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BIHARMONIC SURFACES OF CONSTANT MEAN CURVATURE

ERIC LOUBEAU AND CEZAR ONICIUC

We compute a Simons-type formula for the stress-energy tensor of bihar-
monic maps from surfaces. Specializing to Riemannian immersions, we
prove several rigidity results for biharmonic CMC surfaces, putting in evi-
dence the influence of the Gaussian curvature on pseudoumbilicity. Finally
the condition of biharmonicity is shown to enable an extension of the classi-
cal Hopf theorem to CMC surfaces in any ambient Riemannian manifold.

1. Introduction

While harmonic maps between abstract Riemannian manifolds are a generaliza-
tion of minimal submanifolds, their study on two-dimensional domains remained
nonetheless very valuable and brought new light to both theories. When, for
topological or geometrical reasons, harmonic maps are nonexistent or unsatisfactory,
one can then measure the failure of harmonicity with the bienergy functional

E2(φ)=
1
2

∫
M
|τ(φ)|2 vg,

where M is compact, φ : (M, g)→ (N , h) is a smooth map and τ(φ)= trace∇dφ
is the tension field. Usual arguments (see [Jiang 1986]) show that critical points
of E2, called biharmonic maps, are solutions of

τ2(φ)=−1τ(φ)− trace RN (dφ( · ), τ (φ))dφ( · )= 0,

and we will use the adjective proper to designate nonharmonic biharmonic maps.
Whilst the interconnections between harmonic maps and minimal surfaces are

clear and well-established, in many cases, but not always, biharmonic Riemannian
immersions have constant mean curvature (CMC). However, this link is not as
clear as harmonicity and minimality, and the principal objective of this article
is to explain how biharmonicity constrains CMC surfaces in an abstract ambient
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manifold. This is particularly well-illustrated on compact biharmonic CMC surfaces
whose Gaussian curvature has constant sign. They must be flat or pseudoumbilical
if K M is nonnegative (Corollary 11); otherwise they have pseudoumbilical points
(Theorem 12). The role of pseudoumbilical points in relaxing curvature constraints
is further felt in the noncompact case, as their absence forces the CMC surface to
be conformally flat (Theorem 12).

For complete surfaces, nonnegative Gaussian curvature and an upper bound on
the sectional curvature of the ambient space will cause the surface to be flat or
pseudoumbilical, but note that both can occur simultaneously (Proposition 18).
When the ambient manifold is a three-dimensional space form, the surface must be
umbilical (Corollary 14); consult [Montaldo and Oniciuc 2006] for the classification.

Our approach is to derive, in Proposition 3, a Simons-type formula for the
biharmonic stress-energy tensor, valid for all smooth maps. As cumbersome as
this equation is in the general case, on biharmonic maps from surfaces it simplifies
enough (Proposition 5) to enable the use of a divergence argument (Theorem 6) and
draw some consequences (Corollaries 8 and 9). However, the main consequences
are for CMC biharmonic surfaces.

To close the article, we show that, in any ambient space, the condition of bihar-
monicity preserves the holomorphicity of the Hopf differential of CMC surfaces
(Theorem 20).

Biharmonic CMC surfaces were also studied in [Fetcu and Pinheiro 2013; Ou
and Wang 2011] and [Sasahara 2007].

The conventions we adopt are that the Riemann curvature tensor is

R(X, Y )= [∇X ,∇Y ] −∇[X,Y ],

while its (0, 4) counterpart is

R(X, Y, Z ,W )= 〈R(X, Y )W, Z〉.

The choice of sign for the Laplacians on sections and functions is the same, and on
the real line 1 f =− f ′′.

All objects, unless specified, are smooth and we assume summation on repeated
indices, when apt.

2. The biharmonic stress-energy tensor on surfaces

Since biharmonic maps stem from a variational problem, one can apply the general
principle of studying the same functional but under variations of the domain metric.
This idea taken up on the bienergy leads to the biharmonic stress-energy tensor,
which is symmetric and of type (0, 2); see [Loubeau et al. 2008].
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Definition 1. Let (M, g) and (N , h) be Riemannian manifolds and φ : M→ N a
smooth map. The biharmonic stress-energy tensor of φ is

S2(X, Y )=
{
|τ(φ)|2

2
+〈dφ,∇τ(φ)〉

}
g(X, Y )− T (X, Y ),

where T (X, Y )= 〈dφ(X),∇Y τ(φ)〉+ 〈dφ(Y ),∇Xτ(φ)〉.

The main feature of S2 is satisfying Hilbert’s principle of being divergence-free
at critical points [Loubeau et al. 2008; Jiang 1987]; that is, div S2 =−〈dφ, τ2(φ)〉.

In order to exploit the biharmonicity of the map φ, we compute the rough
Laplacian of its biharmonic stress-energy tensor. This second-order operator on
(0, 2)-tensors will reveal curvature terms which combine with the bitension field, and
formulas will involve swapping vector positions in the third fundamental form of φ,
with curvature appearing according to a lemma we quote separately, without proof.

Lemma 2. Let φ : (Mm, g)→ (N n, h) be a smooth map. Then

(∇2dφ)(X, Y, Z)− (∇2dφ)(Z , Y, X)= R(X, Z)dφ(Y )− dφ(RM(X, Z)Y )

for any X, Y, Z ∈ C(TM).

Proposition 3 (the rough Laplacian of S2). Let (M, g) and (N , h) be Riemannian
manifolds and φ : M→ N a smooth map; then the (rough) Laplacian of S2 is the
symmetric (0, 2)-tensor

(1R S2)(X, Y )

=
(
〈1τ(φ), τ (φ)〉− 2|∇τ(φ)|2− 2

∑
〈R(X i , X j )dφ(X i ),∇X j τ(φ)〉

− 2〈dφ(RicciM( · )),∇(·)τ(φ)〉− 2〈∇dφ,∇2τ(φ)〉+ 〈dφ,∇(1τ(φ))〉

− 〈∇(trace RN (dφ( · ), τ (φ))dφ( · )), dφ〉

− 〈trace RN (dφ( · ), τ (φ))dφ( · ), τ (φ)〉
)
g(X, Y )

+ 2〈∇Xτ(φ),∇Y τ(φ)〉+
∑
〈R(X i , X)dφ(X i ),∇Y τ(φ)〉

+
∑
〈R(X i , Y )dφ(X i ),∇Xτ(φ)〉+ 〈dφ(RicciM(X)),∇Y τ(φ)〉

+ 〈dφ(RicciM(Y )),∇Xτ(φ)〉+ 2
∑
〈∇dφ(X i , X), (∇2τ(φ))(X i , Y )〉

+ 2
∑
〈∇dφ(X i , Y ), (∇2τ(φ))(X i , X)〉− 〈dφ(X),∇Y (1τ(φ))〉

− 〈dφ(Y ),∇X (1τ(φ))〉+
∑
〈dφ(X), R(X i , Y )∇X i τ(φ)〉

+
∑
〈dφ(Y ), R(X i , X)∇X i τ(φ)〉+

∑
〈dφ(X),∇X i R(X i , Y )τ (φ)〉

+
∑
〈dφ(Y ),∇X i R(X i , X)τ (φ)〉+ 〈dφ(X),∇RicciM (Y )τ(φ)〉

+ 〈dφ(Y ),∇RicciM (X)τ(φ)〉,

where {X i } is a geodesic frame around the point p ∈ M.
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Proof. Let φ : (M, g)→ (N , h) be a smooth map between Riemannian manifolds.
We will work with a geodesic frame {X i } around the point p ∈ M and evaluate at p.

Writing out the Laplacian in the geodesic frame yields

1(〈dφ,∇τ(φ)〉)

=−
∑{
〈∇X i [∇dφ(X i , X j )],∇X j τ(φ)〉+ 2〈∇dφ(X i , X j ), (∇

2τ(φ))(X i , X j )〉

+ 〈dφ(X j ),∇X i∇X i∇X j τ(φ)〉− 〈dφ(X j ),∇X i∇∇Xi X j τ(φ)〉
}
,

and by the symmetry formula of the third fundamental form, we have∑
∇X i [∇dφ(X i , X j )] = ∇X j τ(φ)+

∑
R(X i , X j )dφ(X i )+ dφ(RicciM(X j )),

and∑(
∇X i∇X i∇X j τ(φ)−∇X i∇∇Xi X j τ(φ)

)
=
∑{
∇X j∇X i∇X i τ(φ)+∇[X i ,X j ]∇X i τ(φ)+ R(X i , X j )∇X i τ(φ)

+∇X i R(X i , X j )τ (φ)

−
(
∇∇X j X i∇X i τ(φ)+∇[X i ,∇X j X i ]τ(φ)+ R(X i ,∇X j X i )τ (φ)

)}
=−∇X j

(
1τ(φ)

)
+
∑{

(∇2τ(φ))(X j ,∇X i X i )+ R(X i , X j )∇X i τ(φ)

+∇X i R(X i , X j )τ (φ)
}

+∇RicciM (X j )
τ(φ),

since ∑
[X i ,∇X j X i ] =

∑
∇X j∇X i X i −RicciM(X j ).

Therefore

1
(
〈dφ,∇τ(φ)〉

)
=−

∑
〈∇X j τ(φ),∇X j τ(φ)〉−

∑
〈R(X i , X j )dφ(X i ),∇X j τ(φ)〉

−
∑
〈dφ(RicciM(X j )),∇X j τ(φ)〉

− 2〈∇dφ,∇2τ(φ)〉+
∑
〈dφ(X j ),∇X j (1τ(φ))〉

−
∑(
〈dφ(X j ), R(X i , X j )∇X i (τ (φ))〉+ 〈dφ(X j ),∇X i R(X i , X j )τ (φ)〉

+ 〈dφ(X j ),∇RicciM (X j )
τ(φ)〉

)
,

but∑
〈dφ(X j ),∇X i R(X i , X j )τ (φ)〉

=
∑

X i 〈trace RN (dφ( · ), τ (φ))dφ( · ), dφ(X i )〉− 〈∇dφ, R( · , · )τ (φ)〉

= 〈∇(trace RN (dφ( · ), τ (φ))dφ( · )), dφ〉

+ 〈trace RN (dφ( · ), τ (φ))dφ( · ), τ (φ)〉,
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and ∑
〈R(X i , X j )dφ(X i ),∇X j τ(φ)〉 =

∑
〈R(X i , X j )∇X i τ(φ), dφ(X j )〉,

whilst ∑
〈dφ(RicciM( · )),∇τ(φ)〉 =

∑
〈dφ( · ),∇RicciM ( · )τ(φ)〉,

so the Laplacian of the scalar term is

1

(
|τ(φ)|2

2
+〈dφ,∇τ(φ)〉

)
= 〈1τ(φ), τ (φ)〉− 2|∇τ(φ)|2

− 2
∑
〈R(X i , X j )dφ(X i ),∇X j τ(φ)〉− 2〈dφ(RicciM( · )),∇(·)τ(φ)〉

− 2〈∇dφ,∇2τ(φ)〉+ 〈dφ( · ),∇(·)(1τ(φ))〉

− 〈∇(trace RN (dφ( · ), τ (φ))dφ( · )), dφ〉

− 〈trace RN (dφ( · ), τ (φ))dφ( · ), τ (φ)〉.

On the other hand, to compute the (rough) Laplacian of the symmetric two-tensor

T (X, Y )= 〈dφ(X),∇Y τ(φ)〉+ 〈dφ(Y ),∇Xτ(φ)〉,

we put X = Xk and Y = X j and obtain, still evaluating expressions at the point p,

−(1RT )(X, Y )=
∑(
〈∇X i∇X i dφ(X),∇Y τ(φ)〉+ 2〈∇X i dφ(X),∇X i∇Y τ(φ)〉

+ 〈dφ(X),∇X i∇X i∇Y τ(φ)〉+ 〈∇X i∇X i dφ(Y ),∇Xτ(φ)〉

+ 2〈∇X i dφ(Y ),∇X i∇Xτ(φ)〉+ 〈dφ(Y ),∇X i∇X i∇Xτ(φ)〉

− 〈dφ(Y ),∇X i∇∇Xi Xτ(φ)〉− 〈dφ(X),∇X i∇∇Xi Y τ(φ)〉
)
,

since ∇X i∇X i X j vanishes at the point p. This last expression simplifies further if
we use the symmetries properties of the third fundamental form of φ to obtain∑

∇X i∇X i dφ(X)=
∑
(∇2dφ)(X i , X i , X)

=∇Xτ(φ)+
∑

R(X i , X)dφ(X i )+ dφ(RicciM(X)),

and the curvature tensor of the pullback bundle for∑(
〈dφ(X),∇X i∇X i∇Y τ(φ)〉− 〈dφ(X),∇X i∇∇Xi Y τ(φ)〉

)
=−〈dφ(X),∇Y (1τ(φ))〉+

∑
〈dφ(X), R(X i , Y )∇X i τ(φ)〉

+
∑
〈dφ(X),∇X i R(X i , Y )τ (φ)〉+ 〈dφ(X),∇RicciM (Y )τ(φ)〉.
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The Laplacian of the tensor T is then equal to

−(1RT )(X, Y )
=〈∇Xτ(φ),∇Y τ(φ)〉+

∑
〈R(X i , X)dφ(X i ),∇Y τ(φ)〉

+ 〈dφ(RicciM(X)),∇Y τ(φ)〉+ 2
∑
〈∇dφ(X i , X), (∇2τ(φ))(X i , Y )〉

− 〈dφ(X),∇Y (1τ(φ))〉+
∑
〈dφ(X), R(X i , Y )∇X i τ(φ)〉

+
∑
〈dφ(X),∇X i R(X i , Y )τ (φ)〉+ 〈dφ(X),∇RicciM (Y )τ(φ)〉

+ 〈∇Y τ(φ),∇Xτ(φ)〉+
∑
〈R(X i , Y )dφ(X i ),∇Xτ(φ)〉

+ 〈dφ(RicciM(Y )),∇Xτ(φ)〉+ 2
∑
〈∇dφ(X i , Y ), (∇2τ(φ))(X i , X)〉

− 〈dφ(Y ),∇X (1τ(φ))〉+
∑
〈dφ(Y ), R(X i , X)∇X i τ(φ)〉

+
∑
〈dφ(Y ),∇X i R(X i , X)τ (φ)〉+ 〈dφ(Y ),∇RicciM (X)τ(φ)〉.

Summing the various parts together yields the proposition. �

Remark 4. In order to see the geometric meaning of the term
∑
∇X i R(X i , X)τ (φ),

we can rewrite it as
∑
(∇R)(X i , X i , X, τ (φ))+

∑
R(X i , X)∇X i τ(φ).

While the general expression for the rough Laplacian of S2 at first seems unwieldy,
in a manner reminiscent of its harmonic counterpart (see [Baird et al. 2011])
it becomes amenable when the domain is a surface and the map biharmonic. The
final formula only involves three ingredients: the tensor S2 itself, the Gaussian
curvature and the norm of the tension field of the map. This paves the way for a
series of propositions and corollaries for both maps and Riemannian immersions,
where topological and curvature conditions restrict the existence of biharmonic
maps.

Proposition 5. Let φ : (M2, g)→ (N , h) be a biharmonic map defined on a surface
M2. The Laplacian of its biharmonic stress-energy tensor is

1R S2 =−2K M S2+∇d(|τ(φ)|2)+{K M
|τ(φ)|2+1|τ(φ)|2}g,

where K M is the Gaussian curvature of (M2, g).

Proof. Since dim M = 2, its Ricci curvature is RicciM
= K M I , with K M

∈C∞(M).
We will work with a geodesic frame {X1, X2} around a point p ∈ M2 and evaluate
all expressions at this point.

As 1R S2 is a symmetric (0, 2)-tensor, there are only two cases to consider, and,
from the previous proposition, combined with basic symmetries of the curvature
tensor and the biharmonicity condition, we have
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(1R S2)(X1, X2)

= 2〈∇X1τ(φ),∇X2τ(φ)〉−〈dφ(X2),∇X1(1τ(φ))〉

+2K M{
〈dφ(X1),∇X2τ(φ)〉+〈dφ(X2),∇X1τ(φ)〉

}
+2〈∇dφ(X1, X2),−1τ(φ)〉+2〈∇dφ(X1, X1), (∇

2τ(φ))(X1, X2)〉

+2〈∇dφ(X2, X2), (∇
2τ(φ))(X2, X1)〉−〈dφ(X1),∇X2(1τ(φ))〉

+〈dφ(X1),∇X1 R(X1, X2)τ (φ)〉+〈dφ(X2),∇X2 R(X2, X1)τ (φ)〉

= 2〈∇X1τ(φ),∇X2τ(φ)〉+2K M{
〈dφ(X1),∇X2τ(φ)〉+〈dφ(X2),∇X1τ(φ)〉

}
+2〈∇dφ(X1, X1), (∇

2τ(φ))(X1, X2)〉+2〈∇dφ(X2, X2), (∇
2τ(φ))(X2, X1)〉

−〈∇X1dφ(X1), R(X1, X2)τ (φ)〉−〈∇X2dφ(X2), R(X2, X1)τ (φ)〉.

But

2〈∇dφ(X1, X1), (∇
2τ(φ))(X1, X2)〉− 〈∇dφ(X1, X1), R(X1, X2)τ (φ)〉

= 〈∇dφ(X1, X1), 2∇X1∇X2τ(φ)−∇X1∇X2τ(φ)+∇X2∇X1τ(φ)〉,

so

(1R S2)(X1, X2)= 2K M{
〈dφ(X1),∇X2τ(φ)〉+〈dφ(X2),∇X1τ(φ)〉

}
+2〈∇X1τ(φ),∇X2τ(φ)〉+〈τ(φ),∇X1∇X2τ(φ)+∇X2∇X1τ(φ)〉.

Since

(∇d|τ(φ)|2)(X1, X2)

= 〈∇X1∇X2τ(φ)+∇X2∇X1τ(φ), τ (φ)〉+ 2〈∇X1τ(φ),∇X2τ(φ)〉,

we deduce that

(1R S2)(X1, X2)=−2K M S2(X1, X2)+ (∇d|τ(φ)|2)(X1, X2).

The other case to look at is when the two vectors are the same, and then Proposition 3
shows that, using the symmetries of RN ,

(1R S2)(X1, X1)

=−2〈RN (dφ(X1),τ (φ))dφ(X1),τ (φ)〉

−2〈RN (dφ(X2),τ (φ))dφ(X2),τ (φ)〉−2〈∇X2τ(φ),∇X2τ(φ)〉

−2K M
〈dφ(X2),∇X2τ(φ)〉−2〈∇dφ(X2, X2), (∇

2τ(φ))(X2, X2)〉

−2〈∇dφ(X1, X2), (∇
2τ(φ))(X1, X2)〉+2〈dφ(X1),∇X1(1τ(φ))〉

+2〈dφ(X2),∇X2(1τ(φ))〉+2K M
〈dφ(X1),∇X1τ(φ)〉

+2〈∇dφ(X1, X1), (∇
2τ(φ))(X1, X1)〉+2〈∇dφ(X2, X1), (∇

2τ(φ))(X2, X1)〉

−2〈dφ(X1),∇X1(1τ(φ))〉+2〈dφ(X1),∇X2 R(X2, X1)τ (φ)〉
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=−2|∇X2τ(φ)|
2
− 2K M

〈dφ(X2),∇X2τ(φ)〉+ 2K M
〈dφ(X1),∇X1τ(φ)〉

− 2〈RN (dφ(X1), τ (φ))dφ(X1),∇dφ(X1, X1)〉

− 2X2〈dφ(X2), RN (dφ(X1), τ (φ))dφ(X1)〉

− 2〈RN (dφ(X2), τ (φ))dφ(X2),∇dφ(X1, X1)〉

− 2〈∇dφ(X2, X2), (∇
2τ(φ))(X2, X2)〉

+ 2〈∇dφ(X1, X1), (∇
2τ(φ))(X1, X1)〉− 2〈∇dφ(X1, X2), R(X1, X2)τ (φ)〉

+ 2〈dφ(X1),∇X2 R(X2, X1)τ (φ)〉,

since

i) −2〈∇dφ(X1, X2), (∇
2τ(φ))(X1, X2)

+2〈∇dφ(X2, X1), (∇
2τ(φ))(X2, X1)〉

= −2〈∇dφ(X1, X2), R(X1, X2)τ (φ)〉,

ii) −2〈RN (dφ(X1), τ (φ))dφ(X1), τ (φ)〉

−2〈dφ(X2),∇X2 RN (dφ(X1), τ (φ))dφ(X1)〉

= −2〈RN (dφ(X1), τ (φ))dφ(X1),∇X1dφ(X1)〉

− 2〈RN (dφ(X1), τ (φ))dφ(X1),∇X2dφ(X2)〉

− 2X2〈dφ(X2), RN (dφ(X1), τ (φ))dφ(X1)〉

+ 2〈∇X2dφ(X2), RN (dφ(X1), τ (φ))dφ(X1)〉,

iii) −2〈RN (dφ(X2), τ (φ))dφ(X2), τ (φ)〉

−2〈dφ(X2),∇X2 RN (dφ(X2), τ (φ))dφ(X2)〉

= −2〈RN (dφ(X2), τ (φ))dφ(X2),∇dφ(X1, X1)〉.

Observe that

−X2〈dφ(X2), RN (dφ(X1), τ (φ))dφ(X1)〉+ 〈dφ(X1),∇X2 R(X2, X1)τ (φ)〉

= −X2 RN (dφ(X2), dφ(X1), dφ(X1), τ (φ))

+X2 RN (dφ(X2), dφ(X1), dφ(X1), τ (φ))+〈∇dφ(X1, X2), R(X1, X2)τ (φ)〉
so

(1R S2)(X1, X1)

=−2|∇X2τ(φ)|
2
− 2K M

〈dφ(X2),∇X2τ(φ)〉

+ 2K M
〈dφ(X1),∇X1τ(φ)〉− 2〈RN (dφ(X1), τ (φ))dφ(X1),∇dφ(X1, X1)〉

+ 2〈∇dφ(X1, X1), (∇
2τ(φ))(X1, X1)〉

− 2〈RN (dφ(X2), τ (φ))dφ(X2),∇dφ(X1, X1)〉

− 2〈∇dφ(X2, X2), (∇
2τ(φ))(X2, X2)〉.
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But

〈τ(φ),∇X2∇X2τ(φ)〉 = −
1
21|τ(φ)|

2
−

1
2 X1 X1(|τ(φ)|

2)− |∇X2τ(φ)|
2,

so

(1R S2)(X1, X1)=−2K M S2(X1, X1)+
{

K M
|τ(φ)|2+1|τ(φ)|2

}
g(X1, X1)

+ (∇d|τ(φ)|2)(X1, X1),

with a similar expression for (1R S2)(X2, X2). Therefore

1R S2 =−2K M S2+∇d(|τ(φ)|2)+{K M
|τ(φ)|2+1|τ(φ)|2}g. �

The expression for the Laplacian of the biharmonic stress-energy tensor on a
surface is simple enough to be contracted with S2 itself and combined with the
divergence theorem, if the domain is assumed to be compact. The ensuing integral
formula tightly binds the tensor S2, the Gaussian curvature and the norm of the
tension field together, and conditions on two of them determine the third.

More geometrical applications will be found for Riemannian immersions in the
next section.

Theorem 6. Let φ : M2
→ N n be a biharmonic map and assume M2 is compact.

Then ∫
M
|∇S2|

2 vg + 2
∫

M
K M

(
|S2|

2
−
|τ(φ)|4

2

)
vg =

∫
M
|d(|τ(φ)|2)|2 vg,

where K M is the Gaussian curvature of (M2, g).

Proof. Observe that

div〈S2, d(|τ(φ)|2)〉 = 〈div S2, d(|τ(φ)|2)〉+ 〈S2,Hess(|τ(φ)|2)〉.

As div S2 = 0, we have∫
M
〈S2,Hess(|τ(φ)|2)〉 vg =

∫
M

div{〈S2, d(|τ(φ)|2)〉} vg = 0,

which combined with the classical equality∫
M
〈1R S2, S2〉 vg =

∫
M
|∇S2|

2 vg

gives the theorem. �

Remark 7. Note that the term 2|S2|
2
− |τ(φ)|4 is always nonnegative since it is

equal to (S2(X1, X1)− S2(X2, X2))
2
+ 4S2

2(X1, X2), and |S2|
2
= |τ(φ)|4/2 if and

only if S2 = |τ(φ)|
2g/2.
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A biharmonic map with parallel stress-energy tensor must have a tension field of
constant norm [Loubeau et al. 2008], but Proposition 5 shows greater restrictions
for two-dimensional domains.

Corollary 8. Let φ : M2
→ N n be a biharmonic map, and assume M is compact

and ∇S2 = 0. Then |τ(φ)| is constant and
∫

M K M vg = 0 or S2 = |τ(φ)|
2g/2.

Proof. If ∇S2 = 0, then its norm and trace, |τ(φ)|2, are constant, hence(
|S2|

2
−
|τ(φ)|4

2

)∫
M

K M vg = 0. �

If the norm of the tension field is constant, we can deduce a partial converse for
nonnegative curvature.

Corollary 9. Let φ : (M2, g)→ (N n, h) be a proper -biharmonic map with |τ(φ)|2

constant. Assume M is compact and K M
≥ 0. Then S2 is parallel and M is flat or

S2 = |τ(φ)|
2g/2.

3. Constant mean curvature surfaces

To be able to offer conditions with greater geometrical content, we concentrate our
applications on Riemannian immersions. The recurrent condition on the map is
pseudoumbilicity, as an equality between the shape operator AH in the direction of
the mean curvature vector field H and the metric.

The pivotal role of pseudoumbilical immersions, already observed in the study
of the biharmonic stress-energy tensor (see [Loubeau et al. 2008]), emerges again
in connection with the curvature of the domain surface, sometimes to the extent of
determining its topology.

In the absence of compactness, the divergence theorem is substituted with a
parabolicity argument on constant mean curvature surfaces, associated with a bound
on the curvature tensor of the target space.

Finally, working with complex coordinates on a Riemann surface, the (2, 0)-part
of the H -component of the second fundamental form B is shown to be holomorphic
if and only if the mean curvature is constant.

Recall that if φ : M2
→ N is a pseudoumbilical proper-biharmonic Riemannian

immersion then it is CMC. As a consequence, and since S2 =−2|H |2g+ 4AH , a
rewording of Corollaries 8 and 9 is as follows:

Corollary 10. Let φ : (M2, g)→ (N n, h) be a proper-biharmonic Riemannian
immersion from a compact oriented surface, with∇AH =0. Then M is topologically
a torus or pseudoumbilical.
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Corollary 11. Let φ : (M2, g)→ (N n, h) be a CMC proper-biharmonic Riemann-
ian immersion. Assume M is compact and K M

≥ 0. Then ∇AH = 0 and M is flat
or pseudoumbilical.

The next result shows that pseudoumbilical points allow some flexibility of the
curvature; since away from these points special coordinates exist in which the metric
is conformally flat (with a globally defined factor), the shape operator has a simple
expression, while its eigenvalues can be computed from the mean curvature vector
field (see [Hasanis and Vlachos 1996] for a similar result).

Theorem 12. Let φ : (M2, g)→ (N n, h) be a CMC proper-biharmonic Riemannian
immersion. We denote by λ1 and λ2 the principal curvatures of M corresponding
to AH , with λ1 ≥ λ2, and let µ = λ1 − λ2. Consider p ∈ M such that µ(p) > 0;
that is, p is a nonpseudoumbilical point. Then, around p there is a local chart
(U ; x, y) which is both isothermal and a line of curvature coordinate system for
AH . We have, on U ,

g =
1
µ
(dx2
+ dy2), 〈AH ( · ), · 〉 =

1
µ
(λ1 dx2

+ λ2 dy2),

2∑
i=1

RN (X i , H, X i , H)− |∇⊥H |2− 2|H |4 > 0,

and

λ1 = |H |2+

√
2

2

√∑2

i=1
RN (X i , H, X i , H)− |∇⊥H |2− 2|H |4 ,

λ2 = |H |2−

√
2

2

√∑2

i=1
RN (X i , H, X i , H)− |∇⊥H |2− 2|H |4 ,

with X1 =
√
µ∂x , X2 =

√
µ∂y. Moreover

1 ln
( 2∑

i=1

RN (X i , H, X i , H)− |∇⊥H |2− 2|H |4
)
=−4K M ,

and, in codimension one, the Gauss equation becomes

RiemN (X1, X2)= K M
− 2|H |2+

1
2|H |2

RicciN (H, H).

Proof. Let λ1 and λ2 be the principal curvatures in the direction of H ; that is, λ1

and λ2 are the eigenvalues of AH . In an open neighborhood U around a nonpseu-
doumbilical point p, λ1 > λ2 on U and λ1, λ2 ∈ C∞(U ) (in general they are only
continuous), and therefore µ= λ1− λ2 is a positive smooth function on U .
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Let {X1, X2} be a local orthonormal frame on U such that AH (X1)= λ1 X1 and
AH (X2)= λ2 X2. We consider ω2

1, ω
1
2 ∈

∧1
(U ) defined by

∇X1 = ω
2
1 X2 and ∇X2 = ω

1
2 X1.

Clearly ω2
1 = −ω

1
2. If we put X = Z = X1 and Y = X2, the Codazzi equation

becomes

RN (X1, H, X2, X1)

=−ω1
2(X1)µ− X2λ1−〈B(X2, X1),∇

⊥

X1
H〉+ 〈B(X1, X1),∇

⊥

X2
H〉.

Recall that, since |H | is constant, the tangent part of the biharmonic equation is

trace A∇⊥· H ( · )+ trace(RN (dφ( · ), H)dφ( · ))T = 0.

Taking the inner product with X2, we have

〈B(X2, X1),∇
⊥

X1
H〉+ 〈B(X2, X2),∇

⊥

X2
H〉+ RN (X1, H, X2, X1)= 0;

thus
ω1

2(X1)µ+ X2λ1 = 2〈H,∇⊥X2
H〉 = 0

and

ω1
2(X1)=−

X2λ1

µ
.

Note that

X2(λ2)= X2〈AH (X2), X2〉 = X2〈B(X2, X2), H〉 = −X2λ1,

therefore

ω1
2(X1)=

1
2

(
−

X2λ1

µ
+

X2λ2

µ

)
=−

1
2

X2µ

µ
.

Exchanging X1 and X2, we similarly obtain

ω1
2(X2)=

1
2

X1µ

µ
,

therefore

ω1
2 =−

1
2

X2µ

µ
ω1+

1
2

X1µ

µ
ω2.

The Gauss equation implies that

dω1
2(X1, X2)= K M

;

that is,

K M
=

1
2(X1 X1 lnµ+ X2 X2 lnµ)− (ω1

2(X1))
2
− (ω1

2(X2))
2,
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but

∇X1 X1 =
1
2(X2 lnµ)X2, (∇X1 X1)(lnµ)= 1

2(X2 lnµ)2,

(ω1
2(X1))

2
=

1
4(X2 lnµ)2 = 1

2(∇X1 X1)(lnµ),

while

∇X2 X2 =
1
2(X1 lnµ)X1, (∇X2 X2)(lnµ)= 1

2(X1 lnµ)2,

(ω1
2(X2))

2
=

1
4(X1 lnµ)2 = 1

2(∇X2 X2)(lnµ).

Therefore
1 lnµ=−2K M .

Since [
1
√
µ

X1,
1
√
µ

X2

]
= 0,

there exist coordinate functions (x, y) on U such that ∂/∂x = X1/
√
µ and ∂/∂y =

X2/
√
µ. Moreover, the normal part of the biharmonicity equation

1⊥H + trace B( · , AH · )+ trace(RN ( · , H) · )⊥ = 0

implies, when H is constant,

|∇
⊥H |2+ |AH |

2
−

2∑
i=1

RN (X i , H, X i , H)= 0,

and, since
λ1+ λ2 = 2|H |2 and λ2

1+ λ
2
2 = |AH |

2,

we deduce that

|AH |
2
− 2|H |4 =

(λ1− λ2)
2

2
,

hence

λ1− λ2 =
√

2

√∑2

i=1
RN (X i , H, X i , H)− |∇⊥H |2− 2|H |4. �

Remark 13. i) If n=3, we can replace
∑2

i=1 RN (X i , H, X i , H) by RicciN (H, H).

ii) Let φ : (M2, g)→ (N , h) be a CMC proper-biharmonic Riemannian immersion.
If (M2, g) is complete and has no pseudoumbilical point then its universal cover is
(globally) conformally equivalent to R2.

Corollary 14. Let φ : (M2, g)→ N 3(c) be a CMC proper-biharmonic Riemannian
immersion in a three-dimensional real space form. Then it is umbilical.
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Proof. If there exists a nonumbilical point p0 ∈ M , then, around p0, we have

RiemN (X1, X2)= K M
− 2|H |2+

1
2|H |2

RicciN (H, H)

and
K M
=−

1
41 ln(RicciN (H, H)− 2|H |4),

but RicciN (H, H)= 2c|H |2 is constant, so K M is zero. On the other hand, the first
equation implies that c = K M

− 2|H |2+ c, which contradicts K M
= 0. �

As the formulas for λ1 and λ2 in Theorem 12 remain valid also for pseudoumbil-
ical points, we deduce:

Corollary 15. Let φ : (M2, g)→ (N 3, h) be a CMC proper-biharmonic Riemannian
immersion. Assume that there exists c > 0 such that RicciN (U,U ) ≥ c|U |2 with
|H |2 ∈ (0, c/2). Then M2 has no pseudoumbilical point.

Corollary 16. Let φ : (M2, g)→ (N n, h) be a CMC proper-biharmonic Riemann-
ian immersion. Assume M is compact, oriented and has no pseudoumbilical point;
then M is topologically a torus.

Corollary 17. Let φ : (M2, g)→ (N n, h) be a proper-biharmonic Riemannian
immersion. Assume that λ1 and λ2 are constant; then ∇AH = 0, and M is flat or
pseudoumbilical.

If M is not compact, we need some assumption on the curvature of the target
space (see also [Fetcu and Pinheiro 2013, Proposition 4.6 and 4.7]).

Proposition 18. Let φ : (M2, g)→ (N n, h) be a CMC proper-biharmonic Riemann-
ian immersion. Assume M is noncompact and complete and K M is nonnegative.
Assume that RiemN

≤ K0, where K0 > 0 (in the sense that RN (U, V,U, V )≤ K0

for all {U, V } orthonormal). Then ∇AH = 0, and M is flat or pseudoumbilical.

Proof. By the previous formulas for the Laplacian of S2, we have

−
1
21|S2|

2
=−〈1R S2, S2〉+ |∇S2|

2

= K M(2|S2|
2
− |τ(φ)|4)+ |∇S2|

2,

which must be nonnegative (Remark 7); therefore |S2|
2 is a subharmonic function

and bounded from above since, for Riemannian immersions,

|S2|
2
= 8(2|AH |

2
− 3|H |4)

and |AH |
2 is itself bounded from above. Indeed if φ is biharmonic, then

1⊥H + trace B( · , AH · )+ trace(RN ( · , H) · )⊥ = 0;
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thus

|AH |
2
=−|∇

⊥H |2+
2∑

i=1

RN (X i , H, X i , H)

≤

2∑
i=1

RN (X i , H, X i , H)≤ 2|H |2K0,

and |AH |
2
≤ 2K0|H |2. As M is complete with K M nonnegative, it is parabolic

and |S2|
2, a subharmonic function bounded from above, must be constant (see

[Huber 1957]):
K M(|AH |

2
− 4|H |4)= 0,

while ∇AH = 0; in particular, |AH |
2 is constant. �

Remark 19. When the dimension of the target is three, we can replace the curvature
condition by an upper bound on the Ricci tensor.

The Hopf theorem [1983] shows that a compact simply connected CMC surface
immersed in a three-dimensional Euclidean space must be umbilical, hence an
embedded round sphere, and the condition of biharmonicity allows us to extend
this to any codomain. This result has some strict implications on the set of pseu-
doumbilical points and hints at the difficulties of working with non-CMC surfaces.
An interesting parallel can be drawn with [Fetcu and Pinheiro 2013].

Theorem 20. Let φ : (M2, g) → (N n, h) be a proper-biharmonic Riemannian
immersion with mean curvature vector field H , with M2 oriented. Let z be a
complex coordinate on M2; then the function 〈B(∂z, ∂z), H〉 is holomorphic if and
only if the norm of H is constant.

Proof. The tangent part of the biharmonic equation is

grad
|H |2

2
+ trace A∇⊥· H ( · )+ trace(RN (dφ( · ), H)dφ( · ))T = 0.

Let g = λ2(dx2
+ dy2) and

1
2∂x(|H |2)∂x + 1

2∂y(|H |2)∂y+ A
∇
⊥

∂x H (∂x)+ A
∇
⊥

∂y H (∂y)

+(RN (∂x, H)∂x + RN (∂y, H)∂y)T = 0;

therefore

λ2

2
∂x(|H |2)+〈A

∇
⊥

∂x H (∂x), ∂x〉+ 〈A
∇
⊥

∂y H (∂y), ∂x〉+ RN (∂y, H, ∂x, ∂y)= 0,

and

λ2

2
∂y(|H |2)+〈A

∇
⊥

∂x H (∂x), ∂y〉+ 〈A
∇
⊥

∂y H (∂y), ∂y〉+ RN (∂x, H, ∂y, ∂x)= 0,
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which is equivalent to

(1)
λ2

2
∂x(|H |2)+〈B(∂x, ∂x),∇⊥∂x H〉+ 〈B(∂x, ∂y),∇⊥∂y H〉

+RN (∂y, H, ∂x, ∂y)= 0,
and

(2)
λ2

2
∂y(|H |2)+〈B(∂y, ∂x),∇⊥∂x H〉+ 〈B(∂y, ∂y),∇⊥∂y H〉

+RN (∂x, H, ∂y, ∂x)= 0.

Since ∂z = (∂x − i∂y)/2 and ∂ z̄ = (∂x + i∂y)/2, we see that

B(∂z, ∂z)= 1
2(λ

2 H − B(∂y, ∂y)− i B(∂x, ∂y))

and

〈B(∂z, ∂z), H〉 = 1
2(λ

2
|H |2−〈B(∂y, ∂y), H〉− i〈B(∂x, ∂y), H〉).

Next we compute ∂ z̄〈B(∂z, ∂z), H〉:

(∂x + i∂y)
(
λ2
|H |2−〈B(∂y, ∂y), H〉− i〈B(∂x, ∂y), H〉

)
= 2λ

∂λ

∂x
|H |2+ λ2∂x(|H |2)−〈∇⊥∂x B(∂y, ∂y), H〉− 〈B(∂y, ∂y),∇⊥∂x H〉

+ 〈∇
⊥

∂y B(∂x, ∂y), H〉+ 〈B(∂x, ∂y),∇⊥∂y H〉

+ i
{

2λ
∂λ

∂y
|H |2+ λ2∂y(|H |2)−〈∇⊥∂y B(∂y, ∂y), H〉− 〈B(∂y, ∂y),∇⊥∂y H〉

− 〈∇
⊥

∂x B(∂x, ∂y), H〉− 〈B(∂x, ∂y),∇⊥∂x H〉
}

= A+ i B.

With (1),

A = 2λ
∂λ

∂x
|H |2+ 1

2λ
2∂x(|H |2)−〈∇⊥∂x B(∂y, ∂y), H〉− 〈B(∂y, ∂y),∇⊥∂x H〉

+ 〈∇
⊥

∂y B(∂x, ∂y), H〉− 〈B(∂x, ∂x),∇⊥∂x H〉− R(∂y, H, ∂x, ∂y)

= 2λ
∂λ

∂x
|H |2+ 1

2λ
2∂x(|H |2)−〈∇⊥∂x B(∂y, ∂y), H〉+ 〈∇⊥∂y B(∂x, ∂y), H〉

− 〈2λ2 H,∇⊥∂x H〉− R(∂y, H, ∂x, ∂y)

= 2λ
∂λ

∂x
|H |2− 1

2λ
2∂x(|H |2)−〈∇⊥∂x B(∂y, ∂y), H〉+ 〈∇⊥∂y B(∂x, ∂y), H〉

− R(∂y, H, ∂x, ∂y).
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From the Codazzi equation,

〈∇
⊥

∂y B(∂x, ∂y), H〉

= 〈(∇⊥∂y B)(∂x, ∂y), H〉+ 〈B(∇∂y∂x, ∂y), H〉+ 〈B(∂x,∇∂y∂y), H〉

= 〈∇
⊥

∂x B(∂y, ∂y), H〉− 2〈B(∇∂x∂y, ∂y), H〉+ R(∂y, ∂x, H, ∂y)

+〈B(∇∂y∂x, ∂y), H〉+ 〈B(∂x,∇∂y∂y), H〉;

therefore

A = 2λ
∂λ

∂x
|H |2− 1

2λ
2∂x(|H |2)−〈∇⊥∂x B(∂y, ∂y), H〉+ 〈∇⊥∂x B(∂y, ∂y), H〉

− 〈B(∇∂x∂y, ∂y), H〉+ 〈B(∂x,∇∂y∂y), H〉+ R(∂y, ∂x, H, ∂y)

− R(∂y, H, ∂x, ∂y)

= 2λ
∂λ

∂x
|H |2− 1

2λ
2∂x(|H |2)−

〈
B
(

1
λ

(
∂λ

∂y
∂x +

∂λ

∂x
∂y
)
, ∂y

)
, H

〉
+

〈
B
(

1
λ

(
−
∂λ

∂x
∂x +

∂λ

∂y
∂y
)
, ∂x

)
, H

〉
=−

1
2λ

2∂x(|H |2).

Identical arguments for the imaginary part B, using (2), yield

B = 1
2λ

2∂y(|H |2). �

Remark 21. If φ : (M2, g)→ (N n, h) is a CMC proper-biharmonic Riemannian
immersion, with M2 oriented. Then 〈B(∂z, ∂z), H〉dz2 is globally defined and, if
M2 has no pseudoumbilical point, it is equal to dz2/4 and therefore M2 is an affine
manifold.

Corollary 22. Let φ : (M2, g) → (N n, h) be a CMC proper-biharmonic Rie-
mannian immersion, with M2 oriented. If M2 is not pseudoumbilical, then its
pseudoumbilical points are isolated.

Theorem 20 yields:

Theorem 23. Let φ : (M2, g)→ (N n, h) be a CMC proper-biharmonic Riemannian
immersion. If M2 is a topological sphere S2, then M is pseudoumbilical.

Proof. Since 〈B(∂z, ∂z), H〉 = 0, we have

〈B(∂x, ∂x)− B(∂y, ∂y), H〉 = 0 and 〈B(∂x, ∂y), H〉 = 0,

which is equivalent to

〈AH (∂x), ∂x〉 = 〈AH (∂y), ∂y〉 and 〈AH (∂x), ∂y〉 = 〈AH (∂y), ∂x〉 = 0. �
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