; 13/; .a; b//� d.L.33; 13/; .a; 0//

� ad.L.33; 13/; .0; b//C d.L.33; 13/; .0; 0//:

a b D 0 1 2 3 4 5

1 22 10 40 46 28 52
0 0 54 18 24 6 30

–1 22 10 40 –20 28 –14

Table 8. 33 d.L.33; 13/; 11aC 3b/.
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a b D 0 1 2 3 4 5

1 0 2 0 0 0 0
0 0 0 0 0 0 0

–1 0 2 0 2 0 2

Table 9. ı.L.33; 13/; .a; b//.

The presence of the nonzero entries implies the nonsplittability of the manifold,
as desired. �
Note. In [Livingston 2002], the second author constructed similar but much more
complicated examples in the topological category.

13. Topologically trivial bordism

In [Hedden et al. 2012] the quotient ‚T
Q;spin=‚

I
Q;spin was studied. Here the cobor-

dism group has been restricted to spin 3-manifolds and spin bordisms which have
the rational homology of S3. The notation ‚T

Q;spin denotes the subgroup generated
by representatives which bound topological homology balls and‚I

Q;spin is generated
by those that are cobordant to Z-homology spheres. (Note that we have changed
the notation from that of the same reference to be consistent with the results of the
current paper.) There is also a similar result in the same work replacing .Q; spin/,
with Z2. Recall that every orientable 3-manifold has trivial tangent bundle, so is
spin, and that every Z2 homology 3-sphere has a unique spin structure.

Here we observe that Theorem 6 permits us to eliminate the need to constrain
the cobordism group to being spin or to use Z2 coefficients. Let ‚T

Q
denote the

subgroup of ‚3
Q

generated by rational homology spheres that are trivial in the
topological rational cobordism group, that is, the kernel of K.

Theorem 21. The quotient group ‚T
Q
=‚3

Z is infinitely generated.

We outline how the argument in [Hedden et al. 2012] can be generalized.
In this work there is a family of rational homology spheres, Mp2 , constructed

for an infinite set of primes p. These are constructed so that they bound topological
balls. The proof of the theorem consists of showing that no linear combination
N D #i aiMp2

i
#M0 bounds a spin rational homology ball (or Z2 homology ball)W ,

where M0 is a Z-homology sphere. The existence of a unique spin structure was
used to identify Spinc of the relevant manifolds with the second homology.

If all p are odd, then there is a unique Spinc structure on N , and according to
Theorem 6, it is the restriction of a Spinc structure on W . Given this, Proposition
2.1 of the same reference, which required that W be spin, continues to apply to
identify the Spinc structures on N which extend to W with a metabolizer of the
linking form on H1.N /. That identification is what is used to obstruct the existence
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of W via d -invariants, as described in Theorem 3.2 of the same work. Thus the
remainder of the proof goes through as in that paper.

Appendix A. Finding the pi

The proof of Theorem 17 requires a sequence of odd pairs fpi ; pi C 2g such that
the elements of the full set fpig [ fpi C 2g are pairwise relatively prime and
square-free. Since pi and pi C 2 are relatively prime, we need to choose the pi so
that all elements of fpi .pi C 2/g are pairwise relatively prime and each element is
square-free. If we let pi D ni �1, then pi .pi C2/D n

2
i �1, and so we are seeking

an infinite sequence of positive integers fnig such that:

(1) ni is even for all i .

(2) All elements of fn2
i � 1g are relatively prime.

(3) Each n2
i � 1 is square-free.

In Section 9 we need a sequence of integers ni such that ni D 0 mod 5 with the
property that the integers 20n2

i C8niC1 are relatively prime and square-free. Here
is a theorem that covers both cases.

Theorem 22. Let f .x/2ZŒt � be an quadratic polynomial with constant term 1 that
is not the square of a linear polynomial. Let ˛ be a fixed integer and sn D ˛n be an
arithmetic sequence. There exists an infinite set of si such that values of f .si / are
pairwise relatively prime and square-free.

Proof. It is known that if g.n/ is a quadratic polynomial that is not a square of
a linear polynomial and which has the property that its coefficients have greatest
common divisor one, then g.n/ is square-free for an infinite set of n (see, for
example, [Erdős 1953]). We wish to construct the sequence of si inductively. To
find s1, let f1.n/D f .˛n/, which is irreducible with constant term one. Choose n1

so that f1.n1/ is square-free. Let s1 D ˛n1. Assume that si has been defined for
i < k. We find sk with the desired properties as follows. Let P D

Qk�1
iD1 f .si /.

Consider the function fk.n/D f .˛Pn/. Again this polynomial is irreducible with
constant term one so there exists an nk for which fk.nk/ is square-free. Since
fk.nk/D f .˛Pnk/, we let sk D ˛Pnk . Notice that f .˛Pn/D 1 mod p for each
prime divisor p of P , since evaluating f at ˛Pn gives a quadratic polynomial in n,
with the quadratic term and linear term divisible by P and the constant term one. It
follows that f .sk/ is relatively prime to all f .si /; i < k. �

Appendix B. The Alexander polynomial of Tp;pC2

Normalized to be symmetric, the Alexander polynomial of a knot can be written in
the form�K.t/D a0C

Pn
iD1 ai .t

�iCt i /, where a0C2
P
ai D˙1. In Section 11

we use the following fact.
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Theorem 23. If K D Tp;pC2 with p odd then

�Tp;pC2
.t/D a0C

.p2�1/=2X
iD1

ai .t
�i
C t i /;

where ai D˙1 for i � .p� 1/=2.

Note. With more care, all the coefficients or �Tp;pC2
.t/ can be described in closed

form.

Proof. As a polynomial (as opposed to the normalized Laurent polynomial) with
nonzero constant term, the Alexander polynomial of Tp;q is

.1� tpq/.1� t /=.1� tp/.1� tq/:

Expanding each term of the denominator in a power series and noting that multi-
plying by the tpq term in the numerators does not affect terms of the product of
degree less than 2g D .p� 1/.q� 1/, the degree of the Alexander polynomial, we
can focus on the expression

.1� t /.1C tpC t2p
C t3p

C � � � /.1C tqC t2q
C � � � /;

which we write as the product

.1� t /

1X
iD0

bi t
i :

Here bi is the number of solutions to xpC yq D i , with x; y � 0. In the case of
interest, q D pC 2 and the genus g D .p2� 1/=2. We will now show that for i in
the range g�A� i � g, the values bi are alternately 0 and 1, where A is a constant
to be determined. Thus, using the fact that the Alexander polynomial is symmetric,
upon multiplying by .1� t / we have the coefficients of the Alexander polynomial
are all ˙1 near tg . To show that the coefficients bi alternate between 0 and 1 for
g�A� i � g, we first observe that in a given range of i , all bi � 1 for i even. To
see this, write p D 2nC 1 and q D 2nC 3; thus g D 2n2C 2n. Consider the sum

nC j

2
pC

n� j

2
q D 2n2

C 2n� j;

where j is selected to have the same parity as n. (We require here that j � n; that
is, we need A� .p� 1/=2.) To complete the argument, we next observe that the
difference jbi � bj j � 1 if ji � j j � 1. Suppose otherwise. That is, suppose that
there are distinct nonnegative solutions to the equations

xpCyq D i
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and

x0pCy0q D j;

with x, y, x0, y0 � 0, ji �j j � 1, and i; j � g. The conditions that i � g and y � 0
imply that xp� gD .pq�p�q�1/=2, which implies that x < .q�1/=2. We first
consider the case that i ¤ j . After possibly reordering, the difference would give

.x� x0/pC .y �y0/q D 1:

One solution to this equation is

q� 1

2
p�

p� 1

2
q D 1:

Every other solution is given by adding a multiple of .�q; p/ to the coefficient vector
(note that �q.p/C p.q/ D 0 is a primitive solution since p and q are relatively
prime). Thus the solutions with the smallest absolute values of the x-coordinate to
the unital equation are the one above and

�
qC 1

2
pC

pC 1

2
q D 1:

That is, the smallest possible value for .x � x0/ is x � x0 D .q� 1/=2. But, since
x and x0 both are nonnegative and less than .q � 1/=2, this is impossible. As an
example, if p D 21 and q D 23 (so g D 220), we have the solutions

11.21/� 10.23/D 1

and

�12.21/C 11.23/D 1;

with g D 220. We also have x.21/Cy.23/� 220 which implies that x � 220=21,
so 0� x � 10. Similarly for x0, so it is not possible for jx� x0j D 11. Finally we
consider the case i D j . Thus our coefficients would satisfy

.x� x0/pC .y �y0/q D 0:

This implies that x�x0 is a multiple of q. But this would imply that they are equal
since under our assumptions both are nonnegative and also xp�pq�p�qC1�pq,
so x < q and x0 < q.

In summary, if we write the Alexander polynomial of the Tp;q torus knot, with
q�pD 2 as˙1 as a0C

Pg
iD1 ai .t

iC t�i /, then for i � .p�1/=2, we have shown
that ai D .�1/

i . �
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