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BY HYPERSURFACES

WITH CONSTANT f -MEAN CURVATURE

JUNCHEOL PYO

We study smooth codimension-one foliations F of a smooth metric measure
space whose leaves have the same constant f -mean curvature. Firstly, we
show that all the leaves of F are f -minimal hypersurfaces when either
the smooth metric measure space is compact and has nonnegative Bakry–
Émery Ricci curvature, or the limit of the ratio of the weighted volume of
a geodesic ball B and the weighted area of a geodesic sphere ∂B vanishes.
Secondly, we prove that every leaf of F is strongly f -stable. Lastly, we
show that there is no complete proper foliation of the Gaussian space whose
leaves have the same constant f -mean curvature. In particular, there are
no foliations of Rn+1 whose leaves are complete proper self-similar solutions
for mean curvature flow.

1. Introduction and the statement of results

The study of smooth codimension-one foliations of manifolds has a long history in
mathematics (see [Lawson 1974] and reference therein). In [Barbosa et al. 1987;
1991; Meeks 1988; Oshikiri 1981], there are very interesting results on foliations
whose leaves have constant mean curvature. In this paper, we consider foliations of
a smooth metric measure space whose leaves are hypersurfaces having the same
f -mean curvatures. The main questions we consider here concern the rigidity and
f -minimality of such foliations of a smooth metric measure space. Extending
the classical results (i.e., when f is constant) to a smooth metric measure space
requires f or |∇ f | to be bounded in many cases; see [Morgan 2005; Wei and Wylie
2009], for example. Our proof follows the one from the case where f is constant
[Barbosa et al. 1987; 1991] but without any further assumption on f . Moreover,
for particular weight functions f , we get rigidity results for self-similar surfaces or
translating solitons which are models for singularities of mean curvature flow.
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Recall that a smooth metric measure space (Mn+1, g, f ) is a smooth Riemannian
manifold (Mn+1, g) with a positive density e− f used to weight the volume of
domains and the area of hypersurfaces. Let 6 be an isometrically immersed
hypersurface in (Mn+1, g). Denote by dv and dA the Riemannian volume forms
on M and 6 with respect to g and the induced metric g = i∗g, respectively. Then
the weighted volume and area are given by dvm = e− f dv and dAm = e− f dA,
respectively.

Smooth metric measure spaces naturally arise in various fields. The Gaussian
space, i.e., Euclidean space with the Gaussian density e−π |x |

2
, appears in the study

of probability and statistics. Many interesting solitons in geometric flows (e.g.,
self-similar solutions and translating solitons to the mean curvature flow, and Ricci
solitons to the Ricci flow) are represented by f -minimal hypersurfaces in a smooth
metric measure space (see [Bakry and Émery 1985; Cheng et al. 2012; Colding and
Minicozzi 2012; Huisken and Sinestrari 1999; Morgan 2005; Pyo 2014] and the
references therein).

With the upper bar, we denote the geometric quantities on the ambient space
(Mn+1, g). For example, ∇, d , ∇2, 4, div and Ric, denote the Levi-Civita connec-
tion, exterior differentiation, Hessian, Laplacian, divergence and Ricci tensor of
(Mn+1, g), respectively. For a smooth metric measure space, we naturally consider
the Bakry–Émery Ricci tensor Ric f , which is defined by

Ric f = Ric+∇2 f,

and the f -Laplacian4 f =4−g(∇ f,∇) on M , which is a selfadjoint operator with
respect to the weighted measure dvm . For a smooth vector field ξ , the f -divergence
of ξ is defined by

div f ξ = e f div(e− f ξ).

Let ν be a unit normal vector field to 6 in M . With the induced metric g = i∗g
on 6, the second fundamental form of (6, g) is given by A(X, Y )= g(∇X Y, ν) for
any two tangent vectors X and Y on 6, and the mean curvature by H = tr(A). For
the hypersurface 6 in (M, g, f ), we define the f -mean curvature H f with respect
to ν as follows:

H f = H + g(∇ f, ν),

which is obtained by the first variation formula of the weighted area. For (6, g), ∇,
d , 4 and div denote the Levi-Civita connection, exterior differentiation, Laplacian
and divergence on 6, respectively.

The following is proved for foliations of a compact smooth metric measure space
with nonnegative Bakry–Émery Ricci curvature:
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Theorem 2. Let (Mn+1, g, f ) be a compact smooth metric measure space with
nonnegative Bakry–Émery Ricci curvature and F a codimension-one smooth folia-
tion of M whose leaves have the same constant f -mean curvature. Then every leaf
of F is a totally geodesic and f -minimal hypersurface with vanishing Bakry–Émery
Ricci curvature in the normal direction.

In a smooth metric measure space (Mn+1, g, f ), we define the ratio

3 f (R, p)=
vol f (∂Bp(R))

vol f (Bp(R))
,

where vol f (Bp(R)) and vol f (∂Bp(R)) are the weighted volume of the geodesic
ball Bp(R) and the geodesic sphere ∂Bp(R) for a point p, respectively. For smooth
metric measure spaces of vanishing 3 f (R, p) as R→∞, we show:

Theorem 6. Let F be an orientable codimension-one foliation of (Mn+1, g, f )
such that every orientable leaf L of F has the same constant f -mean curvature.
If limR→∞ = 3 f (R, p) = 0 for some p ∈ M , then leaves of F are f -minimal
hypersurfaces of (Mn+1, g, f ).

We remark that the Gaussian space and (Rn+1, ds0, f = xn+1) enjoy the property
that, for any point p, the ratio 3 f (R, p) vanishes as R→∞.

In Section 3, we prove:

Theorem 11. Let (Mn+1, g, f ) be an orientable smooth metric measure space
and F a smooth codimension-one foliation of M by orientable leaves. If each
leaf of F has the same constant f -mean curvature, then each leaf of F is strongly
f -stable.

Theorem 13. There are no complete proper foliations in the Gaussian space
(Rn+1, ds0, f = |X |2/2) whose leaves have the same constant f -mean curvature.
In particular, there are no foliations of Rn+1 whose leaves are complete proper
self-similar solutions for mean curvature flow.

2. Foliation whose leaves are f -minimal hypersurfaces

Let us start with the key lemma about the f -divergence of ∇νν. The proof is
analogous to that of Proposition 2.14 in [Barbosa et al. 1991], but we include its
proof in the Appendix for the sake of completeness.

Lemma 1. Let F be a smooth codimension-one foliation of a smooth metric mea-
sure space (Mn+1, g, f ) and ν a unit normal vector field to the leaves of F in some
open subset U of M. Define a tangent vector field ξ = ∇νν. Then on U , we have:

(a) div f ν =−H f ;

(b) div f ξ = div f ξ − |ξ |
2
g;
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(c) div f ξ = |ξ |
2
g + |A|

2
+Ric f (ν, ν)− νH f .

Theorem 2. Let (Mn+1, g, f ) be a compact smooth metric measure space with
nonnegative Bakry–Émery Ricci curvature and F a codimension-one smooth folia-
tion of M whose leaves have the same constant f -mean curvature. Then every leaf
of F is a totally geodesic and f -minimal hypersurface with vanishing Bakry–Émery
Ricci curvature in the normal direction.

Proof. Since H f is constant in M , ν(H f )≡ 0. Then Lemma 1(c) implies that

div f ξ = |A|2+ |ξ |2g +Ric f (ν, ν)

on any leaf of F, and therefore Lemma 1(b) implies that

div f ξ = |A|2+Ric f (ν, ν).

Recall that dvm = e− f dv. Integrating both sides and applying Stokes’ theorem
on M , we get

0=
∫

M
div f ξ dvm =

∫
M
|A|2+Ric f (ν, ν) dvm,

that is, |A|2= 0 and Ric f (ν, ν)= 0 on M . Therefore, every leaf is a totally geodesic
hypersurface with vanishing Bakry–Émery Ricci curvature in the normal direction.

Since M is compact, there exists a point m ∈ M such that f (m) = maxM f .
At m, we have ∇ f (m) = 0. Therefore H f (L) = −g(∇ f (m), ν) = 0, where L is
the leaf which contains the point m. So, H f ≡ 0 on any leaf of F. This completes
the proof. �

Remark 3. (1) The compactness condition in Theorem 2 is necessary. The smooth
metric measure space (Rn+1, ds0, f = xn+1) has vanishing Bakry–Émery Ricci
curvature and is noncompact. Translating solitons under the mean curvature flow
do not change shape and are just translated in a direction with a constant speed. Up
to rotating and scaling, they are represented by xn+1-minimal hypersurfaces in the
smooth metric measure space (Rn+1, ds0, f = xn+1) (see [Huisken and Sinestrari
1999]). By [Altschuler and Wu 1994] for n=2, and [Gui, Jian and Ju 2010] for n≥3,
there exists an entire rotationally symmetric strictly convex graphical hypersurface
U , which gives a foliation by xn+1-minimal hypersurfaces. But clearly U is not a
totally geodesic hypersurface.

(2) The theorem of (Bonnet and) Myers [1941] says that a complete Riemannian
manifold M is compact when M has Ricci curvature bounded from below by a
positive constant. But this does not hold in general for a smooth metric measure
space. One such example is the Gaussian space (Rn+1, ds0, f = |X |2/2). There are
some generalizations of the Bonnet–Myers theorem with conditions on f [Morgan
2005; Wei and Wylie 2009].
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Theorem 4. Let (Mn+1, g, f ) be a smooth metric measure space with positive
Bakry–Émery Ricci curvature. Any smooth codimension-one foliation of M whose
leaves have the same constant f -mean curvature cannot have a compact leaf.

Proof. Suppose that, on the contrary, there exists a compact leaf L in the foliation F.
Lemma 1(c) implies that

div f ξ = |ξ |
2
g + |A|

2
+Ric f (ν, ν)

on L . Weighting both sides by dAm = e− f dA, integrating, and applying Stokes’
theorem on L , we get a contradiction. �

Let F be a smooth orientable codimension-one foliation and L a leaf of F. The
weighted volume element dAm = ϕ f of L is defined as follows:

ϕ f (X1, . . . , Xn)= e− f g(X1 ∧ · · · ∧ Xn, ν),

where the X i are tangent vector fields (i = 1, . . . , n).
With a positively oriented frame field {e1, . . . , en, en+1= ν}, and its dual coframe
{ω1, . . . , ωn+1}, the weighted volume elements dAm = ϕ f and dvm = 8m are
expressed by

ϕ f = e− f ω1 ∧ · · · ∧ωn,

8 f = e− f ω1 ∧ · · · ∧ωn+1.

Both these weighted volume elements are related by the Rummler-type identity
[Rummler 1979] as follows:

Lemma 5. Let (Mn+1, g, f ) be an orientable smooth metric measure space and F

a smooth codimension-one foliation of M by orientable leaves. Then

dϕ f = (−1)n+1 H f8 f ,

where ϕ f is a weighted volume element of leaves of F.

Proof. Taking exterior differentiation on ϕ f , we have

dϕ f =−e− f d f ∧ω1 ∧ · · · ∧ωn + e− f d(ω1 ∧ · · · ∧ωn).

Since
d f = e1 f ω1+ · · ·+ en+1 f ωn+1

and
d(ω1 ∧ · · · ∧ωn)= (−1)n+1 Hω1 ∧ · · · ∧ωn+1,

we have

dϕ f = (−1)n+1e− f (en+1 f )ω1 ∧ · · · ∧ωn+1+ (−1)n+1e− f Hω1 ∧ · · · ∧ωn+1

= (−1)n+1 H f8 f . �
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Let p be a point in M , and Bp(R) a geodesic ball in (M, g) of radius R centered
at p. The boundary of Bp(R) is denoted by ∂Bp(R). Define the ratio of the weighted
volume of Bp(R) and ∂Bp(R) as follows:

3 f (R, p)=
vol f (∂Bp(R))

vol f (Bp(R))
,

where vol f (Bp(R)) and vol f (∂Bp(R)) are the weighted volumes of Bp(R) and
∂Bp(R), respectively.

Theorem 6. Let F be an orientable codimension-one foliation of (Mn+1, g, f )
such that every orientable leaf L of F has the same constant f -mean curvature. If
limR→∞3 f (R, p)= 0 for some p ∈ M , then leaves of F are f -minimal hypersur-
faces of (Mn+1, g, f ).

Proof. Suppose not. Then, choosing a normal vector field, we may assume that

(−1)n+1 H f > 0.

Let σ f be a weighted volume element of ∂Bp(R). That is, for a local orthonormal
frame field {X1, . . . , Xn} which is tangent to ∂Bp(R),

σ f (X1, . . . , Xn)= e− f .

On ∂Bp(R), we have ϕ f ≤ σ f .
By Lemma 5, we have

vol f (Bp(R))=
∫

Bp(R)
8 f =

∫
Bp(R)

(−1)n+1

H f
dϕ f

=
(−1)n+1

H f

∫
∂Bp(R)

ϕ f

≤
(−1)n+1

H f

∫
∂Bp(R)

σ f

=
(−1)n+1

H f
vol f (∂Bp(R)).

Therefore
0< (−1)n+1 H f ≤

vol f (∂Bp(R))

vol f (Bp(R))
=3 f (R, p).

As R goes to∞, we get a contradiction, and this completes the proof. �

Let X = (x1, . . . , xn+1) be the position vector in Rn+1 and |X |2= x2
1+· · ·+x2

n+1.
Self-shrinkers under the mean curvature flow in Rn+1 are represented by |X |2/2-
minimal hypersurfaces in the Gaussian space (Rn+1, ds0, f =|X |2/2) (see [Colding
and Minicozzi 2012]).
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By direct computation,

lim
R→∞

vol f (∂Bp(R))

vol f (Bp(R))
= 0

in the Gaussian space, and therefore the following corollary is obtained:

Corollary 7. Let F be an orientable codimension-one foliation of the Gaussian
space such that every orientable leaf L of F has the same constant f -mean curvature.
Then leaves of F are self-shrinkers.

By direct computation,

lim
R→∞

vol f (∂Bp(R))

vol f (Bp(R))
= 0

also holds in (Rn+1, ds0, f = xn+1), and therefore the following corollary is ob-
tained:

Corollary 8. Let F be an orientable codimension-one foliation of (Rn+1, ds0, f =
xn+1) such that every orientable leaf L of F has the same constant f -mean curva-
ture. Then leaves of F are translating solitons.

Let 6 be a hypersurface in (Rn+1, ds0, f = xn+1) and H f its f -mean curvature.
Translating 6 in the direction of en+1= (0, . . . , 0, 1)∈Rn+1, the f -mean curvature
does not change. Using this property we get a Bernstein-type theorem for constant
f -mean curvature surfaces.

Corollary 9. Let xn+1 = F(x1, . . . , xn) be a hypersurface of constant f -mean
curvature defined on {xn+1 = 0} in (Rn+1, ds0, f = xn+1). Then the f -mean
curvature must be zero.

Proof. Consider the graph graph(F) of the function F . The family

{graph(F)+ ten+1}t∈R

gives a foliation whose leaves are hypersurfaces in (Rn+1, ds0, f = xn+1) with the
same constant f -mean curvature. From Corollary 8, H f vanishes. �

When f is a constant, then Corollary 9 becomes the corollary from p. 82 of
[Chern 1965].

3. Stability of foliations whose leaves have the same constant f -mean
curvature

Let 6n be a constant f -mean curvature hypersurface in (Mn+1, g, f ). The f -
stability operator L f is defined as

L f := 4 f + |A|2+Ric f (ν, ν),
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where ν is a unit normal vector field of 6 (see [Cheng et al. 2012; Colding and
Minicozzi 2012; Espinar 2012]).

Definition 10. A two-sided hypersurface 6 in (Mn+1, g, f ) with constant f -mean
curvature is said to be strongly f -stable if for any compactly supported smooth
function u ∈ C∞c (6), it satisfies

−

∫
6

uL f u dAm =

∫
6

|∇u|2− (|A|2+Ric f (ν, ν))u2 dvm ≥ 0.

If 6 is an f -minimal hypersurface, then strong f -stability is equivalent to usual
f -stability.

Theorem 11. Let (Mn+1, g, f ) be an orientable smooth metric measure space
and F a smooth codimension-one foliation of M by orientable leaves. If each
leaf of F has the same constant f -mean curvature, then each leaf of F is strongly
f -stable.

Proof. Let L be a leaf of F and u a smooth real-valued function which is compactly
supported on a domain D in L (therefore, u is zero on ∂D). Then

−uL f u =−u4 f u− (|A|2+Ric f (ν, ν))u2
=−u4 f u+ u2 div f ξ + u2

|ξ |2g.

Here we apply equation (c) in Lemma 1.
Since div f (u2ξ)= 2ug(∇u, ξ)+ u2 div f ξ , we get

−uL f u =−u4 f u− 2ug(∇u, ξ)+ u2
|ξ |2g + div f (u2ξ).

Weighting both sides by dvm , integrating over D, and applying Stokes’ theorem
twice for the first and the last terms, we have∫

D
−uL f u dvm =

∫
D
−u4 f u− 2ug(∇u, ξ)+ u2

|ξ |2g + div f (u2ξ) dvm

=

∫
D
|∇u|2g − 2ug(∇u, ξ)+ u2

|ξ |2g dvm

=

∫
D
|∇u− uξ |2g dvm ≥ 0.

Since u is an arbitrary function, we conclude that L is f -stable. �

Remark 12. Let 6 be a graph over a domain �⊂ {xn+1 = 0} in (Rn+1, ds0, f =
xn+1) having constant f -mean curvature. Denote 6t = 6 + ten+1, t ∈ R. Then,
by Theorem 11, every 6t is strongly f -stable. For example, the family of “grim
reapers” 6t = {(x1, . . . , xn, t − ln cos x1 : |x1| < π/2)} is a foliation in the open
manifold {(x1, . . . , xn+1) : |x1|< π/2)} in (Rn+1, ds0, f = xn+1). So, every grim
reaper is strongly f -stable.
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Let F be a foliation of the Gaussian space (Rn+1, ds0, f = |X |2/2). If every
leaf of F is proper (respectively, complete), then F is said to be proper (respec-
tively, complete).

Theorem 13. There are no complete proper foliations in the Gaussian space
(Rn+1, ds0, f = |X |2/2) whose leaves have the same constant f -mean curvature.
In particular, there are no foliations of Rn+1 whose leaves are complete proper
self-similar solutions for mean curvature flow.

Recall Colding and Minicozzi’s result for self-shrinkers in the Gaussian space:

Theorem 14 [Colding and Minicozzi 2012]. There are no f -stable complete self-
shrinkers without boundary and with polynomial volume growth in the Gauss-
ian space.

Proof of Theorem 13. Suppose, on the contrary, that F is a complete, proper foliation
whose leaves have the same f -mean curvature. By Corollary 7 and foliated structure,
every leaf L of F is a self-shrinker without boundary. By Theorem 11, L is f -stable.
Cheng and Zhou [2013] proved that for self-shrinkers, properness is equivalent
to polynomial volume growth. Therefore, L is an f -stable complete self-shrinker
without boundary and with polynomial volume growth in the Gaussian space. This
contradicts Theorem 14. �

Appendix

Let F be a smooth codimension-one foliation of a smooth metric measure space
(Mn+1, g, f ). On a leaf of F, the induced metric is denoted by g = i∗g, where i
is the inclusion map. Let {e1, . . . , en+1} be a locally defined orthonormal frame
field of the tangent bundle of M such that en+1 is normal to the leaves of F. Let us
denote the dual coframe field by {ω1, . . . , ωn+1}, that is, ωA(eB)= δAB .

The connection one-forms ωAB are given by exterior differentiation d of the ωA,
and are uniquely defined by Cartan’s first structure equations:

dωA = ωAB ∧ωB, ωAB +ωB A = 0.

Cartan’s second structure equations yield the curvature tensor

(1) dωAB = ωAC ∧ωC B +�AB,

where
�AB =

1
2 RABC DωD ∧ωC .

Throughout, we adopt Einstein’s convention and the following indexing convention:

1≤ i, j, k, l ≤ n, 1≤ A, B,C, D ≤ n+ 1.
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The second fundamental form A of the leaves of F is given by

(2) ωn+1i =−hi jω j ,

where

hi j = g(A(ei , e j ), en+1)= g(∇ei e j , en+1).

The mean curvature is H =
∑

i hi i .

Proof of Lemma 1. Consider an adapted orthonormal frame field {e1, . . . , en+1}

on U such that en+1 = ν. We have

div f ν = e f div(e− f ν)= e f g(∇eA e− f ν, eA)

=−g(eA f ν, eA)+ g(∇eAν, eA)

=−g(∇ f, ν)− H =−H f .

Therefore, the equation (a) holds.
Furthermore,

div f ξ = e f div(e− f ξ)

= e f g(∇ei e
− f ξ, ei )+ g(∇en+1e− f ξ, en+1)

= div f ξ − g(ξ,∇en+1en+1)= div f ξ − |ξ |
2
g.

Therefore, the equation (b) holds.
Since du = du+ en+1(u)ωn+1 for any smooth function u in U , from (2) we get

ωn+1 i =−hi jω j + g(ξ, ei )ωn+1.(3)

On the one hand, from (1), we have

dωn+1 i = ωn+1 j ∧ω j i + Rn+1 i n+1 kωk ∧ωn+1+
1
2 Rn+1i jkωk ∧ω j

=
(
−h jkω j i (en+1)− g(ξ, ei )ω j i (ek)+ Rn+1 i n+1 k

)
ωk ∧ωn+1

+ terms with ωk ∧ωl .

On the other hand, from (3),

dωn+1i =−(dhi j + en+1hi jωn+1)∧ω j − hi jω jk ∧ωk − hi jω jn+1 ∧ωn+1

+ dg(ξ, ei )ωn+1+ g(ξ, e1)ωn+1 j ∧ω j

=
(
en+1hik + hi jω jk(en+1)− hi j h jk + dg(ξ, ei )(ek)

− g(ξ, ei )g(ξ, e j )
)
ωk ∧ωn+1+ terms with ωk ∧ωl .

By investigating both of the coefficients of ωk ∧ωn+1 in dωn+1i , we have
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(4) g(ξ, ei )g(ξ, ek)+ hi j h jk + Rn+1in+1k − (dhik + hi jω jk + h jkω j i )(en+1)

= (dg(ξ, ei )+ g(ξ, ei )ω j i )(ek).

Since dg(ξ, ei )(ek)= dg(ξ, e j )(ek) and g(∇ei ξ, ei )= dg(ξ, ei )+ g(ξ, e j )ω j i (ei ),

div f ξ = e f div(e− f ξ)= div ξ − g(∇ f, ξ)

=
∑

i
(dg(ξ, ei )+ g(ξ, e j )ω j i )(ei )− g(∇ f, ξ)

=
∑

i
g(ξ, ei )

2
+ |A|2+Ric(ν, ν)− νH − g(∇ f, ξ) (by (4))

= |ξ |2g + |A|
2
+Ric(ν, ν)− νH − νg(∇ f, ν)+ νg(∇ f, ν)− g(∇ f, ξ)

= |ξ |2g + |A|
2
− νH f +Ric(ν, ν)+∇2 f (ν, ν)

= |ξ |2g + |A|
2
− νH f +Ric f (ν, ν).

This completes the proof. �

References

[Altschuler and Wu 1994] S. J. Altschuler and L. F. Wu, “Translating surfaces of the non-parametric
mean curvature flow with prescribed contact angle”, Calc. Var. Partial Differential Equations 2:1
(1994), 101–111. MR 97b:58032 Zbl 0812.35063

[Bakry and Émery 1985] D. Bakry and M. Émery, “Diffusions hypercontractives”, pp. 177–206 in
Séminaire de Probabilités, XIX (Strasbourg, 1983–1984), edited by J. Azéma and M. Yor, Lecture
Notes in Math. 1123, Springer, Berlin, 1985. MR 88j:60131 Zbl 0561.60080

[Barbosa et al. 1987] J. L. M. Barbosa, J. M. Gomes, and A. M. Silveira, “Foliation of 3-dimensional
space forms by surfaces with constant mean curvature”, Bol. Soc. Brasil. Mat. 18:2 (1987), 1–12.
MR 90j:53054 Zbl 0747.53029

[Barbosa et al. 1991] J. L. M. Barbosa, K. Kenmotsu, and G. Oshikiri, “Foliations by hypersurfaces
with constant mean curvature”, Math. Z. 207:1 (1991), 97–107. MR 92b:53034 Zbl 0731.53033

[Cheng and Zhou 2013] X. Cheng and D. Zhou, “Volume estimate about shrinkers”, Proc. Amer.
Math. Soc. 141:2 (2013), 687–696. MR 2996973 Zbl 1262.53030

[Cheng et al. 2012] X. Cheng, T. Mejia, and D. Zhou, “Eigenvalue estimate and compactness for
closed f -minimal surfaces”, preprint, 2012. arXiv 1210.8448

[Chern 1965] S.-S. Chern, “On the curvatures of a piece of hypersurface in Euclidean space”, Abh.
Math. Sem. Univ. Hamburg 29 (1965), 77–91. MR 32 #6376 Zbl 0147.20901

[Colding and Minicozzi 2012] T. H. Colding and W. P. Minicozzi, II, “Generic mean curvature flow,
I: Generic singularities”, Ann. of Math. (2) 175:2 (2012), 755–833. MR 2993752 Zbl 1239.53084

[Espinar 2012] J. M. Espinar, “Manifolds with density, applications and gradient Schrödinger opera-
tors”, preprint, 2012. arXiv 1209.6162

[Gui, Jian and Ju 2010] C. Gui, H. Jian, and H. Ju, “Properties of translating solutions to mean curva-
ture flow”, Discrete Contin. Dyn. Syst. 28:2 (2010), 441–453. MR 2011h:35081 Zbl 1193.35085

[Huisken and Sinestrari 1999] G. Huisken and C. Sinestrari, “Convexity estimates for mean curvature
flow and singularities of mean convex surfaces”, Acta Math. 183:1 (1999), 45–70. MR 2001c:53094
Zbl 0992.53051

http://dx.doi.org/10.1007/BF01234317
http://dx.doi.org/10.1007/BF01234317
http://msp.org/idx/mr/97b:58032
http://msp.org/idx/zbl/0812.35063
http://dx.doi.org/10.1007/BFb0075847
http://msp.org/idx/mr/88j:60131
http://msp.org/idx/zbl/0561.60080
http://dx.doi.org/10.1007/BF02590019
http://dx.doi.org/10.1007/BF02590019
http://msp.org/idx/mr/90j:53054
http://msp.org/idx/zbl/0747.53029
http://dx.doi.org/10.1007/BF02571378
http://dx.doi.org/10.1007/BF02571378
http://msp.org/idx/mr/92b:53034
http://msp.org/idx/zbl/0731.53033
http://dx.doi.org/10.1090/S0002-9939-2012-11922-7
http://msp.org/idx/mr/2996973
http://msp.org/idx/zbl/1262.53030
http://msp.org/idx/arx/1210.8448
http://dx.doi.org/10.1007/BF02996311
http://msp.org/idx/mr/32:6376
http://msp.org/idx/zbl/0147.20901
http://dx.doi.org/10.4007/annals.2012.175.2.7
http://dx.doi.org/10.4007/annals.2012.175.2.7
http://msp.org/idx/mr/2993752
http://msp.org/idx/zbl/1239.53084
http://msp.org/idx/arx/1209.6162
http://dx.doi.org/10.3934/dcds.2010.28.441
http://dx.doi.org/10.3934/dcds.2010.28.441
http://msp.org/idx/mr/2011h:35081
http://msp.org/idx/zbl/1193.35085
http://dx.doi.org/10.1007/BF02392946
http://dx.doi.org/10.1007/BF02392946
http://msp.org/idx/mr/2001c:53094
http://msp.org/idx/zbl/0992.53051


242 JUNCHEOL PYO

[Lawson 1974] H. B. Lawson, Jr., “Foliations”, Bull. Amer. Math. Soc. 80 (1974), 369–418. MR 49
#8031 Zbl 0293.57014

[Meeks 1988] W. H. Meeks, III, “The topology and geometry of embedded surfaces of constant mean
curvature”, J. Differential Geom. 27:3 (1988), 539–552. MR 89h:53025 Zbl 0617.53007

[Morgan 2005] F. Morgan, “Manifolds with density”, Notices Amer. Math. Soc. 52:8 (2005), 853–858.
MR 2006g:53044 Zbl 1118.53022

[Myers 1941] S. B. Myers, “Riemannian manifolds with positive mean curvature”, Duke Math. J. 8
(1941), 401–404. MR 3,18f Zbl 0025.22704

[Oshikiri 1981] G.-I. Oshikiri, “A remark on minimal foliations”, Tôhoku Math. J. (2) 33:1 (1981),
133–137. MR 83b:57017 Zbl 0437.57013

[Pyo 2014] J. Pyo, “Compact translating solitons with non-empty planar boundary”, preprint, 2014.

[Rummler 1979] H. Rummler, “Quelques notions simples en géométrie Riemannienne et leurs appli-
cations aux feuilletages compacts”, Comment. Math. Helv. 54:2 (1979), 224–239. MR 80m:57021
Zbl 0409.57026

[Wei and Wylie 2009] G. Wei and W. Wylie, “Comparison geometry for the Bakry–Emery Ricci
tensor”, J. Differential Geom. 83:2 (2009), 377–405. MR 2011a:53064 Zbl 1189.53036

Received May 16, 2013. Revised April 8, 2014.

JUNCHEOL PYO

DEPARTMENT OF MATHEMATICS

PUSAN NATIONAL UNIVERSITY

BUSAN 609-735
SOUTH KOREA

jcpyo@pusan.ac.kr

and

SCHOOL OF MATHEMATICS

KOREA INSTITUTE FOR ADVANCED STUDY (KIAS)
SEOUL 130-722
SOUTH KOREA

http://dx.doi.org/10.1090/S0002-9904-1974-13432-4
http://msp.org/idx/mr/49:8031
http://msp.org/idx/mr/49:8031
http://msp.org/idx/zbl/0293.57014
http://projecteuclid.org/euclid.jdg/1214442008
http://projecteuclid.org/euclid.jdg/1214442008
http://msp.org/idx/mr/89h:53025
http://msp.org/idx/zbl/0617.53007
http://www.ams.org/notices/200508/fea-morgan.pdf
http://msp.org/idx/mr/2006g:53044
http://msp.org/idx/zbl/1118.53022
http://dx.doi.org/10.1215/S0012-7094-41-00832-3
http://msp.org/idx/mr/3,18f
http://msp.org/idx/zbl/0025.22704
http://dx.doi.org/10.2748/tmj/1178229500
http://msp.org/idx/mr/83b:57017
http://msp.org/idx/zbl/0437.57013
http://dx.doi.org/10.1007/BF02566270
http://dx.doi.org/10.1007/BF02566270
http://msp.org/idx/mr/80m:57021
http://msp.org/idx/zbl/0409.57026
http://projecteuclid.org/euclid.jdg/1261495336
http://projecteuclid.org/euclid.jdg/1261495336
http://msp.org/idx/mr/2011a:53064
http://msp.org/idx/zbl/1189.53036
mailto:jcpyo@pusan.ac.kr


PACIFIC JOURNAL OF MATHEMATICS
msp.org/pjm

Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

EDITORS

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Robert Finn
Department of Mathematics

Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Don Blasius (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

Daryl Cooper
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2014 is US $410/year for the electronic version, and $535/year for print and electronic.
Subscriptions, requests for back issues and changes of subscribers address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall
#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2014 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:balmer@math.ucla.edu
mailto:finn@math.stanford.edu
mailto:popa@math.ucla.edu
mailto:blasius@math.ucla.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:yang@math.princeton.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 271 No. 1 September 2014

1Proper holomorphic maps between bounded symmetric domains revisited
GAUTAM BHARALI and JAIKRISHNAN JANARDHANAN

25An explicit Majorana representation of the group 32
:2 of 3C-pure type

HSIAN-YANG CHEN and CHING HUNG LAM

53Sofic groups: graph products and graphs of groups
LAURA CIOBANU, DEREK F. HOLT and SARAH REES

65Perturbations of a critical fractional equation
EDUARDO COLORADO, ARTURO DE PABLO and URKO SÁNCHEZ

87A density theorem in parametrized differential Galois theory
THOMAS DREYFUS

143On the classification of complete area-stationary and stable surfaces in
the subriemannian Sol manifold

MATTEO GALLI

159Periodic orbits of Hamiltonian systems linear and hyperbolic at infinity
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